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ABSTRACT

The prevalence of multicore architectures has accentuated
the need for scalable cache coherence solutions. Many of the
proposed designs use a mix of 1-to-1, 1-to-many (1-to-M),
and many-to-1 (M-to-1) communication to maintain data
coherence and consistency. The on-chip network is the com-
munication backbone that needs to handle all these flows
efficiently to allow these protocols to scale. However, most
research in on-chip networks has focused on optimizing only
1-to-1 traffic. There has been some recent work addressing
1-to-M traffic by proposing the forking of multicast packets
within the network at routers, but these techniques incur
high packet delays and power penalties. There has been
little research in addressing M-to-1 traffic.

We propose two in-network techniques, Flow Across Net-
work Over Uncongested Trees (FANOUT) and Flow Aggre-
gatioN In-Network (FANIN), which perform efficient 1-to-
M forking and M-to-1 aggregation, respectively, such that
packets incur only single-cycle delays at most routers along
their path, thus approaching an ideal network (one that in-
curs only wire delay/energy). Full-system simulations on
a 64-core CMP with SPLASH-2 and PARSEC benchmarks
show that FANOUT and FANIN together reduce runtime by
14.9% and network energy by 40.2%, on average, compared
to state-of-the-art networks, operating at just 1% and 9.6%
above the runtime and energy of an ideal network.

Categories and Subject Descriptors

C.1.2 [Computer Systems Organization]: Multiproces-
sors—Interconnection Architectures; C.1.4 [Parallel Archi-
tectures]: Distributed Architectures

General Terms
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1. INTRODUCTION
As chip multiprocessors scale to higher core counts, de-

signing a scalable on-chip cache subsystem has become a
crucial component in achieving high performance. Together,
the cache coherence protocol and on-chip network must achieve
high throughput, low latency, and low energy.

There are several different types of cache coherence pro-
tocols, each of which puts different demands on the network
connecting the cores. At one end of the design spectrum
are broadcast-based protocols [6, 11, 29, 36]. These designs
have the advantage of not requiring any directory storage,
but have the limitation of increased network bandwidth de-
mands because all requests and invalidates are broadcast. At
the other end, full-bit directory protocols [27, 28] track all
sharers, reducing network demand by replacing broadcasts
with precise unicasts and multicasts. However, the required
storage increases area and energy costs as core counts scale.
More scalable directory protocols [1, 9, 12, 26, 33], includ-
ing commercial designs like Intel’s Quick Path Interconnect
(QPI) protocols [1] and AMD’s HyperTransportTMAssist [12]
incorporate partial directories to consume less storage than
a full-bit directory, and rely on a combination of broadcasts,
multicasts, and direct requests to maintain coherence.

For an N-core chip, we classify the communication pat-
terns of protocols as 1-to-1, 1-to-M, and M-to-1 where M
refers to multiple sources or destinations (1 < M <= N).
1-to-1 communication occurs in unicast requests/responses
exchanged between cores. 1-to-M communication occurs in
broadcasts and multicast requests [1, 6, 11, 29, 36]. M-to-1
communication occurs in acknowledgements [1, 11] or token
collection [29, 33] in protocols to maintain ordering. In the
on-chip domain, conventional wisdom seems to dictate that
1-to-M and M-to-1 traffic should be avoided, assuming the
on-chip network will not be able to handle such high band-
width. Instead, the coherence mechanism would involve
serialized lookups through multiple caches and directories,
adding latency to misses.

This work challenges this conventional wisdom, showing
that a network specifically designed to handle 1-to-M and
M-to-1 traffic can approach the performance of an ideal net-
work, eliminating the need to avoid these patterns in the
cache coherence protocol. We define this ideal 1-to-M/M-
to-1 network as one in which each 1-to-M/M-to-1 packet
incurs only wire delay from its source to destination (i.e.,
hops × 2 (one-cycle through the crossbar in the router, and
another cycle for the link)), and no additional delay/energy
because of buffering and waiting due to contention. We pro-
pose novel solutions that allow both 1-to-M and M-to-1 flows
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(a) Message flows in HyperTransport and Token
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(b) Full-system application runtime for ideal 1-to-M/M-to-1 net-
works normalized against state-of-the-art baseline

Figure 1: Motivation for optimizing on-chip networks to handle 1-to-M and M-to-1 communication.
(Refer to Section 5.1 for the methodology and configuration.)

to approach ideal latency (wire delay), energy (wire energy),
and throughput (high link utilization). In particular, this
work makes a two-fold contribution: Flow Across Network
Over Uncongested Trees (FANOUT) and Flow Aggregation
In-Network (FANIN).

