

SIGMA: A <u>Sparse and Irregular GEMM</u> <u>Accelerator with Flexible Interconnects</u> for DNN Training

<u>ERIC QIN</u>^{*}, ANANDA SAMAJDAR^{*}, HYOUKJUN KWON^{*}, VINEET NADELLA^{*}, SUDARSHAN SRINIVASAN[#], DIPANKAR DAS[#], BHARAT KAUL[#], TUSHAR KRISHNA^{*}

> * GEORGIA TECH # INTEL

Outline

- Motivation
 - GEMMs in Deep Learning
 - Utilization on TPU (Systolic Array)
- Accelerator Requirements
- SIGMA
 - Interconnects Implementations
 - Full System Design
- Evaluation
- Conclusion

Outline

• Motivation

- GEMMs in Deep Learning
- Utilization on TPU (Systolic Array)
- Accelerator Requirements
- SIGMA
 - Interconnects Implementations
 - Full System Design
- Evaluation
- Conclusion

Deep Learning Applications

Speech Recognition

Language Understanding

Recommender Systems

Deep Learning Applications

What is the key computation for these Deep Learning applications?

Runtime breakdown on V100 GPU

Runtime breakdown on V100 GPU

Matrix multiplications (GEMMs) consume around **70%** of the total runtime when training modern deep learning workloads.

Figure derived from HyPar: Towards Hybrid Parallelism for Deep Learning Accelerator Array, HPCA 2019, Song et al.

GEMM is a key compute primitive to accelerate in hardware to speed up training.

Figure derived from HyPar: Towards Hybrid Parallelism for Deep Learning Accelerator Array, HPCA 2019, Song et al.

SIMT Architectures

Nvidia GTX GPUs

SIMT Architectures

Nvidia GTX GPUs

SIMD Architectures

Tesla FSDC

SIMT Architectures

Nvidia GTX GPUs

SIMD Architectures

Tesla FSDC

Systolic Architectures

Xilinx xDNN

Nvidia Tensor Cores

Google TPU

SIMT Architectures

Nvidia GTX GPUs

SIMD Architectures

Tesla FSDC

Systolic Architectures

Xilinx xDNN

12X THROUGHPUT

Nvidia Tensor Cores

Google TPU

Recently, systolic array based architectures are popular for accelerating GEMMs.

Target comparison: Google TPU

TPU v2 - 4 chips, 2 cores per chip

TPU v3 - 4 chips, 2 cores per chip

Our target comparison is with the Google TPU, which uses **128 x 128** systolic arrays.

Outline

• Motivation

- GEMMs in Deep Learning
- Utilization on TPU (Systolic Array)
- Accelerator Requirements
- SIGMA
 - Interconnects Implementations
 - Full System Design
- Evaluation
- Conclusion

Systolic Array Architectures

Systolic Array Architectures

Workload	Application	Example Dimensions		
		Μ	Ν	K
GNMT	Machine Translation	128	2048	4096
		320	3072	4096
		1632	36548	1024
		2048	4096	32
DeepBench	General	1024	16	500000
	Workload	35	8457	2560
Transformer	Language Understanding	31999	1024	84
		84	1024	4096
NCF	Collaborative Filtering	2048	1	128
		256	256	2048

GEMMs used for evaluation.

Workload	Application	Example Dimensions		
		Μ	Ν	K
GNMT	Machine Translation	128	2048	4096
		320	3072	4096
		1632	36548	1024
		2048	4096	32
DeepBench	General	1024	16	500000
	Workload	35	8457	2560
Transformer	Language Understanding	31999	1024	84
		84	1024	4096
NCF	Collaborative Filtering	2048	1	128
		256	256	2048

GEMMs used for evaluation.

Let's map this GEMM!

M = 256 TPU (Systolic Array)

The streaming elements get multiplied with the stationary elements. The partial sums

Systolic Arrays are popular because they enable efficient data reuse and are very simple to implement.

Workload	Application	Example Dimensions		
		Μ	Ν	K
GNMT	Machine Translation	128	2048	4096
		320	3072	4096
		1632	36548	1024
		2048	4096	32
DeepBench	General	1024	16	500000
	Workload	35	8457	2560
Transformer	Language Understanding	31999	1024	84
		84	1024	4096
NCF	Collaborative Filtering	2048	1	128
		256	256	2048

GEMMs used for evaluation.

