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Deep Learning Applications
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What is the key computation for these Deep Learning

applications?

. . P

Speech Recognition Language Understanding Recommender Systems




Runtime breakdown on V100 GPU
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Runtime breakdown on V100 GPU
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Matrix multiplications (GEMMs) consume around 70% of the total runtime when
training modern deep learning workloads.




GEMMIs in Deep Learning
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GEMMs in Deep Learning
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GEMMis in Deep Learning
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Hardware for Accelerating GEMMs
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Hardware for Accelerating GEMMs

SIMT Architectures

Nvidia GTX GPUs

Systolic Architectures

SIMD Architectures
. ML Processor 16x
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Target comparison: Google TPU

Core Core Core Core
scalar/ vector scalar/ vector scalar/ scalar/
..... s units vector units vector units
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sce <1 > sce 066 [T 7| wG8
MXU MXU MXU MXU MXU MXU
128x128 128x128 128x128 128x128 128x128 128x128

Our target comparison is with the Google TPU, which uses 128 x 128
systolic arrays.

TPU figure from https://cloud.google.com/tpu/docs/system-architecture
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Systolic Array Architectures
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Systolic Array Architectures
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Mapping GEMMs onto TPUs

TPU (Systolic Array) ] ]
T Example Dimensions
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2048 4096 32
3 DecoBench | Genera 1024 | 16 500000
. eEPEENCN | workload 35 8457 | 2560
Transformer Language 31999 1024 a4
Understanding | 84 1024 4096
NCE Collaborative 2048 1 128
Filtering 256 256 2048
127 GEMMs used for evaluation.




Mapping GEMMs onto TPUs

TPU (Systolic Array) e i :
o 1 2 3 4 . . 127 Workload | Application D e Ol
0 M N K
' 128 2048 4096
GNMT Maching 320 3072 4096
2 Translation 1632 36548 1024
2048 4096 32
. DeepBench | Genera 1024 16 500000
a P Workload 35 8457 2560
Transformer Language 31999 1024 84
Understanding | 84 1024 4096
NCF Collaborative 2048 1 128
Filtering 256 256 2048
127 GEMMs used for evaluation.
Let’s map this GEMM!




Mapping GEMMs onto TPUs
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| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs
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| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs
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Mapping GEMMs onto TPUs

TPU (Systolic Array)
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Mapping GEMMs onto TPUs
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Mapping GEMMs onto TPUs

: The streaming elements get multiplied with
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| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs
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Mapping GEMMs onto TPUs

: The streaming elements get multiplied with
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Mapping GEMMs onto TPUs

The streaming elements get multiplied with
M = 256 | TPY (Systolic Array) 4 Bl the stationary elements. The partial sums
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| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs

: The streaming elements get multiplied with
M = 256 | TPU (Systolic Array) the stationary elements. The partial sums
4—
H B get accumulated down each column.
' B K = 2048 . o
. . § % Stationary
. . I Streaming matrix x v matrix
H B >
B e 128
BN
BN ¢
F3IIIIIIY Reduce partial sum down each column.

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs

M = J56 ‘ TPU (Systolic Array)

Systolic Arrays are popular because they enable efficient

data reuse and are very simple to implement.

[3aans

F3I3IIIIIY Reduce partial sum down each column.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)




Mapping GEMMs onto TPUs - Irregularity

TPU (Systolic Array) £ le Di ]
0 15-.31..47--63.-79--95..111..127 Workload | Application xample bimensions
15 M N K
. 1 128 2048 4096
: GNMT Machine 320 3072 4096
47 Translation 1632 36548 1024
: 2048 4096 32
63: D B h General 1024 16 500000
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: T ; Language 31999 1024 84
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: Collaborative | 2048 | 1 128
111
: NCF Filtering 256 256 2048
127 GEMMs used for evaluation.

Let’s map another GEMM!

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Irregularity
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)




Mapping GEMMs onto TPUs - Irregularity
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)




Mapping GEMMs onto TPUs - Irregularity

K =32 75% of the PEs are not utilized for
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)




Mapping GEMMs onto TPUs - Irregularity

75% of the PEs are not utilized for
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)




Mapping GEMMs onto TPUs - Irregularity
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Mapping GEMMs onto TPUs - Irregularity
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Mapping GEMMs onto TPUs - Irregularity
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Mapping GEMMs onto TPUs - Irregularity

75% of the PEs are not utilized for

TPU (Systolic Array)

M = 2048 this GEMM.
HER
B N = 4096 .

Stationary matrix

M = 2048
K=32
i




Mapping GEMMs onto TPUs - Irregularity

75% of the PEs are not utilized for

‘TPU (Systolic Array) AN/

M = 2048

The rigid structure of Systolic Arrays cause PE

underutilization. How can we enable the remaining PEs?

F5F3IIIII ‘Reduce partial sum down each column.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)




Mapping GEMMs onto TPUs - Irregularity

TPU (Systolic Array) -—
0 15-- 31-- 47-- 63-- 79 --95..111.-127 f
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47

N = 4096
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M = 2048
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i
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111 the stationary matrix onto the
127 v TPU to increase utilization?

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Irregularity

TPU (Systolic Array) -—
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| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Irregularity

TPU (Systolic Array) -—
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N = 4096

Stationary matrix

M = 2048
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i
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95} Can we map another section of
111 the stationary matrix onto the
127 v TPU to increase utilization?