• FANOUT addresses inefficiencies in current state-of-the-
art 1-to-M network designs, via a load-balanced routing
algorithm (Whirl), a crossbar circuit (mXbar) that forks
flits at the similar energy/delay as unicasts, and a flow-
control technique for bypassing buffers; to realize single-
cycle routers for 1-to-M flows.

• FANIN performs opportunistic aggregation of M-to-1 traf-
fic in a distributed manner, with additional optimiza-
tions for synchronized routing (rWhirl) and a smart flow-
control for waiting at routers, to realize single-cycle routers
for M-to-1 flows.

We evaluate FANOUT and FANIN in a full-system 64-core
environment with two broadcast-intensive coherence proto-
cols, across SPLASH-2 [3] and PARSEC [8] applications.
FANOUT reduces network latency of multicasts by 39.5%;
FANIN aggregates 93.5% of acknowledgements. Together,
FANOUT and FANIN reduce application runtime by 14.9%,
and network energy by 40.2%, which are just 1% and 9.6%
higher than the runtime and energy of an ideal network.

Section 2 of this paper motivates our work and discusses
relevant related work. Section 3 and Section 4 describe
FANOUT and FANIN. Section 5 presents our evaluations
with full-system simulations, and Section 6 concludes.

2. MOTIVATION
To motivate our investigation, we first analyze message

flows for several multi-threaded workloads. Fig. 1(a) shows
a breakdown of the percentage of 1-to-1, 1-to-M and M-to-1
flows1 in the network across SPLASH-2 [3] and PARSEC [8]
benchmarks for Token Coherence [29] (a snoopy coherence
protocol), and HyperTransport [11] (a stateless directory co-
herence protocol) in a 64-core CMP. For HyperTransport, 1-
to-M requests and M-to-1 responses form 14.3% and 14.1%
of injected messages on average, respectively, with M = 64 in

1Every 1-to-M and M-to-1 flow translates to M messages in
the network.

both cases. Token Coherence reduces M-to-1 traffic to 2%,
with M = 12 on average, at the cost of a higher percent-
age (52.4%) of 1-to-M traffic (M = 64). These observations
point to the criticality of the network fabric connecting the
cores to efficiently handle all three kinds of communication,
and not become a bottleneck.

Most research in on-chip networks has concentrated only
on optimizing 1-to-1 flows. The other two flows end up being
realized the naive way: 1-to-M results in M unicast pack-
ets being sent from the source network interface controller
(NIC), and M-to-1 results in M unicast packets being re-
ceived by the destination NIC. Both these approaches (1)
create heavy congestion at the link from (to) the source (des-
tination) NIC, creating hot-spots, and (2) flood the network
due to the bursty nature of these messages, loading some
links M times over their capacity of 1 flit2 per cycle, leading
to high contention and a dramatic rise in packet latency and
corresponding penalties in throughput and energy.

VCTM [15] identified this problem for 1-to-M traffic, and
there have been recent works [15,16,34,35,37] with solutions
to mitigate it. While these differ in terms of routing algo-
rithms, target systems, and the scale of M , in essence they
propose routers with the ability to fork flits (i.e., a single
multicast packet enters the network, and multiple flits are
replicated and sent out of each output port towards their
destinations at intermediate routers). We collectively term
these works as “fork@rtr”.

The opposite problem with M-to-1 traffic has not been
dealt with yet in the on-chip domain. In addition to coher-
ence, M-to-1 flows occur in barrier synchronization [18], the
reduce phase of MapReduce [14], and so on. Previous work
has focused on specialized solutions for accelerating barrier
messages [4, 10, 18, 22, 39] by relying on an ordered FAT-
tree topology in the off-chip domain [18] and adding addi-
tional wires and registers to track barriers in the on-chip do-
main [4,10,22,39]. Unfortunately, none of these solutions are
generic enough to be applied for other M-to-1 traffic across
an unordered, distributed on-chip network topology such as
a mesh that is commonly used in multicore chips [20,40].

