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The Dream!
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What is Continuous Learning?
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Robotic cook @ Bosch Amusement Park, Sasebo

Can it gain expertise with 
experience?

Learn new recipes

Cooks savory pancakes



Deep Learning Landscape 

Training

Carefully constructed Neural Network topology

Massive amounts of 
structured, labelled
data

High performance
cluster

Device
4

Takes weeks

What happens if

No dataset

No ML expert

No access to  large compute

No internet

Task itself changes

Not viable for continuous learning



Continuous Learning Landscape

5

Interacting
Agent

Learning
Agent

Weights

Topology

Accumulated
Rewards

Environment

Action

Reward

ContinuousRobust

Learn multiple tasksThis is Reinforcement Learning



Conventional RL: Challenges

Deep NNs used internally
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Not viable for continuous learning

Each update results in Backpropagation

! Manual hyperparameter tuning

! High compute requirement at every update

! High memory overhead

! Not scalable



Outline
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• Motivation

• Neuro Evolutionary Algorithm
–Algorithm description
–Characterizing NEAT

• Microarchitecture

• Evaluations
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Neuro-Evolutionary (NE) Algorithm

Interaction with 
environment

Start

Stop

Desired fitness 
achieved?

Reproduce next 
generation

Generate intial 
population

Evaluate 
population fitness

Genetic algorithm

Yes

No
Fitness 

Function

Child Genomes

Parent Genomes

Population

Genome
Gene

Evolution
(Learning)

Interaction
(Inference)

Evolution
(Learning)

Interaction
(Inference)

Interaction
(Inference)

Neural Network (NN) expressed as a graph

Gene: Vertex or Edge 
in the graph

Genome: Collection of all 
genes (i.e., a NN) [1] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through 

augmenting topologies. Evolutionary computation, 10(2), 99-127.

Fitness
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Neuro-Evolutionary (NE) Algorithm

Interaction with 
environment

Start

Stop

Desired fitness 
achieved?

Reproduce next 
generation

Generate intial 
population

Evaluate 
population fitness

Genetic algorithm

Yes

No
Fitness 

Function

Child Genomes

Parent Genomes

Neural Network (NN) expressed as a graph

Gene: Vertex or Edge 
in the graph

Genome: Collection of all 
genes (i.e., a NN)

Create parent pool

Add to offspring 
poolChoose parents MutationCrossover

Num 
offsprings 

= N?

START

STOP

Yes

Probability Probability

No

[1] Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through 
augmenting topologies. Evolutionary computation, 10(2), 99-127.

NeuroEvolution of Augmented Topologies (NEAT) [1]

Genetic algorithm



Challenges with Genetic Algorithms!
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Too much compute!

Can it converge in reasonable time?

What about accuracy?
déjà vu! Looks like Deep 

nets in the 90s

HW solutions enabled Deep Learning Can we do the same with EA?

On
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Bu
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r 168 PE Array

Eyeriss GPU FPGA



Outline
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• Motivation

• Neuro Evolutionary Algorithm
– Algorithm description
– Characterizing NEAT

• Microarchitecture

• Evaluations
– Implementation
– Results



Characterization of NEAT

NEAT Python: https://github.com/CodeReclaimers/neat-python

NEAT - Python

Codebase

Environments

Mountain car Bipedal

Lunar Lander Cart pole

Airraid-RAM Alien-RAM Amidar-RAM

Ran each environment till 
convergence, multiple 
times

Only changed fitness 
function between 
workloads
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Characterization of NEAT

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

N
or
m
al
iz
ed

	F
it
ne

ss

Generation

Cartpole Lunar	Lander
Mountain	Car Asterix	Ram

Target Fitness

Computations

Re
lat

ive
 fr

eq
ue

nc
y

Re
lat

ive
 fr

eq
ue

nc
y

>20K
>200K

All operations are independent
Population level parallelism

Gene level parallelism

Small workloads Large workloads
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Distribution of Operations/Generation

Large operation level Parallelism



Operations in NEAT
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Crossover 

Src

Keys Attributes

Parent 1 Gene

Dest Wt En

Src

Prob

Parent 2 Gene

Dest Wt En

Src

Child Gene

Dest Wt En

Prob

Mutation 

Src

Keys Attributes

Dest Wt En

Original Gene

Src

Mutated Gene

Dest Wt En

Wt

Perturbation

Addition mutation
• Add new node
• Add new connection

Deletion mutation
• Delete connection
• Delete node

Simple operations



Characterization of NEAT
Memory
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125KB <1MB

Entire population can fit on-chip
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Distribution of Memory footprint/Generation

Only need to store the weights and node info



Characterization of NEAT
Memory
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Opportunity for Reuse

Fittest parent genome is used about ~10-20 times 
each generation

Even higher in certain cases
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Distribution of Memory footprint/Generation

Only need to store the weights and node info



Motivating Hardware Solution

Massive parallelism Scalability Faster 
convergence

Power efficiency
More 

deployable 
compute

Target complex 
problems

Gene and 
Population level 

parallelism

Simple HW 
friendly operations
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Hardware-Software codesign of NE makes them 
viable for continuous learning



Outline
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• Motivation

• Neuro Evolutionary Algorithm
–Algorithm Description
–Characterizing NEAT

• Microarchitecture

• Evaluations
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10 Child 
genomes

Evolution Engine (EVE)

Array of DNN Accelerator 
Modules (ADAM)

Genome: Neural Network
Gene: Node or Connection

GeneSys SoC

n Environment Instances

DRAM

Genome Buffer 
(SRAM)

