
mRNA: Enabling Efficient Mapping Space Exploration for a Reconfigurable Neural
Accelerator

Zhongyuan Zhao∗, Hyoukjun Kwon†, Sachit Kuhar‡, Weiguang Sheng∗, Zhigang Mao∗, and Tushar Krishna†
∗Shanghai Jiao Tong University, †Georgia Institute of Technology, ‡Indian Institute of Technology Guwahati

zyzhao.sjtu@gmail.com, hyoukjun@gatech.edu, kuhar@iitg.ac.in
wgshenghit@sjtu.edu.cn, maozhigang@sjtu.edu.cn, tushar@ece.gatech.edu

Abstract—Deep learning accelerators have emerged to enable
energy-efficient and high-throughput inference from edge de-
vices such as self-driving cars and smartphones, to data centers
for batch inference such as recommendation systems. However,
the actual energy efficiency and throughput of a deep learning
accelerator depends on the deep neural network (DNN) loop
nest mapping on the processing element array of an accelerator.
Moreover, the efficiency of a mapping dramatically changes
by the target DNN layer dimensions and available hardware
resources. Therefore, the optimal mapping search problem is
a non-trivial high-dimensional optimization problem. Although
several tools and frameworks exist for compiling to CPUs and
GPUs, we lack similar tools for deep learning accelerators.

To deal with the optimized mapping search problem in deep
learning accelerators, we propose mRNA (mapper for recon-
figurable neural accelerators), which automatically searches
optimal mappings using heuristics based on domain knowledge
about deep learning and an energy/runtime cost evaluation
framework. mRNA targets MAERI, a recently proposed open-
source deep learning accelerator that provides flexibility via
reconfigurable interconnects, to run the unique mappings for
each layer generated by mRNA. In realistic machine learning
workloads from MLPerf, the optimal mappings identified by
mRNA framework provides 15% to 26% lower runtime and
55% to 64% lower energy for convolutional layers and 24%
to 67% lower runtime and maximum 67% lower energy for
fully connected layers compared to simple reference mappings
manually picked for each layer.

I. INTRODUCTION

Deep neural networks (DNNs) are now pervasive in both
data centers [15, 25] and edge devices [1]. Modern DNNs
have millions of parameters [38] and require billions of
computations per layer. These extreme demands have led
to an evolution of the target hardware that runs DNN
inference from CPUs and GPUs to specialized hardware
accelerators [7, 11, 12, 28]. These accelerators leverage data
reuse opportunities to provide higher throughput / Watt than
CPUs and GPUs.

Although DNN accelerators provide high energy-efficiency
- a necessary property for mass deployment, a key challenge
that hinders broad adoption is programmability. As is the case
with CPUs and GPUs, programmability hides the complexity

Authors Zhongyuan Zhao and Sachit Kuhar performed this research
during their internships at the Georgia Institute of Technology.

FC6 configurations
Configuration 1
DN Config:
RN Config:
MN Config:
VNAT Config:
SDM Config:

Conv1 configurations

Configuration 2
DN Config:
RN Config:
MN Config:
VNAT Config:
SDM Config:

Configuration 1
DN Config:
RN Config:
MN Config:
VNAT Config:
SDM Config:

…

Front-end parser

MAERI
Configuration
Generation

Description of layers

Mapping
candidates
Generation

mRNA profile results

VGGNet:
tf.nn.conv2d(…)
…
tf.nn.max_pool(…)
tf.nn.relu_layer(…)
…

TensorflowDNN Model

NumMSes: 256
NumRSes:255
DN_BW:64
RN_BW:256

Hardware Description

Candidates
evaluation

…

…

Conv1 configurations

Configuration 2
DN Config:
RN Config:
MN Config:
VNAT Config:
SDM Config:

Configuration 1
DN Config:
RN Config:
MN Config:
VNAT Config:
SMC Config:

…

…

MAERI configurations

Analyzer

FC6_para
Input parameter {
i_x=224
…
Filter parameter {
…

Conv1_2_para
Input parameter {
i_x=224
…
Filter parameter {
…

Conv1_1_para
Input parameter {
i_x, i_y, i_c, …
…
Filter parameter {
…

…

…

…
 FC4_profile

Mapping 1:
Kernel:<k_x, k_y, k_c, k_n…>
Configuration1
Utilization rate:
Number of cycles:
Activities:
DN: access time, energy
MN:access time, energy
RN: access time, energy
SDM: read/write time, energy
…

Conv2_profile
Mapping 1:
Kernel:<k_x, k_y, k_c, k_n…>
Configuration1
Utilization rate:
Number of cycles:
Activities:
DN: access time, energy
MN:access time, energy
RN: access time, energy
SDM: read/write time, energy
…

Conv1_profile
Mapping 1:
Kernel:<k_x, k_y, k_c, k_n…>
Configuration1
Utilization rate:
Number of cycles:
Activities:
DN: access time, energy
MN:access time, energy
RN: access time, energy
SDM: read/write time, energy
…

-dram
-sdm
-ds
-ms
-rs
-register
-multiply
-reduce

Energy parameter

Strategy sorting
Option:
1. Min latency
2. Min energy
3. Max energy-efficiency

mRNA

Figure 1: The mRNA tool flow

of the underlying hardware and allows software (application-
s/compilers/drivers) to automatically map computation and
stage data movement within the accelerator. Moreover, in
the case of DNN accelerators, this mapping directly affects
the degree of data reuse, and data communication/staging
patterns, and can have a huge impact on overall latency,
throughput and energy. This is known as dataflow. and has
received wide attention from the community [12, 29, 32, 36].

The programming model of many DNN accelerators today
follows the same style as CPUs or GPUs - the computations
to be mapped on DNN accelerators are defined in the form of
coarse matrix-matrix or matrix-vector multiplications [15, 31].
The role of any mapper (or compiler) is to tile these matrices
or vectors and map their computations spatially and/or
temporally over the array. The dataflow implemented within

1

the accelerator implicitly leads to a certain data communica-
tion/staging pattern from the scratchpad memories to the PEs,
and between PEs for each mapping. Most DNN accelerators
today are designed for one dataflow [7, 9, 11, 12, 22] which
limits dataflow optimization opportunities based on (a) DNN
layer dimensions or shapes and (b) available compute and
memory within the accelerator.

There has been growing interest in designing accelerators
that can support flexible dataflows [28, 32]. One such
architecture, MAERI [28] supports arbitrary dataflows by
leveraging light-weight, non-blocking, and reconfigurable
tree-based interconnection network topologies within the
accelerator. MAERI exposes fine-grained dataflow configura-
bility to programmers via an abstraction known as virtual
neurons (VN), which is a temporary cluster of multipliers
and adders that perform a multiply-accumulate operation to
generate an output activation. MAERI can be configured
to run any dataflow mapping via three features: (i) The
multipliers have local scratchpad FIFOs. This allows data
items to remain “stationary” for temporal reuse. (ii) The
interconnects within MAERI support multicasts and local
forwarding, enabling spatial reuse. (iii) The sizes of the
VNs is completely configurable, and the substrate can also
handle arbitrary sized VNs mapped simultaneously. This
essentially allows support for arbitrary fine-grained tiling.
MAERI can be configured layer-by-layer, or multiple times
within a layer to handle folding/edge cases, or even cycle-by-
cycle (subject to enough bandwidth on the control path [28]).
The MAERI RTL is released as an open-source code-base [3]
but there exists no methodology/tool to determine the right
MAERI configuration for a target DNN layer and MAERI’s
microarchitectural parameters.

In this work, we propose mRNA (Mapper for Recon-
figurable Neural Accelerator)2 - a dataflow exploration and
mapping engine that automatically searches through a suite of
DNN mapping strategies for MAERI [28] and provides a set
of energy- or throughput-optimal mappings. Figure 1 shows
an overview. mRNA receives the neural network description,
target hardware resources, and optimization goal (energy,
runtime, etc.) as inputs and generates MAERI interconnection
network configurations, which is equivalent to the machine
code for the MAERI DNN accelerator, as outputs. At the
heart of mRNA is a dataflow exploration engine that varies
the mapping size of each DNN layer dimension and the order
of nested DNN loops to search through a set of mapping
candidates, compute the expected runtime, energy-efficiency,
and compute unit utilization for each, and identify an optimal
mapping strategy (dataflow) among the candidates.

The core contributions of this paper are as follows:

• We present an automatic mapper that searches and

2In biology, mRNA conveys genetic information from the DNA to the
cells. Similarly, we envision our tool conveying mapping information from
the DNN program to hardware processing elements.

suggests a set of optimal DNN mappings over MAERI.
• A code generator that produces MAERI interconnection

network configurations that specifies a target mapping.
• Case studies demonstrating the impact of different map-

pings on MAERI’s performance and energy-efficiency
with real DNN workloads from MLPerf.

mRNA can either be used as a stand-alone tool to explore
optimal dataflows and mapping strategies for DNN kernels,
or in conjunction with MAERI to map and run a DNN
through RTL. mRNA has been open-sourced and is available
for download3.

The rest of the paper is organized as follows. Section II
provides the necessary background on DNN computations
and MAERI to understand this paper. Section III presents
the mRNA mapping exploration engine. Section IV provides
details on the actual framework. Section V demonstrates
the impact of mapping strategies, and therefore the value of
mRNA, across a suite of MLperf workloads and hardware
configurations. Section VI discusses related work, and
Section VII concludes.

II. BACKGROUND

A. Computing patterns inside DNN models

Neurons, the fundamental unit of computation in DNNs,
receives a certain number of input activations and generates
one output activation. The number of input activations and
weights depends on the neural network dimensions and
algorithmic optimizations such as pruning. The computation
inside a neuron consists of (1) Hadamard product that
multiply each input activation and its corresponding weight
value (element-wise multiplication), (2) reduction that sums
up the element-wise product results (or, partial sums), and (3)
activation of the reduced partial sums, which are non-linear
functions such as sigmoid or ReLu that map a reduced partial
sum (output of reduction) into a certain range (e.g., (-1, 1)
for sigmoid).