Current state-of-the-art fork@rtr designs [15,16,34,35,37],
while better than a network with no multicast support by

2Flits are subcomponents of a packet.
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Figure 2: Possible broadcast trees. Whirl’s algorithm: Packets fork into all four directions at the source router. By default,
every packet continues straight in its current direction. In addition, forks at intermediate routers are encoded by LeftTurnBit,
RightTurnBit, where left and right are relative to the direction of traversal. These bits are reset to 0 once a turn completes
(hence, 0 is implicit on all unmarked arrows).

25-50% [15, 34, 37], are still far from the best that an on-
chip network could achieve for 1-to-M and M-to-1 traffic. In
Fig. 1(b) we compare the full-system application runtime for
64-threaded SPLASH-2 [3] and PARSEC [8] benchmarks us-
ing the ideal networks defined in Section 1 against the base-
line fork@rtr designs. We observe that the fork@rtr design is
13% slower than ideal 1-to-M, 7% slower than ideal M-to-1,
and 20% slower than ideal 1-to-M + M-to-1, on average, for
HyperTransport. For Token Coherence, fork@rtr is 12-13%
slower on average than the ideal networks3.

In the rest of the paper, we introduce network optimiza-
tions to bridge these performance gaps.

3. FANOUT: FLOW ACROSS NETWORK

OVER UNCONGESTED TREES
This section describes the FANOUT design. We start with

a load-balanced 1-to-M routing algorithm we call Whirl. We
then describe our crossbar circuit, mXbar, which forks mul-
ticast flits within a cycle, consuming energy similar to uni-
casts. Finally, we discuss flow-control optimizations to de-
sign a single-cycle multicast router.

3.1 Whirl: Load-balanced 1-to-M Routing

3.1.1 Background

Multicast packets are typically routed in a path-based
or tree-based manner. In path-based routing, a multicast
packet is forwarded sequentially from one destination to the
next. For multicasts with many destinations, and for broad-
casts, this leads to the packet traversing a logical ring em-
bedded in the network, and forking out to the NIC at each
destination router. While this places the minimum load of
1 flit per cycle on each link, it results in extremely high la-
tency for the destinations at the end of the ring, and is thus
not a scalable solution.

Tree-based routing creates virtual multicast trees in the
network, and are used in most prior works [15,16,34,35,37].
However, a major limitation of all these schemes is that their
various multicast trees reduce to one tree in the presence of
broadcasts or multicasts with many destinations (i.e., any
node that broadcasts ends up using the same tree structure

3The fork@rtr designs perform better than the ideal in some
cases, since the faster ideal network could end up speeding
up invalidations of shared locks, increasing cache misses.

for distributing the broadcast). The result is links are uti-
lized in an unbalanced manner, lowering throughput. This is
because as the broadcast moves through the network, it forks
at intermediate routers based on fixed output port priorities
to avoid duplicate reception of the same packet via alternate
routes4. Fig. 2 shows the tree structures that all broadcast
flits would use in some of these works, based on the out-
put port priorities specified in their designs. For broadcasts
from uniformly distributed sources in an 8x8 mesh, we ob-
served that VCTM [15] uses X-links 11% and Y-links 89%
of the time, while RPM [37] uses X-links 89% and Y-links
11% of the time. Increased load causes congestion, which
adds delay and worsens throughput.

To the best of our knowledge, there has been no rout-
ing scheme that targets broadcasts/dense multicasts, and
achieves ideal load balance.

3.1.2 Whirl

We propose Whirl: a tree-based routing scheme that (1) bal-
ances link loads for broadcasts and dense multicasts, (2) en-
sures non-duplicate packet reception, (3) is non-table-based,
and (4) is deadlock-free.

Whirl parameterizes the entire space of possible broadcast
trees, some of which are shown in Fig. 2, and randomly se-
lects one tree on each broadcast/multicast to balance the
link loads. The trees from VCTM [15], RPM [37], and
bLBDR [34] form a subset of Whirl’s 16 broadcast trees. For
multicasts with few destinations, our approach and previous
approaches yield similar results, but as the destinations in-
crease, our approach outperforms previous approaches due
to more path diversity, and thus lower contention.

Whirl encodes the routing information for every broad-
cast/multicast packet in two bits: the LeftTurnBit (LTB)
and the RightTurnBit (RTB). These tell the router whether
the flit should turn5 left or turn right relative to its current
direction of motion. For instance, for a flit going West, left
is South and right is North. The (LTB, RTB) pairs for each
direction together create the global Whirl broadcast tree.

