

GeneSys: Enabling Continuous Learning through Neural Network Evolution in Hardware

Ananda Samajdar, Parth Mannan, Kartikay Garg, and Tushar Krishna

Georgia Institute of Technology Synergy Lab [<u>http://synergy.ece.gatech.edu</u>]

anandsamajdar@gatech.edu

October 24, 2018

The Dream!

What is Continuous Learning?

Robotic cook @ Bosch Amusement Park, Sasebo

Cooks savory pancakes

Can it gain expertise with experience?

Learn new recipes

Not viable for continuous learning

Continuous Learning Landscape

Deep NNs used internally

Manual hyperparameter tuning

Each update results in **Backpropagation**

High compute requirement at every update

High memory overhead

Not scalable

Not viable for continuous learning

Motivation

- Neuro Evolutionary Algorithm

 Algorithm description
 Characterizing NEAT
- Microarchitecture
- Evaluations

Neuro-Evolutionary (NE) Algorithm

Neuro-Evolutionary (NE) Algorithm

Challenges with Genetic Algorithms!

Too much compute!

Can it converge in reasonable time?

What about accuracy?

Eyeriss

GPU

FPGA

HW solutions enabled Deep Learning

Can we do the same with EA?

déjà vu! Looks like Deep nets in the 90s

Outline

Motivation

Neuro Evolutionary Algorithm

Algorithm description
Characterizing NEAT

- Microarchitecture
- Evaluations
 - Implementation
 - Results

Characterization of NEAT

Ran each environment till convergence, multiple times

NEAT Python: https://github.com/CodeReclaimers/neat-python

Characterization of NEAT

Computations

Population level parallelism

Gene level parallelism

Distribution of Operations/Generation

All operations are independent

Large operation level Parallelism

Operations in NEAT

Characterization of NEAT

Memory

Entire population can fit on-chip

Only need to store the weights and node info

Characterization of NEAT

Memory

Outline

Motivation

- Neuro Evolutionary Algorithm

 Algorithm Description
 Characterizing NEAT
- Microarchitecture

Evaluations

GeneSys SoC

Evolution Engine: EvE Microarchitecture

PE Microarchitecture

One child per PE

One child gene processed per cycle

Inference Engine: ADAM Microarchitecture

Networks generated by NEAT are irregular (thus sparse)

Inference is similar to graph processing

Pack input vectors for dense compute

Outline

Motivation

- Neuro Evolutionary Algorithm

 Algorithm Description
 Characterizing NEAT
- Microarchitecture
- Evaluations

Implementation

GeneSys Parameters

Tech node	15nm
Num EvE PE	256
Num ADAM PE	1024
EvE Area	0.89 mm2
ADAM Area	0.25 mm2
GeneSys Area	2.45 mm2
Power	947.5 mW
Frequency	200 MHz
Voltage	1.0 V
SRAM banks	48
SRAM depth	4096

EvE area SRAM area ADAM area MO area

Evaluations

Legend	Inference	Evolution	Platform		
CPU_a	Serial	Serial	6th gen i7		
CPU_b	PLP	Serial	6th gen i7		
GPU_a	BSP	PLP	Nvidia GTX 1080		
GPU_b	BSP + PLP	PLP	Nvidia GTX 1080		
CPU_c	Serial	Serial	ARM Cortex A57		
CPU_d	PLP	Serial	ARM Cortex A57		
GPU_c	BSP	PLP	Nvidia Tegra		
GPU_d	BSP + PLP	PLP	Nvidia Tegra		
GENESYS	PLP	PLP + GLP	GENESYS		
PLP (GLP) - Population (Gene) Level Parallelism					
BSP - Bulk Synchronous Parallelism (GPU)					

Evaluations: Energy

Evaluations: Runtime

• CPU_a □ CPU_c \triangle GPU_a \triangle GPU_c \times Genesys

Thank You!

Conclusions

Robust, Scalable and Energy efficient solutions needed for continuous learning Look beyond DL and RL

NEs offer promise Parallelism HW friendly

GeneSys

100x – 100000x energy efficiency and performance

Enables AI solutions for a large gamut of problems

Thank You!

Backup

Thank You!

Conclusions

Change fitness function

Robust, Scalable and Energy efficient solutions needed for continuous learning Look beyond DL and RL

NEs offer promise Parallelism HW friendly

GeneSys

100x – 100000x energy efficiency and performance

Enables AI solutions for a large gamut of problems

Deep Learning Landscape

Gary Marcus argues there's been an "irrational exuberance" around deep learning

SCIENCE TECH

GOODS VIDEO

ROLL THE DICE SUBSCRIBE

There are two kinds of AI, and the difference is important

Most of today's AI is designed to solve specific problems

DIY

Wise up, deep learning may never create a general purpose AI

Al and deep learning have been subject to a huge amount of hype. In a new paper, Gary Marcus argues there's been an "irrational exuberance" around deep learning

What happens when...

Large compute resources are not available? No labelled dataset? The problem changes with time?

Should

be energy efficient

Reinforcement Learning for Topology Generation

DESIGNING NEURAL NETWORK ARCHITECTURES USING REINFORCEMENT LEARNING

Bowen Baker, Otkrist Gupta, Nikhil Naik & Ramesh Raskar Media Laboratory Massachusetts Institute of Technology Cambridge MA 02139, USA {bowen, otkrist, naik, raskar}@mit.edu

Key Points

- Uses a Q learning agent to learn the optimal policies
- States are different convolution layer types, and policy is the task of selecting next layer
- Child topologies are trained for a few epochs before inference is performed to get reward values.

Conventional RL: Challenges

- Deep neural networks estimate the environment
 - Deep Q network (DQN): Generates Q values
 - Policy gradient: Predicts policies
- Each update results in a **backpropagation**
 - Lots of compute, lot of hyper parameter tuning
 - Lots of gradient calculation Not Scalable
 - Store activations or recalculate

Huge memory footprint

Not energy efficient

Evaluations

Neural Network expressed as a *graph*

Gene

Data structure representing a vertex (node) or an edge (connection) in the graph

Connection Src Node Dest Node Weight Enable
--

Node No	de ID Act	ivation E	Bias	Enable
---------	-----------	-----------	------	--------

Operations in NEAT

Crossover

Terminology

Genome Collection of genes representing the entire neural network

0	Relu	0	Yes
1	Relu	0	Yes
2	Relu	0	Yes
3	Relu	0	Yes
0	3	10	Yes
1	3	-1	Yes
2	3	20	Yes

Each genome represents one neural network

Evolution of Neural Networks

Outline

- Motivation
- Evolutionary Algorithm

 NEAT Algorithm
 Characterizing NEAT
- Microarchitecture
- Evaluations
 - Implementation
 - Results

Operations in NEAT

Mutation

Addition mutation

Add new node

- Break an existing connection and insert node
- Creates 3 new genes and replaces one existing

Add new connection

 Select valid source and destination and create new gene with default weight

Delete connection

• Similar to disabling weight but entry is obliterated

Delete node

• Should also delete dependent connections

Interconnect

