SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible Interconnects for DNN Training

ERIC QIN ${ }^{*}$, ANANDA SAMAJDAR ${ }^{*}$, HYOUKJUN KWON*, VINEET NADELLA*, SUDARSHAN SRINIVASAN\#, DIPANKAR DAS\#, BHARAT KAUL\#, TUSHAR KRISHNA*
*GEORGIA TECH ${ }^{\#}$ INTEL

Outline

- Motivation
- GEMMs in Deep Learning
- Utilization on TPU (Systolic Array)
- Accelerator Requirements
- SIGMA
- Interconnects Implementations
- Full System Design
- Evaluation
- Conclusion

Outline

- Motivation
- GEMMs in Deep Learning
- Utilization on TPU (Systolic Array)
- Accelerator Requirements
- SIGMA
- Interconnects Implementations
- Full System Design
- Evaluation
- Conclusion

Deep Learning Applications

Speech Recognition

Language Understanding

Recommender Systems

Deep Learning Applications

What is the key computation for these Deep Learning applications?

Runtime breakdown on V100 GPU

Runtime breakdown on V100 GPU

Matrix multiplications (GEMMs) consume around 70\% of the total runtime when training modern deep learning workloads.

GEMMs in Deep Learning

Forward Pass

(Inference and Training)

GEMM MNK

Dimension Representation

M dim: batch size

N dim: number of channels in the next layer

K dim: $\left[H^{*}\right.$ W * C$]$

GEMMs in Deep Learning

GEMMs in Deep Learning

Forward Pass (Inference and Training)

GEMM MNK
Dimension Representation

M dim: batch size

N dim: number of channels in the next layer

K dim: $\left[H^{*}\right.$ W * C]

Gradient Computation (Training)

GEMMs in Deep Learning

GEMM is a key compute primitive to accelerate in hardware to speed up training.

Gradient Computation
(Training)

Δ Weights

Hardware for Accelerating GEMMs

SIMT Architectures

Nvidia GTX GPUs

Hardware for Accelerating GEMMs

Hardware for Accelerating GEMMs

SIMT Architectures

Nvidia GTX GPUs

SIMD Architectures

Systolic Architectures

Xilinx xDNN

Nvidia Tensor Cores

Hardware for Accelerating GEMMs

SIMT Architectures

Nvidia GTX GPUs

SIMD Architectures

Microsoft Brainwave

ARM Trillium

Systolic Architectures

Xilinx xDNN

Nvidia Tensor Cores

Tesla FSDC

Recently, systolic array based architectures are popular for accelerating GEMMs.

Target comparison: Google TPU

Our target comparison is with the Google TPU, which uses 128×128 systolic arrays.

Outline

- Motivation
- GEMMs in Deep Learning
- Utilization on TPU (Systolic Array)
- Accelerator Requirements
- SIGMA
- Interconnects Implementations
- Full System Design
- Evaluation
- Conclusion

Systolic Array Architectures

Systolic Array Architectures

Mapping GEMMs onto TPUs

Workload	Application	Example Dimensions		
		\mathbf{M}	\mathbf{N}	\mathbf{K}
	Machine	Translation	328	2048
		4096		
		1632	3072	4096
	2048	4096	32	
DeepBench	General			
	Workload	1024	16	500000
	35	8457	2560	
Transformer	Language	31999	1024	84
	Understanding	84	1024	4096
NCF	Collaborative	2048	1	128
	Filtering	256	256	2048

GEMMs used for evaluation.

Mapping GEMMs onto TPUs

Workload	Application	Example Dimensions		
		M	N	K
GNMT	Machine Translation	128	2048	4096
		320	3072	4096
		1632	36548	1024
		2048	4096	32
DeepBench	General Workload	1024	16	500000
		35	8457	2560
Transformer	Language Understanding	31999	1024	84
		84	1024	4096
NCF	Collaborative Filtering	2048	1	128
		256	256	2048

GEMMs used for evaluation.
Let's map this GEMM!