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Irregularity

K=32
TPU (Systolic Array) -—>

M = 2048
0 15-- 31-- 47-- 63-- 79 --95-:111.-127 f

D E——
HEEE s-EEEEEENEN
HEEE -EEEEEENEN

47

N = 4096

Stationary matrix

63

M = 2048
K=32
i

: “I28 > 128>
79
95} Can we map another section of
111 the stationary matrix onto the
127 v TPU to increase utilization?

duplicate streaming data

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Irregularity

. K =32

M = 2048 TPU (Systolic Array) -—>

- o 15..31..-47.-63--79..95..111..127 f

HEEE s-EEEEEEEN

EEE :EENEEEEER 200

HEN| ~ 2 > - >

: Q > t- Stationary matrix
_L LIk . < <+
T 75 =

duplicate 95} Can we map another section of
streaming | 111 the stationary matrix onto the
data 127 v TPU to increase utilization?

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Irregularity

. K =32
M = 2048 TPU (Systolic Array) -—>
- 0 15.- 31..- 47..63-- 79.-95..111..127 f
HEEN sEE B EEEEEN
EEN|:EEEEEEERE N
pan |om | B '
: " tationary matrix
HEE -E u BT ke v: as :
79 2
95} Can we map another section of
111 the stationary matrix onto the
127 ' TPU to increase utilization?

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Irregularity

. K =32
M = 2048 TPU (Systolic Array) -—>
- o] 15y- 31.- 47.. 63-- 79.-95..111..127 f
HEENE sl EEEEEN
EEE|:NEEEEENE N
HEN |~ g o -
: < . t- Stationary matrix
AN\ - . < <+
79l | 2
95} [ ] Can we map another section of
11 | the stationary matrix onto the
124 | v TPU to increase utilization?

¥ Reduce partial sum down each column.

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Irregularity

K=32
TPU (Systolic Array) -—>

M = 2048
o 15|- 31-- 47-- 63-- 79 -- 95--111.-127 f

D E——
HEE s B EEEENEDN
HEE BB EEENEDN

47
AR . This is incorrect functionally, because the t-
HEBE e systolic reduction will accumulate dark blue e v
79 and light purple partial product clusters

together. This is due to a rigid aspect ratio C h .
of a systolic array. an we map another section Of

11 T T T LT T[] l. the stationary matrix onto the
127 TPU to increase utilization?

N = 4096

Stationary matrix

95

¥ Reduce partial sum down each column.

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMSs onto TPUs - Irregularity

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic
array.

¥ Reduce partial sum down each column.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)




Sparsity in DNN Models
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Transformer Sparsity - Impact on BLEU
(The State of Sparsity in Deep Neural Networks, Gale et al., arXiv)



Sparsity in DNN Models
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Weight sparsity ranges from 40% to 90%. Activation sparsity is approximately
30% to 70% from RelU, dropout, etc.




Mapping GEMMs onto TPUs - Sparsity

TPU (Systolic Array) £ le Di ]
0 15-.31..47--63.-79--95..111..127 Workload | Application xample bimensions
15 M N K
. 1 128 2048 4096
: GNMT Machine 320 3072 4096
47 Translation 1632 36548 1024
: 2048 4096 32
63: D B h General 1024 16 500000
- eeprench 1 \workload 35 8457 2560
: T ; Language 31999 1024 84
95 ranstormer | Understanding | 84 1024 | 4096
: Collaborative | 2048 | 1 128
111
: NCF Filtering 256 256 2048
127 GEMMs used for evaluation.

Usually these GEMMs are sparse!

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Sparsity

K =32

TPU (Systolic Array) -—>

0o 15..31.-47..63-- 79..95..111..127 f
15
31

: N = 4096
47 g o < >
3 3 % b ¢ ; tH Stationary matrix
79 = 128
o What happens if half of the stationary
111 matrix are zeros?
12.7 ¢

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Sparsity

: K =32
M = 204g| TPU (Systolic Array) i
- 0o 15..31.-47..63-- 79..95..111..127 f
“TTIE
HEEN 2B EEEEEEN N - 4006
47 ® N = — >
3 3 ﬁ b ¢ ; tH Stationary matrix
79 = 128
o What happens if half of the stationary
111 matrix are zeros?
12.7 ¢

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Sparsity

: K =32
M = 204g| TPU (Systolic Array) i
- 0o 15..31.-47..63-- 79..95..111..127 f
TTIE |
HEEN B EEEEEERN N - 4006
47 ® N = — >
3 3 ﬁ b ¢ ; tH Stationary matrix
79 = 128
o What happens if half of the stationary
111 matrix are zeros?
12.7 ¢

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Sparsity

Multiplication with an operand that is zero is considered underutilized.

— K =32

M = 204g| TPY g/stollc Array) i

- 0”1 \ 31.- 47..- 63.- 79..95..111-.127 f

EEE | N

HEEN B EEEEEERN N - 4006
47 ® N = — >
3 3 ﬁ b ¢ ; tH Stationary matrix
79 = 128
o What happens if half of the stationary
111 matrix are zeros?
12.7 ¢

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Sparsity

Multiplication with an operand that is zero is considered underutilized.