Genome n
Fitness n

Population Size = n

Tiny Core

Parent 
genomes8

5

GeneSys SoC
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GeneSys

Interacting agent Learning agent

Interacting 
agent

Learning 
agent

Rewards

Updates



Evolution Engine: EvE Microarchitecture
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PE Microarchitecture

Memory

…

Gene merge Gene split

Interconnect

Evolution Engine (EVE)

PE

Config
PRNG
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Selection

PE

Inference 
Engine

Child 
Genomes

Parent 
Genomes

Genome

Reward

Parent 1 
Gene

Crossover and 
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Module

Delete Gene Mutation
Module

Add Gene Mutation
Module

Child 
Gene

Node ID
 regs

Random 
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Mutation 
and 

Crossover 
Probabilites

Parent 2 
Gene

PRNG Config

Processing 
Element (PE)Genome: Neural Network

Gene: Node or Connection
Population Size = n

4 stage pipeline
• One child per PE

Details of pipeline 
stages in the paper

• One child gene 
processed per cycle
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Inference Engine: ADAM Microarchitecture
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Interaction with 
environment

Start

Stop

Desired fitness 
achieved?

Reproduce next 
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Generate intial 
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Evaluate 
population fitness

Genetic algorithm

Yes
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Fitness 

Function

Child Genomes

Parent Genomes

Interacting 
agent

Learning 
agent
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Networks generated 
by NEAT are irregular 
(thus sparse)

Inference is similar to 
graph processing

Pack input vectors for 
dense compute

Input vector buffer

Systolic array

Output vector buffer
Vectorize

Memory

Exploit Population Level 
Parallelism



Outline
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Implementation

Tech node 15nm
Num EvE PE 256
Num ADAM PE 1024
EvE Area 0.89 mm2
ADAM Area 0.25 mm2
GeneSys Area 2.45 mm2
Power 947.5 mW
Frequency 200 MHz
Voltage 1.0 V
SRAM banks 48
SRAM depth 4096
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GeneSys Parameters
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Evaluations
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Evaluations: Energy
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Faster convergence



Conclusions
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Look beyond DL and RL

Robust, Scalable and Energy
efficient  solutions needed for 
continuous learning

NEs offer promise
Parallelism HW friendly 

GeneSys

Enables AI solutions for a large 
gamut of problems

100x – 100000x energy efficiency 
and performance 

Thank You!

Fitness

Fitness

Change fitness function



Thank You!



Backup



Conclusions
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Look beyond DL and RL

Robust, Scalable and Energy
efficient  solutions needed for 
continuous learning

NEs offer promise
Parallelism HW friendly 

GeneSys

Enables AI solutions for a large 
gamut of problems

100x – 100000x energy efficiency 
and performance 

Thank You!

Fitness

Fitness

Change fitness function



Deep Learning Landscape

Training

Carefully constructed topology

Massive amounts of 
structured, labelled
data

High performance
cluster

Device
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Deep Learning Landscape

Training

Carefully constructed Neural Network topology

Massive amounts of 
structured, labelled
data

High performance
cluster

Device
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Takes weeks

What happens if



The next step

What happens when…
Large compute resources are not available?
No labelled dataset? Should be energy efficient

Should be robust

The problem changes with time?
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Reinforcement learning



Reinforcement Learning for Topology Generation 
Key Points
• Uses a Q learning agent to learn the optimal 

policies 
• States are different convolution layer types, and 

policy is the task of selecting next layer
• Child topologies are trained for a few epochs 

before inference is performed to get reward 

values.

37



Conventional RL: Challenges

• Deep neural networks estimate the environment
– Deep Q network (DQN): Generates Q values
– Policy gradient: Predicts policies

• Each update results in a backpropagation
– Lots of compute, lot of hyper parameter tuning
– Lots of gradient calculation Not Scalable
– Store activations or recalculate Huge memory footprint
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Not energy efficient



Evaluations
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Terminology

Data structure representing a vertex (node) or an 
edge (connection) in the graph

Neural Network expressed as a graph

Gene

Src Node Dest Node Weight EnableConnection

Node ID Activation Bias EnableNode
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Operations in NEAT

Src Node Dest Node Weight Enable

Keys Attributes

Src Node Dest Node Weight Enable

Keys Attributes

Parent 1 Gene

Crossover 

Parent 2 Gene

Src Node Dest Node Weight Enable

Child Gene
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Terminology

Collection of genes representing the entire neural network

Each genome represents one neural network

Genome

0 Relu 0 Yes

1 Relu 0 Yes

2 Relu 0 Yes

3 Relu 0 Yes

0 3 10 Yes

1 3 -1 Yes

2 3 20 Yes

0
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10
-1

20
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Evolution of Neural Networks

Start
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achieved?

Reproduce next 
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Generate intial 
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Genetic algorithm
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START
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Reproduce next 
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Evaluate 
Population Fitness

Generate Initial 
Population (N)

Desired 
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NEAT

Interaction with
 environment

No
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Create parent pool

Add to offspring 
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Num 
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Outline
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• Evolutionary Algorithm
– NEAT Algorithm
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• Microarchitecture
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Operations in NEAT

Src Node Dest Node Weight Enable

Keys Attributes

Gene

Mutation 

Src Node Dest Node Weight Enable

Mutated Gene

Weight Perturbation

Addition mutation
Add new node
• Break an existing connection and insert node
• Creates 3 new genes and replaces one existing

Add new connection
• Select valid source and destination and create 

new gene with default weight

Deletion mutation
Delete connection
• Similar to disabling weight but entry is 

obliterated

Delete node
• Should also delete dependent connections
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Interconnect
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