
Understanding Reuse, Performance, and Hardware Cost of DNN
Dataflows: A Data-Centric Approach

Hyoukjun Kwon
Georgia Institute of Technology

Atlanta, Georgia
hyoukjun@gatech.edu

Prasanth Chatarasi
Georgia Institute of Technology

Atlanta, Georgia
cprasanth@gatech.edu

Michael Pellauer
NVIDIA

Westford, Massachusetts
mpellauer@nvidia.com

Angshuman Parashar
NVIDIA

Westford, Massachusetts
aparashar@nvidia.com

Vivek Sarkar
Georgia Institute of Technology

Atlanta, Georgia
vsarkar@gatech.edu

Tushar Krishna
Georgia Institute of Technology

Atlanta, Georgia
tushar@ece.gatech.edu

ABSTRACT
The data partitioning and scheduling strategies used by DNN accel-
erators to leverage reuse and perform staging are known as dataflow,
which directly impacts the performance and energy efficiency of
DNN accelerators. An accelerator microarchitecture dictates the
dataflow(s) that can be employed to execute layers in a DNN. Select-
ing a dataflow for a layer can have a large impact on utilization and
energy efficiency, but there is a lack of understanding on the choices
and consequences of dataflows, and of tools and methodologies to
help architects explore the co-optimization design space.

In this work, we first introduce a set of data-centric directives to
concisely specify the DNN dataflow space in a compiler-friendly
form. We then show how these directives can be analyzed to in-
fer various forms of reuse and to exploit them using hardware ca-
pabilities. We codify this analysis into an analytical cost model,
MAESTRO (Modeling Accelerator Efficiency via Spatio-Temporal
Reuse and Occupancy), that estimates various cost-benefit tradeoffs
of a dataflow including execution time and energy efficiency for a
DNN model and hardware configuration. We demonstrate the use
of MAESTRO to drive a hardware design space exploration experi-
ment, which searches across 480M designs to identify 2.5M valid
designs at an average rate of 0.17M designs per second, including
Pareto-optimal throughput- and energy-optimized design points.

CCS CONCEPTS
• Computer systems organization → Neural networks; • Hard-
ware → Modeling and parameter extraction.

KEYWORDS
Neural networks, Dataflow, Cost modeling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MICRO-52, October 12–16, 2019, Columbus, OH, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6938-1/19/10. . . $15.00
https://doi.org/10.1145/3352460.3358252

ACM Reference Format:
Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar,
Vivek Sarkar, and Tushar Krishna. 2019. Understanding Reuse, Performance,
and Hardware Cost of DNN Dataflows: A Data-Centric Approach. In The
52nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-52), October 12–16, 2019, Columbus, OH, USA. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3352460.3358252

1 INTRODUCTION
Deep neural networks (DNNs) are being deployed at an increasing
scale—across the cloud and IoT platforms—to solve complex regres-
sion and classification problems in image recognition [41], speech
recognition [5], language translation [46], and many more fields,
with accuracy close to and even surpassing that of humans [16, 20,
44]. Tight latency, throughput, and energy constraints when running
DNNs have led to a meteoric increase in hardware accelerators.

DNN accelerators achieve high performance by exploiting paral-
lelism over hundreds of processing elements (PEs) and high energy
efficiency by maximizing data reuse within PEs and on-chip scratch-
pads [1, 9, 11, 19, 31, 38]. For a specific DNN workload and a
hardware accelerator, the achieved utilization and data-reuse directly
depends on (1) how we schedule the DNN computations (e.g., choice
of loop transformations) and (2) how we map computations across
PEs. These two components are collectively referred to as dataflow in
the accelerator literature [11, 24, 25, 31]. It has been shown that the
energy cost of moving data exceeds the cost of computation [11, 17],
and so understanding and optimizing dataflow is a critical compo-
nent of DNN accelerator design, as it directly determines how data
is transferred between multipliers (L0), staged in local buffers (L1),
and in the global buffer hierarchy (L2 and beyond).

The performance and energy efficiency of DNN accelerators de-
pend on (1) target DNN model and its layers types/dimensions, (2)
dataflow, and (3) available hardware resources and their connec-
tivity. These three dimensions are tightly coupled, and optimizing
DNN accelerators across these dimensions is a challenging task. For
example, a dataflow that exploits input channel parallelism [1] in
convolutional neural networks (CNNs) may not achieve high uti-
lization on layers with a small number of channels. Alternatively,
dataflows that require more transfer bandwidth than the network-on-
chip (NoC) provides may result in under-utilization of the hardware.
In such cases, increasing the L1 scratchpad size may allow the
same dataflow to require less data bandwidth, but this larger L1

https://doi.org/10.1145/3352460.3358252
https://doi.org/10.1145/3352460.3358252

MICRO-52, October 12�16, 2019, Columbus, OH, USA Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar, Vivek Sarkar, and Tushar Krishna

may increase area and energy consumption. Thus, co-optimizing
the hardware microarchitecture and the data�ows it supports is one
of the primary optimization targets for any accelerator design. This
remains an open challenge, as observed by the number of novel
data�ows and microarchitectures that continue to be proposed re-
cently [12, 17, 25, 27].

Regrettably, these proposals do not cover the complete space of
data�ows at an exhaustive-enough level to serve as a reference for
architects designing custom accelerators within a variety of con-
straints. In contrast, recent proposals on compilation [10, 33] and
analysis tools [30] for DNNs analyze a broad space of software
mappings of a DNN workload onto a given architecture, but the rela-
tionship between software mappings and hardware data�ows is not
elucidated, and these black-box tools do not provide architects with
intellectual intuitions on the consequences of data�ow selection and
their impact on reuse. In fact, the very term "data�ow" is used in an
inconsistent manner across both architecture and analysis proposals.
Architects are thus left with an incomplete and unstructured set of
intuitions on data�ows and the complex interplay between data�ow
and microarchitecture choices.