A K=32 87.5% of the PEs are not utilized

M = 204g| TPY (Systolic Array) for this GEMM.
<+—— | of 15 -12 ?
HEN
31
: . N = 4096 _
47

Stationary matrix

M = 2048
K=32
r

F5FIIIIII ‘Reduce partial sum down each column.

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Weight stationary systolic arrays are underutilized for
sparse GEMMSs because they have to map zeros. How
can we map only nonzeros stationary?
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Mapping GEMMs onto TPUs - Sparsity

: K =32
M = 204g| TPU (Systolic Array) i
- o 15..31..-47.-63--79..95..111..127 f
TTIE
HEEN 2B EEEEEEN N - 4006
47 ® N = - >
3 3 ﬁ b ¢ ; tH Stationary matrix
7 = 128
o Can we map other nonzero elements
o where the idle PEs used to be?
12.7 ¢

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Sparsity

: K =32
M = 204g| TPU (Systolic Array) -
- o 15..31..-47.-63--79..95..111..127 f
“TTIE
HEEN 2B EEEEEEN N - 4006
47 ® N = - >
: < . tﬁ: Stationary matrix
E : B R vL B
79 =
o Can we map other nonzero elements
o where the idle PEs used to be?
12.7 ¢

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Sparsity

: K =32
M = 204g| TPU (Systolic Array) -
- o 15..31..-47.-63--79..95..111..127 f
“TTIE
HEEN 2B EEEEEEN N - 4006
47 ® N = - >
: < . tﬁ: Stationary matrix
E : B R vL B
79 =
o Can we map other nonzero elements
o where the idle PEs used to be?
12.7 ¢

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Sparsity

: K =32
M = 204g| TPU (Systolic Array) i
- o 15..31..-47.-63--79.-95..111..127 f
TR |
HEEN B EEEEEERN N - 4006
47 ® N = - >
: < . tﬁ: Stationary matrix
E : ¥ ~mE<mm
79 =
o Can we map other nonzero elements
o where the idle PEs used to be?
12.7 ¢

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Sparsity

: K =32
M = 204g| TPU (Systolic Array) i
- 0] 15§- 31.- 47--63-- 79--95-:111.-127 f
TTIE
HENE .l EEEEEEN N - 4006
. o0 N < — >
a7| | 0 o
: < . tﬁ: Stationary matrix
=l : ¥ ~mE<mm
79| | =
ol Can we map other nonzero elements
11 ] where the idle PEs used to be?
12| | v

¥ Reduce partial sum down each column.

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Sparsity

K=32
M = 2048 TPU (Systolic Array) -—>
<«—— | o] 15]. 31.. 47..63-- 79..95..111..127 f
“TTIE
11 ME! PR BB R ER B
: N = 4096
47 0 N < >
<t o
63 Dark blue and light purple clusters x S tﬁ: Stationary matrix
: accumulate, which is incorrect. 128 128
79 . . :
: Systolic reduction only allows fixed Can we map other nonzero elements
95 size dot products, which is the size p
. of a column. where the idle PEs used to be?
123

¥ Reduce partial sum down each column.

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Sparsity

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic
array.

Observation 2: Sparse weights cause underutilization of the PEs and require variable
sized dot product accumulation.

¥ Reduce partial sum down each column.

* Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)




Mapping GEMMs onto TPUs - Scalability

TPU (Systolic Array)
0o 1 2 3

4

127

127

M = 256

K=2048

Streaming matrix

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

K=2048

Stationary
matrix




Mapping GEMMs onto TPUs - Scalability

TPU (Systolic Array)
2 3 4 . 127

0 1 :
ez | HEEH B EENNER
1 K =2048

2

Stationary
matrix

3

K=2048

Streaming matrix X

M = 256

4

127

'

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Scalability

TPU (Systolic Array)

0 1 2 3 4
I HHEH NN
EEEERN

Cycle 2 1

5 . 127
HEB
HEB

K=2048

2

Stationary
matrix

K=2048

Streaming matrix X

M = 256

127

'

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Scalability

TPU (Systolic Array)
0 2 3 4 . . 127
ol I EEEERER
1 § R R BB NN B K = 2048 . o
Cycle 3 1 B R R R BN B @ § Stationary
3 (: Streaming matrix X ; matrix
=

4

127 ¢

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Scalability

TPU (Systolic Array)
o 1 2 3 4 . . 127
I HEEEERER
d 3 B B N B NN J K =2048 - 00
cANEEEEEE| -
10 " ationary
J B R R R R R R 1 Streaming matrix X v matrix
:ANEEEEENE| °
1 E R R BB R R
AN BN EENER Loading takes 128 cycles, which
cyetezzs|M M HHHEE B cales at O(sqrtN) |

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Mapping GEMMs onto TPUs - Scalability

Reduction will take 128 cycles for the last
M = 256 | TPU (Systolic Array) accumulate to finish before loading a new
D E—— . . .
portion of the stationary matrix.
BN
B B K = 2048 . .
<
. . § % Stationary
. . I Streaming matrix x v matrix
EE =
BB 128
BN
BN |
F3IIIIIIY Reduce partial sum down each column.

| ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary) ‘




Observation 1: GEMMSs are irregular and may not align to the aspect ratio of the systolic
array.

Observation 2: Sparse weights cause underutilization of the PEs and require variable
sized dot product accumulation.