A layer in DNN contains neurons with the same size
whose size varies depending on the layer type and dimension.
A neuron size of 3x3 is common in convolutional neural
networks (CNN) [20, 38] based on neural net designer’s
choices, and 1x1 is common in LSTMs (Long short-term
memories) [39] based on its definition. Each cell of an LSTM
layer contains multiple neurons that compute input, forget,
and output gate values, a state value, and the next hidden
layer output.

B. Communication patterns inside DNN accelerators

Communication patterns inside DNN accelerators can
be classified into three categories [27]: distribution, local
forwarding, and collection

Distribution. The computation of a neuron can be mapped
over one or many processing elements (PEs) depending on

3http://synergy.ece.gatech.edu/tools/maeri/mrna

2

http://synergy.ece.gatech.edu/tools/maeri/mrna

X X X XX X X X

r r r

X X X XX X X X

r r

…

…

Weights

Inputs

Outputs

…

Distribute Network
(DN)

…SDM
 C

ontroller

Virtual Neuron
Address Table (VNAT)

From/To
DRAM

X X X XX X X X

+
+
+

+
+

+ +VN0

X X XX X X X

+
+
+

+
+

+ +VN1

+

VN2

Weights/Inputs Weights/Inputs

Output Activation Output Activation

Deep Neural NetworkNeuron

+

W1
W2
W3
W4

W5

M
ap

Neu
ro

ns

Output Activation

Reduce Switch (RS)

Distribute Switch (DS)

In
pu

t A
ct

iv
at

io
ns

Weights

O
ut

pu
t A

ct
iv

at
io

n

Scratchpad Data
Memory (SDM)

(b)(a) MAERI Microarchitecture Mapping DNNs over MAERI
1

Multiplier
Network (MN)

Reduce Network
(RN)

Activation Units

Multiplier Switch (MS)

Configurations

r
rr

rr r
Forwarder (FD)

rFat Link
(2x BW)

Fat Link (2x BW)

r r r

…

Augmented Link

Instructions

Out

X5

X4

X3

X2

X1

Virtual Neurons

X

2

3

4
5

6

7

Input/Weight
Fetch

Distribute

Partial Sum
Generation

Reduction

Reduction

Reduction

(Partial) Output
Write-back

<Execution Phase>

C
on

fig
ur

e
<C

on
fig

ur
at

io
n

Ph
as

e>

ACT

Figure 2: MAERI [29] architecture and its two operation phases (configuration and operation) described with a mapping example.

the accelerator implementation. Neurons require weight and
input activation tensor to generate an output. This leads to a
phase of distribution of weights and input activations in the
accelerator from a global scratchpad data memory (SDM) to
local scratchpad memory in each PE, which is a one-to-many
communication. Depending on the mapping strategy, spatial
data reuse (multicasting of a data) [29] is available during
distribution, as long as the interconnection network between
SDM and PEs provides multicasting capability.

Local forwarding. Based on the DNN layer type, some
neurons can process partially overlapped input activations,
which is known as sliding window behavior. To exploit this
feature, PEs can forward data using neighbor-to-neighbor
links rather than fetching data from the SDM that is further
away on-chip, thereby reducing energy. This is known as
spatial-temporal reuse [29] because data is reused in a
different location at different time. This communication
pattern is one of the core optimizations in all accelerators to
increase energy efficiency.

Collection. When each neuron produces a partial or full
output activation depending on the mapping strategy, an
accelerator needs to move the output activation to SDM.
The communication pattern for moving output activations
is collective from PEs to SDM (many-to-one). Because of
the nature of many-to-one communication, the latency and
throughput of collection completely depends on the effective
bandwidth of the interconnection network from PEs to SDM.

C. Target DNN architecture: MAERI

MAERI [28] is an open-source reconfigurable DNN
accelerator written in Bluespec System Verilog (BSV) that
provides high compute unit utilization and performance
with DNNs with both regular and irregular neuron sizes
(sparse weight, cross-layer mapping, etc.). MAERI provides
configurability via its three reconfigurable interconnection
networks - distribution network (DN), multiplier network
(MN), and reduce network (RN).

1) Microarchitecture: As shown in Figure 2, MAERI con-
sists of the three networks (DN, MN, RN), a virtual neuron

address table (VNAT), activation units, global scratchpad data
memory (SDM), and SDM controller. The DN nodes are
simple 1:2 switches, the MN nodes are multipliers with tiny
2:2 switches (multiplier switches - MS), and the RN nodes are
adders with tiny 2:3 switches (reduction switches: RS). The
topology of the DN, MN and RN is a fat-binary tree, linear,
and augmented-reduction tree (ART [28]), respectively. The
ART is a fat-binary adder with additional forwarding links
between two adjacent nodes in the same level that do not
share a common parent node, marked in red in Figure 2 (a).
ART provides non-blocking reduction for any size of virtual
neurons mapped on the MN, enabling high compute unit
utilization for neurons with irregular sizes. The bandwidth
of both the DN and RN is design-time configurable. The
bandwidth at the root of the DN (i.e., number of unique
inputs/weights that can be read) is set to match the output
bandwidth of the SRAMs, and it tapers down by a factor of
two at every level till it becomes one. Similarly for the ART.

2) Operations Phases: MAERI comprises of three opera-
tion phases - mapping strategy exploration (MSE), configu-
ration, and execution. During the MSE phase - which is the
focus of this work - a compiler (or user) determines the best
mapping strategy for given DNN layer dimensions (number of
filters, filter height/width, number of channels, and so on) and
hardware resources (number of MSes, DN/RN bandwidth).
We discuss the MSE phase in detail in Section III. During
the configuration phase, a controller inside MAERI sends
configuration signals to the switches in DN, MN and RN
to implement the mapping strategy determined in MSE
phase. The configuration determines the size of each virtual
neuron (VN) over MAERI, as Figure 2 (b) shows. The VN
is the key computation primitive in MAERI. The sizes of
each VNs can be layer-specific (e.g., dense convolutions)
or neuron specific (e.g., sparse convolutions). In this work,
we assume dense DNNs, where all VNs that are currently
mapped have the same size, as Figure 2(b) shows. MAERI
can also handle VNs of different sizes (for sparsity) but
that is beyond the scope of our tool at the moment. The

3

Tile

for(n=0; n<N; n=n+T_N) {
 for(c=0; c<C; c=c+T_C) {
 for(y=0; y<Y’; y=y+T_Y’) {
 for(x=0; x<X’; x=x+T_X’) {
 for(k=0; k<K; k=k+T_K) {
 for(r=0; r<R; r=r+T_R) {
 for(s=0; s<S; s=s+T_S) {
 for(t_n=n; t_n<T_N; t_n++) {
 for(t_k=k; t_k<T_K; t_k++) {
 for(t_y=y; t_y<T_Y’; t_y++) {
 for(t_x=x; t_x<T_X’; t_x++) {
 for(t_c=c; t_c<T_C; t_c++) {
 for(t_r=r; t_r<T_R; t_r++) {
 for(t_s=s; t_s<T_S; t_s++) {
 O[t_n][t_k][t_y][t_x] +=W[t_k][t_c][t_r][t_s]
 * I[t_n][t_c][d*t_y+t_r][d* _x+t_s];
}}}}}}}}}}}}}}

//Convolutional Layer Example
int I[N][C][Y][X]; // Input activations
int W[K][C][R][S]; // Filter weights
int O[N][K][Y’][X’]; // Output activations

for(n=0; n < N; n++) {
 for(k=0; k<K; k++) {
 for(y=0; y<Y’; y++) {
 for(x=0; x<X’; x++) {
 for(c=0; c<C; c++) {
 for(r=o; r<R; r++) {
 for(s=0; s<S; s++) {
 O[n][k][y][x] +=W[k][c][r][s]
 * I[n][c][y+r][x+s];
}}}}}}}

loop
interchange

Figure 3: Loop transformations (tiling and loop interchange) of a
convolution loop nest. ”d” stands for stride.

…
… …

K
…

…

C

R

S

C

R

S

C

X

Y

…

…C

X

Y

N

K

X’

Y’

…K

X’

Y’

N …

Weight Filters Input Activations Output Activations

Filter 0

Filter K

Input 0

Input N

Output 0

Output N

X

Y

X’

Y’

C

R

S

K

N

Input Row

Input Column

Output Row

Output Column

Filter/Input
Channel

Filter Row

Filter Column

Output Channel/
Number of Filters

Input Batch/
Number of Outputs

Figure 4: Loop variable convention for a convolutional layer.

VN configurations need to be updated every time the MSE
provides a new configuration, which depends on the DNN
layer type and dimensions. Correspondingly, the control
signals for configurations can be sent via a low-bandwidth
scan chain or a high-bandwidth control plane, depending
on the implementation. Finally, during the execution phase,
weight and input activation tensors are first distributed to the
MN via DN, the MN computes partial sums, and the RN
spatially reduces these to partial or full outputs. Each VN
generates a partial/full outputs that are sent via activation
units to the output buffers in the SDM. More details on
the configuration and execution phases are provided in the
MAERI paper [28] and are not the focus of this work.

III. MAPPING SPACE SEARCH

Almost all the layers inside DNN models can be repre-
sented as a multi-level nested loops, and those loops rarely
carry dependencies other than reduction dependency, which
implies abundant parallelism to exploit. Moreover, standard
loop transformation methods such as loop interchage and
tiling can be applied to the loop, as shown in Figure 3.
The effect of such loop transformations are significant in
deep learning accelerators, which dramatically changes the
throughput, latency, and energy efficiency, because they
influence the data communication pattern among SDM, DN,
MN, RN, and DRAM [29]. We term each transformed loop
nest as a mapping and discuss the impact of mappings in
the following sections.

