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What is the key computation for these Deep Learning 
applications?
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Matrix multiplications (GEMMs) consume around 70% of the total runtime when 
training modern deep learning workloads.
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GEMM is a key compute primitive to accelerate in 
hardware to speed up training.   
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SIMD ArchitecturesSIMT Architectures Systolic Architectures

Recently, systolic array based architectures are popular for accelerating GEMMs. 
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Hardware for Accelerating GEMMs



Target comparison: Google TPU

TPU figure from https://cloud.google.com/tpu/docs/system-architecture

Our target comparison is with the Google TPU, which uses 128 x 128 
systolic arrays. 
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Systolic Arrays are popular because they enable efficient 
data reuse and are very simple to implement.
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The rigid structure of Systolic Arrays cause PE 
underutilization. How can we enable the remaining PEs?
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light purple partial product 
clusters together, which is 
incorrect functionally. This 
is due to a rigid aspect 
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Can we map another section of 
the stationary matrix onto the 
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Mapping GEMMs onto TPUs - Irregularity

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic 
array.

Observation 2: Sparse weights cause underutilization of the PEs.

Observation 3: Large systolic arrays have large load and reduction latency.

Takeaway:  Systolic Arrays have limitations on emerging GEMM workloads that are both 

sparse and irregular.   
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GNMT Pruning - Temporal Sparsity
(https://www.intel.ai/compressing-gnmt-models) 

Transformer Sparsity - Impact on BLEU
(The State of Sparsity in Deep Neural Networks, Gale et al., arXiv)
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Weight sparsity ranges from 40% to 90%. Activation sparsity is approximately 

30% to 70% from ReLU, dropout, etc.
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M = 2048

Mapping GEMMs onto TPUs - Sparsity
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Stationary matrix
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

What happens if half of the stationary 
matrix are zeros?

TPU (Systolic Array)
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M = 2048

Mapping GEMMs onto TPUs - Sparsity
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Stationary matrix

M
 =
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N = 4096

K
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K = 32

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

What happens if half of the stationary 
matrix are zeros?

TPU (Systolic Array)
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95
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15 31 47 63 79 111 127950
M = 2048

Multiplication with an operand that is zero is considered underutilized. 

Mapping GEMMs onto TPUs - Sparsity
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TPU (Systolic Array)
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Reduce partial sum down each column.
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K
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K = 32

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

87.5% of the PEs are not utilized 
for this GEMM.

Multiplication with an operand that is zero is considered underutilized. 

Mapping GEMMs onto TPUs - Sparsity
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TPU (Systolic Array)
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M = 2048

Reduce partial sum down each column.

Stationary matrix
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K = 32

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

87.5% of the PEs are not utilized 
for this GEMM.

Multiplication with an operand that is zero is considered underutilized. 

Mapping GEMMs onto TPUs - Sparsity

Weight stationary systolic arrays are underutilized for 
sparse GEMMs because they have to map zeros. How 

can we map only nonzeros stationary?
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Stationary matrix
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

TPU (Systolic Array)
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15 31 47 63 79 111 127950
M = 2048

Can we map other nonzero elements 
where the idle PEs used to be?

Mapping GEMMs onto TPUs - Sparsity
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Stationary matrix
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

TPU (Systolic Array)
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M = 2048

Can we map other nonzero elements 
where the idle PEs used to be?

Mapping GEMMs onto TPUs - Sparsity

128
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

TPU (Systolic Array)
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15 31 47 63 79 111 127950
M = 2048

Can we map other nonzero elements 
where the idle PEs used to be?

Mapping GEMMs onto TPUs - Sparsity

128
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Stationary matrix
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

TPU (Systolic Array)
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Can we map other nonzero elements 
where the idle PEs used to be?

Mapping GEMMs onto TPUs - Sparsity

128
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Stationary matrix
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

TPU (Systolic Array)
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15 31 47 63 79 111 127950
M = 2048

Reduce partial sum down each column.

Can we map other nonzero elements 
where the idle PEs used to be?

Mapping GEMMs onto TPUs - Sparsity

128
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Stationary matrix

M
 =
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ri
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N = 4096

K
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K = 32

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

TPU (Systolic Array)

15

31

47

63

79

95

111

127

15 31 47 63 79 111 127950
M = 2048

Reduce partial sum down each column.

Dark blue and light purple clusters 
accumulate, which is incorrect. 
Systolic reduction only allows fixed 
size dot products, which is the size 
of a column. 

Can we map other nonzero elements 
where the idle PEs used to be?