Mapping GEMMs onto TPUs

Mapping GEMMs onto TPUs

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs

TPU (Systolic Array)
4■■■■■■■■
ㅁロㅁㅁㅁㅁ

Mapping GEMMs onto TPUs

Mapping GEMMs onto TPUs

M $=256$	TPU (Systolic Array)
$\square \square$	
$\square \square$	1■■■■■■■
$\square \square$	2■■■■■■■
\square	
\square	
	-
\square	-
\square	127

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs

[^0]
Mapping GEMMs onto TPUs

[^1]
Mapping GEMMs onto TPUs

[^2]
Mapping GEMMs onto TPUs

[^3]
Mapping GEMMs onto TPUs

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs

Systolic Arrays are popular because they enable efficient data reuse and are very simple to implement.

Mapping GEMMs onto TPUs - Irregularity

Workload	Application	Example Dimensions		
		\mathbf{M}	\mathbf{N}	\mathbf{K}
	Machine	128	2048	4096
		320	3072	4096
		1632	36548	1024
	2048	4096	32	
DeepBench	General			
	Workload	1024	16	500000
	35	8457	2560	
Transformer	Language	31999	1024	84
	Understanding	84	1024	4096
NCF	Collaborative	2048	1	128
	Filtering	256	256	2048

GEMMs used for evaluation.

Let's map another GEMM!
** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Irregularity

Mapping GEMMs onto TPUs - Irregularity

Mapping GEMMs onto TPUs - Irregularity

75\% of the PEs are not utilized for

this GEMM.

Mapping GEMMs onto TPUs - Irregularity

75\% of the PEs are not utilized for
this GEMM.

$$
N=4096
$$

${ }^{*}$

Mapping GEMMs onto TPUs - Irregularity

75\% of the PEs are not utilized for
this GEMM.

Mapping GEMMs onto TPUs - Irregularity

75\% of the PEs are not utilized for
this GEMM.

$$
N=4096
$$

-

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Irregularity

75\% of the PEs are not utilized for this GEMM.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Irregularity

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Irregularity

The rigid structure of Systolic Arrays cause PE underutilization. How can we enable the remaining PEs?

Mapping GEMMs onto TPUs - Irregularity

Mapping GEMMs onto TPUs - Irregularity

Mapping GEMMs onto TPUs - Irregularity

Mapping GEMMs onto TPUs - Irregularity

duplicate streaming data
** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Irregularity

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Irregularity

Mapping GEMMs onto TPUs - Irregularity

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Irregularity

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Irregularity

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic array.

Sparsity in DNN Models

GNMT Pruning - Temporal Sparsity
(https://www.intel.ai/compressing-gnmt-models)

Sparsity in DNN Models

GNMT Pruning - Temporal Sparsity
(https://www.intel.ai/compressing-gnmt-models)

Transformer Sparsity - Impact on BLEU
(The State of Sparsity in Deep Neural Networks, Gale et al., arXiv)

Sparsity in DNN Models

GNMT Pruning - Temporal Sparsity
(https://www.intel.ai/compressing-gnmt-models)

Transformer Sparsity - Impact on BLEU
(The State of Sparsity in Deep Neural Networks, Gale et al., arXiv)

Weight sparsity ranges from $\mathbf{4 0 \%}$ to 90%. Activation sparsity is approximately 30\% to 70\% from ReLU, dropout, etc.

Mapping GEMMs onto TPUs - Sparsity

Workload	Application	Example Dimensions		
		\mathbf{M}	\mathbf{N}	\mathbf{K}
GNMT	Machine	128	2048	4096
		320	3072	4096
		1632	36548	1024
	2048	4096	32	
DeepBench	General			
	Workload	1024	16	500000
	35	8457	2560	
Transformer	Language	31999	1024	84
	Understanding	84	1024	4096
NCF	Collaborative	2048	1	128
	Filtering	256	256	2048

GEMMs used for evaluation.
Usually these GEMMs are sparse!
** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Sparsity

Mapping GEMMs onto TPUs - Sparsity

Mapping GEMMs onto TPUs - Sparsity

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Sparsity

Multiplication with an operand that is zero is considered underutilized.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Sparsity

Multiplication with an operand that is zero is considered underutilized.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Sparsity

Weight stationary systolic arrays are underutilized for sparse GEMMs because they have to map zeros. How can we map only nonzeros stationary?

Mapping GEMMs onto TPUs - Sparsity

Can we map other nonzero elements where the idle PEs used to be?

Mapping GEMMs onto TPUs - Sparsity

Can we map other nonzero elements where the idle PEs used to be?