Table I: mRNA Seven Mapping Parameters

Symbol Description

T R The number of mapped rows of inputs and
weights in a tile

T S The number of mapped columns of inputs and
weights in a tile

T C The number of mapped input and weight
channels in a tile

T K The number of mapped filters in a tile
T N The number of mapped input batches in a tile

T X’ The number of mapped rows of outputs
in a tile

T Y’ The number of mapped columns of outputs
in a tile

VN Size T R×T S×T C.
Num VNs T K×T N×T X ′×T Y ′

A. Mapping Taxonomy

Instead of having full version of loops in each layer,
we abstract the loops into multiply and accumulate (MAC)
instances over multi-dimensional weights and inputs. For
example, convolutional layers in CNN are MAC operations
with four-dimensional weights, inputs, and outputs: W(R, S,
C, K), I(X, Y, C, N) and O(X’, Y’, K, N), the meaning of
each dimension is shown in Figure 4. We use the convention
of W/I/O followed by four dimension parameters in braces to
specify the dimension of a convolutional layer. Because some
of the indices overlap in convolutions (e.g., channel of input
and weights), total number of parameters in convolution
is seven. Based on the seven convolutional parameters,
we define seven parameters to specify a specific mapping
tile mapping on MAERI’s hardware resources. These are
presented in Table I. From MAERI’s perspective, the mapped
tile parameters specify the VN size (i.e., number of MAC
operations in each VN) and number of VNs, as Table I
shows.

In the rest of the the paper, we use the convention of “Tile”
followed by the seven mapping parameters in a parenthesis
to specify a tile or the size of mapped volume for each
dataclass: Tile(T R, T S, T C, T K, T N, T X’, T Y’).

B. The Impact of Mapping

Figure 5 shows five mappings of a custom convolutional
layer on 16 MSes of MAERI. In this layer, the parameters of
the filters, inputs, and outputs are W(2, 2, 4, 2), I(4, 4, 4, 2)
and O(3, 3, 2, 2). We discuss each mapping, and its potential
impact on reuse and communication bandwidth (which in
turns affects performance and energy), next.

The mapping in Figure 5 (a) computes over the whole
F0 filter (2x2x4) and input IN0. In each control step (i.e.,
iteration) during the tile execution, MAERI performs MAC
operation over 16 weight and input elements and generates
a partial output (p0). In the DN, 16 weights (weight 0) and
input elements are uni-casted to the MN. In the MN, some
input elements can be reused by forwarding the value to
the adjacent MSes as the filter window slides along the row

4

w12 w13

w15
w8 w9

w11w4 w5

w7
w0 w1

w2 w3

C=4

N
=2

X=
2

Y=2

w28 w29

w31
w24 w25

w27w20 w21

w23w16 w17

w18 w19

F0

F1

x48 x49 x50 x51

x52 x53 x54 x55

x56 x57 x58 x59

x60 x61 x62 x63

x32 x33 x34 x35

x36 x37 x38 x39

x40 x41 x42 x43

x44 x45 x46 x47

x16 x17 x18 x19

x20 x21 x22 x23

x24 x25 x26 x27

x28 x29 x30 x31

Inputs��,������������

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

X=
4

Y=4

C=4

I0

Conv

p9 p10 p11

p12 p13 p14

p15 p16 p17

p0 p1 p2

p3 p4 p5

p6 p7 p8

Slide

Y’=3

X’
=3

K=2

p27 p28 p29

p12 p13 p32

p15 p16 p35

p18 p19 p20

p21 p22 p23

p24 p25 p26

O0

O1
x52 x53 x54

x56 x57 x58

x60 x61 x62

x112 x113 x114 x115

x119

x123

x127

x96 x97 x98 x99

x36 x37 x38

x40 x41 x42

x44 x45 x46

x103

x107

x111

x80 x81 x82 x83

x20 x21 x22 x87

x24 x25 x26 x91

x28 x29 x30 x95

x64 x65 x66 x67

x68 x69 x70 x71

x72 x73 x74 x75

x76 x77 x78 x79

N
=2

Slide

Output: O(3, 3, 2, 2)

K=
2 Output

Partial sum

(c)

MS0 MS1 MS2 MS3 MS4 MS5 MS6 MS7
w0 w1 w2 w3 w4 w5 w6 w7x0 x1 x4

x2

…

x5 x16 x17 x20 x21
x6 x18 x22

…

…

…

VN0 VN0 VN0 VN0 VN0 VN0 VN0 VN0
MS8 MS9 MS10 MS11 MS12 MS13 MS14 MS15

w0 w1x32 x33 x36

x34

…

x37 x48 x49 x52 x53

x38 x50 x54

…

…

…

VN1 VN1 VN1 VN1 VN1 VN1 VN1 VN1

w2 w3 w4 w5 w6 w7

Input streams

MN

I1

MN
Weight 0_VN0

Weight 0

MN
Input 0_VN0

Input 0 Input 1

Input 1_VN1

Weight 0_VN1

DN behavior for weight: Multicast to two copies: VN 0 and VN 1

DN behavior for input (no forwarding in MN): No multicast, unicast only

MN
Input 0_VN0 Input 1_VN1

Weight 0_VN0 Weight 0_VN1

p0 p18

RN behavior: reduction for 2 VNs

MN
Input 0_VN0

Input 0 Input 1

Input 1_VN1

DN behavior for input (forwarding in MN): No multicast, unicast only

DN

DN DN

RN

p9 p10 p11

p12 p13 p14

p15 p16 p17

w12 w13

w15
w8 w9

w11w4 w5

w7
w0 w1

w2 w3

C=4

N
=2

R=
2

S=2

w28 w29

w31
w24 w25

w27w20 w21

w23w16 w17

w18 w19

F0

F1

x48 x49 x50 x51

x52 x53 x54 x55

x56 x57 x58 x59

x60 x61 x62 x63

x32 x33 x34 x35

x36 x37 x38 x39

x40 x41 x42 x43

x44 x45 x46 x47

x16 x17 x18 x19

x20 x21 x22 x23

x24 x25 x26 x27

x28 x29 x30 x31

Inputs��,������������

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

X=
4

Y=4

C=4

IN0

IN1

Conv

Slide

Y’=3

X’
=3

K=2

p27 p28 p29

p12 p13 p32

p15 p16 p35

O0

O1
x52 x53 x54

x56 x57 x58

x60 x61 x62

x112 x113 x114 x115

x119

x123

x127

x96 x97 x98 x99

x36 x37 x38

x40 x41 x42

x44 x45 x46

x103

x107

x111

x80 x81 x82 x83

x20 x21 x22 x87

x24 x25 x26 x91

x28 x29 x30 x95

x64 x65 x66 x67

x68 x69 x70 x71

x72 x73 x74 x75

x76 x77 x78 x79

N
=2

Slide

Output: O(3, 3, 2, 2)

K=
2

Output
Partial sum

(d)

p0 p1 p2

p3 p4 p5

p6 p7 p8

p18 p19 p20

p21 p22 p23

p24 p25 p26

MS0 MS1 MS2 MS3 MS4 MS5 MS6 MS7
w0 w1 w2 w3x0 x1 x4

x2

…

x5 x0 x1 x4 x5
x6 x2 x6

…

…

…

VN0 VN0 VN0 VN0 VN1 VN1 VN1 VN1
MS8 MS9 MS10 MS11 MS12 MS13 MS14 MS15

w0 w1x64 x65 x68

x66

…

x69 x64 x65 x86 x69

x70 x66 x70

…

…

…

VN2 VN2 VN2 VN2 VN3 VN3 VN3 VN3

w2 w3 w16 w17 w18 w19

Input streams

w16 w17 w18 w19

MN

MN

Weight 0

MN
Input 0_VN1

Input 0 Input 1

Input 1_VN2

DN behavior for weight: Each weight data block is multicasted to two
copies: VN 0 and VN 1

DN behavior for input (no forwarding in MN): Each input segment is
multicasted to two copies: VN 0 and VN 1

Weight 1

Weight 0_VN0 Weight 1_VN1 Weight 0_VN2 Weight 1_VN3

Input 0_VN0 Input 1_VN3

MN
Weight 0_VN0 Weight 1_VN1 Weight 0_VN2 Weight 1_VN3

Input 0_VN1 Input 1_VN2Input 0_VN0 Input 1_VN3

p0 p9 p18 p27

RN behavior: reduction for 4 VNs
MN

Input 0_VN1

Input 0 Input 1

Input 1_VN2Input 0_VN0 Input 1_VN3

DN behavior for input (forwarding in MN): Each input segment is
multicasted to two copies: VN 0 and VN 1

DN

DN DN

RN

p27 p28 p29

p12 p13 p32

p15 p16 p35

p18 p19 p20

p21 p22 p23

p24 p25 p26

p9 p10 p11

p12 p13 p14

p15 p16 p17

w12 w13

w15
w8 w9

w11w4 w5

w7
w0 w1

w2 w3

C=4

i_
n

=
2

R=
2

S=2

w28 w29

w31
w24 w25

w27w20 w21

w23w16 w17

w18 w19

F0

F1

x48 x49 x50 x51

x52 x53 x54 x55

x56 x57 x58 x59

x60 x61 x62 x63

x32 x33 x34 x35

x36 x37 x38 x39

x40 x41 x42 x43

x44 x45 x46 x47

x16 x17 x18 x19

x20 x21 x22 x23

x24 x25 x26 x27

x28 x29 x30 x31

Inputs��,������������

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

X=
4

Y=4

C=4

IN0

IN1

Conv

Slide

Y’=3

X’
=3

C=2O0

O1
x52 x53 x54

x56 x57 x58

x60 x61 x62

x112 x113 x114 x115

x119

x123

x127

x96 x97 x98 x99

x36 x37 x38

x40 x41 x42

x44 x45 x46

x103

x107

x111

x80 x81 x82 x83

x20 x21 x22 x87

x24 x25 x26 x91

x28 x29 x30 x95

x64 x65 x66 x67

x68 x69 x70 x71

x72 x73 x74 x75

x76 x77 x78 x79

N
=2

Outputs: O(3, 3, 2, 2)