In this paper, we seek to remedy this situation by providing a
thorough set of insights on the choices and consequences of data�ow
selection and their interplay with microarchitectural alternatives, and
a structured mechanism to reason about them quantitatively. To that
end, we make the following speci�c contributions.

First, we introduce adata-centricnotation to represent various
accelerator data�ows with data mappings and reuses being �rst-class
entities, unlike the compute-centric notation used by prior proposals
which infer the data reuses from a loop-nest representation [12,
25, 26, 30]. These data-centric directives can express a wide range
of data-reuses (across space, time, and space-time) over arbitrary
hierarchies of PEs for both dense and sparse DNN layers such as
convolutions, LSTMs, and fully-connected layers. We believe that
our data-centric notation can complement the commonly used loop-
nest notation, i.e., our notation can be viewed as an intermediate
representation (IR) which can be extracted from a high-level loop-
nest notation or speci�ed directly.

Second, we show how these data-centric directives can be used
to reason about reuse in a structured manner. We demonstrate the
relationship between each directive, the speci�c form of algorithmic
reuse exposed by the directive, and the potential ways to exploit
that reuse using a hardware capability to improve ef�ciency. This
analysis covers the complete space of ways in which any data�ow
can exploit reuse.

Third, we introduce an analytical cost model namedMAESTRO
(Modeling Accelerator Ef�ciency via Spatio-Temporal Reuse and
Occupancy) that programmatically implements the above analysis.
MAESTRO takes as input 1) a DNN model with a set of layers, 2)
a data�ow description for each layer speci�ed using our proposed
directives, and 3) the hardware con�guration. Based on these inputs,
MAESTROoutputs estimates of end-to-end execution time, energy
(including all compute, buffer, and interconnect activities), NoC
costs, and so on. A key challenge in our proposed approach is to
provide a cost estimation that is both ef�cient and suf�ciently precise
to effectively support design space exploration. We demonstrate
MAESTRO's abstract hardware model and analytic model to be
within 90-95% accuracy of actual open-source RTL [24] while being

Figure 1: Convolutional layer example

1029-4116� faster (10ms to runMAESTROversus 7.2-28.8 hours
for an equivalent RTL simulation on a workstation with Xeon E5-
2699 processor and 64GB memory).

Finally, we demonstrate how theMAESTRO cost model can
be used by accelerator designers to determine Pareto-optimal pa-
rameters for an accelerator with a given area, energy, or throughput
budget. For a NVDLA [1]-like data�ow (KC-Partitioned in Table 3)
in VGG16 [42] CONV layer 11, we see up to a 2.16� difference in
power consumption between energy- versus throughput-optimized
design points. The energy-optimized design employs 10.6� more
SRAM and 80% the PEs of the throughput-optimized design. This
leads to an energy-delay product improvement of 65%, with 62%
throughput. The range of these numbers is a concrete example of the
signi�cance of this problem for accelerator architects.

2 BACKGROUND
To understand the cost-bene�t tradeoffs of various approaches to
compute convolutions, we discuss core concepts related to data reuse
and data�ows in the context of DNN accelerators.

2.1 Tensors in DNNs
We present an example of a multi-channel 2D convolution in Figure 1
that involves seven data dimensions across three data structures: in-
put/output activation and weight tensors. Although our approach can
be applied to various DNN layers—CONV2D, fully-connected (FC),
LSTM, separable convolution, and so on—we focus on CONV2D
and its variants in this paper because convolutional neural networks
(CNNs) are popular, and CONV2D accounts for more than 90% of
overall computation in CNNs [11, 14].

Tensors in DNNs are addressed using seven dimensions in a
complex manner. For example, the row/column indices of output can
be deduced using input row/column and �lter row/column indices
(i.e., an input-centric view of the convolution loop nest). Also, the
input channel indexc appears in both �lter and input activation, and
the output channelk appears in both �lter and output activation. We
call these dimensionscoupledto these indices, as the position in the
data space changes when the index is modi�ed. Because of these
speci�c data access patterns, we can transform the loop nest to keep

Understanding Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-Centric Approach MICRO-52, October 12�16, 2019, Columbus, OH, USA

Figure 2: Abstract DNN accelerator architecture model which is per-
vasive in many state-of-the-art accelerators [3, 11, 19, 31, 38]. The illus-
trated base architecture can be hierarchically organized.

one of the data structuresstationaryover a range of space or time
(i.e., unchanged in a local buffer), which can signi�cantly reduce
global/local buffer access counts in DNN accelerators, as well as
energy consumption by keeping local wires unchanging.

2.2 DNN Accelerators
DNN accelerators are specialized architectures to run DNN appli-
cations with high throughput and energy ef�ciency. As described
in Figure 2, most DNN accelerators employ hundreds of processing
elements (PEs) to exploit inherent parallelism in DNN applications.
PEs typically include scratchpad memories (L1) and ALUs that per-
form multiply-accumulate operations (MACs). To reduce energy-
and time-consuming DRAM accesses, most DNN accelerators also
include a shared scratchpad buffer (L2) large enough to stage data to
feed all the PEs. Shared L2 buffer and PEs are interconnected with
a network-on-chip (NoC). Our approach supports a wide range of
interconnect designs in the NoC module. For example, a systolic
array could be represented as a 2D array that provides unidirectional
links toward East and South. Depending on the hardware param-
eters selected, our approach can support architecture designs that
can ef�ciently execute a wide range of DNN operations, including
convolutions, because it enables exploiting not only parallelism but
also data reuse via buffers and forwarding/multicasting NoCs.