Let's map another GEMM!

M = 2048 TPU (Systolic Array)	K = 32	75% of the PEs are not utilized for		
	$ \longrightarrow $	this GEMM		

The rigid structure of Systolic Arrays cause PE underutilization. How can we enable the remaining PEs?

duplicate streaming data

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic array.

Reduce partial sum down each column.

Sparsity in DNN Models

Sparsity in DNN Models

Transformer Sparsity - Impact on BLEU

(The State of Sparsity in Deep Neural Networks, Gale et al., arXiv)

Sparsity in DNN Models

Weight sparsity ranges from **40%** to **90%**. Activation sparsity is approximately **30%** to **70%** from ReLU, dropout, etc.

Workload	Application	Example Dimensions		
		Μ	Ν	K
		128	2048	4096
GNMT	Machine Translation	320	3072	4096
		1632	36548	1024
		2048	4096	32
DeepBench	General	1024	16	500000
	Workload	35	8457	2560
Transformer Langua Unders	Language	31999	1024	84
	Understanding	84	1024	4096
NCF	Collaborative Filtering	2048	1	128
		256	256	2048

GEMMs used for evaluation.

Usually these GEMMs are sparse!

Multiplication with an operand that is zero is considered underutilized.

na dei di sette e contra se secondada de sette se se i se secondada		
iviuitipiication with an operana that is zero is consid	erea unaerutilizea.	
M = 2048 TPU (Systolic Array)	K = 32 ◀━►	87.5% of the PEs are not utilized for this GEMM

Weight stationary systolic arrays are underutilized for sparse GEMMs because they have to map zeros. How can we map only nonzeros stationary?

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic array.

Observation 2: Sparse weights cause underutilization of the PEs and require variable sized dot product accumulation.

Reduce partial sum down each column.

N = 256

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic array.

Observation 2: Sparse weights cause underutilization of the PEs and require variable sized dot product accumulation.

Observation 3: Large systolic arrays have significant load and reduction latency.

Reduce partial sum down each column.

N = 256

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic array.

Observation 2: Sparse weights cause underutilization of the PEs and require variable sized dot product accumulation.

Observation 3: Large systolic arrays have significant load and reduction latency.

Takeaway: Systolic Arrays are underutilized on emerging GEMM workloads that are both sparse and irregular.

Reduce partial sum down each column.

Outline

- Motivation
 - GEMMs in Deep Learning
 - Utilization on TPU (Systolic Array)
- <u>Accelerator Requirements</u>
- SIGMA
 - Interconnects Implementations
 - Full System Design
- Evaluation
- Conclusion

Requirement	Systolic Array Limitation	SIGMA Desired Traits
Flexibility	 rigid aspect ratio 	 ability to mimic any 2D aspect ratio

Requirement	Systolic Array Limitation	SIGMA Desired Traits
Flexibility	 rigid aspect ratio 	 ability to mimic any 2D aspect ratio
Sparsity Support	 data forwarding every cycle requires systolic array to map zeros 	 sparsity support by mapping only nonzeros stationary ability to create simultaneous variable sized dot product

Requirement	Systolic Array Limitation	SIGMA Desired Traits
Flexibility	 rigid aspect ratio 	 ability to mimic any 2D aspect ratio
Sparsity Support	 data forwarding every cycle requires systolic array to map zeros 	 sparsity support by mapping only nonzeros stationary ability to create simultaneous variable sized dot product
Scalability	 O(sqrtN) distribution O(sqrtN) reduction 	 O(1) distribution O(logN) reduction

Requirement Systolic Array Limitation SIGMA Desired Traits

With flexible and scalable interconnects between all PEs, SIGMA can solve the three requirements.