Mapping GEMMs onto TPUs - Sparsity

Can we map other nonzero elements where the idle PEs used to be?

Mapping GEMMs onto TPUs - Sparsity

Can we map other nonzero elements where the idle PEs used to be?

Mapping GEMMs onto TPUs - Sparsity

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Sparsity

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Sparsity

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic array.

Observation 2: Sparse weights cause underutilization of the PEs and require variable sized dot product accumulation.

Mapping GEMMs onto TPUs - Scalability

Mapping GEMMs onto TPUs - Scalability

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Scalability

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Scalability

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Scalability

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Scalability

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Mapping GEMMs onto TPUs - Scalability

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic array.

Observation 2: Sparse weights cause underutilization of the PEs and require variable sized dot product accumulation.

Observation 3: Large systolic arrays have significant load and reduction latency.

Mapping GEMMs onto TPUs - Scalability

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic array.

Observation 2: Sparse weights cause underutilization of the PEs and require variable sized dot product accumulation.

Observation 3: Large systolic arrays have significant load and reduction latency.
Takeaway: Systolic Arrays are underutilized on emerging GEMM workloads that are both sparse and irregular.

Outline

- Motivation
- GEMMs in Deep Learning
- Utilization on TPU (Systolic Array)
- Accelerator Requirements
- SIGMA
- Interconnects Implementations
- Full System Design
- Evaluation
- Conclusion

Key Accelerator Requirements

Requirement	Systolic Array Limitation	SIGMA Desired Traits
Flexibility	\bullet rigid aspect ratio	\bullet ability to mimic any 2D aspect ratio

Key Accelerator Requirements

Requirement	Systolic Array Limitation	SIGMA Desired Traits
Flexibility	\bullet rigid aspect ratio	\bullet ability to mimic any 2D aspect ratio
Sparsity Support	• data forwarding every cycle requires systolic array to map zeros	• sparsity support by mapping only nonzeros stationary ability to create simultaneous variable sized dot product

Key Accelerator Requirements

Requirement	Systolic Array Limitation	SIGMA Desired Traits
Flexibility	\bullet rigid aspect ratio	\bullet ability to mimic any 2D aspect ratio
Sparsity Support	• data forwarding every cycle requires systolic array to map zeros	\bulletsparsity support by mapping only nonzeros stationary ability to create simultaneous variable sized dot product Scalability• O(sqrtN) distribution \bullet O(sqrtN) reduction

Key Accelerator Requirements

With flexible and scalable interconnects between all PEs, SIGMA can solve the three requirements.

Scalability

- $\mathrm{O}($ sqrtN) distribution
- O(sqrtN) reduction
- $O(1)$ distribution
- $\mathrm{O}(\log \mathrm{N})$ reduction

Systolic vs SIGMA High Level Interconnects

4×4 Systolic Array

\square

\square

16 PE SIGMA

- rigid aspect ratio
- fixed size dot product
- O(sqrtN) distribution and reduction

Systolic vs SIGMA High Level Interconnects

4×4 Systolic Array

- rigid aspect ratio
- fixed size dot product
- O(sqrtN) distribution and reduction

Distribution Network

16 PE SIGMA
** Microarchitecture
details on the networks
will be discussed later

Systolic vs SIGMA High Level Interconnects

4×4 Systolic Array

- rigid aspect ratio
- fixed size dot product
- O(sqrtN) distribution and reduction
- Distribution network allows SIGMA to mimic any aspect ratio to address irregular GEMMs
- Ability to send any streaming element to any PE
- $O(1)$ distribution

Systolic vs SIGMA High Level Interconnects

4×4 Systolic Array

- rigid aspect ratio
- fixed size dot product
- O(sqrtN) distribution and reduction
- Distribution network allows SIGMA to mimic any aspect ratio to address irregular GEMMs
- Ability to send any streaming element to any PE
- $O(1)$ distribution

Distribution Network

16 PE SIGMA
** Microarchitecture
details on the networks
will be discussed later

Systolic vs SIGMA High Level Interconnects

4×4 Systolic Array

- rigid aspect ratio
- fixed size dot product
- O(sqrtN) distribution and reduction
- Distribution network allows SIGMA to mimic any aspect ratio to address irregular GEMMs
- Ability to send any streaming element to any PE
- $O(1)$ distribution