Mapping GEMMs onto TPUs - Sparsity

128
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Stationary matrix

M
 =
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m
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ri
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N = 4096

K
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128

K = 32

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

TPU (Systolic Array)

15

31

47

63

79

95
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127

15 31 47 63 79 111 127950
M = 2048

Reduce partial sum down each column.

Dark blue and light purple 
clusters accumulate, which 
is incorrect. Systolic 
reduction only allows fixed 
size dot products, which is 
the size of a column. 

Can we map other nonzero elements 
where the idle PEs used to be?

Mapping GEMMs onto TPUs - Sparsity

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic 
array.

Observation 2: Sparse weights cause underutilization of the PEs and require variable 
sized dot product accumulation.

Observation 3: Large systolic arrays have large load and reduction latency.

Takeaway:  Systolic Arrays have limitations on emerging GEMM workloads that are both 

sparse and irregular.   



TPU (Systolic Array)

Mapping GEMMs onto TPUs - Scalability
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 =
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N = 256

69
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Cycle 1

Mapping GEMMs onto TPUs - Scalability
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Cycle 2

Mapping GEMMs onto TPUs - Scalability
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Cycle 3

Mapping GEMMs onto TPUs - Scalability
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** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Cycle 128
Loading takes 128 cycles, which 

scales at O(sqrtN).

Mapping GEMMs onto TPUs - Scalability
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Reduce partial sum down each column.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Stationary
matrixK

 =
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M
 =
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Streaming matrix

128

12
8
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Reduction will take 128 cycles for the last 
accumulate to finish before loading a new 

portion of the stationary matrix.

Mapping GEMMs onto TPUs - Scalability
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Reduce partial sum down each column.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Stationary
matrixK

 =
 2

04
8

N = 256

K = 2048

M
 =

 2
56

Streaming matrix

128

12
8

128

Reduction will take 128 cycles for the last 
accumulate to finish before loading a new 

portion of the stationary matrix.

Mapping GEMMs onto TPUs - Scalability

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic 
array.

Observation 2: Sparse weights cause underutilization of the PEs and require variable 
sized dot product accumulation.

Observation 3: Large systolic arrays have significant load and reduction latency.

Takeaway:  Systolic Arrays have limitations on emerging GEMM workloads that are both 

sparse and irregular.   



TPU (Systolic Array)
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Reduce partial sum down each column.

** Assuming MK matrix is streaming and KN matrix is stationary. (aka weight stationary)

Stationary
matrixK

 =
 2

04
8

N = 256

K = 2048

M
 =

 2
56

Streaming matrix

128

12
8

128

Reduction will take 128 cycles for the last 
accumulate to finish before loading a new 

portion of the stationary matrix.

Mapping GEMMs onto TPUs - Scalability

Observation 1: GEMMs are irregular and may not align to the aspect ratio of the systolic 
array.

Observation 2: Sparse weights cause underutilization of the PEs and require variable 
sized dot product accumulation.

Observation 3: Large systolic arrays have significant load and reduction latency.

Takeaway:  Systolic Arrays are underutilized on emerging GEMM workloads that are 

both sparse and irregular.   
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Key Accelerator Requirements

Requirement Systolic Array Limitation SIGMA Desired Traits

Flexibility ● rigid aspect ratio ● ability to mimic any 2D aspect ratio

Sparsity Support ● Data forwarding every cycle in 
horizontal / vertical direction 
requires systolic array to map 
zeros.

● Support sparsity by only mapping 
nonzeros

● ability to create simultaneous variable 
sized dot product

Scalability ● O(sqrtN) distribution 
● O(sqrtN) reduction

● O(1) distribution
● O(log2N) reduction
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Key Accelerator Requirements

Requirement Systolic Array Limitation SIGMA Desired Traits

Flexibility ● rigid aspect ratio ● ability to mimic any 2D aspect ratio

Sparsity Support ● data forwarding every cycle 
requires systolic array to map 
zeros

● sparsity support by mapping only 
nonzeros stationary

● ability to create simultaneous variable 
sized dot product

Scalability ● O(sqrtN) distribution 
● O(sqrtN) reduction

● O(1) distribution
● O(log2N) reduction
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Key Accelerator Requirements

Requirement Systolic Array Limitation SIGMA Desired Traits

Flexibility ● rigid aspect ratio ● ability to mimic any 2D aspect ratio

Sparsity Support ● data forwarding every cycle 
requires systolic array to map 
zeros

● sparsity support by mapping only 
nonzeros stationary

● ability to create simultaneous variable 
sized dot product

Scalability ● O(sqrtN) distribution 
● O(sqrtN) reduction

● O(1) distribution
● O(logN) reduction
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Key Accelerator Requirements

Requirement Systolic Array Limitation SIGMA Desired Traits

Flexibility ● rigid aspect ratio ● ability to mimic any 2D aspect ratio

Sparsity Support ● data forwarding every cycle 
requires systolic array to map 
zeros

● sparsity support by mapping only 
nonzeros

● ability to create simultaneous variable 
sized dot product

Scalability ● O(sqrtN) distribution 
● O(sqrtN) reduction

● O(1) distribution
● O(logN) reduction

81

With flexible and scalable interconnects between all PEs, 
SIGMA can solve the three requirements.