4For instance, in RPM [37], broadcasts are distributed via
the tree structure shown in Fig. 2(b). For delivering the
broadcast in the NE quadrant, the routers to the North of
the source fork the broadcast flit to their East, while those
on the East of the source do not fork the flit. This ensures
that only one copy of the flit is delivered to all nodes.
5A turn here implicitly implies a fork in a broadcast scenario
as the flit also continues straight.
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LTB: LeftTurnBit

RTB: RightTurnBit

At every router:

(1) continue STRAIGHT

(2) fork into Network Interface

(3) if: LTB is high then: fork LEFT

(4) if: RTB is high then: fork RIGHT

(5) clear (LTB,RTB) in flits that 

     forked left/right.

(a) Whirl pseudo-code.
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(b) Deadlock avoidance by VC partitioning: VC-b implements a
deadlock-free South-last turn model and acts as an escape VC.

Figure 3: Features of Whirl.

Choosing the Whirl broadcast tree. The global Whirl
route for a packet is decided by the source NIC (sNIC, i.e.,
source routing). This is done not only to balance the load,
but also to ensure non-duplicate and guaranteed reception
of packets at all destinations’ NICs; which is hard to support
if the routers dynamically decide which route to take. The
sNIC randomly chooses four bits: LTBW , LTBN , LTBE ,
and LTBS , which are the LeftTurnBits for each direction W,
N, E, and S. The sNIC sends these four bits to the source
router in the multicast packet.
Implementing forking using LTB and RTB. At the
source router, the RTBs for each direction are computed
from the four LTBs as follows: RTBS = ∼LTBW , RTBW

= ∼LTBN , RTBN = ∼LTBE , RTBE = ∼LTBS . This
rule enforces that duplicate copies of the same packet do
not reach a node via different directions. For instance, in
Fig. 2(c), RTBN = 1 and LTBE = 0 to ensure non-duplicate
delivery in the NE quadrant. The flit is then forked out of all
four output ports, with each copy carrying the corresponding
(LTB, RTB). At all further routers, the routing algorithm
that is followed is shown in Fig. 3(a). After the flit turns
once, no further turns are allowed, hence the (LTB, RTB)
are reset to 0. This is done for simplicity, and to implement
deadlock freedom, which we discuss later in this section.
Throughput characterization. Packets traversing a
combination of Whirl’s 16 broadcast trees use all possible
links that lie along the minimal routing path. For broadcast-
only traffic from uniformly distributed sources, simulations
showed 50% utilization on both the X and Y links, demon-
strating ideal load balance.
Deadlock avoidance. Whirl allows all turns except U-
turns, and thus requires a deadlock avoidance mechanism.
We do not wish to restrict any turns and take away the
ideal load balancing benefits of Whirl’s throughput discussed
earlier. We thus apply conventional Virtual Channel6 (VC)
management to avoid deadlock, as shown in Fig. 3(b). We
partition the VCs into two sets, VC-a and VC-b. Packets
are enforced to allocate only VC-a in the South direction,
before they turn. They can allocate both VC-a and VC-
b along the other directions, and after turning. Since all
packets can only make one turn in Whirl, this restricts S-to-
E and S-to-W turns within VC-b, implementing a deadlock-
free South-last turn model [13]. Because the multicast tree
can be decomposed into unicast paths, VC-b acts like an

6Input buffers at routers are typically divided into multi-
ple virtual channels to avoid packets going out of one port
getting blocked by packets going out of another port.

escape VC [13]7. Fig. 3(b) shows an example scenario with
all flits in VC-a in a circular dependency. However, VC-b
will always have an escape path, and the flits in VC-a will
eventually drain out via VC-b.

Another cause of deadlock in multicast networks is when
two copies of the same flit take two alternate paths to reach
the same destination. This can never occur in Whirl because
of the LTB/RTB rules.
Point-to-Point Ordering. Multiple Whirl routes from the
same sNIC can violate point-to-point ordering from source
to destination. For coherence and other on-chip communica-
tion protocols that rely on this ordering, such as persistent
requests in Token Coherence [29], sNICs statically assign
only one of the Whirl trees, based on cache-block address,
to all messages within an ordered virtual network/message
class. Routers follow FIFO ordering for flits within an or-
dered virtual network, by using queueing arbiters for switch
allocation, thereby guaranteeing point-to-point ordering.
Pruning the tree for multicasts. For multicasts (in
which not all NICs are in the destination set), flits need to
carry their destination set with them, and Whirl’s algorithm
described in Fig. 3(a) can be modified such that flits do not
continue/fork if no destination exists among the nodes reach-
able by that direction. As an example, Fig. 2(d) sketches a
Whirl broadcast tree, and Fig. 2(e) shows its trimmed ver-
sion for a multicast to 11 destinations. We do not show
implementation details here due to space constraints.