Observation 3: Large systolic arrays have significant load and reduction latency.
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Observation 1: GEMMSs are irregular and may not align to the aspect ratio of the systolic
array.

Observation 2: Sparse weights cause underutilization of the PEs and require variable
sized dot product accumulation.

Observation 3: Large systolic arrays have significant load and reduction latency.

Takeaway: Systolic Arrays are underutilized on emerging GEMM workloads that are

both sparse and irregular.
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Key Accelerator Requirements

Systolic Array Limitation SIGMA Desired Traits

With flexible and scalable interconnects between all PEs,
SIGMA can solve the three requirements.

Scalability e O(sqrtN) distribution e O(1) distribution
e O(sqrtN) reduction e O(logN) reduction
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Systolic vs SIGMA High Level Interconnects

4 x 4 Systolic Array

® rigid aspect ratio

e fixed size dot product

® O(sqrtN) distribution and
reduction

Distribution
network allows
SIGMA to mimic
any aspect ratio to
address irregular
GEMMs

Ability to send any
streaming element
to any PE

O(1) distribution

Reduction Networ

16 PE SIGMA

** Microarchitecture
details on the networks
will be discussed later

Reduction network
allows SIGMA to
reduce variable
sized dot products

Addresses sparsity
and irregularity

O(logN) reduction




Irregular GEMMs on SIGMA

) .
T al|b N matrix is

- 5 streaming and
A B L Set up the stationary values. KN matrix is
MFRK L M N O P stationary. (aka
m weight

 J

stationary)

(2]
(=3

4 x 4 Systolic Array




Irregular GEMMs on SIGMA

** Assuming MK

{alo N matrix is
3 - . streaming and
| & o |20 Set up the stationary values. KN matrix is
MFRK L M N O P stationary. (aka

‘,m st;:l?cl;?wg:y)
n c||la|»|A—B n C
I ] [d][e]=* 1 HJ I ] [d

4 x 4 Systolic Array 16 PE SIGMA

Reduction Networ

38




Irregular GEMMs on SIGMA

alb

** Assuming MK
matrix is

streaming and
Next cycle: Multicast first row of MK to the corresponding KN matrix is

® K
! stationary elements. stationary. (aka

c|d
Al K
\

stationary)

A

<

A

n C| Faifla)flalpa
B [ ][d]¥ o] fb]liolb

— d d d d

— b bibQab

4 x 4 Systolic Array 16 PE SIGMA




Irregular GEMMs on SIGMA

** Assuming MK
A‘_a b > N matrix is
T . . streaming and
i ES g k|l Next cycle: Multicast second row of MK to the KN matrix is
;s K corresponding stationary elements. stationary. (aka
m weight
X stationary)

-

n CApCICYl|C
h ‘Il EENE

— d dgdQad

4 x 4 Systolic Array 16 PE SIGMA




Irregular GEMMs on SIGMA

— ** Assuming MK
T e . N . matrix is
T - . . . streaming and
vt % A Next cycle: Multicast third row of MK to the corresponding KN matrix is
stationary. (aka

stationary elements.
weight

J I
v m stationary)

-
HelHa g
Hd[Hb h

4 x 4 Systolic Array 16 PE SIGMA




Irregular GEMMs on SIGMA

PR ** Assuming MK
{ matrix is
T . streaming and
B e k|| 2 B8 Next cycle: Multicast fourth row of MK to the KN matrix is
| o s K L 2 corresponding stationary elements. Stationéyrl’;-t(aka
weig
v m stationary)

Distribution Network

1 HeHal 9.y 'l lglilg)

HIEI'EI'HN
H HdHb] hfl hl hin.

B g: 9 [9i/9g]1
N 'R W
— hfl h h)ih®

Reduction Network
4 x 4 Systolic Array 16 PE SIGMA




Irregular GEMMs on SIGMA

I\ N matrix is
’ After accumulation, SIGMA is done. However, the systolic streaming and
A 10 L array has to map the other side of the stationary matrix and | KN matrix is
J ¢ M N O P y p ry stationary. (aka

. L
m ‘ stream in the MK matrix again (referred to as folding). weight
, stationary)

Q
o

(2]
(=3

4 x 4 Systolic Array




Irregular GEMMs on SIGMA

SIGMA reduces the number of folds, which then reduces

** Assuming MK

Q
o

c | d F
M O IERERE the number of memory references on the streaming matrix.
v m stationary)
Bl ] [c][a
0 £ [d] [b

4 x 4 Systolic Array




Irregular GEMMs on SIGMA

N

** Assuming MK
matrix is

N, c - o ’ streaming and
Final cycle count. KN matrix is
‘MK L M N O P stationary. (aka

weight
stationary)

Systolic Array total runtime: SIGMA total runtime:

24 cycles 13 cycles




Irregular GEMMs on SIGMA

** Assuming MK
un N matrix is
: : streaming and
M

un “ M C D E F G H . S
— % K' Final cycle count. KN matrix is
MY K L M N O P stationarv. (aka

SIGMA maximizes PE utilization with its flexible
interconnects for irregular GEMMs.