2.3 Data Reuse Taxonomy
We observe that data reuse originates from two behaviors of DNN
accelerators over time and space - multicasting (input tensors) and
reduction (output tensors).
Multicasting. Spatial multicasting reads a data point from a buffer
only once, spatially replicates the data point via wires, and delivers
the data point to multiple spatial destinations (i.e., PEs), which re-
duces expensive remote buffer accesses and saves energy. Likewise,
temporal multicasting also reads a data point from a large remote
buffer only once, temporally replicates the data point via a smaller
local buffer, and delivers the data point to multiple temporal desti-
nations (i.e., different time instances) at the same PE, which also
reduces expensive remote buffer accesses and saves energy.
Reduction.Spatial reduction accumulates partial outputs from mul-
tiple spatial sources and spatially accumulates them via multiple
compute units (e.g., an adder tree or reduce-and-forward). Simi-
larly, temporal reduction accumulates partial outputs from multiple
temporal sources (i.e., partial sums computed at different time) and
temporally accumulates them via an accumulation register or buffer
(e.g., accumulation buffer in TPU [19]).

Figure 3: An operational example of a weight-stationary style acceler-
ator with four PEs. For simplicity, input/output channels and batch are
omitted. A 2x2 kernel (R=2, S=2) is used in this example.

2.4 Data�ow De�nition and Example
In order to leverage these opportunities, the accelerator must sched-
ule operations such that the PEs proceed through the data tensors in
a coordinated fashion, which can be viewed as transformations (e.g.,
ordering and tiling) applied to the convolution in Figure 1, along with
a partitioning of data to PEs. Such schedules are termed asdata�ows
in prior work [11], which categorizes data�ows into classes based
on the tensor which is scheduled to change least frequently, e.g.,
weight-stationary, output-stationary, and input-stationary.

Figure 3 shows an example weight-stationary data�ow run on
four PEs. We can observe thatW1 is multicast across time (temporal
multicasting),I1 is multicast across PEs (spatial multicasting), and
P3_1 is reduced across space and time. That is, the example accelera-
tor temporally reusesW1 and spatially reusesI1 andP3_1. Note that
the name “weight-stationary" conveys intuition and a high-level char-
acterization of scheduling strategy, but detailed insight and analysis
requires more precise description.

Chen et al. [12] re�ne the de�nition of data�ow by addition-
ally specifying that two schedules which differ only in the concrete
bounds should be consideredinstancesor mappingsof the same
data�ow. This is an important distinction, as it allows families of
accelerators to be categorized together even if they have different
buffer sizes—i.e., a mobile chip and a datacenter chip may use the
same traversal orderings despite large differences in tile size. For
brevity, for the remainder of this work, we make no distinction be-
tween schedules with fully-speci�ed or partially unspeci�ed concrete
bounds but refer to them all as data�ows.

2.5 Existing Expressions of Data�ow
To convey the scheduling decisions of a particular architecture,
data�ows have been expressed asloop nests, a syntax that resembles
a simple imperative programming language with explicit parallelism,
as presented in Eyeriss v2 [12]. We term the loop nest notation a
compute-centricrepresentation since the data movement is implicit
from the loop order and the explicit parallelism speci�ed by the

MICRO-52, October 12�16, 2019, Columbus, OH, USA Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar, Vivek Sarkar, and Tushar Krishna

Figure 4: An example 1D convolution and an example output-stationary data�ow on the convolution. We represent the data�ow (b) in loop nest and
(c) data-centric directives. In (c), gray boxes represent omittable descriptions, which can be inferred (upper gray box) or do not affect the data reuse
over PEs (lower gray box). (d) shows an abbreviated form of the data�ow description in data-centric directives. (e) and (f) show resulting mapping on
PEs and iteration space, whose dots correspond to computation (or, partial sums).

programmer. The loop order dictates the schedule (or, ordering) of
computations, the explicit annotation of loops withparallel-for
captures parallelism, and the combination of loop ordering, tiling,
and parallelism enables data reuse. Therefore, architects started to
explore optimized loop nests encompassing all of the three aspects;
loop order, parallelism, and tiling. For example, Eyeriss v2 [12]
describes its data�ow in a 22-dimensional loop nest.

Compute-centric representation including the polyhedral model
has been a huge help to compilers in estimating reuses in guid-
ing optimal loop transformations for both parallelism and local-
ity [8, 32, 36, 37, 39, 40, 45]. Those works provide suf�ciently
accurate cost estimations to drive a series loop transformation in
a compiler. However, they do not precisely model data reuse, so
therefore computing throughput and energy-ef�ciency with high
accuracy is challenging for those works. Bao et al. [7] developed an
analytical model to accurately estimate cache behavior (thereby com-
puting reuses) for a class of af�ne programs that can be precisely
analyzed by a polyhedral model at compile time. However, they
use heavyweight linear-algebra frameworks within the polyhedral
model to compute reuse, thereby making it impractical to use these
techniques on real large applications. Also, it is very challenging
for the polyhedral-based frameworks to compute reuse arising from
array subscripts involving non-af�ne expressions or complex sub-
scripts, such as modulus operations which are common in strided
convolutions.