Systolic vs SIGMA High Level Interconnects

A B C D

I J K L

4 x 4 Systolic Array
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A B C D

I J K L

E F G H

M N O P

16 PE SIGMA 

● rigid aspect ratio
● fixed size dot product
● O(sqrtN) distribution and 

reduction



Systolic vs SIGMA High Level Interconnects
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16 PE SIGMA 

A B C D

I J K L

E F G H

Distribution Network

M N O P

** Microarchitecture 
details on the networks 
will be discussed later

A B C D

I J K L

4 x 4 Systolic Array

● rigid aspect ratio
● fixed size dot product
● O(sqrtN) distribution and 

reduction



Systolic vs SIGMA High Level Interconnects
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16 PE SIGMA 

A B C D

I J K L

E F G H

Distribution Network

M N O P

** Microarchitecture 
details on the networks 
will be discussed later

A B C D

I J K L

4 x 4 Systolic Array

● Distribution 
network allows 
SIGMA to mimic 
any aspect ratio to 
address irregular 
GEMMs

● Ability to send any 
streaming element 
to any PE

● O(1) distribution

● rigid aspect ratio
● fixed size dot product
● O(sqrtN) distribution and 

reduction



Systolic vs SIGMA High Level Interconnects
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** Microarchitecture 
details on the networks 
will be discussed later

A B C D

I J K L

4 x 4 Systolic Array 16 PE SIGMA 

A B C D

I J K L

E F G H

Distribution Network

Reduction Network
M N O P

● Distribution 
network allows 
SIGMA to mimic 
any aspect ratio to 
address irregular 
GEMMs

● Ability to send any 
streaming element 
to any PE

● O(1) distribution

● rigid aspect ratio
● fixed size dot product
● O(sqrtN) distribution and 

reduction



Systolic vs SIGMA High Level Interconnects
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** Microarchitecture 
details on the networks 
will be discussed later

A B C D

I J K L

4 x 4 Systolic Array 16 PE SIGMA 

A B C D

I J K L

E F G H

Distribution Network

Reduction Network
M N O P

● Distribution 
network allows 
SIGMA to mimic 
any aspect ratio to 
address irregular 
GEMMs

● Ability to send any 
streaming element 
to any PE

● O(1) distribution

● Reduction network 
allows SIGMA to 
reduce variable 
sized dot products 

● Addresses sparsity 
and irregularity 

● O(logN) reduction

● rigid aspect ratio
● fixed size dot product
● O(sqrtN) distribution and 

reduction
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Irregular GEMMs on SIGMA

Set up the stationary values.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Irregular GEMMs on SIGMA

Set up the stationary values.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Irregular GEMMs on SIGMA

Next cycle: Multicast first row of MK to the corresponding 
stationary elements.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Irregular GEMMs on SIGMA

Next cycle: Multicast second row of MK to the 
corresponding stationary elements.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Irregular GEMMs on SIGMA

Next cycle: Multicast third row of MK to the corresponding 
stationary elements.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Irregular GEMMs on SIGMA

Next cycle: Multicast fourth row of MK to the 
corresponding stationary elements.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Irregular GEMMs on SIGMA

After accumulation, SIGMA is done. However, the systolic 
array has to map the other side of the stationary matrix and 
stream in the MK matrix again (referred to as folding).

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Irregular GEMMs on SIGMA

After accumulation, SIGMA is done. However, the systolic 
array has to map the other side of the stationary matrix and 
stream in the MK matrix again.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)

SIGMA reduces the number of folds, which then reduces 
the number of memory references on the streaming matrix.
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4 x 4 Systolic Array
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16 PE SIGMA 

Irregular GEMMs on SIGMA

Final cycle count.

Systolic Array total runtime: 

24 cycles

SIGMA total runtime: 

13 cycles

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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4 x 4 Systolic Array
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16 PE SIGMA 

Irregular GEMMs on SIGMA

Final cycle count.

Systolic Array total runtime: 

24 cycles

SIGMA total runtime: 

13 cycles

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)

SIGMA maximizes PE utilization with its flexible 
interconnects for irregular GEMMs.