24 cycles 13 cycles
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Sparse Irregular GEMMs on SIGMA

TG ) N X matrix is
‘A = = i . streaming and
Set up the stationary values. KN matrix is
H O F stationary. (aka
weight
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Sparse Irregular GEMMs on SIGMA

TG ) N . matrix is
‘A = : o . streaming and
- Set up the stationary values. KN matrix is
H O F stationary. (aka
weight
stationary)

C
M % K

Reduction Networ
4 x 4 Systolic Array 16 PE SIGMA




Sparse Irregular GEMMs on SIGMA

e ) N X matrix is
- . . . streaming and
Next cycle: Multicast first row of MK to the KN matrix is

corresponding stationary elements. Stationéjrj’;-t(aka
weig

stationary)

Al B »

Cc
M XK

H B =

-

c ®lalHB—/ c| Falllallib @ a

e » b H e A0 A E

— d d d d

— b b @ b M b

4 x 4 Systolic Array 16 PE SIGMA




Sparse Irregular GEMMs on SIGMA

** Assuming MK
[ ) N X matrix is
- = ] streaming and
u B % k| LA : Next cycle: Multicast second row of MK to the KN matrix is
H : corresponding stationary elements. SLEUIGETTE (1%
weight
stationary)
» c|a — CljC c
B[ [*[ [He M e
] C C C C
4 x 4 Systolic Array 16 PE SIGMA
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Sparse Irregular GEMMs on SIGMA

** Assuming MK
e ) N X matrix is

i ] . . streaming and

| VRV | Kl : Next cycle: Multicast third row of MK to the KN matrix is
H ° corresponding stationary elements. stationary. (aka

weight
stationary)
» - cinalr
o+ H_{=H .
4 x 4 Systolic Array 16 PE SIGMA
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Sparse Irregular GEMMs on SIGMA

a

b

Cc

N

<
-

% K

A|B

>
>

** Assuming MK
matrix is

streaming and
Next cycle: Multicast fourth row of MK to the KN matrix is

corresponding stationary elements. Stationéjrl’;-t(aka
weig

stationary)

Distribution Network

1 a

i

Hel

Reduction Network

4 x 4 Systolic Array

16 PE SIGMA
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Sparse Irregular GEMMs on SIGMA

4 x 4 Systolic Array

i ** Assuming MK
a|b N matrix is
c s B " i After accumulation, SIGMA is done. However, the streaming and
| 3 systolic array has to map the other part of the s gz_’o’::t’ 'X(; .
stationary matrix and stream in the MK matrix again We,-g%'t
) (referred to as folding). stationary)
C




Sparse Irregular GEMMs on SIGMA

a

b

Cc

N

<
-

>
>

A
% K

B

H

Again, the systolic array has to map another part
of the stationary matrix and stream MK again.

** Assuming MK
matrix is
streaming and
KN matrix is
stationary. (aka
weight
stationary)

4 x 4 Systolic Array




Sparse Irregular GEMMs on SIGMA

a

b

Cc

N

<
-

% K

Al B

>
>

Final cycle count.

** Assuming MK
matrix is
streaming and
KN matrix is
stationary. (aka
weight
stationary)

Systolic Array total runtime:

34 cycles

SIGMA total runtime:

13 cycles




Sparse Irregular GEMMs on SIGMA

K ** Assuming MK
matrix is
streaming and
Final cycle count. KN matrix is

stationarv. (aka

SIGMA maps only nonzeros stationary; therefore, reduces
the number of folds needed.

34 cycles 13 cycles
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O(1) Distribution Topology

Unicast Multicast
(Loading Stationary Matrix) (Sending Streaming Matrix)
Crossbar Benes Crossbar Benes
Source Source Source Source

Destination Destination Destination Destination




SIGMA's distribution can be either a Crossbar or Benes
network. We chose Benes because the number of
switches scale by O(N logN).
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O(logN) Reduction (Limitation of Adder Tree)

Different 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
C/uste,.sof-)Eaabbbbbbccccdddddddddddeeeeeeee
artial sums.
P 09 29 249 49 g9 109 129 149 16D 189 20D 22924 D2 P28 D 30D
19 59 9 @ 139 179 219 250 299
39 119 190 27 &
79 23O

2-input BF16 Mult Switch
15 9 @ 2-input BF32 Adder Switch




O(logN) Reduction (Limitation of Adder Tree)

Different
clusters of ™ F
partial sums.

19 59 9 @ 139 179 219 250 299

30 119 199 27 &

7 @ 23O

Regular adder tree will

accumulate a + b, which is o
. , , 15
incorrect functionality.

2-input BF16 Mult Switch
@ 2-input BF32 Adder Switch




Forwarding Adder Network (FAN)

09 290 49 69 89 109 129 149 169 189 20D 220924 D2g O28 309
19 T 758 T 798 T 7138 T 7R T 7209 T 7259 T 7299

== A, = G W I VA =G W I V=
e~ AL S e

7/ N-to-2 Mux
v/ 2-input BF16 Mult Switch
15 9@ @ 2-input BF32 Adder Switch
=  Forwarding FF




Forwarding Adder Network (FAN)

Different 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Clustersof-)Eaabbbbbbccccdddddddddddeeeeeeee

artial sums.

P 09 29 49 69 89 109 129 149 16D 189 20 D 22924 P26 O28 @309
19 T 758 T 798 T 7138 T 7R T 7209 T 7259 T 7299

== A, = G W I VA =G W I V=
e~ AL S e

7 N-to-2 Mux

2-input BF16 Mult Switch
15 @ @  2-input BF32 Adder Switch

==  Forwarding FF

FAN is optimized for floating point reductions, commonly used during DNN training.