In addition, although there exists a body of past compiler work
that performs reuse analysis on sequential programs [7, 8, 32, 36,
37, 39, 40, 45], they lack the ability to analyze loop nests with
explicit parallelism, while DNN data�ows often contain multiple
levels of parallelism. Also, those past works did not consider spatial
reuse (which does not refer to the spatial locality in cache-based
architectures but data reuse via wires or across PEs) that leverages
multicasting and reduction support of accelerators, which plays a
key role in estimating the overall throughput and energy ef�ciency
of spatial DNN accelerators.

Such limitations and challenges motivate us to explore an alter-
native intermediate representation (IR) of data�ows, adata-centric

representation where data movement and organization are �rst-class
entities. Since data movement is explicit in the data-centric represen-
tation, our analytical model becomes simpler and relatively faster as
there is no need to leverage heavyweight linear-algebra frameworks
to precisely estimate data movement/reuse behavior.

3 DESCRIBING DATAFLOWS
Our data-centric representation consists of four key directives – 1)
spatial map, 2) temporal map, 3) data movement order, and 4) clus-
ters. We brie�y explain all the key directives using 1D convolution
(shown in Figure 4 (a)) as a pedagogical example, and then discuss
various hardware implementation choices for supporting a wide
range of data-reuse across space, time, and space-time.

3.1 Data-Centric Representation
We de�ne the data�ow of an accelerator design to consist of two
major aspects – (1) the schedule of DNN computations (e.g., choice
of loop transformations) across time for exploiting a wide range of
reuse, and (2) the mapping of the DNN computations across PEs
for parallelism. The representation is based on four key components,
and we brie�y discuss the �rst three components below. The fourth
component,Cluster , will be introduced in Section 3.2.

(1) Spatial Map(size, offset)aaa speci�es a distribution of dimen-
siona (e.g.,R, X) of a data structure across PEs, wheresize
refers to the number of indices mapped in the dimensiona to
each PE, andoffset describes the shift in the starting indices
of a across consecutive PEs.

(2) Temporal Map(size, offset)aaa speci�es a distribution of di-
mensiona of a data structure across time steps in a PE, and
also the mapped chunk of dimension indices is the same
across PEs in a time step. Thesize refers to the number of
indices mapped in the dimensiona to each PE, andoffset
describes the shift in the starting indices ofa across consecu-
tive time steps in a PE.

(3) Data Movement Order: The sequence of spatial and tem-
poral maps in the data�ow speci�cation dictate the order of

Understanding Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-Centric Approach MICRO-52, October 12�16, 2019, Columbus, OH, USA

Figure 5: The impact of directive order, spatial/temporal maps, tile sizes, and clustering over 1D convolution presented in Figure 4. The �rst row
shows mapping described using our data-centric directives. The second row shows iteration spaces whose points correspond to each partial sum. In
row three to �ve, we show data mapping of each data structure. Finally, we describe temporal and spatial reuse opportunities from each mapping.

data movement, i.e., the change of the data mappings to PEs
across time.

We demonstrate reuse opportunities presented by various data�ows
using the 1D convolution example in Figure 4(a). We start by creat-
ing a unique data�ow for this program by the loop nest representation
in Figure 4(b), assuming the accelerator has 2-level hierarchy (L0
register at PE + L1 local scratchpad buffer). The two loops enclosed
in the red box are indicative of the mapping over the PEs, and their
corresponding data-centric representation is in Figure 4(c) and (d).

As can be seen from Figure 4(e), the data elements correspond-
ing to outputs (dimensionX') is spatially distributed across three
PEs, i.e., each PE receives different chunks of two output elements.
This particular data distribution can be captured with our spatial
map directive with size and offset parameters being 2, resulting in
SpatialMap(2,2) X' whereX' is the �rst dimension of output data
structure. Also, the data elements corresponding to weights (dimen-
sion S) is replicated across multiple PEs, i.e., each PE receives a
same chunk of three weight elements in the �rst iteration, and re-
ceives different chunk of weight elements in the next iterations. This
particular replicated and temporal distribution can be captured with
our temporal map directive with size and offset parameter being 3,
resulting inTemporalMap(3,3) S, whereSis the �rst dimension of

the weight data structure. Putting it together, spatial map onX' fol-
lowed by a temporal map onScaptures data mapping and movement
behavior across PEs and time corresponding to the two loops in the
loop-nest version, and these two directives are enclosed in the red
box in Figure 4(c). Each data-centric representation is a complete
description of a unique data�ow.

3.2 Data�ow Playground
We build six example data�ows upon the simple 1D convolution
discussed in Figure 4 (d) to demonstrate how small changes to a
data�ow expose various forms of reuse—both spatial and tempo-
ral. Figure 5 illustrates those six example data�ows, which consists
of a base data�ow Figure 5(A) and its variants. We modify the direc-
tive order, spatially/temporally mapped dimensions, mapping size,
and PE clustering and discuss their impact on data reuse.
Directive Order. A change in directive order can result in an en-
tirely different temporal reuse (or, stationary behavior). For example,
the sequence of directives in mapping in Figure 5(A) indicates that
all data indices of S should be explored before working on the next
chunk ofX' indices. This order results in temporally reusing val-
ues of data corresponding toX' indices (i.e., partial sums) for all
indices ofS. Therefore, this data�ow is informally referred to as

MICRO-52, October 12�16, 2019, Columbus, OH, USA Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar, Vivek Sarkar, and Tushar Krishna

output-stationary and partitioned across multiple outputs in parallel.
Figure 5(B) shows the impact of interchanging the order of direc-
tives. This results in a weight-stationary data�ow, because PEs can
temporally reuse weight values corresponding toSindices, for all
indices ofX' before going to next chunk ofS indices. Similarly,
Figure 5(C) and (D) shows the spatial distribution onSinstead of
X' , and also the impact of data movement order on temporal reuse
leading to different data�ow variations. This indicates why the infor-
mal data�ow name should not be taken as a complete and precise
speci�cation of its behavior.
Spatially and Temporally Mapped Dimensions.In Figure 5(A)
the directiveSpatialMap(1,1) X' (whereX' refers to the �rst
dimension of the output data structure), spatially distributes indices
of theX' dimension with a chunk size of one (thesize parameter)
across PEs with an offset of one (theoffset parameter). This means
that each PE works on a different column of the output data space.
If the number of PEs is not suf�cient to cover all indices of the
dimension mapped, then the mapping is folded over time across the
same set of PEs. Also, ifoffset value is smaller thansize value,
then there will be an overlap of indices across consecutive PEs, and
this is useful in describing mappings on input activation dimensions
X and Y because their iteration space is skewed.