Scalability	 O(sqrtN) distribution O(sqrtN) reduction 	 O(1) distribution O(logN) reduction

4 x 4 Systolic Array

- rigid aspect ratio
- fixed size dot product
- O(sqrtN) distribution and reduction

16 PE SIGMA

4 x 4 Systolic Array

- rigid aspect ratio
- fixed size dot product
- O(sqrtN) distribution and reduction

16 PE SIGMA

** Microarchitecture details on the networks will be discussed later

4 x 4 Systolic Array

- rigid aspect ratio
- fixed size dot product
- O(sqrtN) distribution and reduction

- Distribution
 network allows
 SIGMA to mimic
 any aspect ratio to
 address irregular
 GEMMs
- Ability to send any streaming element to any PE
- O(1) distribution

16 PE SIGMA

** Microarchitecture details on the networks will be discussed later

4 x 4 Systolic Array

- rigid aspect ratio
- fixed size dot product
- O(sqrtN) distribution and reduction

- Distribution network allows
 SIGMA to mimic any aspect ratio to address irregular
 GEMMs
- Ability to send any streaming element to any PE
- O(1) distribution

16 PE SIGMA

** Microarchitecture details on the networks will be discussed later

4 x 4 Systolic Array

- rigid aspect ratio
- fixed size dot product
- O(sqrtN) distribution and reduction

- Distribution
 network allows
 SIGMA to mimic
 any aspect ratio to
 address irregular
 GEMMs
- Ability to send any streaming element to any PE
- O(1) distribution

** Microarchitecture

details on the networks

will be discussed later

- Reduction network allows SIGMA to reduce variable sized dot products
- Addresses sparsity and irregularity
- O(logN) reduction

Set up the stationary values.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Set up the stationary values.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Next cycle: Multicast first row of MK to the corresponding stationary elements.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Next cycle: Multicast second row of MK to the corresponding stationary elements.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Next cycle: Multicast third row of MK to the corresponding stationary elements.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

4 x 4 Systolic Array

16 PE SIGMA

Next cycle: Multicast fourth row of MK to the corresponding stationary elements.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

4 x 4 Systolic Array

16 PE SIGMA

After accumulation, SIGMA is done. However, the systolic array has to map the other side of the stationary matrix and stream in the MK matrix again (referred to as folding). ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

SIGMA reduces the number of folds, which then reduces the number of memory references on the streaming matrix.

stationary)

** Assuming MK

Final cycle count.

4 x 4 Systolic Array

SIGMA total runtime: **13** cycles

Final cycle count.

** Assuming MK matrix is streaming and KN matrix is stationarv. (aka

SIGMA maximizes PE utilization with its flexible interconnects for irregular GEMMs.

Set up the stationary values.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Next cycle: Multicast first row of MK to the corresponding stationary elements.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Next cycle: Multicast second row of MK to the corresponding stationary elements.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Next cycle: Multicast third row of MK to the corresponding stationary elements.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

4 x 4 Systolic Array

16 PE SIGMA

Next cycle: Multicast fourth row of MK to the corresponding stationary elements.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

4 x 4 Systolic Array

16 PE SIGMA

After accumulation, SIGMA is done. However, the systolic array has to map the other part of the stationary matrix and stream in the MK matrix again (referred to as folding).

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

4 x 4 Systolic Array

103

Again, the systolic array has to map another part of the stationary matrix and stream MK again. ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

4 x 4 Systolic Array

104

Final cycle count.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

SIGMA total runtime: **13** cycles

105

** Assuming MK matrix is streaming and KN matrix is stationarv. (aka

SIGMA maps only nonzeros stationary; therefore, reduces the number of folds needed.

Outline

- Motivation
 - GEMMs in Deep Learning
 - Utilization on TPU (Systolic Array)
- Accelerator Requirements
- <u>SIGMA</u>
 - Interconnects Implementations
 - Full System Design
- Evaluation
- Conclusion

O(1) Distribution Topology

Unicast

(Loading Stationary Matrix)

Multicast

(Sending Streaming Matrix)

O(1) Distribution Topology

Unicast

(Loading Stationary Matrix)

Multicast

(Sending Streaming Matrix)

O(1) Distribution Topology

Unicast

(Loading Stationary Matrix)

Multicast

(Sending Streaming Matrix)

O(1) Distribution Topology

Unicast

Multicast

SIGMA's distribution can be either a Crossbar or Benes network. We chose Benes because the number of switches scale by O(N logN).

O(logN) Reduction (Limitation of Adder Tree)

O(logN) Reduction (Limitation of Adder Tree)

Our novel FAN topology is both lightweight and flexible.

Our novel FAN topology is both lightweight and flexible.

It can replace regular adder trees in other hardware accelerators.

Our novel FAN topology is both lightweight and flexible.

It can replace regular adder trees in other hardware accelerators.

More details such as the routing algorithm and overhead analysis can be found in the paper.