Distribution Network

** Microarchitecture
details on the networks
will be discussed later

- Reduction network allows SIGMA to
reduce variable
sized dot products
Addresses sparsity
and irregularity
O(logN) reduction allows SIGMA to
reduce variable
sized dot products
Addresses sparsity
and irregularity
O(logN) reduction allows SIGMA to
reduce variable
sized dot products
Addresses sparsity
and irregularity
O(logN) reduction $\begin{array}{l}\text { allows SIGMA to } \\ \text { reduce variable } \\ \text { sized dot products }\end{array}$ - $\left.^{\text {Addresses sparsity }} \begin{array}{l}\text { and irregularity }\end{array}\right] \begin{aligned} & \text { O(logN) reduction }\end{aligned}$ allows SIGMA to
reduce variable
sized dot products
Addresses sparsity
and irregularity
O(logN) reduction
- $O(\log N)$ reduction allows SIGMA to
reduce variable
sized dot products
Addresses sparsity
and irregularity
O(logN) reduction

Irregular GEMMs on SIGMA

Set up the stationary values.
** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

4×4 Systolic Array

Irregular GEMMs on SIGMA

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Reduction Network

Irregular GEMMs on SIGMA

Next cycle: Multicast first row of MK to the corresponding stationary elements.
** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

4×4 Systolic Array

Reduction Network

Irregular GEMMs on SIGMA

Next cycle: Multicast second row of MK to the corresponding stationary elements.
** Assuming MK matrix is streaming and KN matrix is
stationary. (aka weight stationary)

4×4 Systolic Array

Reduction Network

Irregular GEMMs on SIGMA

Next cycle: Multicast third row of MK to the corresponding stationary elements.
** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

4×4 Systolic Array

16 PE SIGMA

Irregular GEMMs on SIGMA

Next cycle: Multicast fourth row of MK to the corresponding stationary elements.
** Assuming MK matrix is streaming and KN matrix is
stationary. (aka weight stationary)

4×4 Systolic Array

Distribution Network

Reduction Network

Irregular GEMMs on SIGMA

After accumulation, SIGMA is done. However, the systolic array has to map the other side of the stationary matrix and stream in the MK matrix again (referred to as folding).
** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

4×4 Systolic Array

Irregular GEMMs on SIGMA

SIGMA reduces the number of folds, which then reduces the number of memory references on the streaming matrix.
stationary)

4×4 Systolic Array

Irregular GEMMs on SIGMA

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Final cycle count.

SIGMA total runtime: 13 cycles

Irregular GEMMs on SIGMA

SIGMA maximizes PE utilization with its flexible interconnects for irregular GEMMs.

$$
13 \text { cycles }
$$

Sparse Irregular GEMMs on SIGMA

Set up the stationary values.
** Assuming MK matrix is streaming and
KN matrix is
stationary. (aka weight stationary)

4×4 Systolic Array

Sparse Irregular GEMMs on SIGMA

Set up the stationary values.
** Assuming MK matrix is streaming and KN matrix is
stationary. (aka weight stationary)

Sparse Irregular GEMMs on SIGMA

Next cycle: Multicast first row of MK to the corresponding stationary elements.
** Assuming MK matrix is streaming and KN matrix is
stationary. (aka weight stationary)

4×4 Systolic Array

16 PE SIGMA

Sparse Irregular GEMMs on SIGMA

Next cycle: Multicast second row of MK to the corresponding stationary elements.
** Assuming MK matrix is streaming and KN matrix is
stationary. (aka weight stationary)

4×4 Systolic Array

Sparse Irregular GEMMs on SIGMA

Next cycle: Multicast third row of MK to the corresponding stationary elements.
** Assuming MK matrix is streaming and KN matrix is
stationary. (aka weight stationary)

4×4 Systolic Array

16 PE SIGMA

Sparse Irregular GEMMs on SIGMA

Next cycle: Multicast fourth row of MK to the corresponding stationary elements.
** Assuming MK matrix is streaming and KN matrix is
stationary. (aka weight stationary)

4×4 Systolic Array

Reduction Network
16 PE SIGMA

Sparse Irregular GEMMs on SIGMA

After accumulation, SIGMA is done. However, the systolic array has to map the other part of the stationary matrix and stream in the MK matrix again (referred to as folding).
** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Sparse Irregular GEMMs on SIGMA

Again, the systolic array has to map another part of the stationary matrix and stream MK again.
** Assuming MK matrix is streaming and KN matrix is
stationary. (aka weight stationary)

4×4 Systolic Array

Sparse Irregular GEMMs on SIGMA

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

SIGMA total runtime: 13 cycles

Sparse Irregular GEMMs on SIGMA

SIGMA maps only nonzeros stationary; therefore, reduces the number of folds needed.