K=
2

Output
Partial sum p0 p1 p2

p3 p4 p5

p6 p7 p8

MS0 MS1 MS2 MS3 MS4 MS5 MS6 MS7
w0 w1 w2 w3 w0x0 x1 x4 x5 x1 x2 x5 x6

VN0 VN0 VN0 VN0 VN1 VN1 VN1 VN1
MS8 MS9 MS10 MS11 MS12 MS13 MS14 MS15

w0 w1x4 x5 x8 x9 x5 x6 x9 x10

VN2 VN2 VN2 VN2 VN3 VN3 VN3 VN3

w2 w3 w0 w1 w2 w3w1 w2 w3

MN

MN

Weight 0

MN
Input 0-1_VN1

Input 0

Input 0-2_VN2

DN behavior for weight: Each weight data block is multicasted to 4
copies: VN0, VN1, VN2 and VN3

DN behavior for input: hybrid forwarding pattern multicast+unicast

Weight 0_VN0 Weight 0_VN1 Weight 0_VN2 Weight 0_VN3

Input 0-0_VN0 Input 0-3_VN3

MN
Weight 0_VN0 Weight 0_VN1 Weight 0_VN2 Weight 1_VN3

Input 0-1_VN1 Input 0-2_VN2Input 0-0_VN0 Input 0-3_VN3

p0 p1 p3 p4

RN behavior: reduction for 4 VNs

DN

DN

RN

(e)

p9 p10 p11

p12 p13 p14

p15 p16 p17

x48 x49 x50 x51

x52 x53 x54 x55

x56 x57 x58 x59

x60 x61 x62 x63

x32 x33 x34 x35

x36 x37 x38 x39

x40 x41 x42 x43

x44 x45 x46 x47

w12 w13

w15
w8 w9

w11w4 w5

w7
w0 w1

w2 w3

C=4

K=
2 R=

2

S=2

w28 w29

w31
w24 w25

w27w20 w21

w23w16 w17

w18 w19

Conv

p0 p1 p2

p3 p4 p5

p6 p7 p8

x16 x17 x18 x19

x20 x21 x22 x23

x24 x25 x26 x27

x28 x29 x30 x31

Slide
Inputs��,������������

Slide

F0

F1

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

Outputs: O(3, 3, 2, 2)

R=
4

S=4

C=4

Y’=3

X’
=3

K=2

IN1

x52 x53 x54

x56 x57 x58

x60 x61 x62

x112 x113 x114 x115

x119

x123

x127

x96 x97 x98 x99

x36 x37 x38

x40 x41 x42

x44 x45 x46

x103

x107

x111

x80 x81 x82 x83

x20 x21 x22 x87

x24 x25 x26 x91

x28 x29 x30 x95

x64 x65 x66 x67

x68 x69 x70 x71

x72 x73 x74 x75

x76 x77 x78 x79

p27 p28 p29

p12 p13 p32

p15 p16 p35

p18 p19 p20

p21 p22 p23

p24 p25 p26

O1

O2

MS12 MS13 MS14 MS15MS8 MS9 MS10 MS11
w8 w9 w10 w11 w12 w13 w14 w15

…

…

…

…

…

…

…

MS0 MS1 MS2 MS3 MS4 MS5 MS6 MS7
w0 w1 w2 w3 w4 w5 w6 w7x0 x1 x4

x2
…

x5 x16 x17 x20 x21
x6 x18 x22

…

…

…

VN0 VN0 VN0 VN0 VN0 VN0 VN0 VN0

x0 x1 x4

x2

…

x5 x16 x17 x20 x21

x6 x18 x22

…

…

…

VN1 VN1 VN1 VN1 VN1 VN1 VN1 VN1

Input streams

MN

(b)

IN0

MN
Input 0_VN0

Input 0

MN
Weight 0_VN0

Weight 0 Weight 1

Weight 1_VN1

Input 0_VN1

MN
Weight 0_VN0 Weight 1_VN1
Input 0_VN0 Input 0_VN1

p0 p9

RN behavior: Reduction for two VNs

DN behavior for input (no forwarding in MN)��PXOWLFDVW�WR�WZR�FRSLHV��
91��DQG�91�

DN behavior for weight: No multicast, two weight data blocks unicast

MN
Input 0_VN0

Input 0

Input 0_VN1

DN behavior for input (forwarding in MN)��PXOWLFDVW�WR�WZR�FRSLHV��
91��DQG�91�

Output
Partial sum DN

DN DN

RN

N
=2

N
=2

p9 p10 p11

p12 p13 p14

p15 p16 p17

x48 x49 x50 x51

x52 x53 x54 x55

x56 x57 x58 x59

x60 x61 x62 x63

x32 x33 x34 x35

x36 x37 x38 x39

x40 x41 x42 x43

x44 x45 x46 x47

w12 w13

w15
w8 w9

w11w4 w5

w7
w0 w1

w2 w3

C=4

K=
2

R=
2

S=2

w28 w29

w31
w24 w25

w27w20 w21

w23w16 w17

w18 w19

Conv

p0 p1 p2

p3 p4 p5

p6 p7 p8

Output

x16 x17 x18 x19

x20 x21 x22 x23

x24 x25 x26 x27

x28 x29 x30 x31

Slide
Weight Filters: W(2, 2, 4, 2)

Inputs��,������������

Slide

(a)

F0

F1

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

MN
Input 0_VN0

Input 0

MN
Weight 0_VN0

Weight 0

DN behavior for input (no forwarding in MN): No multicast, unicast only

Outputs: O(3, 3, 2,2)
X=

4

Y=4

C=4

Y’=3

X’
=3

K=2

IN1

x52 x53 x54

x56 x57 x58

x60 x61 x62

x112 x113 x114 x115

x119

x123

x127

x96 x97 x98 x99

x36 x37 x38

x40 x41 x42

x44 x45 x46

x103

x107

x111

x80 x81 x82 x83

x20 x21 x22 x87

x24 x25 x26 x91

x28 x29 x30 x95

x64 x65 x66 x67

x68 x69 x70 x71

x72 x73 x74 x75

x76 x77 x78 x79

p27 p28 p29

p12 p13 p32

p15 p16 p35

p18 p19 p20

p21 p22 p23

p24 p25 p26

O1

O2

MN

Input 0_VN0
Weight 0_VN0

p0

RN behavior: Reduction for one VNDN behavior for weight: No multicast, unicast only

MS0 MS1 MS2 MS3 MS4 MS5 MS6 MS7
w0 w1 w2 w3 w4 w5 w6 w7

Tile(T_R=2, T_S=2, T_C=4, T_K=1, T_N=1, T_X’=1, T_Y’=1):

x0

Input streams

x1 x4

x2

…

x5 x16 x17 x20 x21
x6 x18 x22

…

…

…

VN0 VN0 VN0 VN0 VN0 VN0 VN0 VN0
MS8 MS9 MS10 MS11 MS12 MS13 MS14 MS15

w8 w9x32 x33 x36

x34

…

x37 x48 x49 x52 x53

x38 x50 x54

…

…

…

VN0 VN0 VN0 VN0 VN0 VN0 VN0 VN0

w10 w11 w12 w13 w14 w15

IN0

MN
Input 0_VN0

Input 0
DN behavior for input (forwarding in MN): No multicast, unicast only

MN

DN

DN DN

RN

N
=2

N
=2

DN_BW input req

DN_BW weight req

RN_BW req

Control steps
DN input

communication
DN weight

communication
MN communication

(reg+forwarding)
RN communication

16, 8

16

1

36

30

64, 32

64

32

DN_BW input req

DN_BW weight req

RN_BW req

Control steps
DN input

communication
DN weight

communication
MN communication

(reg+forwarding)
RN communication

 8, 4

16

2

41

28

64, 32

64

32

DN_BW input req

DN_BW weight req

RN_BW req

Control steps
DN input

communication
DN weight

communication
MN communication

(reg+forwarding)
RN communication

16, 8

8

2

41

28

64, 32

64

32

DN_BW input req

DN_BW weight req

RN_BW req

Control steps
DN input

communication
DN weight

communication
MN communication

(reg+forwarding)
RN communication

8, 4

8

4

45

24

56, 28

64

32

DN_BW input req

DN_BW weight req

RN_BW req

Control steps
DN input

communication
DN weight

communication
MN communication

(reg+forwarding)
RN communication

9

4

4

73

24

60

56

32

Weight Filters: W(2, 2, 4, 2)

Weight Filters: W(2, 2, 4, 2)

Weight Filters: W(2, 2, 4, 2)

Weight Filters: W(2, 2, 4, 2)

Tile(T_R=2, T_S=2, T_C=2, T_K=2, T_N=1, T_X’=1, T_Y’=1):

Tile(T_R=2, T_S=2, T_C=2, T_K=1, T_N=2, T_X’=1, T_Y’=1):

Tile(T_R=2, T_S=2, T_C=1, T_K=2, T_N=2, T_X’=1, T_Y’=1):

Tile(T_R=2, T_S=2, T_C=1, T_K=1, T_N=1, T_X’=2, T_Y’=2):

Figure 5: Examples of mapping strategy 1 (a), 2 (b), 3 (c) and 4 (d), 5(e). The four dimensional parameters in Weight Filter: W()/Input:
I()/Output: O() represents the height, width, channel number and the number of filter/input/output. The seven dimensional parameters witin
Tile() is row, column, channel, filter number and input number, output row and output Column The arrows inside DN and RN represents
the forwarding path of each element. In table on the right most, req means requirement and the communication is the number within
single control step (i.e, iteration), and the unit of bandwidth is the number of deliverable data points per cycle.