Outline

- Motivation
 - GEMMs in Deep Learning
 - Utilization on TPU
- Accelerator Requirements
- <u>SIGMA</u>
 - Interconnects Implementations
 - Full System Design
- Evaluation
- Conclusion

Note: SIGMA Engine contains multiple SIGMA units called Flex-DPEs.

Data and Bitmap SRAM Banks

• Contains bitmap compression format of GEMM matrices.

Note: SIGMA Engine contains multiple SIGMA units called Flex-DPEs.

Data and Bitmap SRAM Banks

• Contains bitmap compression format of GEMM matrices.

Global Controller

 Logic comparisons on bitmaps to determine what nonzero stationary elements are required

Note: SIGMA Engine contains multiple SIGMA units called Flex-DPEs.

Note: SIGMA Engine contains multiple SIGMA units called Flex-DPEs.

Data and Bitmap SRAM Banks

• Contains bitmap compression format of GEMM matrices.

Global Controller

 Logic comparisons on bitmaps to determine what nonzero stationary elements are required

Sparsity Filter && Input Data Arbiter

• Reorganizes data for loading stationary elements and sending streaming elements

Note: SIGMA Engine contains multiple SIGMA units called Flex-DPEs.

Data and Bitmap SRAM Banks

• Contains bitmap compression format of GEMM matrices.

Global Controller

 Logic comparisons on bitmaps to determine what nonzero stationary elements are required

Sparsity Filter && Input Data Arbiter

• Reorganizes data for loading stationary elements and sending streaming elements

Accumulation SRAM

• Buffer for partial sum accumulations

Note: SIGMA Engine contains multiple SIGMA units called Flex-DPEs.

Data and Bitmap SRAM Banks

• Contains bitmap compression format of GEMM matrices.

Global Controller

• Logic comparisons on bitmaps to determine what nonzero stationary elements are required

Sparsity Filter && Input Data Arbiter

• Reorganizes data for loading stationary elements and sending streaming elements

Accumulation SRAM

• Buffer for partial sum accumulations

<u>SIGMA Engine</u>

• Compute engine

Outline

- Motivation
 - GEMMs in Deep Learning
 - Utilization on TPU
- Accelerator Requirements
- SIGMA
 - Interconnects Implementations
 - Full System Design
- **Evaluation**
- Conclusion

Methodology

- Hardware components are written in Verilog
- Post layout area and power numbers are on a 28nm process
- Analytical model for cycle counts assumes uniform random sparsity

Workload	Application	Example Dimensions		
		Μ	Ν	K
GNMT	Machine Translation	128	2048	4096
		320	3072	4096
		1632	36548	1024
		2048	4096	32
DeepBench	General	1024	16	500000
	Workload	35	8457	2560
Transformer	Language Understanding	31999	1024	84
		84	1024	4096
NCF	Collaborative Filtering	2048	1	128
		256	256	2048

GEMMs used for evaluation.

SIGMA performs on average **1.8x** better than systolic array architectures for irregular GEMMs.

SIGMA vs TPU - Sparse GEMMs

SIGMA vs TPU - Sparse GEMMs

SIGMA vs TPU - Sparse GEMMs

SIGMA performs on average **5.7x** better than systolic array architectures for sparse and irregular GEMMs.

SIGMA vs Sparse Accelerators

SIGMA Qualitative Analysis

Accelerator	Limitation	SIGMA Solution
TPU [23]	Low utilization from no sparsity support and rigid structure	Flexible interconnects to map non-zero data and irregular GEMMs.
EIE [19]	Not scalable due to all-to-all PE broadcasts and a BW link of one element per cycle	Partition compute to Flex-DPEs (small all-to -all networks) connected by a high BW bus
SCNN [33]	Requires partitioning to use Cartesian product on GEMMs. High inter-PE communications for accumulating outputs.	Multicast GEMM partial sums close to each other so they can be reduced spatially
OuterSPACE [32]	Partial sum accum. within linked list has at best O(<i>NlogN</i>) complexity	Spatial accum. with our reduction network has $O(log_2N)$ complexity
Eyeriss v2 [11]	Limited weight dist. flexibility and linear reduction	More flexibility with shared all-to-all network and spatial accumulation with novel reduction network FAN.
Packed Systolic [26]	Need algorithmic adjustments and still contains stationary zeros	Bitmap to ensure no zero-valued elements are stationary and no algorithmic changes required.
Cambricon-X [47]	Basic adder tree limits multiplier utilization, allows one common partial sum at a time	FAN enables full multiplier utilization by allowing different partial sums to be accumulated separately.