13 cycles

Outline

- Motivation
- GEMMs in Deep Learning
- Utilization on TPU (Systolic Array)
- Accelerator Requirements
- SIGMA
- Interconnects Implementations
- Full System Design
- Evaluation
- Conclusion

O(1) Distribution Topology

Unicast
(Loading Stationary Matrix)

Multicast (Sending Streaming Matrix)
Crossbar

O(1) Distribution Topology

Unicast
(Loading Stationary Matrix)

Multicast (Sending Streaming Matrix)
Crossbar

O(1) Distribution Topology

Unicast
(Loading Stationary Matrix)

Multicast (Sending Streaming Matrix)

Crossbar	Benes

O(1) Distribution Topology

Unicast

Multicast

SIGMA's distribution can be either a Crossbar or Benes network. We chose Benes because the number of switches scale by $\mathrm{O}(\mathrm{N} \log \mathrm{N})$.

$\mathrm{O}(\log \mathrm{N})$ Reduction (Limitation of Adder Tree)

$\mathrm{O}(\log \mathrm{N})$ Reduction (Limitation of Adder Tree)

Forwarding Adder Network (FAN)

Forwarding Adder Network (FAN)

FAN is optimized for floating point reductions, commonly used during DNN training.

Forwarding Adder Network (FAN)

FAN is optimized for floating point reductions, commonly used during DNN training.

Forwarding Adder Network (FAN)

FAN is optimized for floating point reductions, commonly used during DNN training.

Forwarding Adder Network (FAN)

FAN is optimized for floating point reductions, commonly used during DNN training.

Forwarding Adder Network (FAN)

FAN is optimized for floating point reductions, commonly used during DNN training.

Forwarding Adder Network (FAN)

FAN is optimized for floating point reductions, commonly used during DNN training.

Forwarding Adder Network (FAN)

FAN is optimized for floating point reductions, commonly used during DNN training.

Forwarding Adder Network (FAN)

FAN is optimized for floating point reductions, commonly used during DNN training.

Forwarding Adder Network (FAN)

Our novel FAN topology is both lightweight and flexible.

Forwarding Adder Network (FAN)

Our novel FAN topology is both lightweight and flexible.
It can replace regular adder trees in other hardware accelerators.

Forwarding Adder Network (FAN)

Our novel FAN topology is both lightweight and flexible.
It can replace regular adder trees in other hardware accelerators.
More details such as the routing algorithm and overhead analysis can be found in the paper.

Outline

- Motivation
- GEMMs in Deep Learning
- Utilization on TPU
- Accelerator Requirements
- SIGMA
- Interconnects Implementations
- Full System Design
- Evaluation
- Conclusion

SIGMA High Level Diagram

Note: SIGMA Engine contains multiple SIGMA units called Flex-DPEs.

SIGMA High Level Diagram

Data and Bitmap SRAM Banks

- Contains bitmap compression format of GEMM matrices.

Note: SIGMA Engine contains multiple SIGMA units called Flex-DPEs.

SIGMA High Level Diagram

Data and Bitmap SRAM Banks

- Contains bitmap compression format of GEMM matrices.

Global Controller

- Logic comparisons on bitmaps to determine what nonzero stationary elements are required

Note: SIGMA Engine contains multiple SIGMA units called Flex-DPEs.

SIGMA High Level Diagram

Data and Bitmap SRAM Banks

- Contains bitmap compression format of GEMM matrices.

Global Controller

- Logic comparisons on bitmaps to determine what nonzero stationary elements are required

Sparsity Filter \& \& Input Data Arbiter

- Reorganizes data for loading stationary elements and sending streaming elements

Note: SIGMA Engine contains multiple SIGMA units called Flex-DPEs.