5

S=7

R=
7

T_S=2

T_
R=

2
replicate 4 times

re
pl

ic
at

e
4

tim
es

(7x7) / (8x8) = 0.76

T_S=2
S=5

R=
5

T_
R=

2

replicate 3 times

re
pl

ic
at

e
3

tim
es

(5x5) / (6x6) = 0.69

S=3

R=
3

T_S=2
replicate 2 times

re
pl

ic
at

e
2

tim
es

T_
R=

2

(3x3) / (4x4) = 0.56

Figure 6: The overall utilization rate of selecting T R = T Y = 2
when R and S are both equal to 7, 5, 3 respectively. Green area
shows the filter weights and the brown area in the upper-left shows a
tile. The gray area around the green area shows invalid coverage of
tiles, which is out-of-bound that causes significant underutilization
as presented at the bottom of each example.

of the input. Therefore, if the MN enables forwarding data
between adjacent MSes, only a subset of input elements need
to be sent through the DN in the subsequent control steps; in
this example, only eight input elements are unicast through
the DN. In the RN, since one VN produces a full output,
one mapping configuration is sufficient to generate the full
output. However, this mapping does not exploit spatial reuse
via multicasting in DN, thus requiring high bandwidth and
dense data communication in the DN.

The mapping in Figure 5 (b) performs MAC over two
2x2x2 weights and one 2x2x2 input elements. In the DN,
correspondingly, eight weights in filter 0 (weight 0) and filter
1 (weight 1) are unicasted with tag VN 0 and VN 1, which
indicates their corresponding VN ID. For the first control step,
eight unique input elements in input 0 are multicasted through
DN to both VN0 and VN1; in the subsequent iterations, four
of the inputs are forwarded locally (spatio-temporal reuse)
and four new input elements are multicasted through the
DN. The forwarding opportunities in the MN exist since the
mapping exploits sliding window over the input. Because this
mapping multicasts inputs in DN, DN requires half bandwidth
compared to Figure 5 (a) (16 to 8 when forwarding in MN
is inactive and 8 to 4 when forwarding in MN is active). In
the RN, the two VNs generate two partial outputs (p0 and
p9), not full outputs, which requires additional configuration
phases to accumulate partial outputs to generate full outputs.

The mapping in Figure 5 (c) performs MAC over a 2x2x2
weight and two 2x2x2 input tiles; here weight elements
are multicasted but input elements are not. In the DN, the
bandwidth requirement for weight is larger than that of
Figure 5 (b) because this mapping does not utilize multicast
in DN for inputs. In the MN, input element forwarding is
available for every other MS because of input sliding window.
In the RN, two VNs generate two partial outputs (p0 and
p19), which also requires additional configuration phases.

The mapping in Figure 5 (d) performs MAC over two
2x2x1 weight and two 2x2x1 input tiles, which generates four
partial outputs in RN. In the DN, the bandwidth requirement
is reduced compared to Figure 5 (c) for both the weight and

input because both weight and input elements are multicasted.
In the MN, forwarding is available for every other MS. In
the RN, four VNs generate partial outputs that covers less
number of partial sums compared to previous examples,
which requires more number of control steps.

The mapping in Figure 5 (e) performs MAC over one
2x2x1 weight and four 2x2x1 input tiles: (x0, x1, x4, x5), (x1,
x2, x5, x6), (x4, x5, x8, x9) and (x5, x6, x9, x10). In the DN,
although weight elements are fully multicasted to all the VNs,
input elements are partially multicasted, which introduces
irregular multicasts and unicasts. In the MN, because adjacent
multipliers require different input elements, forwarding is
unavailable. In the RN, four VNs generate four partial outputs,
which require additional control steps like Figure 5 (d) to
generate full outputs.

As we observed in the examples, different mappings lead
to different computation and communication patterns in
hardware, which results in different throughput and energy
efficiency. Therefore, exploring mapping options to identify
the most throughput-optimized and energy-efficient one is
critical to maximize the benefits of a flexible deep learning
accelerator like MAERI. To identify such mappings, mRNA’s
mapping tool searches through all the potential mapping
candidates and identify best mappings based on the user
options (such as optimization goal). We discuss the mapping
tool in the following subsection.

C. Mapping Space Search

The mapping algorithm includes three main phases:
(1) choose the possible mapping candidates, (2) make a
comprehensive evaluation on each candidate including a
cycle-level estimate of performance, normalized energy, and
energy-efficiency, (3) generate the configuration for MAERI
according to the specified mapping strategy.

1) Candidates search: In the candidates search phase, the
mapper searches mappings that utilizes available compute
units as much as possible while satisfying the inequality in
Equation 1:

T R×T S×T C×T K×T N×T X ′×T Y ′ ≤ Nms

where T R≤ R, T S≤ S, T C ≤C, T K ≤ K,

T N ≤ N, T X ′ ≤ X ′, T Y ′ ≤ Y ′
(1)

Nms represents the available computational resources,
which is the number of MSes in MN. Because of the
high dimensionality (7D), the mapping space based on the
permutations of the loop and the mapping parameters of
each loop is huge. For example, the second CONV layer
of VGG16 [38] with batch size 32 has layer dimensions
of I(224, 224, 64, 32), W(3, 3, 64, 64), O(224, 224, 64,
32). If we map this layer onto MAERI with 256 MSes,
the number of all the possible mapping parameters that
satisfy inequality Equation 1 is 71107. If we scale up the

6

computational resources (number of MSes) to 1024, the
search space will increase to 531517. It is impractical to
evaluate the efficiency of all these mapping strategies in
detail due to the large time complexity. We demonstrate that
it is possible to prune down the search space by identifying
mappings that are guaranteed to be inefficient compared to
others.

To reduce the search space, we develop heuristics from
the following insights.

MS utilization and edge conditions in mapping. Be-
cause the number of utilized MSes is determined based on
the size of mapped VNs (e.g., if we map VNs with size
3 over a MS array with 16 MSes, only 15 MSes can be
utilized), the mapping parameters that determine the size of
VNs (T R, T S, and T C) determine the peak utilization of
MSes. Thus VN sizes that are not divisible by the number
of MSes can be pruned away without a full evaluation.
Similarly, when choosing appropriate tile sizes, the dimension
of the filters (R, S, and C) needs to be considered to
account for the underutilization when a tile encounters out-
of-bounds at edges, as presented in Figure 6. To prevent
such underutilization, we select mapping parameters, T R,
T S, and T C, that evenly divide each dimension, R, S, and
C, respectively. We also apply the same constraints to input
mapping parameters. By applying these edge conditions, we
can significantly reduce the search space.

Batch size in inference.. In most inference scenarios
(forward pass), the batch size (N) is one. Therefore, we can
assume that the corresponding mapping parameter, T N, is
also one, which removes one dimension of the 7D mapping
search space.

Mapping fully-connected and LSTM.. Fully-connected
(FC) and LSTM layers require matrix multiplication, which
can be viewed as convolution with reduced dimensions (C =
K = 1, Y = C = 1, X ′ = K = 1, X = S, R = Y ′). Therefore,
the number of mapping parameters to determine decreases
to two (T R and T S), and this significantly reduces the
mapping search space.

Partial and full outputs. The number of MACs for each
neuron and virtual neuron is R×S×C and T R×T S×T C,
respectively. If T R < R, T S < S or T C < C, each VN
generates a partial output. The number of partial outputs per
a full output (Npartial) is as follows:

Npartial =

⌈
R

T R

⌉
×
⌈

S
T S

⌉
×
⌈

C
T C

⌉
(2)

That is, mRNA needs to generate another configuration to
accumulate partial outputs to produce a full output, which
results in the reconfiguration of the MAERI components
(DN, MN, RN, and VNAT), which is expected to add
latency and synchronization overheads. Furthermore, when
the number of MSes is insufficient to cover Npartial , mRNA
needs to generate an additional configuration for spatial
folding. To prevent such additional reconfiguration overheads,

the mapping candidates are chosen to try and compute full
outputs within one control step, or satisfy Npartial ≤ Nms.

2) Evaluation on mapping candidates: To determine the
best mapping, mRNA evaluates each mapping candidate using
the following metrics: the average MS utilization, runtime,
and energy consumption.

Average MS utilization. To evaluate the average MS
utilization, we compute the total number of utilized MSes in
each control step (each pipeline stage in MAERI presented
in Figure 5 (b)) and divide it by the total number of MSes
multiplied by the number of compute steps, as presented
in Equation 3.

∑
CStotal
cs=1 Ucs

CStotal×Nms
(3)

where Ucs is the number of utilized MSes at control step cs.
Runtime. Although MAERI architecture allows non-

blocking computation, serialization delay can be encountered
when the bandwidth of DN and RN is not sufficient to support
the DN and RN traffic for a mapping. mRNA identifies the
bandwidth requirement of a mapping and uses it to compute
possible serialization delay that adds up the total runtime.

Energy consumption. To evaluate energy consumption of
the mapping candidates, we performed a layout of MAERI’s
RTL [3] using TSMC 28nm technology and extracted the
relative energy consumed by multiplication, addition, buffer
reads, and the various communication networks. We apply
the extracted energy parameters to the activity counts mRNA
generates, and compute the relative energy consumption of
each mapping candidate.