Table III: Qualitative Comparision of SIGMA against state-of-the-art accelerators.
SIGMA Qualitative Analysis

Accelerator	Limitation	SIGMA Solution
TPU [23]	Low utilization from no sparsity support and rigid structure	Flexible interconnects to map non-zero data and irregular GEMMs.

SIGMA performs on average **3x** better than state-of-the-art sparse accelerators. In depth analysis can be found in the paper.

Cambricon-X [47]	Basic adder tree limits multiplier utilization,	FAN enables full multiplier utilization by allowing different
	allows one common partial sum at a time	partial sums to be accumulated separately.

Table III: Qualitative Comparision of SIGMA against state-of-the-art accelerators.

	TPU-like Syste	olic Engine	SIGMA	Engine
Technology	Commercial 28nr	n	Commercial 28nm	
Clock freq.	500 MHz		500 MHz	
MACs	16384 (128 x 128	PEs)	16384 (128, 128PEs Flex-DPEs)	
Data Type	BFP16 Mult, FP32	2 Add	BFP16 Mult, FP32 Add	
Peak TFLOPS	16		16	
Sparsity Support?	No		Yes	
*Effective TFLOPS	1.88		10.8	
Power (W)	12.25 W		22.33 W	
Eff. TFLOPS/ W	0.15 Eff. TFLOPS/W		0.48 Eff. TFLOPS/V	V
Area (mm2)	Total: 47.27 mm2		Total: 65.10 mm2	
	Adder:	14.5 %	Adder:	10.5 %
	Multipliers:	59.0 %	Multipliers:	42.5 %
	Local Memory:	1.5 %	Local Memory:	1.0 %
	Layout Overhead:	25.0 %	Dist. NoC Overhead:	14.5 %
			Red. NoC Overhead:	3.0 %
			FAN Controller:	1.5 %
			Layout Overhead:	27.0 %

** Effective TFLOPs is calculated by multiplying the base dense TFLOPs with the average efficiency computed across GEMMs.

	TPU-like Syste	olic Engine	SIGMA	Engine
Technology	Commercial 28nr	n	Commercial 28nm	
Clock freq.	500 MHz		500 MHz	
MACs	16384 (128 x 128	PEs)	16384 (128, 128PEs Flex-DPEs)	
Data Type	BFP16 Mult, FP32	2 Add	BFP16 Mult, FP32 Add	
Peak TFLOPS	16		16	
Sparsity Support?	No		Yes	
*Effective TFLOPS	1.88		10.8	
Power (W)	12.25 W		22.33 W	
Eff. TFLOPS/ W	0.15 Eff. TFLOPS/W		0.48 Eff. TFLOPS/V	V
Area (mm2)	Total: 47.27 mm2		Total: 65.10 mm2	
	Adder:	14.5 %	Adder:	10.5 %
	Multipliers:	59.0 %	Multipliers:	42.5 %
	Local Memory:	1.5 %	Local Memory:	1.0 %
	Layout Overhead:	25.0 %	Dist. NoC Overhead:	14.5 %
			Red. NoC Overhead:	3.0 %
			FAN Controller:	1.5 %
			Layout Overhead:	27.0 %

** Effective TFLOPs is calculated by multiplying the base dense TFLOPs with the average efficiency computed across GEMMs.

SIGMA consumes 38% more area and 82% more power than Systolic Array.

	TPU-like Syste	olic Engine	SIGMA	Engine
Technology	Commercial 28nr	n	Commercial 28nm	
Clock freq.	500 MHz		500 MHz	
MACs	16384 (128 x 128	PEs)	16384 (128, 128PEs Flex-DPEs)	
Data Type	BFP16 Mult, FP32	2 Add	BFP16 Mult, FP32	Add
Peak TFLOPS	16		16	
Sparsity Support?	No		Yes	
*Effective TFLOPS	1.88		10.8	
Power (W)	12.25 W		22.33 W	
Eff. TFLOPS/ W	0.15 Eff. TFLOPS/W		0.48 Eff. TFLOPS/V	V
Area (mm2)	Total: 47.27 mm2		Total: 65.10 mm2	
	Adder:	14.5 %	Adder:	10.5 %
	Multipliers:	59.0 %	Multipliers:	42.5 %
	Local Memory:	1.5 %	Local Memory:	1.0 %
	Layout Overhead:	25.0 %	Dist. NoC Overhead:	14.5 %
			Red. NoC Overhead:	3.0 %
			FAN Controller:	1.5 %
			Layout Overhead:	27.0 %

** Effective TFLOPs is calculated by multiplying the base dense TFLOPs with the average efficiency computed across GEMMs.