Similarly, TemporalMap(1,1) S(whereSrefers to the �rst di-
mension of �lter weight data structure), distributes indices of the
S dimension with a chunk size of one across time steps with an
offset of one. This means that each PE works on the same column
of the weight data space. Since all PEs get the same data indices
corresponding to a temporally mapped dimension, this creates an
opportunity forspatial reuse, i.e., multicasting the same data values
across PEs in a time step.
Mapping Size.In all of the mappings from Figure 5A-D, the map-
ping sizes (�rst argument) of weights and outputs are one – resulting
in full temporal reuse of weights but no temporal reuse of outputs
(e.g., mapping B and D) or vice versa (e.g., mapping A and C).
There is no temporal reuse of inputs in any mapping. Increasing
the map size of the spatial or temporal maps can help in presenting
opportunities for partial temporal reuse, which can capture convolu-
tional reuse of inputs in CNN layers. For example, the spatial map
corresponding to theSdimension in Figure 5(E) helps in exploiting
the partial temporal reuse of input data across time steps.
PE Clustering for Multi-dimensional Spatial Distributions. As
can be seen in Figure 5(A-E), data mappings related to a map in
the outer position get updated after a full exploration of a map
in the inner position. This inherent assumption can limit certain
data�ow behaviors where one might be interested in simultaneously
exploiting spatial distribution of more than one data dimensions.

To address this, we introduce another directive calledClusteras
a mean to support the simultaneous spatial distribution of multiple
data dimensions. The cluster directive logically groups multiple PEs
or nested sub-clusters (when a data�ow has multiple cluster direc-
tives) ofsize parameter. For example,CLUSTER (3) in Figure 5(F)
arranges available PEs into groups of three, resulting in two clusters
of three PEs.

All the mapping directives speci�ed above aCLUSTER directive
perform the mapping across logical clusters created by theCLUSTER

directive. All the mapping directives speci�ed below aCLUSTER

directive perform the mapping across PEs or lower level logical

clusters inside a logical cluster created by theCLUSTER directive.
That is, all the mapping directives above aCLUSTER directive see
logical clusters while those below theCLUSTER directive seeinside
of each logical cluster. With this mechanism, one can specify com-
plex data�ows with multiple parallelization dimensions represented
by multipleSPATIAL MAP directives (one in each cluster level). An
example of this can be seen in Figure 5(F), where theX' dimen-
sion is spatially distributed across clusters, and theSdimension is
spatially distributed within the cluster. The cluster directives enable
us to represent existing real-world accelerator data�ows, such as
Eyeriss [11] since it involves the spatial distribution of R and Y
dimensions simultaneously, and also NVDLA [1] which involves
the spatial distribution of K and C dimensions. Another advantage
of the cluster directive is that its notion of grouping multiple PEs
can represent coarse-grained PEs in accelerators, such as SIMD
units [43] and matrix tensor accelerators like GPU Tensor Cores.

In summary, we discussed �ve transformations that capture all
possible aspects of data�ows: scheduling, tiling, and mapping. As
shown in Figure 5 the data-centric directives can concisely represent
all of those aspects. We envision that the data-centric representa-
tion could be either auto-generated from a loop nest version of the
data�ow (with af�ne constraints), or manually written.

3.3 Hardware Implications of Reuse
As we discussed above, various data reuse opportunities appear
based on the data�ow. Table 1 summarizes how such opportunities
appear in the relationship of spatially mapped dimension within a
cluster (Map column) and inner-most temporally mapped dimension
(InnerMap column). For example, if output channels (K) are spatially
mapped, a decoupled data structure, input feature map, does not
change over space. That is, all the PEs receive the same input feature
map, which implies a full spatial reuse opportunity (broadcast). In the
same example, when the inner-most temporally mapped dimension
is the input channels (C), the input channel changes every iteration,
which provides temporal reduction opportunities of outputs.

Although a data�ow provides temporal or spatial data reuse oppor-
tunities, appropriate hardware support is required to actually exploit
these phenomena. Table 2 summarizes four reuse categories and
corresponding hardware implementation to support them. As the
table shows, reuse can be either spatial or temporal. Based on the
data structure, the communication type can be either multicast (input
tensors) or reduction (output tensors). Multicast is a communication
type that delivers the same data to multiple targets over space (dif-
ferent PEs at the same time) or time (the same PE in different time).
Therefore, multicast is one to many communication type, which
requires either a fan-out network-on-chip structure such as bus or
tree, or a “stationary" buffer to hold the data and deliver it to the
future. In contrast, the reduction is many to one communication type,
which applies to partial sums to generate �nal outputs. The reduction
also can be either spatial or temporal. Example hardware to support
spatial reduction is a reduction tree or reduce-and-forward chain
such as systolic arrays. Temporal reduction can be supported by a
read-modify-write buffer.