Sparse Irregular GEMMs on SIGMA 
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Set up the stationary values.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Sparse Irregular GEMMs on SIGMA 

Set up the stationary values.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Sparse Irregular GEMMs on SIGMA 

Next cycle: Multicast first row of MK to the 
corresponding stationary elements.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Sparse Irregular GEMMs on SIGMA 

Next cycle: Multicast second row of MK to the 
corresponding stationary elements.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Sparse Irregular GEMMs on SIGMA 

Next cycle: Multicast third row of MK to the 
corresponding stationary elements.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Sparse Irregular GEMMs on SIGMA 

Next cycle: Multicast fourth row of MK to the 
corresponding stationary elements.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Sparse Irregular GEMMs on SIGMA 

After accumulation, SIGMA is done. However, the 
systolic array has to map the other part of the 
stationary matrix and stream in the MK matrix again 
(referred to as folding).

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)



F G

O P

A B J C

H I L K

D E F G

Distribution Network

Reduction Network
M N O P

16 PE SIGMA Flex-DPE4 x 4 Systolic Array

e e e

e

e

e e e e

a

b

cd

f

g

e

104

16 PE SIGMA 

Sparse Irregular GEMMs on SIGMA 

Again, the systolic array has to map another part 
of the stationary matrix and stream MK again.

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)
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16 PE SIGMA 

Sparse Irregular GEMMs on SIGMA 

Final cycle count.

Systolic Array total runtime: 

34 cycles

SIGMA total runtime: 

13 cycles

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)



F G

O P

A B J C

H I L K

D E F G

Distribution Network

Reduction Network
M N O P

16 PE SIGMA Flex-DPE4 x 4 Systolic Array

106

16 PE SIGMA 

Sparse Irregular GEMMs on SIGMA 

Final cycle count.

Systolic Array total runtime: 

34 cycles

SIGMA total runtime: 

13 cycles

** Assuming MK 
matrix is 

streaming and 
KN matrix is 

stationary. (aka 
weight 

stationary)

SIGMA maps only nonzeros stationary; therefore, reduces 
the number of folds needed.
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Crossbar Benes

Unicast Multicast
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Source Source

Crossbar Benes
Source Source

X X X XX X X X X X X X X X X X

Destination Destination Destination Destination

SIGMA’s distribution can be either a Crossbar or Benes 
network. We chose Benes because the number of 

switches scale by O(N logN).
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Different 
clusters of 
partial sums.

FAN is optimized for floating point reductions, commonly used during DNN training.
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Forwarding Adder Network (FAN)
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Different 
clusters of 
partial sums.

FAN is optimized for floating point reductions, commonly used during DNN training.
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Forwarding Adder Network (FAN)

Bypass adder and forward 
partial sum to next level!

Different 
clusters of 
partial sums.

FAN is optimized for floating point reductions, commonly used during DNN training.
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Cycle 2: Partial sum red complete
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Different 
clusters of 
partial sums.

FAN is optimized for floating point reductions, commonly used during DNN training.
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Forwarding Adder Network (FAN)

Cycle 3: Partial sums green and orange complete

Different 
clusters of 
partial sums.

FAN is optimized for floating point reductions, commonly used during DNN training.
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Cycle 4: Partial sum blue complete
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Forwarding Adder Network (FAN)

Different 
clusters of 
partial sums.

FAN is optimized for floating point reductions, commonly used during DNN training.
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Forwarding Adder Network (FAN)

Cycle 5: Partial sum purple complete

Different 
clusters of 
partial sums.

FAN is optimized for floating point reductions, commonly used during DNN training.
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Forwarding Adder Network (FAN)

Cycle 5: Partial sum purple complete

Different 
clusters of 
partial sums.

FAN is optimized for floating point reductions, commonly used during DNN training.
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Note: The output buffer has FFs to 
maintain correct timing since different 
clusters may complete at different time.
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Forwarding Adder Network (FAN)

Cycle 4: Partial sum purple complete

Different 
clusters of 
partial sums.

FAN is optimized for floating point reductions, commonly used during DNN training.

Our novel FAN topology is both lightweight and flexible. 

It can easily replace any other accelerators that use adder trees.

More details such as the routing algorithm and overhead analysis can 
be found in the paper.
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Forwarding Adder Network (FAN)

Cycle 4: Partial sum purple complete

Different 
clusters of 
partial sums.

FAN is optimized for floating point reductions, commonly used during DNN training.

Our novel FAN topology is both lightweight and flexible. 

It can replace regular adder trees in other hardware accelerators.