Forwarding Adder Network (FAN)

D’fferent 0 1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 3 4 5 6 7 8 9
Clustersof-)Eaabbbbbbccccdddddddddddeeeeeeee

artial sums.
P 09 29 249 69 89 109 129 149 16D 189209 22924 D2 P28 D309
19 T 758 T 798 T 7138 T 7R T 7209 T 7259 T 7299

== A, = G W I VA =G W I V=
e~ AL S e

_/ N-to-2 Mux

v/ 2-input BF16 Mult Switch
15 9@ @ 2-input BF32 Adder Switch
Pipelined at 1 cycle per adder level. = Forwarding FF

FAN is optimized for floating point reductions, commonly used during DNN training.




Forwarding Adder Network (FAN)

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dddddddddde e e ee e e e

xlx xlx xlx xlx xlx a4 Bd B4 B4 bd %

89D 109 129 149 169 189 20D 22924 D2 P28 D30 ®

o AL e AL e WL o
= AL S e

D’fferent 0 1 2 3 4 5
clusters of ™ F
partial sums.

Bypass adder and forward

partial sum to next level! U/ N-to-2 Mux
v/ 2-input BF16 Mult Switch
15 @ @  2-input BF32 Adder Switch
Cycle 1: Bypass conflicting partial sums = Forwarding FF

FAN is optimized for floating point reductions, commonly used during DNN training.




Forwarding Adder Network (FAN)

D’fferent 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
clusters of ™ P b b bbc dddddddddde eeeeeee
x B x lx xlx xlx xlx xlx 4 Bd B4 B4 B4 B4 B4 B%

artial sums.
P : P 20 R 229924 D26 928 D309
19 7T 758 T 9 T 7138 T 7R T 7208 T 7259 T 7299
sent to output buffer

o AL 230

7 N-to-2 Mux

B4 2-input BF16 Mult Switch
15 @ @  2-input BF32 Adder Switch

==  Forwarding FF

Cycle 2: Partial sum red complete

FAN is optimized for floating point reductions, commonly used during DNN training.




Forwarding Adder Network (FAN)

Different 0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
clusters of ™ [ b bb c dddddddddde eeeeeece
. x |l x lxxlxxlxxlxxlxxxxxxxxx
partial sums.
P24 D26 @28 D309
T 7259, T 7290
7 N-to-2 Mux
v/ 2-input BF16 Mult Switch
LH @  2-input BF32 Adder Switch
Cycle 3: Partial sums green and orange complete -‘ = Forwarding FF

FAN is optimized for floating point reductions, commonly used during DNN training.




Forwarding Adder Network (FAN)

3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dddddddddde e e ee e e e

xlxxlxxlxxlxxlxxxxxxxxx

+ #24 D26 O28 D300

=
o
=
=
=
N
=

Different 0
clusters of ™ F
partial sums.

230

_/ N-to-2 Mux

sent to output buffer 7 B4 2-input BF16 Mult Switch
15 9@ @ 2-input BF32 Adder Switch

Forwarding FF

Cycle 4: Partial sum blue complete

FAN is optimized for floating point reductions, commonly used during DNN training.




Forwarding Adder Network (FAN)

3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

dddddddddde e e ee e e e

lxxlxxlxxlxxlxxxxxxxxx

#24 D26 O28 D300

=
o
=
=
=
N
=

Different 0
clusters of ™ F
partial sums.

230

7 N-to-2 Mux

B4 2-input BF16 Mult Switch
@ 2-input BF32 Adder Switch
==  Forwarding FF

Cycle 5: Partial sum purple complete

sent to output buffer

FAN is optimized for floating point reductions, commonly used during DNN training.




Forwarding Adder Network (FAN)

D’fferent 0 1 2 3 4 5

clusters of ™ F
partial sums. \ ¥ Xlx Xlx Xlx
09 + +

=
o
=
=
=
N
=
w
=
D
=
(8, ]
=
o
=
N
=
o]
=
O
N
o
N
=
N
N
N
w
N
D
N
(6, ]
N
o
N
N
N
o)
N
O
W
o
w
=

230

7 N-to-2 Mux
2-input BF16 Mult Switch
@ 2-input BF32 Adder Switch

Cycle 5: Partial sum purple complete = Forwarding FF
send to output buffer

Note: The output buffer has FFsto 7 ©
maintain correct timing since different
clusters may complete at different time.

FAN is optimized for floating point reductions, commonly used during DNN training.




Forwarding Adder Network

Our novel FAN topology is both lightweight and flexible.

FAN is optimized for floating point reductions, commonly used during DNN training.
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Forwarding Adder Network

Our novel FAN topology is both lightweight and flexible.

It can replace regular adder trees in other hardware accelerators.

FAN is optimized for floating point reductions, commonly used during DNN training.
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Our novel FAN topology is both lightweight and flexible.
It can replace regular adder trees in other hardware accelerators.