SIGMA achieves 5.7x higher effective TFLOPS for a 3.2x higher effective TFLOPS/W.

	TPU-like Systolic Engine	SIGMA Engine
Technology	Commercial 28nm	Commercial 28nm
	FAALAN	FARTHE

SIGMA consumes more resources but achieves higher effective TFLOPS/W.

	Local Memory: Layout Overhead:	1.5 % 25.0 %	Local Memory: Dist. NoC Overhead: Red. NoC Overhead: FAN Controller: Layout Overhead:	42.5 % 1.0 % 14.5 % 3.0 % 1.5 % 27.0 %	multiplying the base dense TFLOPs with the average efficiency computed across GEMMs.
--	-----------------------------------	-----------------	---	---	--

SIGMA achieves 5.7x higher effective TFLOPS for a 3.2x higher effective TFLOPS/W.

Outline

- Motivation
 - GEMMs in Deep Learning
 - Utilization on TPU
- Accelerator Requirements
- SIGMA
 - Interconnects Implementations
 - Full System Design
- Evaluation
- <u>Conclusion</u>

• GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.

- GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.
- High utilization from systolic arrays is challenging because of their rigid structure.

- GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.
- High utilization from systolic arrays is challenging because of their rigid structure.
- SIGMA enables high compute utilization on sparse irregular GEMMs.

- GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.
- High utilization from systolic arrays is challenging because of their rigid structure.
- SIGMA enables high compute utilization on sparse irregular GEMMs.
- SIGMA performs 5.7x better than systolic arrays and 3x better than other state-of-the-art sparse accelerators at the cost of extra hardware, specifically for the O(1) distribution and the novel FAN reduction interconnects.

- GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.
- High utilization from systolic arrays is challenging because of their rigid structure.
- SIGMA enables high compute utilization on sparse irregular GEMMs.
- SIGMA performs 5.7x better than systolic arrays and 3x better than other state-of-the-art sparse accelerators at the cost of extra hardware, specifically for the O(1) distribution and the novel FAN reduction interconnects.
- SIGMA achieves 3.2x higher Effective TFLOPS/W than Systolic Arrays.

- GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.
- High utilization from systolic arrays is challenging because of their rigid structure.
- SIGMA enables high compute utilization on sparse irregular GEMMs.
- SIGMA performs 5.7x better than systolic arrays and 3x better than other state-of-the-art sparse accelerators at the cost of extra hardware, specifically for the O(1) distribution and the novel FAN reduction interconnects.
- SIGMA achieves 3.2x higher Effective TFLOPS/W than Systolic Arrays.
- Future work: Optimizations such as power gating and software stack design.

Material Backup

Compressed bitmap equivalent Н B Ε E G С D 0 Α **Stationary Nonzero data** 1 1 0 0 b d f а С g e **Stationary Bitmap Streaming Nonzero data** 0 **Dim. Registers** 0 0 **M-dim** 3 0 0 N-dim 4 0 0 0 0 K-dim 4 **Streaming Bitmap**

Example GEMM

Μ

i)

Walkthrough Section

Get bitmap from memory

- ii) Row wise OR on streaming matrix
- iii) Element wise AND on stationary matrix
- iv) Generate stationary' bitmap
- vi) Unicast stationary values
- vii) Get source destination pairs
- viii) Multicast streaming values and reduce

Example GEMM

i)	Row wise OR on streaming matr	ix
)	Get bitmap from memory	

- iii) Element wise AND on stationary matrix
- iv) Generate stationary' bitmap
- vi) Unicast stationary values
- vii) Get source destination pairs
- viii) Multicast streaming values and reduce