IV. MRNA FRAMEWORK

Figure 1 shows an overview of the mRNA toolflow. mRNA
receives a DNN model written in Tensorflow [6], hardware
resource description (number of MSes, the bandwidth of DN
and RN, and so on), energy parameters (mult/add op energy,
DN/RN traversal energy, local buffer/SDM access energy,
etc.), and optimization options such as optimization goal (la-
tency, throughput, or energy) as input. The mRNA framework
analyzes the received inputs and generates optimized MAERI
mappings for the optimization goal from the user and reports
corresponding costs (relative energy consumption, the number
of computations, communication, and buffer activities, and so
on) as output. Figure 1 shows a snapshot of the outputs. The
mRNA framework consists of a front-end parser, analyzer,
and MAERI component configuration generator, which we
discuss in the following subsections.

A. Front-end parser

The front-end parser receives the DNN model in Ten-
sorflow format as input and extracts the DNN dimensions
of each layer, which are dimension parameters discussed
in Section III-B. The parser can also analyze FC layer
and LSTM models; for LSTM, it extracts the dimension
parameters for all the hidden units. The parser generates an

7

intermediate dimension parameter file in a format described
in Figure 1. The format has four separate sections (input,
filter, output, and hidden paramter sections) that describes
dimension parameters in each data class. This file can also
be provided directly as an input by the user.

B. Analyzer

The analyzer receives the intermediate dimension pa-
rameter file from the front-end parser, hardware resource
description, energy parameters, and optimization option as
input, as described in Figure 1. Using the inputs, the ana-
lyzer generates mapping candidates and identifies optimized
mappings using the mapping evaluation methods discussed
earlier in Section III-C. The analyzer generates a set of
optimized mappings and directly passes them to the MAERI
configuration generator. For each mapping for each layer, it
also generates a report file with the following information:
• MS utilization: The peak utilization, the average utiliza-

tion for each configuration, and the average utilization
across all the configurations.

• Latency: The number of cycles to run MAERI for all
configurations.

• DN activities: The number of DN traversals, the energy
consumption for each configuration, and the energy
consumption for all the configurations.

• MN activities: The number of MN forwarding link
traversals, the number of multiplications, the energy
consumption for each configuration, and the energy
consumption for all the configurations.

• RN activities: The number of RN traversals, the
number of additions, the energy consumption for each
configuration, and the energy consumption for all the
configurations.

• SDM activities: The number of SDM accesses, the
energy consumption for each configuration, and the
energy consumption for all the configurations.

• DRAM activities: The number of DRAM accesses, the
energy consumption for entire computing phase of a
layer.

C. MAERI configuration generator

The MAERI configuration generator receives the optimized
mappings from the analyzer as input and generates the
configurations for each component (DN, MN, RN, SDM,
VNAT, etc.) as output. The generated outputs are essentially
the multiplexer select lines for all MAERI switches, and can
directly loaded into MAERI to begin the configuration phase
to setup the VNs (Section II-C2).

V. EVALUATION

A. Methodology

We evaluate mappings generated by mRNA over a mix
of DNN layers as shown in Table II. We select three convo-
lutional layers from MLPerf [4]: CB3a 2 and CB5 2 from

Table II: Dimension Parameters of Layers

Layer Inputs I Weight Filters W Outputs O
CB3a 2 I(28,28,128,1) W(3,3,128,128) O(28,28,128,1)
CB5 2 I(7,7,512,1) W(3,3,512,512) O(7,7,512,1)
1x1red I(7,7,832,1) W(1,1,832,32) O(7,7,32,1)
FC1 I(4096,1,1,1) W(4096,4096,1,1) O(4096,1,1)
FC2 I(2048,1,1,1) W(2,2048,1,1) O(2,1,1,1)
embed I(1,1,138000,1) W(1,1,138000,32) O(1,1,32,1)

ResNet [20] and 1x1red from GoogLeNet [37]; we select two
fully-connected layers: FC1 from Alexnet [26] and FC2 from
Seq-CNN [24]; and we select one embedding layer from
a MLP for neural collaborative filtering [21]. We evaluate
the runtime, MS utilization rate, the interconnection network
(DN, MN, and RN) activities, and energy consumption of
mRNA mappings for the six selected layers. For convolutional
layers, we only present results from the worst and best
mappings because CNN has many possible mappings (e.g.,
mRNA generated 71107 mappings for VGG16-conv2). In the
interest of space, we assume inference in all our experiments,
which means that the T N parameter (i.e., batch size) in the
mappings remains 1.

B. Runtime

Full Bandwidth. Figure 7 present the runtime, MS
utilization, energy consumption breakdown, and the number
of the DN, MN and RN activities for each of our evaluation
layers. We normalize all results to a baseline mapping
strategy, which we define as Tile(T R, T S, 1, T K, 1,
1, 1). That is, only one channel of each filter is mapped
over the MSes. For hardware configuration, we use 512
MSes and DN/RN with bandwidth of 512, which means
512 new data items can be delivered and received at the
same time in DN and RN. Although this is an extreme
design, we use them because it demonstrates the impact
of the mapping given no constraint on bandwidth. We will
explore the effect of bandwidth later in the evaluations. For
ResNet-CB3a 2 and ResNet-CB5a 2, the baseline mapping
requires the longest runtime because low utilization at K
edges. The utilization at K edges in the baseline mapping
is 2x2x(128 mod 56)/512 = 64/512 = 12.5% as T K
and K are 56 and 128, respectively. Such low utilization
significantly degrades the average utilization simliar to the
baseline. For GoogleNet-1x1red layer, the worst mapping
is not the baseline but a mapping with T C = 512, as
presented Figure 7 (c). The average utilization of the worst
mapping (T C = 512 and other mapping parameters are
all 1) is only 81% because of the edge condition on C, like
ResNet cases. For FC and embedding layers, all the mappings
maintained high utilization but required dramatically different
runtimes, as Figure 7 (d), (e), and (f) shows. This is because
some mappings generate partial outputs, not full outputs, at
the first run like the example in Figure 5 (d), which requires
additional control steps for partial output accumluation to
generate full outputs.

8

0

0.25

0.5

0.75

1

C
B5

a_
2

3,
3,

1,
56

,1
,1

,1

C
B5

a_
2

3,
3,

4,
14

,1
,1

,1

C
B5

a_
2

3.
3.

14
.4

.1
,1

,1

C
B5

a_
2

3.
3.

8.
7.

1,
1,

1

Normalized cycle

0

0.25

0.5

0.75

1

C
B5

a_
2

3,
3,

1,
56

,1
,1

,1

C
B5

a_
2

3,
3,

4,
14

,1
,1

,1

C
B5

a_
2

3.
3.

14
.4

.1
,1

,1

C
B5

a_
2

3.
3.

8.
7.

1,
1,

1

Utilization rate
ResNet-CB5a_2: MSes=512, DN_BW=512, RN_BW=512

(b)

0
0.25

0.5
0.75

1
1.25

C
B5

a_
2

3,
3,

1,
56

,1
,1

,1

C
B5

a_
2

3.
3.

4.
14

.1
,1

,1

C
B5

a_
2

3.
3.

14
,4

,1
,1

,1

C
B5

a_
2

3,
3,

8,
7,

1,
1,

1

MN forward MN reg RN DN

0
0.25

0.5
0.75

1
1.25

CB
5a

_2
3,

3,
1,

56
,1

,1
,1

CB
5a

_2
3,

3,
4,

14
,1

,1
,1

CB
5a

_2
3.

3.
14

.4
.1

,1
,1

CB
5a

_2
3.

3.
8.

7.
1,

1,
1

Energy % DN Energy % RN
Energy % MN Energy % SDM
Energy % DRAM

0
0.25

0.5
0.75

1
1.25

1x
1r

ed
1,

1,
16

,3
2,

1,
1,

1

1x
1r

ed
1,

1,
51

2,
1,

1,
1,

1

1x
1r

ed
1,

1,
12

8,
4,

1,
1,

1

1x
1r

ed
1,

1,
64

,8
,1

,1
,1

Normalized cycle

0
0.25

0.5
0.75

1
1.25

1x
1r

ed
1,

1,
16

,3
2,

1,
1,

1

1x
1r

ed
1,

1,
51

2,
1,

1,
1,

1

1x
1r

ed
1,

1,
12

8,
4,

1,
1,

1

1x
1r

ed
1,

1,
64

,8
,1

,1
,1

Utilization rate
GoogleNet-1x1 red: MSes=512, DN_BW=512, RN_BW=512

(c)

0
0.25

0.5
0.75

1
1.25

1x
1r

ed
1,

1,
16

,3
2,

1,
1,

1

1x
1r

ed
1,

1,
51

2,
1,

1,
1,

1

1x
1r

ed
1,

1,
12

8,
4,

1,
1,

1

1x
1r

ed
1,

1,
64

,8
,1

,1
,1

Energy % DN Energy % RN
Energy % MN Energy % SDM
Energy % DRAM

0
0.25

0.5
0.75

1
1.25

FC
 1

1,
1,

1,
51

2,
1,

1,
1

FC
 1

1,
1,

51
2,

1,
1,

1,
1

FC
 1

1,
51

2,
1,

1,
1,

1,
1

Normalized cycle

0
0.25

0.5
0.75

1
1.25

FC
 1

1,
1,

1,
51

2,
1,

1,
1

FC
 1

1,
1,

51
2,

1,
1,

1,
1

FC
 1

1,
51

2,
1,

1,
1,

1,
1

Utilization rate
AlexNet-FC: MSes=512, DN_BW=512, RN_BW=512

(d)