SIGMA High Level Diagram

Data and Bitmap SRAM Banks

- Contains bitmap compression format of GEMM matrices.

Global Controller

- Logic comparisons on bitmaps to determine what nonzero stationary elements are required

Sparsity Filter \& \& Input Data Arbiter

- Reorganizes data for loading stationary elements and sending streaming elements

Accumulation SRAM

- Buffer for partial sum accumulations

SIGMA High Level Diagram

Data and Bitmap SRAM Banks

- Contains bitmap compression format of GEMM matrices.

Global Controller

- Logic comparisons on bitmaps to determine what nonzero stationary elements are required

Sparsity Filter \& \& Input Data Arbiter

- Reorganizes data for loading stationary elements and sending streaming elements

Accumulation SRAM

- Buffer for partial sum accumulations

SIGMA Enqine

- Compute engine

SIGMA High Level Diagram

Outline

- Motivation
- GEMMs in Deep Learning
- Utilization on TPU
- Accelerator Requirements
- SIGMA
- Interconnects Implementations
- Full System Design
- Evaluation
- Conclusion

Methodology

- Hardware components are written in Verilog
- Post layout area and power numbers are on a 28nm process
- Analytical model for cycle counts assumes uniform random sparsity

Workload	Application	Example Dimensions		
		M	N	K
GNMT	Machine Translation	128	2048	4096
		320	3072	4096
		1632	36548	1024
		2048	4096	32
DeepBench	General Workload	1024	16	500000
		35	8457	2560
Transformer	Language Understanding	31999	1024	84
		84	1024	4096
NCF	Collaborative Filtering	2048	1	128
		256	256	2048

GEMMs used for evaluation.

SIGMA vs TPU - Dense GEMMs

SIGMA vs TPU - Dense GEMMs

SIGMA vs TPU - Dense GEMMs

SIGMA vs TPU - Dense GEMMs

SIGMA performs on average 1.8 x better than systolic array architectures for irregular GEMMs.

SIGMA vs TPU - Sparse GEMMs

SIGMA vs TPU - Sparse GEMMs

SIGMA vs TPU - Sparse GEMMs

SIGMA performs on average 5.7 x better than systolic array architectures for sparse and irregular GEMMs.

SIGMA vs Sparse Accelerators

SIGMA Qualitative Analysis

Accelerator	Limitation	SIGMA Solution
TPU [23]	Low utilization from no sparsity support and rigid structure	Flexible interconnects to map non-zero data and irregular GEMMs.
EIE [19]	Not scalable due to all-to-all PE broadcasts and a BW link of one element per cycle	Partition compute to Flex-DPEs (small all-to -all networks) connected by a high BW bus
SCNN [33]	Requires partitioning to use Cartesian product on GEMMs. High inter-PE communications for accumulating outputs.	Multicast GEMM partial sums close to each other so they can be reduced spatially
OuterSPACE [32]	Partial sum accum. within linked list has at best O(NlogN $)$ complexity	Spatial accum. with our reduction network has O(log N) complexity
Eyeriss v2 [11]	Limited weight dist. flexibility and linear reduction	More flexibility with shared all-to-all network and spatial accumulation with novel reduction network FAN.
Packed Systolic [26]	Need algorithmic adjustments and still contains stationary zeros	Bitmap to ensure no zero-valued elements are stationary and no algorithmic changes required.
Cambricon-X [47]	Basic adder tree limits multiplier utilization, allows one common partial sum at a time	FAN enables full multiplier utilization by allowing different partial sums to be accumulated separately.

Table III: Qualitative Comparision of SIGMA against state-of-the-art accelerators.