In summary, different data�ows (expressed via our directives)
expose different forms of reuse: spatial and temporal, both for mul-
ticasts and reductions, which in turn can have multiple hardware

Understanding Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-Centric Approach MICRO-52, October 12�16, 2019, Columbus, OH, USA

Table 1: Reuse opportunities based on spatially-mapped dimensions in combination with innermost temporally-mapped dimensions. Filters (F),
Inputs (I), and Outputs (O) are considered separately. For brevity, X/Y should be interpreted as X'/Y' as appropriate.

Table 2: Hardware Implementation Choices for supporting spatial and
temporal reuse. Note - bytemporal multicast, we refer to stationary
buffers from which the same data is read over time.

implementations. Reasoning about data�ows in this structured man-
ner exposes new insights and potential microarchitectural solutions.
The discussion so far focused on a simple 1D convolution, which
itself exposed many possible data�ows and reuse opportunities. We
extend this to a full convolution loop and analyze reuse opportunities
within a speci�c data�ow.

3.4 Extended Example: Row-stationary Data�ow
Figure 6 presents detailed mapping and reuse patterns across two
unit time steps of an example row-stationary data�ow [11] over a
six-PE accelerator. The accelerator has two PE clusters with three
PEs in each cluster. We use the same example layer previously used
in Figure 1. Figure 6(a) and (b) are compute- and data-centric rep-
resentations of the row-stationary data�ow. Figure 6(c) shows how
the mapping moves across space (PE clusters) and time Figure 6(d)
shows the actual coordinates of each tensor across two time steps and
two clusters (i.e., time and space). Each colored box in Figure 6(d)
represents replicated data points, which imply reuse opportunities.
Based on the replicated data points, we can infer data reuse over the
PE array, as shown in data reuse row in Figure 6(d). The mapping
in Figure 6(d) shows that the same set of input activation values are
replicated across two clusters in a skewed manner within the same
time step, which implies spatial reuse opportunities in the diagonal
direction of the example PE array. Similarly, Figure 6(d) shows that
the same set of weight values are replicated over two time steps
within the same PE, which implies temporal reuse opportunities and

weight-stationary style data�ow in unit time step granularity. Note
that the data�ow is still row-stationary in a coarse-grained time step
although it is weight stationary in unit time steps we de�ne in Fig-
ure 6 (a) and (b). Finally, Figure 6 (d) shows the same set of output
activation over PEs in each PE cluster, which means that all the PEs
in each cluster cooperate to generate a set of output activation data.
That is, each PE in a PE cluster generates different partial sums for
the same output activation, and they need to be accumulated across
PEs in each PE cluster to generate �nal output activation values.

Based on the example analysis in Figure 6, we observe that the
data reuse pattern exactly matches the original work [11]: reuse in
the horizontal direction for �lter weights and vertical for outputs
(partial sum accumulation), and reuse in the diagonal direction for
input activations.

In summary, reuse opportunities are based on the replicated data
across time or space (PEs), which implies temporal and spatial reuse
opportunities, respectively. The examples in this section demonstrate
the need for a fast, accurate quantitative methodology to compute
reuse for complex data�ows.

4 QUANTITATIVE DATAFLOW ANALYSIS
In this section, we present our approach to quantitatively estimat-
ing runtime and energy ef�ciency of data�ows on a target DNN
model and hardware con�guration. Based on the approach, we im-
plement an analysis framework,MAESTRO, which consists of �ve
engines: tensor, cluster, reuse, performance analysis, and cost analy-
sis. Figure 7 provides a high-level overview of the �ve engines. In
the interest of space, we only discuss high-level algorithms without
edge case handling, multiple layers, and multiple cluster levels. For
details, we present them in our open-source repository [2].

4.1 Preliminary Engines
Tensor Analysis.As described in Figure 7, the tensor analysis en-
gine identi�es dimension coupling for each tensor based on speci�ed
layer operations. For example, in depth-wise convolutions, output
activation is not coupled with the output-channel dimension but
coupled with the input channel dimension. Note that depth-wise con-
volution can be understood either in this manner or by eliminating
input channel dimension (C). We select this convention because it
aligns withMAESTRO's input-centric cost model.MAESTRO
allows users to specify tensors with arbitrary dimension coupling,

MICRO-52, October 12�16, 2019, Columbus, OH, USA Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar, Vivek Sarkar, and Tushar Krishna

Figure 6: An extended example of a row-stationary style data�ow mapped on a six-PE accelerator. We select our own tile sizes for any not speci�ed in
the original work [11]. We do not apply additional mapping optimizations to minimize PE under-utilization. Colors represent data replication either
across time or space (PEs). Directives with asterisks indicate fully unrolled directives that cover entire data dimension with one mapping.

Figure 7: An overview of MAESTRO's analysis framework. For simplicity, we omit components other than analysis engines.

Understanding Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-Centric Approach MICRO-52, October 12�16, 2019, Columbus, OH, USA

Figure 8: A high-level overview of algorithms in performance and cost
analysis engines.

and such coupling relationship is input to the rest of engines, which
provides generality to MAESTRO.
Cluster Analysis. A PE cluster refers to a group of PEs that pro-
cesses one or more data dimensions in parallel, speci�ed by the
CLUSTER directive. Figure 7 (b) describes the analysis in Cluster
Analysis (CLA) engine. The CLA engine analyzes a given data�ow
description written in data�ow directives to identify the number of
sub-clusters, extract cluster data�ow directives and data dimensions,
and augment the given data�ow descriptions for missing directives,
stride handling, and so on, for each cluster level.
Reuse Analysis.Figure 7 (b) includes a high-level description of
analysis in data reuse analysis (RA) engine. RA engine identi�es
the amount of temporal and spatial reuse across adjacent time steps,
which is the data iteration corresponding to the inner-most non-
temporally/spatially unrolled mapping directive.