0
0.25

0.5
0.75

1
1.25

FC
 1

1,
1,

1,
51

2,
1,

1,
1

FC
 1

1,
1,

51
2,

1,
1,

1,
1

FC
 1

1,
51

2,
1,

1,
1,

1,
1

MN forward MN reg RN DN

0
0.25

0.5
0.75

1
1.25

FC
 1

1,
1,

1,
51

2,
1,

1,
1

FC
 1

1,
1,

51
2,

1,
1,

1,
1

FC
 1

1,
51

2,
1,

1,
1,

1,
1

Energy % DN Energy % RN
Energy % MN Energy % SDM
Energy % DRAM

0
0.25

0.5
0.75

1
1.25

FC
 2

1,
1,

51
2,

1,
1,

1,
1

FC
 2

1,
51

2,
1,

1,
1,

1,
1

Normalized cycle

0

0.25

0.5

0.75

1

FC
 2

1,
1,

51
2,

1,
1,

1,
1

FC
 2

1,
51

2,
1,

1,
1,

1,
1

Utilization rate
Seq-CNN-FC: MSes=512, DN_BW=512, RN_BW=512

(f)

0
0.25

0.5
0.75

1
1.25

FC
 2

1,
1,

51
2,

1,
1,

1,
1

FC
 2

1,
51

2,
1,

1,
1,

1,
1

MN forward MN reg RN DN

0
0.25

0.5
0.75

1
1.25

FC
 2

1,
1,

51
2,

1,
1,

1,
1

FC
 2

1,
51

2,
1,

1,
1,

1,
1

Energy % DN Energy % RN
Energy % MN Energy % SDM
Energy % DRAM

(e)

0
0.25

0.5
0.75

1
1.25

1,
1,

51
2,

1,
1,

1,
1

Em
be

dd
in

g1

1,
1,

32
,1

6,
1,

1,
1

Em
be

dd
in

g1

1,
51

2,
1,

1,
1,

1,
1

Em
be

dd
in

g1

Normalized cycle

0

0.25

0.5

0.75

1

1,
1,

51
2,

1,
1,

1,
1

Em
be

dd
in

g1

1,
1,

32
,1

6,
1,

1,
1

Em
be

dd
in

g1

1,
51

2,
1,

1,
1,

1,
1

Em
be

dd
in

g1

Utilization rate
Embedding: MSes=512, DN_BW=512, RN_BW=512

0
0.25

0.5
0.75

1
1.25

Em
be

dd
in

g1
1,

1,
51

2,
1,

1,
1,

1

Em
be

dd
in

g1
1,

1,
32

,1
6,

1,
1,

1

Em
be

dd
in

g1
1,

51
2,

1,
1,

1,
1,

1

MN forward MN reg RN DN

0
0.25

0.5
0.75

1
1.25

1,
1,

51
2,

1,
1,

1,
1

Em
be

dd
ing

1

1,
1,

32
,1

6,
1,

1,
1

Em
be

dd
ing

1

1,
51

2,
1,

1,
1,

1,
1

Em
be

dd
ing

1
Energy % DN Energy % RN
Energy % MN Energy % SDM
Energy % DRAM

ResNet-CB3a_2: MSes=512, DN_BW=512, RN_BW=512

(a)

0
0.25

0.5
0.75

1
1.25

C
B3

a_
2

3,
3,

1,
56

,1
,1

,1

C
B3

a_
2

3,
3,

28
,2

,1
,1

,1

C
B3

a_
2

3,
3,

14
,4

,1
,1

,1

C
B3

a_
2

3,
3,

8,
7,

1,
1,

1

MN forward MN reg RN DN

0
0.25

0.5
0.75

1
1.25

CB
3a

_2
3,

3,
1,

56
,1

,1
,1

CB
3a

_2
3,

3,
28

,2
,1

,1
,1

CB
3a

_2
3,

3,
14

,4
,1

,1
,1

CB
3a

_2
3,

3,
8,

7,
1,

1,
1

Energy % DN Energy % RN
Energy % MN Energy % SDM
Energy % DRAM

0

0.25

0.5

0.75

1

C
B3

a_
2

3,
3,

1,
56

,1
,1

,1

C
B3

a_
2

3,
3,

28
,2

,1
,1

,1

C
B3

a_
2

3,
3,

14
,4

,1
,1

,1

C
B3

a_
2

3,
3,

8,
7,

1,
1,

1

Normalized cycle

0

0.25

0.5

0.75

1

C
B3

a_
2

3,
3,

1,
56

,1
,1

,1

C
B3

a_
2

3,
3,

28
,2

,1
,1

,1

C
B3

a_
2

3,
3,

14
,4

,1
,1

,1

C
B3

a_
2

3,
3,

8,
7,

1,
1,

1

Utilization rate

0
0.25

0.5
0.75

1
1.25

1.5

1x
1_

re
d

1,
1,

16
,3

2,
1,

1,
1

1x
1_

re
d

1,
1,

51
2,

1,
1,

1,
1

1x
1_

re
d

1,
1,

12
8,

4,
1,

1,
1

1x
1_

re
d

1,
1,

64
,8

,1
,1

,1

MN forward MN reg RN DN

Figure 7: Mapping-Space Exploration with mRNA. We plot the runtime, utilization, energy consumption, and interconnect activity across
the DNN layers listed in Table II for the top 2-4 mapping strategies generated by mRNA.

0
0.25

0.5
0.75

1
1.25

3,
3,

1,
56

,1
,1

,1
CB

3a
_2

3,
3,

4,
14

,1
,1

,1
CB

3a
_2

3,
3,

8,
7,

1,
1,

1
CB

3a
_2

Cycles / BW 16 Cycles / BW 128

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

1,
1,

32
,1

6,
1,

1,
1

C
O

N
V1

x1
 re

d

1,
1,

64
,8

,1
,1

,1
C

O
N

V1
x1

 re
d

1,
1,

51
2,

1,
1,

1,
1

C
O

N
V1

x1
 re

d

Cycles / BW 16 Cycles / BW 128

(a) MS=512 (b) MS=512

0

0.25

0.5

0.75

1

1.25

64 128 256 512

Cycles / 16 BW Old Mapping
Cycles / 16 BW Best Mapping

(c)

K[
3,

3,
1,

7,
1,

1,
1]

K[
3,

3,
2,

7,
1,

1,
1]

K[
3,

3,
4,

7,
1,

1,
1]

K[
3,

3,
4,

14
,1

,1
,1

]

Figure 8: Impact of fixed distribution network bandwidth on
runtime for (a) ResNet CB3a 2 with MS=512, (b) Google LeNet
1x1 with MS=512, and (c) ResNet CB3a 2 with increasing number
of MSes.

Limited Distribution Bandwidth. Figure 8 shows that
the effect of DN bandwidth over the runtime of mappings
of (a) ResNet-CB3a 2 and (b) GoogleNet-1x1red layers,
normalized to the runtime of the left-most mapping. For
ResNet-CB3a 2 with the DN bandwidth of 16, the best map-
ping for runtime is Tile(3,3,4,14,1,1,1), which is the mapping
in the middle. However, when the DN bandwidth increases
to 128, the best mapping for runtime is Tile(3,3,8,7,1,1,1),
the right-most mapping in the plot. This is because the
mapping Tile(3,3,4,14,1,1,1) requires large DN bandwidth so
DN with bandwidth 16 becomes the bottleneck of the entire
pipeline. Mappings with multicasting of inputs (i.e., T K
is large) reduces bandwidth requirement and mitigates such
bottlenecks from the DN. For GoogleNet-1x1red, we can
observe the similar trend but the effect is not as significant
as ResNet-CB3a 2 because the multicasting factor is larger
in GoogleNet-1x1red based on 1x1 convolution window.

In Figure 8(c) we show how a fixed bandwidth (of 16) and
mapping influences scalability. All blue bars use the baseline
mapping, while the green bars plot the best mapping strategy.
We can see that doubling MSes reduces runtime for the blue

bars due to more number of MSes but by less than a factor of
2x due to serialization. The best mapping strategy is different
everytime as it is the one that requires least DN bandwidth.

C. Compute unit (MS) utilization

The utilization of computational resources (MS in MAERI)
is one of the key aspects that determine the efficiency
and throughput of a deep learning accelerator. In MAERI,
utilization depends on the number of VNs we can simul-
taneously run over the MSes, which in turn depends on
VN size and number of MSes, as Section III-A discussed4.
When the VN size is not divisible by the number of MSes,
there is underutilization. The utilization naturally directly
affects runtime. For example, the lowest MS utilization
in Figure 7 (a) is 76%, and its corresponding mapping
requires the longest runtime. As we discussed in the previous
subsection, underutilization at edges degrades the utilization
of Figure 7(a). The impact of low utilization at edges to the
average utilization differs by the dimension and mapping
factor. For example, the lowest utilization of Figure 7 (b) is
512/(56×10) = 0.91, whose gap is much smaller than that
of Figure 7(a). Also, the lowest utilization of Figure 7(c)
is C (832/(512× 2) = 0.81, which is lower than that of
Figure 7(b) because of a large T C (512).

D. MAERI Interconnection Network Activities

The right-most plots in Figure 7 (a-f) show the number
of traversals across the DN, MN and RN. We find the
number of activities in DN, RN, and MN almost identical
in Resnet convolutional layers. For Googlenet 1x1red layer

4We currently do not support mapping of partial VNs except for the case
when the VN size is greater than the number of MSes.

9

(which has a convolutional window size of 1x1), and all
non-convolutional layers, the number of MN forwards is
zero as there is no sliding window behavior to exploit spatio-
temporal reuse.Unlike convolutional layers, FC layers require
heavy DN activities compared to those of RN and MN. This
is due to the small multicasting factors (mostly 1) in DN on
FC layers, which leads to more number of unicast in DN.