3.2 mXbar: Router Microarchitecture
for Forking

3.2.1 Background

Multicast routers fork flits out of multiple ports. This can
be done either by (1) reading the same flit out of the buffer
every cycle and sending it out of each output port one by
one upon successful allocation, or by (2) reading the flit out
of the buffer once and forking it within the crossbar.

The first approach adds serialization delay to multicast
flits, increases buffer occupancy (thereby lowering through-
put), and consumes high buffer read energy. However, it
can use a simpler crossbar circuit that need not fork flits.
VCTM [15] and MRR [16] use this technique8.

7The escape VC [13] concept proves that as long as packets
are allowed to allocate any VC, the sufficient condition to
break deadlocks is to have one VC enforce a deadlock-free
route while all other VCs can permit all turns.
8In fact, MRR does not use a crossbar. It rotates flits across
buffers at different output ports.
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Table 1: Energy-Delay comparison for 5x5 128-bit crossbars, modeled using Orion 2.0 [21], at 45nm
Xbar Type Transistors 1-to-M Delay 1-to-M Energy 1-to-M Router Energy

A Mux-based 240/bit 1 221×M fJ Ewr + Erd + M×Exb = 117 + 221×M fJ
B Mat. + PassGate 25/bit M 48×M fJ Ewr + M×Erd + M×Exb = 63 + 102×M fJ
C Mat. + TriState 150/bit 1 65×M fJ Ewr + Erd + M×Exb = 117 + 65×M fJ

Ewr/rd = Energy for buffer write/read, Exb = Energy for xbar 1-to-1 traversal
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Figure 4: Crossbar switch circuits and allocator microarchitecture.

The second approach removes serialization delay, but re-
quires a crossbar that performs forking. Samman et al. [35]
and RPM [37] use mux-based crossbars to realize this. Mux-
based PxP crossbars consist of a P :1 mux at each output
port, as shown in Fig. 4(a), and are the default designs gen-
erated from RTL synthesis. We call this XBAR-A. Because
each input fans out to each of these muxes, this design can
inherently fork flits out of multiple output ports. In con-
trast, a conventional matrix-crossbar is laid out as a regular
matrix, and uses pass-gates at crosspoints [38] to implement
the switching action, as shown in Fig. 4(b). It relies on an
input driver to drive (charge/discharge) both the horizontal
and vertical wires of the crossbar. We call this XBAR-B.
This design cannot efficiently fork flits because the driver
cannot drive one horizontal and P vertical wires within a cy-
cle9. The caveat, however, is energy. Crossbars are known
to be one of the most power-consuming components of a
router [20]. Each P :1 mux in XBAR-A is typically realized
using a cascade of smaller 2:1 muxes, as shown in Fig. 4(a),
which increases energy consumption tremendously because
many more transistors are used than in XBAR-B, as shown
in Table 1. In addition, matrix-crossbar XBAR-B can seg-
ment wires [38] to drive only the required portion of the
wires, saving more power.

We modeled these crossbars with five inputs/outputs in
Orion 2.0 [21] at 45nm, targeting a 2GHz clock. Table 1
compares the delay/energy to perform a 1-to-M fork within
a router. XBAR-A consumes 4.6X more energy than XBAR-
B, and the corresponding router consumes 2.1X more en-
ergy even for a unicast (using M = 1 in the last column
of Table 1), making it an impractical design to use. RTL-
synthesized crossbars are not the only option in real designs;
Intel’s 80-core NoC [20] uses custom layouts for the crossbars
to exploit regularity and reduce power.

9To fork flits, the input driver would have to be made about
P times bigger, which would proportionally increase power
consumption and become overkill for unicasts.