4.2 Performance Analysis
Figure 7 (a) presents a high-level overview of the performance and
cost analysis engine, and Figure 8 shows high-level algorithm of the
performance analysis (PA) engine. Utilizing the reuse information
computed in the RA engine, PA engine computes the runtime for
all the possible cases based on the data dimension and data�ow.
The computed runtime is multiplied with the number of each case's
occurrences and accumulated to compute the total runtime. The run-
time of a DNN accelerator consists of communication delay (L2 to
L1, L1 to L2, local forwarding) and computation delay in each PE,
which are directly related to the accelerator's hardware parameters.
PA engine considers double buffering when it computes the out-
standing delay (the worst case delay of communication/computation
delay) that directly contributes to the runtime.

To estimate communication delays,MAESTROrelies on its ana-
lytical network-on-chip (NoC) model based on a pipe model similar
to other analytic models [30]. The pipe model utilizes two param-
eters, the pipe width (bandwidth) and length (average delay), to
estimate the communication delay via NoC. The model incorporates
a pipelining effect as many packet-switching NoCs have similar
behavior. Various combinations of the bandwidth and average de-
lay enables to model NoC structures with reasonable accuracy. For
example, Eyeriss [11] has a two-level hierarchical bus with dedi-
cated channels for input, weight, and output tensors. Therefore, a
bandwidth of 3X properly models the top level NoC. The average
latency depends on implementation details; users should choose an
appropriate value considering implementation details (e.g., the use
of ingress/egress buffers, which adds one cycle delay each). For
more complicated NoC architectures, users should select bisection
bandwidth and average latency considering uniform communication
to all the PEs from a global buffer. For example, aN � N 2D mesh
network with the injection point at one of the corners, the bisection
bandwidth isN, and the average latency isN. Assuming that the user
has access to the NoC implementation information, the NoC model
is precise when the NoC is a bus or a crossbar.

4.3 Cost Analysis
Figure 8 describes how the cost analysis (CA) engine computes the
number of buffer accesses and estimates the buffer size requirements
for each tensor, considering data reuse computed in the RA engine
and data iteration cases. Utilizing the access counts and the number
of MAC operation information,MAESTROcomputes the energy
cost.MAESTROincludes an energy model based on those activity
counts and Cacti [29] simulation, which can be replaced by any other
energy model based on such activity counts (e.g., Accelergy [47]).

4.4 Complex Data�ow Analysis
Multi-cluster Analysis. Multi-cluster cases can be split into single-
cluster cases with the data dimension size set as the mapping size
of the corresponding mapping directive in the upper cluster. The
outstanding delay of a cluster level becomes the computation delay
of the next cluster level above. To handle various edge cases that
affects all the lower cluster levels,MAESTROrecursively performs
performance and cost analysis, as illustrated in Figure 7. In the
recursive analysis, the base case is the inner-most cluster whose sub-
clusters are actual PEs. AlthoughMAESTROperforms recursion,

MICRO-52, October 12�16, 2019, Columbus, OH, USA Hyoukjun Kwon, Prasanth Chatarasi, Michael Pellauer, Angshuman Parashar, Vivek Sarkar, and Tushar Krishna

Figure 9: Runtime model validation against MAERI [24] RTL simula-
tion with 64 PEs and Eyeriss [13] runtime reported in the paper with
168 PEs.

the complexity is not high because the number of PE cluster levels
are typically two or three. Note that each of the edge cases at each
cluster level also needs to be recursively processed. However, in
most cases, we observe the number of edge cases across cluster
levels is less than 20, which is still in a tractable scale.
Other DNNs. Although we used dense convolution as examples for
simplicity, MAESTROcan model a variety of layers (LSTM hidden
layer, pooling, fully-connected, transposed convolution, and so on)
based on the generality of the data-centric approach. Our data-centric
approach supports all the operations represented as the loop nest
with two input tensors and one output tensor wherein all the tensor
indices are coupled in only one or two data dimensions in af�ne
functions.MAESTROalso can model uniformly distributed sparsity
for any supported data�ow. Support for more complex statistical
sparsity distributions is future work.

4.5 Model Validation
We validatedMAESTRO's performance model against RTL sim-
ulations of two accelerators - MAERI [24] and Eyeriss [13] when
running VGG16 and AlexNet respectively1. Figure 9 shows that
the runtime estimated byMAESTRO are within 3.9% absolute
error of the cycle-accurate RTL simulation and reported processing
delay [13] in average.

5 CASE STUDIES
Table 4 summarizes the features of frequently used DNN operators
from state-of-the-art DNN models [6, 18, 28, 34, 35]. Early and late
layers refer to layers with high-resolution activation with shallow
channels and vice versa, respectively. We label them as early and
late layers because such layers appear early and late in classi�cation
networks [18, 28, 35, 42]. We compare the number of input channels
and the input activation height to identify them2.

With MAESTRO, we perform deeper case studies about the
costs and bene�ts of various data�ows when they are applied to
different DNN operations listed in Table 4. We evaluate �ve distinct
data�ow styles listed in Table 3 in Section 5.1 and the preference
of each data�ow to different DNN operators. For energy estimation,
we multiply activity counts with base energy values from Cacti [29]
simulation (28nm, 2KB L1 scratchpad, and 1MB shared L2 buffer).
We also present distinct design space of an early layer (wide and
shallow) and a late layer (narrow and deep) to show the dramatically
different hardware preference of different DNN operator styles and
data�ow in Section 5.2.