Example GEMM

- iii) Element wise AND on stationary matrix
- iv) Generate stationary' bitmap
- vi) Unicast stationary values
- vii) Get source destination pairs
- viii) Multicast streaming values and reduce

Example GEMM

- i) Get bitmap from memory
- ii) Row wise OR on streaming matrix
- iii) Element wise AND on stationary matrix
- iv) Generate stationary' bitmap
- vi) Unicast stationary values
- vii) Get source destination pairs
- viii) Multicast streaming values and reduce

Example GEMM

i)

- Get bitmap from memory
- ii) Row wise OR on streaming matrix
- iii) Element wise AND on stationary matrix
- iv) Generate stationary' bitmap
- vi) Unicast stationary values
- vii) Get source destination pairs
- viii) Multicast streaming values and reduce

1

Ω

0

i)

Example GEMM

Walkthrough Section

- Get bitmap from memory
- ii) **Row wise OR on streaming matrix**
- iii) **Element wise AND on stationary matrix**

Generate stationary' bitmap iv)

- **Unicast stationary values** vi)
- vii) Get source destination pairs
- viii) Multicast streaming values and reduce

Example GEMM

i)

Walkthrough Section

- Get bitmap from memory
- ii) Row wise OR on streaming matrix
- iii) Element wise AND on stationary matrix

iv) Generate stationary' bitmap

- vi) Unicast stationary values
- vii) Get source destination pairs
- viii) Multicast streaming values and reduce

Example GEMM

i)

Walkthrough Section

- Get bitmap from memory
- ii) Row wise OR on streaming matrix
- iii) Element wise AND on stationary matrix

iv) Generate stationary' bitmap

- vi) Unicast stationary values
- vii) Get source destination pairs
- viii) Multicast streaming values and reduce

Example GEMM

Μ

Example GEMM

Μ

i)

ii)

iii)

- **Generate stationary' bitmap** iv)
- **Unicast stationary values** vi)
- **Get source destination pairs** vii)
- viii) Multicast streaming values and reduce

Output Bitmap

Example GEMM

Walkthrough Section

- i) Get bitmap from memory
- ii) Row wise OR on streaming matrix
- iii) Element wise AND on stationary matrix
- iv) Generate stationary' bitmap
- vi) Unicast stationary values
- vii) Get source destination pairs

viii) Multicast streaming values and reduce

Output Bitmap

Example GEMM

Walkthrough Section

- i) Get bitmap from memory
- ii) Row wise OR on streaming matrix
- iii) Element wise AND on stationary matrix
- iv) Generate stationary' bitmap
- vi) Unicast stationary values
- vii) Get source destination pairs

viii) Multicast streaming values and reduce

169

Example GEMM

Walkthrough Section

- i) Get bitmap from memory
- ii) Row wise OR on streaming matrix
- iii) Element wise AND on stationary matrix
- iv) Generate stationary' bitmap
- vi) Unicast stationary values
- vii) Get source destination pairs

viii) Multicast streaming values and reduce

Cycle 3: multicast 1st column of streaming matrix and reduce

Example GEMM

Μ

ii)

- iii) **Element wise AND on stationary matrix**
- iv) **Generate stationary' bitmap**
- **Unicast stationary values** vi)
- vii) Get source destination pairs
- viii) Multicast streaming values and reduce

Cycle 3: multicast 1st column of streaming matrix and reduce

Example GEMM

Μ

ii)

- iii) **Element wise AND on stationary matrix**
- **Generate stationary' bitmap** iv)
- **Unicast stationary values** vi)
- vii) Get source destination pairs
- viii) Multicast streaming values and reduce

Cycle 4: multicast 2nd column of streaming matrix and reduce

Example GEMM

viii) Multicast streaming values and reduce

Cycle 5: multicast 3rd column of streaming matrix and reduce

Example GEMM

Μ

ii)

iv)

vi)

Generate stationary' bitmap

viii) Multicast streaming values and reduce

Unicast stationary values

vii) Get source - destination pairs

174

Cycle 6: multicast last column of streaming matrix and reduce

Example GEMM

Μ

- ii) iii) **Element wise AND on stationary matrix**
- **Generate stationary' bitmap** iv)
- **Unicast stationary values** vi)
- vii) Get source destination pairs
- viii) Multicast streaming values and reduce

Example GEMM

Μ

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Μ

Example GEMM

Μ

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Example GEMM

Μ

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