More details such as the routing algorithm and overhead analysis can
be found in the paper.
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SIGMA High Level Diagram
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SIGMA High Level Diagram

Data and Bitmap SRAM Banks
e Contains bitmap compression format of GEMM

matrices.
960 Input Data
GB/s — | = |_Arbiter and FIFO
' > Sparsity | ggp 4
o™ 1024 Filter GB/s
() GB/ Data SRAM Banks 7
=), eeme) 120 SIGMA | 3
. 120 GB/s Engine | c
GB/s ’
Q Bitmap SRAM | oo G'°b*|’|'
Banks Controller — A
2 Mm
Ll Accumulation SRAM
Banks (32 MB)

Note: SIGMA Engine contains multiple
SIGMA units called Flex-DPEs.




SIGMA High Level Diagram

960 Input Data Global Controller
Arbiter and FIFO . . . .
| 615 Sparsity ;z) | A e Logic comparisons on bitmaps to determine
o é%2/4 Db SRAN Banke: Filter | Gp/s what nonzero stationary elements are required
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Methodology

e Hardware components are written in
Verilog

e Post layout area and power numbers are
on a 28nm process

e Analytical model for cycle counts
assumes uniform random sparsity

Example Dimensions

Workload | Application
M N K
128 2048 4096
Machine 320 3072 4096
Ll Translation 1632 36548 1024
2048 4096 32
DeepBench General 1024 16 500000
Workload 35 8457 2560
Transformer Language 51999 1024 o4
Understanding | 84 1024 4096
NCF Collaborative 2048 1 128
Filtering 256 256 2048

GEMMs used for evaluation.
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x L
@ 10 — SIGMA offers 8x speedup for this
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S © / O(logN) reduction is more effective
8 4 since K = 500000.
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SIGMA vs TPU - Dense GEMMs

s TPU_256x64 TPU_512x32

SIGMA_BW-128 SIGMA_BW-256
00 s SIGMA_BW-512 ——TPU Overall Efficiency

SIGMA performs on average 1.8X better than systolic
array architectures for irregular GEMMSs.

Workload Dimensions (M, N, K)




SIGMA vs TPU - Sparse GEMMs

e SIGMA_BW-128 MK80_KN10 e SIGMA_BW-128 MK10_KNS8O
mam SIGMA_BW-128 MK80_ KN30 SIGMA_BW-128 MK30_KN80

- s SIGMA_BW-128 MK80_KN50 mmm SIGMA_BW-128_MK50_KNSO
% 100 - (QOverall SIGMA Efficiency - Qverall TPU Efficiency 0.7
g 0.6

I 0.5
2 . 1 0a &
~ 10 -
= : . 03 =2
g ' I &=
o I I l 0.2 W
o 4
g _ ; \ 0.1
2 1 : i : : ' — . 0
Q. © © D 2V P & ] © ® Q

Vv o >
R T A B T P
F & W ® L 9 S ¥ ¥ F S
B P N o S & 4
% o T F o o A
v B Vo8 v oy '”

Workload Dimensions (M, N, K)




SIGMA vs TPU - Sparse GEMMs
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SIGMA vs TPU - Sparse GEMMs

SIGMA_BW-128 MK80 KN10 SIGMA_BW-128 MK10 KN80
SIGMA_BW-128 MK80_KN30 SIGMA_BW-128 MK30_KNS80
s SIGMA BW-128 MK80 KN50 mmm SIGMA BW-128 MKS0 KN8O

SIGMA performs on average 9.7X better than systolic
array architectures for sparse and irregular GEMMs.

Workload Dimensions (M, N, K)




SIGMA vs Sparse Accelerators
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SIGMA Qualitative Analysis

Accelerator Limitation SIGMA Solution
TPU [23] Low utilization from no sparsity support and rigid structure glé)l(\:lt;ldegmterconnects to Atk non:zero. (A ANkt treeguiae
EIE [19] Not scalable due to all-to-all PE broadcasts and Partition compute to Flex-DPEs (small all-to -all networks)

a BW link of one element per cycle

connected by a high BW bus

SCNN [33]

Requires partitioning to use Cartesian product on GEMMs.
High inter-PE communications for accumulating outputs.

Multicast GEMM partial sums close to each other
so they can be reduced spatially

OuterSPACE [32]

Partial sum accum. within linked list
has at best O(NlogN) complexity

Spatial accum. with our reduction network
has O(logaN) complexity

Eyeriss v2 [11]

Limited weight dist. flexibility and linear reduction

More flexibility with shared all-to-all network and
spatial accumulation with novel reduction network FAN.

Packed Systolic [26]

Need algorithmic adjustments and still
contains stationary zeros

Bitmap to ensure no zero-valued elements are stationary
and no algorithmic changes required.

Cambricon-X [47]

Basic adder tree limits multiplier utilization,
allows one common partial sum at a time

FAN enables full multiplier utilization by allowing different
partial sums to be accumulated separately.

Table III: Qualitative Comparision of SIGMA against state-of-the-art accelerators.




SIGMA Qualitative Analysis

Accelerator Limitation SIGMA Solution
et , : s Flexible interconnects to map non-zero data and irregular
TPU [23] Low utilization from no sparsity support and rigid structure GEMM-< P B
| o N

SIGMA performs on average 3X better than

state-of-the-art sparse accelerators. In depth analysis can
be found in the paper.

Basic adder tree limits multiplier utilization, FAN enables full multiplier utilization by allowing different
allows one common partial sum at a time partial sums to be accumulated separately.