E. Energy

The DRAM access energy dominates in total energy
consumption, as we can observe in the third plot of each
layer in Figure 7. One of sources of exhaustive DRAM
accesses is partial outputs generated from virtual neurons.
For example, for layers with large number of partial sums
to accumulate for a full output (T R× T S× T C) and
mappings that generate partial outputs, not full outputs, may
store partial outputs in DRAM and accumulate them after
MAERI computes all the partial outputs. The number of
extra DRAM accesses in this cases depends on the on-chip
storage size. Therefore, mappings whose VNs generate full
outputs or partial outputs with more number of partial sums
accumulated can significantly reduce DRAM energy.

F. Discussion

Based on the above analysis, we observe that the best
mappings that mRNA finds have the following features:

(1) High computational resource (MS) utilization: High
MS utilization leads to small runtime and energy.

(2) High multicast factors in DN: Multicasts (or, spatial
data reuse) in DN reduces the number of DN activities by
merging unicasts into one multicast, which reduces energy
as well as runtime.

(3) Small number of partial outputs for each full
output: Small number of partial outputs for a full output
decreases DRAM accesses and requires smaller extra control
steps to accumulate partial outputs to full outputs.

VI. RELATEDWORKS

Mappers for DNN Accelerators. XLA [2] is the Tensor-
flow [5] back-end compiler that generates configurations for
Google TPU (Tensor Processing Unit) [25]. FP-DNN [17]
and DNN Weaver [36] include mappers that respectively takes
DNNs written in TensorFlow and Caffe [23] as input and
generates DNN hardware RTLs targeting FPGAs that run with
mappings the mapper generated as output. MAESTRO [29]
is recent DNN dataflow design-space exploration analytical
model for an abstract spatial accelerator. In contrast, mRNA is
a mapper performing automatic search for optimal dataflows
per layer given a specific hardware configuration of MAERI.

Mappers for CGRAs. REGIMap [19], RAMP [14],
EPIMap [18] and Resource-saving [40] are mappers for
Coarse-Grained Reconfigurable Architectures (CGRA). They
use the modulo scheduling based algorithm to perform
software pipelining of the loop body and try to minimize

the initiation interval (II) between iterations. The mapper
proposed in Nowatzki et al. [33] maps applications onto a
dynamic CGRA [16] based on a stream-dataflow accelera-
tor [34].

Mappers for GPUs and others. Legion [8] is a program-
ming model and a runtime system that supports parallel
architectures including GPUs. It allows users to specify
mappings of their application and also provides a default
mapper based-on greedy algorithm on memory size and
bandwidth. A GPU architecture-aware automatic mapper was
proposed in Lee et al. [30]. This GPU mapper analyzes
parallel program patterns in the target program and construct
a mapping space considering GPU architecture. The mapper
searches constructed mapping space based on the constraints
from architecture and degree of parallelism scores, which
maximizes throughput.

There are also general DNN compiler frameworks that
target on diverse platforms such as CPU, GPU and FPGA
[10, 13, 35].

VII. CONCLUSION

In this paper, we presented a mapping framework, mRNA,
for automatically searching energy-efficient, high-throughput,
and low-latency mappings of deep learning loop nests onto
a flexible deep learning accelerator based on reconfigurable
interconnect called MAERI. Since the mapping search space
is a high-dimensional optimization problem, we leverage
deep-learning domain-specific and MAERI-specific heuristics
to trim down the search space. Our analysis on realistic
workloads shows that the no single mapping is best for entire
DNN layers, and mRNA effectively searches and proposes
mappings that maximize energy efficiency and/or minimize
run time, which provides up to 26% and 67% lower runtime
and up to 64% and 67% lower energy for convolutional
and FC layers, respectively. We also demonstrate that the
interconnect bandwidth plays a critical role in the mapping
space search, and mRNA can be used to determine optimal
mappings in bandwidth constrained designs. As future
extensions, we plan to extend mRNA to support DNN
layers with weight and input sparsity, which introduces
irregular virtual neurons within MAERI and results in a
more complicated mapping space than dense layers.

REFERENCES

[1] Apple a12 processor. https://www.apple.com/iphone-xs/
a12-bionic/, 2017.

[2] XLA. https://www.tensorflow.org/performance/xla/, 2017.
[3] MAERI: Enabling Rapid Design Space Exploration and

Prototyping of DNN Accelerators. http://synergy.ece.gatech.
edu/tools/maeri/, 2018.

[4] MLPerf. https://mlperf.org/, 2018.
[5] M. Abadi et al. Tensorflow: a system for large-scale machine

learning. In OSDI, volume 16, pages 265–283, 2016.
[6] M. Abadi et al. Tensorflow: Large-scale machine learning

on heterogeneous distributed systems. ArXiv e-prints, March
2016.

10

https://www.apple.com/iphone-xs/a12-bionic/
https://www.apple.com/iphone-xs/a12-bionic/
https://www.tensorflow.org/performance/xla/
http://synergy.ece.gatech.edu/tools/maeri/
http://synergy.ece.gatech.edu/tools/maeri/
https://mlperf.org/

[7] V. Akhlaghi et al. SnaPEA: Predictive early activation for
reducing computation in deep convolutional neural networks.
In ISCA, pages 662–673, 2018.

[8] M. Bauer et al. Legion: Expressing locality and independence
with logical regions. In SC, pages 1–11. IEEE, 2012.

[9] S. Chakradhar et al. A dynamically configurable coprocessor
for convolutional neural networks. Comput Archit News,
38(3):247–257, 2010.

[10] T. Chen et al. TVM: An automated end-to-end optimizing
compiler for deep learning. In OSDI, pages 578–594. USENIX
Association, 2018.

[11] Y. Chen et al. Dadiannao: A machine-learning supercomputer.
In MICRO, pages 609–622, 2014.

[12] Y. Chen et al. Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks. JSSC,
52(1):127–138, 2017.

[13] S. Cyphers et al. Intel ngraph: An intermediate represen-
tation, compiler, and executor for deep learning. CoRR,
abs/1801.08058, 2018.

[14] S. Dave et al. Ramp: Resource-aware mapping for cgras. In
DAC, pages 1271–1276. ACM, 2018.

[15] J. Fowers et al. A configurable cloud-scale DNN processor
for real-time AI. In ISCA, pages 1–14. IEEE Press, 2018.

[16] V. Govindaraju et al. Dyser: Unifying functionality and
parallelism specialization for energy-efficient computing. IEEE
Micro, 32(5):38–51, 2012.

[17] Y. Guan et al. Fp-dnn: An automated framework for mapping
deep neural networks onto fpgas with rtl-hls hybrid templates.
In FCCM, pages 152–159, 2017.

[18] M. Hamzeh et al. Epimap: Using epimorphism to map
applications on cgras. In DAC, pages 1284–1291. ACM,
2012.

[19] M. Hamzeh et al. Regimap: Register-aware application
mapping on coarse-grained reconfigurable architectures. In
DAC, pages 1–10, 2013.

[20] K. He et al. Deep residual learning for image recognition. In
CVPR, pages 770–778, 2016.

[21] X. He et al. Neural collaborative filtering. In WWW, pages
173–182, 2017.

[22] K. Hegde et al. UCNN: Exploiting computational reuse in
deep neural networks via weight repetition. In ISCA, pages
674–687, 2018.

[23] Y. Jia et al. Caffe: Convolutional architecture for fast feature
embedding. In MM, pages 675–678, 2014.

[24] R. Johnson and T. Zhang. Effective use of word order for
text categorization with convolutional neural networks. In
NAACL-HLT, pages 103–112, 2015.

[25] N. Jouppi et al. In-datacenter performance analysis of a tensor
processing unit. In ISCA, pages 1–12. IEEE, 2017.

[26] A. Krizhevsky et al. Imagenet classification with deep
convolutional neural networks. In Neurips, 2012.

[27] H. Kwon et al. Rethinking nocs for spatial neural network
accelerators. In NOCS, page 19. ACM, 2017.

[28] H. Kwon et al. MAERI: Enabling flexible dataflow mapping
over dnn accelerators via reconfigurable interconnects. In
ASPLOS, pages 461–475. ACM, 2018.

[29] H. Kwon et al. MAESTRO: An analytic model for cost-benefit
analysis of dataflows in dnn accelerators. arXiv preprint
arXiv:1805.02566, 2018.

[30] H. Lee et al. Locality-aware mapping of nested parallel
patterns on gpus. In MICRO, pages 63–74. IEEE, 2014.

[31] S. Liu et al. Cambricon: An instruction set architecture for
neural networks. In Comput Archit News, volume 44, pages
393–405. IEEE Press, 2016.

[32] W. Lu et al. Flexflow: A flexible dataflow accelerator
architecture for convolutional neural networks. In HPCA,
pages 553–564. IEEE, 2017.

[33] T. Nowatzki et al. A general constraint-centric scheduling
framework for spatial architectures. In PLDI, pages 495–506.
ACM, 2013.

[34] T. Nowatzki et al. Stream-dataflow acceleration. In ISCA,
pages 416–429. ACM, 2017.

[35] N. Rotem et al. Glow: Graph lowering compiler techniques
for neural networks. CoRR, abs/1805.00907, 2018.

[36] H. Sharma et al. From high-level deep neural models to fpgas.
In MICRO, page 17, 2016.

[37] C. Szegedy et al. Going deeper with convolutions. In CVPR,
2015.

[38] C. Szegedy et al. Very deep convolutional networks for large-
scale image recognition. In ICLR, 2015.

[39] Y. Wu et al. Google’s neural machine translation system:
Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144, 2016.

[40] Z. Zhao et al. Resource-saving compile flow for coarse-grained
reconfigurable architectures. In ReConFig, pages 1–8, 2015.

11