1MAERI RTL is open-source. For Eyeriss, we use the reported runtime for AlexNet
because detailed mapping parameters are described for only AlexNet in the paper.
2If C > Y, late layer. Else, early layer

Table 3: Five example data�ows used for the evaluation. For concise-
ness, we omit redundant directives that are automatically inferred by
MAESTRO. YX-P, YR-P, and CK-P data�ows are motivated by Shid-
iannao [15], Eyeriss [11], and NVDLA [1], respectively. The name of
each data�ow is based on spatial dimensions from the upper-most clus-
ter level.

5.1 Case study I: Data�ow Trade-offs
Figure 10 shows the DNN-operator granularity estimation of run-
time and energy of each data�ow across �ve state-of-the-art DNN
models listed in Section 5. Note that this should be considered a
comparison of data�ows—not of actual designs, which can contain
several low-level implementation differences, e.g., custom imple-
mentations of logic/memory blocks, process technology, and so on.
We observe that KC-P data�ow style data�ow provides overall low
runtime and energy. However, the energy ef�ciency in VGG16 (Fig-
ure 10 (b)) is worse than YR-P (Eyeriss [11] style) data�ow, and
the runtime is worse than YX-P (Shidiannao [15] style) data�ow
in UNet (Figure 10 (e)). This is based on the different preference
toward data�ow of each DNN operator. YX-P provides short run-
time to segmentation networks like UNet, which has wide activation
(e.g., 572x572 in the input layer) and recovers the original activation
dimension at the end via up-scale convolution (e.g., transposed con-
volutions). Such a preference to the YX-P style is mainly based on
its parallelization strategy: it exploits parallelism over both of row
and column dimensions in activation. The energy ef�ciency of YR-P
data�ow in VGG16 is based on its high reuse factor (the number of
local accesses per fetch) in early layers, as shown in red bars in Fig-
ure 11 (a) and (b) (note the log scale). The YR-P data�ow has 5.8�
and 15.17� higher activation and �lter reuse factors, respectively, in
early layers. However, in late layers, the reuse factors of YR-P and
KC-P data�ow are almost similar (difference < 11%), so the KC-P

Understanding Reuse, Performance, and Hardware Cost of DNN Dataflows: A Data-Centric Approach MICRO-52, October 12�16, 2019, Columbus, OH, USA

Figure 10: Plots in top and bottom rows present runtime and energy estimation of �ve data�ows listed in the table, respectively. We apply 256 PEs and
32GBps NoC bandwidth. We evaluate all the data�ows using �ve different DNN model; Resnet50 [18], VGG16 [42], ResNeXt50 [35], MobileNetV2 [28],
and UNet [34]. The �nal column (f) presents the average results across models for each DNN operator type listed in Table 4 and the adaptive data�ow
case.

Table 4: Operators in state-of-the-art DNNs and their features and
implication. Bottleneck [18] and depth-wise separable convolution [6]
are listetd in a �ne-grained operators (point-wise convolution, depth-
wise convolution, and residual links). Examples are based on notable
networks (VGGnet [42] and DCGAN [4]) and state-of-the-art networks
(MobileNetV2 [28], ResNet50 [18], ResNeXt50 [35].

data�ow provides similar energy ef�ciency as YR-P in these cases.
This can also be observed in the late layer (blue) bars in Figure 10
bottom-row plots.

Although the KC-P and YX-P data�ows provide low runtime
(Figure 10), it comes with high NoC cost, as the high bandwidth
requirements shown in Figure 11 (c) highlight. Based on the operator
type, some data�ows require dramatically higher NoC bandwidth
than others. For example, YX-P requires high bandwidth for point-
wise convolution as it has no convolutional reuse (i.e., overlapped
activation data points among sliding windows) because of its 1x1

Figure 11: Reuse and NoC bandwidth requirements of data�ows
in Table 3 with 256 PEs for four common DNN operators from Ta-
ble 4. We select representative operators from state-of-the-art DNN
models (Early layer: CONV1 in Resnet50 [18], late layer: CONV13
in VGG16 [42], depth-wise convolution (DWCONV): DWCONV of
CONV2 in ResNeXt50 [35], point-wise convolution: �rst conv of bot-
tleneck1 in MobilenetV2 [28] C, X, YX, YR, and KC refers to C-P, X-P,
YX-P, YR-P, and KC-P data�ows. A refers to algorithmic maximum
reuse.).

Figure 12: The breakdown of energy consumption (MAC and L1/L2
scratchpad access energy) of the data�ows from Table 3. The access
counts generated by MAESTRO are multiplied by appropriate energy
values from Cacti [29]. The values are normalized to the MAC energy
of C-P.

	Abstract
	1 Introduction
	2 Background
	2.1 Tensors in DNNs
	2.2 DNN Accelerators
	2.3 Data Reuse Taxonomy
	2.4 Dataflow Definition and Example
	2.5 Existing Expressions of Dataflow

	3 Describing Dataflows
	3.1 Data-Centric Representation
	3.2 Dataflow Playground
	3.3 Hardware Implications of Reuse
	3.4 Extended Example: Row-stationary Dataflow

	4 Quantitative Dataflow Analysis
	4.1 Preliminary Engines
	4.2 Performance Analysis
	4.3 Cost Analysis
	4.4 Complex Dataflow Analysis
	4.5 Model Validation

	5 Case Studies
	5.1 Case study I: Dataflow Trade-offs
	5.2 Case study II: Hardware Design-Parameters and Implementation Analysis

	6 Related Works
	7 Discussion and Future work
	References