3.2.2 mXbar: Multicast Crossbar

We propose a crossbar circuit, XBAR-C, that uses a matrix-
crossbar layout but has tri-state drivers at crosspoints in-
stead of pass-gates, as shown in Fig. 4(c). The advantage
of this design is that each output wire gets an independent
driver, like XBAR-A, and can thus support forking of flits
within a cycle. We thus trade the area advantage from
XBAR-B by adding more transistors for higher drive-ability.
The matrix-crossbar design still gives us the layout regular-
ity and wire segmentation [38] advantages relative to the
mux-based design. Table 1 shows that XBAR-C achieves a
single-cycle delay like XBAR-A, while the router energy for
forking flits with XBAR-C is 1.1X-0.8X the router energy of
XBAR-B for 1-cast to 4-casts. XBAR-C is thus a practical
design for forking flits, and we use it in the FANOUT router,
referring to it as mXbar in the rest of the paper.

3.2.3 mSA: Multiport Switch Allocation

We show the design of our multiport switch allocator in
Fig. 4(d), which enables an input port to gain access to
multiple output ports of the mXbar in the same cycle. In
this example, inport Inj requests outports N, S, and W, and
is granted N and S. At the end of mSA, the winner of an
output port is granted a free VC for the next router from a
queue of free VCs [23].

3.3 Single-cycle FANOUT Router

3.3.1 Background

Single-cycle router pipelines have been proposed in the
past [24,25,31] for unicast flits. In these designs, the router
pipeline on the critical path reduces to just Switch Traversal
(ST). The basic idea in these designs is to pre-allocate the
crossbar switch before the actual flit arrives, to give it a
direct access to the crossbar, thereby bypassing the buffering
stage. We attempt to design such a pipeline for multicast
flits. To the best of our knowledge, no prior research has
attempted to extend buffer bypassing for multicasts, which
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is essential for meeting the delay/energy limits of an ideal
broadcast network.

3.3.2 Pipeline Stages

We start by enumerating the various pipeline stages in
the FANOUT router, and then start folding stages over each
other to ultimately result in a single pipeline stage for mul-
ticast flits, as highlighted by Fig. 5. This FANOUT pipeline
is for the request message class10 of the network. Response
messages use the FANIN pipeline (Section 4.5).

Step 1: Original pipeline (Fig. 5(b)). The unopti-
mized FANOUT router pipeline is the same as a baseline
fork@rtr design, though the actual components (routing al-
gorithm, switch allocation algorithm, and crossbar circuit)
differ. At Router 1, the flit goes through the switch (mST)
and link (LT) to arrive at Router 2. It gets buffered (BW),
performs routing (wRC) in parallel, then places a request for
multiple ports of the switch (mSA), forks through the switch
(mST), and traverses the link (LT) to the next router. The
critical path delays for each are shown in Fig. 5(b), obtained
from RTL implementation of the FANOUT router in 45nm
and synthesizing for a 2GHz clock.

Step 2: Lookahead routing (folding mSA and wRC)
(Fig. 5(c)). The multiport switch allocation (mSA) cannot
be performed until the output port requests for the flits are
known, which are only available after Whirl route computa-
tion (wRC). We leverage lookahead routing [17] and perform
wRC one hop in advance (i.e., the wRC at the current router
determines the output ports at the next router, allowing an
incoming flit to place a request for the switch as soon as it
arrives). Thus BW, wRC, and mSA can all be done in par-
allel. However, performing wRC for the next router is not
as trivial as in a unicast case because multicast flits could
have multiple next routers if they are forking at the current
router. To perform routing one hop in advance, the current
router needs to perform wRC for all output ports out of
which the flit will fork. Thus in a 5x5 router, every input
port needs to maintain four wRC blocks, one for each output
port assuming no u-turns. The power and area overhead for
these 20 Whirl blocks was found to be less than 1% of that of
the total router because it is very simple combinational logic
(Fig. 3(a)). The output port request generated by the Whirl
block for output port A is embedded in the corresponding
flit going out of port A.

Step 3: Bypassing (wRC and mSA before flit ar-
rival) (Fig. 5(d)). We can shrink the flit pipeline at the
router to one cycle if we perform wRC and mSA before the
flit arrives. To do so, we must examine what information is
required by wRC and mSA. wRC needs to know the output
ports out of which the flit will fork (5-bit vector) to activate

10The router buffers are partitioned into separate virtual
message classes such as requests, responses, etc. to avoid
protocol-level deadlocks.

the corresponding Whirl blocks at the input port. It also
needs to know the 2-bit ‘LTB,RTB’ to determine the route.
mSA needs to know only the output ports request. To real-
ize this pipeline, the flit at Router 1 sends these 7 bits as an
advanced request11 (AR) to Router 2, while it traverses the
mXbar (mST) at Router 1. This enables Router 2 to per-
form wRC and mSA while the flit performs link traversal. If
mSA at Router 2 is successful in granting all output ports
to the flit, it does not get buffered and uses the single-cycle
pipeline in Fig. 5(d). This allows FANOUT to eliminate the
buffer write and read energy, shown earlier in Table 1, from
the router traversal. The mXbar is critical for achieving this
one-cycle pipeline; otherwise a multicast flit will be forced to
get buffered and spend multiple cycles to go out one by one.
If mSA grants only a subset (or none) of the the ports, the
flit gets buffered and starts mSA for the remaining ports, as
shown in Fig. 5(e).