SIGMA Qualitative Analysis

SIGMA performs on average $\mathbf{3 x}$ better than

 state-of-the-art sparse accelerators. In depth analysis can be found in the paper.Cambricon-X [47]

Systolic Array vs SIGMA Comparison

	TPU-like Systolic Engine		SIGMA Engine	
Technology	Commercial 28nm		Commercial 28nm	
Clock freq.	500 MHz		500 MHz	
MACs	16384 (128 x 128 PEs)		16384 (128, 128PEs Flex-DPEs)	
Data Type	BFP16 Mult, FP32 Add		BFP16 Mult, FP32 Add	
Peak TFLOPS	16		16	
Sparsity Support?	No		Yes	
*Effective TFLOPS	1.88		10.8	
Power (W)	12.25 W		22.33 W	
Eff. TFLOPS/ W	0.15 Eff. TFLOPS/W		0.48 Eff. TFLOPS/W	
Area (mm2)	Total: 47.27 mm 2		Total: 65.10 mm 2	
	Adder: Multipliers: Local Memory: Layout Overhead:	$\begin{aligned} & 14.5 \% \\ & 59.0 \% \\ & 1.5 \% \\ & 25.0 \% \end{aligned}$	Adder: Multipliers: Local Memory: Dist. NoC Overhead: Red. NoC Overhead: FAN Controller: Layout Overhead:	$\begin{aligned} & \hline 10.5 \% \\ & 42.5 \% \\ & 1.0 \% \\ & 14.5 \% \\ & 3.0 \% \\ & 1.5 \% \\ & 27.0 \% \\ & \hline \end{aligned}$

** Effective TFLOPs is calculated by multiplying the base dense TFLOPs with the average efficiency computed across GEMMs.

Systolic Array vs SIGMA Comparison

	TPU-like Systolic Engine		SIGMA Engine	
Technology	Commercial 28nm		Commercial 28nm	
Clock freq.	500 MHz		500 MHz	
MACs	16384 (128 x 128 PEs)		16384 (128, 128PEs Flex-DPEs)	
Data Type	BFP16 Mult, FP32 Add		BFP16 Mult, FP32 Add	
Peak TFLOPS	16		16	
Sparsity Support?	No		Yes	
*Effective TFLOPS	1.88		10.8	
Power (W)	12.25 W		22.33 W	
Eff. TFLOPS/ W	0.15 Eff. TFLOPS/W		0.48 Eff. TFLOPS/W	
Area (mm2)	Total: 47.27 mm 2		Total: 65.10 mm 2	
	Adder: Multipliers: Local Memory: Layout Overhead:	$\begin{aligned} & \hline 14.5 \% \\ & 59.0 \% \\ & 1.5 \% \\ & 25.0 \% \end{aligned}$	Adder: Multipliers: Local Memory: Dist. NoC Overhead: Red. NoC Overhead: FAN Controller: Layout Overhead:	$\begin{aligned} & 10.5 \% \\ & 42.5 \% \\ & 1.0 \% \\ & 14.5 \% \\ & 3.0 \% \\ & 1.5 \% \\ & 27.0 \% \\ & \hline \end{aligned}$

** Effective TFLOPs is calculated by multiplying the base dense TFLOPs with the average efficiency computed across GEMMs.

SIGMA consumes 38% more area and 82% more power than Systolic Array.

Systolic Array vs SIGMA Comparison

	TPU-like Systolic Engine		SIGMA Engine	
Technology	Commercial 28nm		Commercial 28nm	
Clock freq.	500 MHz		500 MHz	
MACs	16384 (128 x 128 PEs)		16384 (128, 128PEs Flex-DPEs)	
Data Type	BFP16 Mult, FP32 Add		BFP16 Mult, FP32 Add	
Peak TFLOPS	16		16	
Sparsity Support?	No		Yes	
*Effective TFLOPS	1.88		10.8	
Power (W)	12.25 W		22.33 W	
Eff. TFLOPS/ W	0.15 Eff. TFLOPS/W		0.48 Eff. TFLOPS/W	
Area (mm2)	Total: 47.27 mm 2		Total: 65.10 mm 2	
	Adder: Multipliers: Local Memory: Layout Overhead:	$\begin{aligned} & \hline 14.5 \% \\ & 59.0 \% \\ & 1.5 \% \\ & 25.0 \% \end{aligned}$	Adder: Multipliers: Local Memory: Dist. NoC Overhead: Red. NoC Overhead: FAN Controller: Layout Overhead:	$\begin{aligned} & 10.5 \% \\ & 42.5 \% \\ & 1.0 \% \\ & 14.5 \% \\ & 3.0 \% \\ & 1.5 \% \\ & 27.0 \% \\ & \hline \end{aligned}$

** Effective TFLOPs is calculated by multiplying the base dense TFLOPs with the average efficiency computed across GEMMs.