Cambricon-X [47]

Table III: Qualitative Comparision of SIGMA against state-of-the-art accelerators.




Systolic Array vs SIGMA Comparison

TPU-like Systolic Engine SIGMA Engine A
Technology Commercial 28nm Commercial 28nm
Clock freq. 500 MHz 500 MHz ~J
MACs 16384 (128 x 128 PEs) 16384 (128, 128PEs Flex-DPEs) 5
Data Type BFP16 Mult, FP32 Add BFP16 Mult, FP32 Add e
Peak TFLOPS 16 16 3
Sparsity Support? | No Yes
*Effective TFLOPS | 1.88 10.8
Power (W) 12.25W 2233 W
Eff. TFLOPS/ W 0.15 Eff. TFLOPS/W 0.48 Eff. TFLOPS/W 713 um
Area (mm2) Total: 47.27 mm?2 Total: 65.10 mm2
Adder: 145% Adder: 10.5% . .
Multipliers: 59.0 % Multipliers: 42.5% ** EffeCtlve TFLOPs is calculated by
Local Memory: 1.5 % Local Memory: 1.0 % multiplying the base dense TFLOPs with the
Layout Overhead: 25.0% Dist. NoC Overhead: | 14.5% . .
ped. NoC Oveitiead: | 3.0 % average efficiency computed across
FAN Controller: 1.5% GEMMis.
Layout Overhead: 27.0%




Systolic Array vs SIGMA Comparison

TPU-like Systolic Engine SIGMA Engine
Technology Commercial 28nm Commercial 28nm
Clock freq. 500 MHz 500 MHz
MACs 16384 (128 x 128 PEs) 16384 (128, 128PEs Flex-DPEs)
Data Type BFP16 Mult, FP32 Add BFP16 Mult, FP32 Add
Peak TFLOPS 16 16
Sparsity Support? | No Yes
*Effective TFLOPS | 1.88 10.8
Power (W) 12.25W 22.33 W

Eff. TFLOPS/ W

0.15 Eff. TFLOPS/W

0.48 Eff. TFLOPS/W

Area (mm2)

Total: 47.27 mm?2

Total: 65.10 mm2

Adder: 145%
Multipliers: 59.0%
Local Memory: 1.5%

Layout Overhead: 25.0%

Adder: 10.5 %
Multipliers: 42.5%
Local Memory: 1.0%

Dist. NoC Overhead: | 14.5%
Red. NoC Overhead: | 3.0%
FAN Controller: 1.5%
Layout Overhead: 27.0%

713 um

** Effective TFLOPs is calculated by
multiplying the base dense TFLOPs with the
average efficiency computed across
GEMMs.

SIGMA consumes 38% more area and 82% more power than Systolic Array.




Systolic Array vs SIGMA Comparison

TPU-like Systolic Engine SIGMA Engine
Technology Commercial 28nm Commercial 28nm
Clock freq. 500 MHz 500 MHz
MACs 16384 (128 x 128 PEs) 16384 (128, 128PEs Flex-DPEs)
Data Type BFP16 Mult, FP32 Add BFP16 Mult, FP32 Add
Peak TFLOPS 16 16
Sparsity Support? | No Yes
*Effective TFLOPS | 1.88 10.8
Power (W) 12.25W 22.33 W
Eff. TFLOPS/ W 0.15 Eff. TFLOPS/W 0.48 Eff. TFLOPS/W 713 um
Area (mm2) Total: 47.27 mm?2 Total: 65.10 mm2
Adder: 14.5 % Adder: 10.5 % . .
Multipliers: 59.0 % Multipliers: 42.5 % o E-f-feCtlve TFLOPs is calculated by
Local Memory: 1.5 % Local Memory: 1.0 % multiplying the base dense TFLOPs with the
Layout Overhead: 25.0% Dist. NoC Overhead: | 14.5% . .
red. Nac Overbisad: | 3.0% average efficiency computed across
FAN Controller: 1.5% GEMMis.
Layout Overhead: 27.0%

SIGMA achieves 5.7x higher effective TFLOPS for a 3.2x higher effective TFLOPS/W.




Systolic Array vs SIGMA Comparison

TPU-like Systolic Engine SIGMA Engine

Technology Commercial 28nm Commercial 28nm mT

SIGMA consumes more resources but achieves higher
effective TFLOPS/W.

P - .U 70 viuitupie 4/.0 70 T &
Local Memory: 1.5 % Local Memo ry: 1.0% multiplying the base dense TFLOPs with the
Layout Overhead: 25.0% Dist. NoC Overhead: | 14.5% g

Re d NoC Overhead: | 3.0 % average efficiency computed across

FAN Controller: 1.5% GEMMis.

Layout Overhead: 27.0%

SIGMA achieves 5.7x higher effective TFLOPS for a 3.2x higher effective TFLOPS/W.
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Conclusion

e GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.

e High utilization from systolic arrays is challenging because of their rigid structure.

e SIGMA enables high compute utilization on sparse irregular GEMM:s.

e SIGMA performs 5.7x better than systolic arrays and 3x better than other state-of-the-art sparse
accelerators at the cost of extra hardware, specifically for the O(1) distribution and the novel FAN
reduction interconnects.

e SIGMA achieves 3.2x higher Effective TFLOPS/W than Systolic Arrays.

e Future work: Optimizations such as power gating and software stack design.
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