More details such as the routing algorithm and overhead analysis can 
be found in the paper.
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Forwarding Adder Network (FAN)

Cycle 4: Partial sum purple complete

Different 
clusters of 
partial sums.

FAN is optimized for floating point reductions, commonly used during DNN training.

Our novel FAN topology is both lightweight and flexible. 

It can replace regular adder trees in other hardware accelerators.

More details such as the routing algorithm and overhead analysis can 
be found in the paper.
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SIGMA High Level Diagram

Note: SIGMA Engine contains multiple 
SIGMA units called Flex-DPEs.
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SIGMA High Level Diagram

Note: SIGMA Engine contains multiple 
SIGMA units called Flex-DPEs.

Data and Bitmap SRAM Banks
● Contains bitmap compression format of GEMM 

matrices. 

Global Controller
● Logic comparisons on bitmaps to determine 

what nonzero stationary elements are required

Sparsity Filter && Input Data Arbiter
● Reorganizes data for loading stationary 

elements and sending streaming elements

Accumulation SRAM 
● Buffer for partial sum accumulations

SIGMA Engine
● Compute engine



Log2(N) reduction time 133

SIGMA High Level Diagram
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Methodology

135

● Hardware components are written in 
Verilog

● Post layout area and power numbers are 
on a 28nm process

● Analytical model for cycle counts 
assumes uniform random sparsity

Workload Application Example Dimensions
M N K

GNMT Machine 
Translation

128 2048 4096
320 3072 4096
1632 36548 1024
2048 4096 32

DeepBench General 
Workload

1024 16 500000
35 8457 2560

Transformer Language 
Understanding

31999 1024 84
84 1024 4096

NCF Collaborative 
Filtering

2048 1 128
256 256 2048

GEMMs used for evaluation.
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SIGMA vs TPU - Dense GEMMs

For GEMMs with dimensions that fit 
perfectly on the TPU, SIGMA offers 
slight speedup from its O(1) 
distribution and O(logN) reduction.
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SIGMA vs TPU - Dense GEMMs

SIGMA offers 8x speedup for this 
GEMM. This is because the N dimension 
of 16 cannot fit perfectly on TPU. Also, 
O(logN) reduction is more effective 
since K = 500000.
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SIGMA vs TPU - Dense GEMMs

SIGMA offers large speedup from 
its scalable FAN reduction (more 
effective since K = 500000). 
Additionally, this GEMM cannot fit 
perfectly on TPU because of the N 
dimension.
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SIGMA performs on average 1.8x better than systolic 
array architectures for irregular GEMMs. 
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SIGMA enables speedup by only 
mapping nonzero elements 
stationary.
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SIGMA enables speedup by only 
mapping nonzero elements 
stationary.

SIGMA performs on average 5.7x better than systolic 
array architectures for sparse and irregular GEMMs. 
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SIGMA performs on average 3x better than 
state-of-the-art sparse accelerators. In depth analysis can 

be found in the paper.
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** Effective TFLOPs is calculated by 
multiplying the base dense TFLOPs with the 
average efficiency computed across 
GEMMs.
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** Effective TFLOPs is calculated by 
multiplying the base dense TFLOPs with the 
average efficiency computed across 
GEMMs.

SIGMA consumes 38% more area and 82% more power than Systolic Array. 
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** Effective TFLOPs is calculated by 
multiplying the base dense TFLOPs with the 
average efficiency computed across 
GEMMs.

SIGMA achieves 5.7x higher effective TFLOPS for a 3.2x higher effective TFLOPS/W.
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** Effective TFLOPs is calculated by 
multiplying the base dense TFLOPs with the 
average efficiency computed across 
GEMMs.

SIGMA achieves 5.7x higher effective TFLOPS for a 3.2x higher effective TFLOPS/W.

SIGMA consumes more resources but achieves higher 
effective TFLOPS/W.
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Conclusion
● GEMM is a key component of Deep Learning workloads, but they are often irregular and sparse.

● High utilization from systolic arrays is challenging because of their rigid structure.

● SIGMA enables high compute utilization on sparse irregular GEMMs.

● SIGMA performs 5.7x better than systolic arrays and 3x better than other state-of-the-art sparse 

accelerators at the cost of extra hardware, specifically for the O(1) distribution and the novel FAN 

reduction interconnects.

● SIGMA achieves 3.2x higher Effective TFLOPS/W than Systolic Arrays.

● Future work: Optimizations such as power gating and software stack design.

Thank you! 😊
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The main idea is to find the necessary 
nonzero elements to map stationary.
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The main idea is to find the matching source and 
destination indices.
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