SIGMA achieves 5.7 x higher effective TFLOPS for a 3.2 x higher effective TFLOPS/W.

Systolic Array vs SIGMA Comparison

	TPU-like Systolic Engine	SIGMA Engine
Technology	Commercial 28nm	Commercial 28nm
$-\ldots \ldots \ldots$		

SIGMA consumes more resources but achieves higher effective TFLOPS/W.

multiplying the base dense TFLOPs with the average efficiency computed across GEMMs.

[^4]
Outline

- Motivation
- GEMMs in Deep Learning
- Utilization on TPU
- Accelerator Requirements
- SIGMA
- Interconnects Implementations
- Full System Design
- Evaluation
- Conclusion

Conclusion

- GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.

Conclusion

- GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.
- High utilization from systolic arrays is challenging because of their rigid structure.

Conclusion

- GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.
- High utilization from systolic arrays is challenging because of their rigid structure.
- SIGMA enables high compute utilization on sparse irregular GEMMs.

Conclusion

- GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.
- High utilization from systolic arrays is challenging because of their rigid structure.
- SIGMA enables high compute utilization on sparse irregular GEMMs.
- SIGMA performs 5.7x better than systolic arrays and $3 x$ better than other state-of-the-art sparse accelerators at the cost of extra hardware, specifically for the $\mathrm{O}(1)$ distribution and the novel FAN reduction interconnects.

Conclusion

- GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.
- High utilization from systolic arrays is challenging because of their rigid structure.
- SIGMA enables high compute utilization on sparse irregular GEMMs.
- SIGMA performs 5.7x better than systolic arrays and $3 x$ better than other state-of-the-art sparse accelerators at the cost of extra hardware, specifically for the $O(1)$ distribution and the novel FAN reduction interconnects.
- SIGMA achieves 3.2x higher Effective TFLOPS/W than Systolic Arrays.

Conclusion

- GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.
- High utilization from systolic arrays is challenging because of their rigid structure.
- SIGMA enables high compute utilization on sparse irregular GEMMs.
- SIGMA performs 5.7x better than systolic arrays and $3 x$ better than other state-of-the-art sparse accelerators at the cost of extra hardware, specifically for the $O(1)$ distribution and the novel FAN reduction interconnects.
- SIGMA achieves 3.2x higher Effective TFLOPS/W than Systolic Arrays.
- Future work: Optimizations such as power gating and software stack design.

Thank you! \because

Material Backup

Walkthrough

Compressed bitmap equivalent

Example GEMM

Stationary Matrix

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Example GEMM

Streaming Bitmap

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Example GEMM

1	1	0	1
0	1	1	0
1	0	0	1
0	0	0	0

Streaming Bitmap

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

1	1	0	1
0	1	1	0
1	0	0	1
0	0	0	0

Streaming Bitmap

Stationary Bitmap

0	1	1	1
1	1	1	0
1	1	1	0

Stationary’ Bitmap

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

1	1	0	1
0	1	1	0
1	0	0	1
0	0	0	0

Streaming Bitmap

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

1	1	0	1
0	1	1	0
1	0	0	1
0	0	0	0

Streaming Bitmap

Stationary Bitmap

	1	1	0
	1	1	0
	1	1	0

Stationary’ Bitmap

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Example GEMM

Distribution
Network - Benes

Buffers
Multipliers

Reduction
Network - FAN

Walkthrough Section

i) Get bitmap from memory
vi) Unicast stationary values

ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

The main idea is to find the matching source and destination indices.

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Cycle 3: multicast 1st column of streaming matrix and reduce

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Cycle 3: multicast 1st column of streaming matrix and reduce

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Cycle 4: multicast 2nd column of streaming matrix and reduce

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

Walkthrough

Example GEMM

Walkthrough Section

i) Get bitmap from memory
ii) Row wise OR on streaming matrix
iii) Element wise AND on stationary matrix
iv) Generate stationary' bitmap
vi) Unicast stationary values
vii) Get source - destination pairs
viii) Multicast streaming values and reduce

[^0]: ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

[^1]: ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

[^2]: ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

[^3]: ** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

[^4]: SIGMA achieves $5.7 x$ higher effective TFLOPS for a $3.2 x$ higher effective TFLOPS/W.