A flit that performs mST (either via bypassing or from
the buffers) needs to send ARs out of all output ports that
it will fork out from, as shown in Fig. 5(a). These advanced
request bits are ready at the end of wRC and mSA.

3.4 Ideal 1-to-M Traversal
In summary, Whirl sets up load-balanced paths for multi-

cast flits to lower congestion, while the mXbar and advanced
requests together allow flits to perform single-cycle forking
at routers without getting buffered, thereby incurring only
wire (mST, LT) delay/energy from the source to all desti-
nations and meeting our definition of an ideal traversal.

4. FANIN: FLOW AGGREGATION

IN-NETWORK
In this section we present FANIN, our approach to push

the energy-delay-throughput of aggregating M-to-1 messages
in the network towards the ideal.

We will use the term “M:1” to refer to the communication
flow in which M cores generate one response message each
for the same destination core and memory address, acknowl-
edging the preceding multicast. For convenience, we will use
the term ACK for each individual flit in the M:1 flow, though
in principle it is not restricted to just acknowledgements and
can work for tokens, barriers, etc.

ACKs for an M:1 flow are aggregated at network routers,
as they move towards their common destination. Each ACK
flit carries a log(N) bit ack count, where N is the maximum
number of ACKs that could be received12. In addition, a
single-bit ack bit is set if the flit is an ACK. To aggregate

11These bits sent in advance were called lookaheads in [24,25]
and advanced bundles in [23].

12Response flits in certain protocols like Token Coherence [29]
already carry such a counter, because cores can respond with
multiple tokens at a time.
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ACKs, one of the ACK flits is dropped, and its ack count

added to the ack count of the other flit.

4.1 Background
M-to-1 communication flow occurs in shared memory co-

herence protocols, in the form of acknowledgements [1, 11]
or tokens [29, 33], and in message passing domains, such as
barrier synchronization [4, 10, 18, 39]. There has been no
on-chip solution to tackle the former, to the best of our
knowledge. In the past, MIMD machines like IBM RP3 [32]
and NYU Ultracomputer [19] used network switches to com-
bine memory requests (loads/stores/fetch-and-add) to the
same memory location and added extra buffers to track
the responses. More recently, aggregation via the network
fabric has been researched for implementing barrier syn-
chronization [4, 10, 18, 22, 39]. These proposals essentially
implement a wired OR, either by relying on an ordered
FAT-tree topology in the off-chip domain, such as in IBM
Blue Gene/L [18], or 1-to-M connectivity via on-chip global
broadcast wires [4, 22], or all-to-all connectivity between
special-purpose registers among a cluster of nodes [10, 39].
These works also add tables to track barriers, thus plac-
ing a limit on the number of active barriers at any point in
time and adding area/power overheads. Our FANIN is much
more general purpose because we target an unordered, dis-
tributed on-chip network with any kind of M-to-1 control
flow (acknowledgements, tokens, barriers), without adding
dedicated 1-to-M wires or extra storage structures.

4.2 Walk-through Example
In Fig. 6(a) we illustrate how ACK O injected from NIC

12 with an ack count of 1 merges with ACK I (which is thus
dropped), then merges with E, F, and finally H. H is sent
up to the NIC with an ack count of 15, instead of the NIC
having to wait for individual ACKs from all the 15 senders.

Realizing this ideal aggregation of 15 flits into 1 is non-
trivial. The reason is that ACKs are generated by the dif-
ferent cores at different times and take a different number
of cycles to reach the next routers, during which time other
ACKs for the same M:1 flow might have already left that
router. The rest of this section describes how FANIN solves
these issues to realize an ideal M-to-1 aggregation network.

4.3 rWhirl: Synchronized Routing
We first ensure that all ACKs for a particular M:1 flow

follow a synchronized route. This enables ACKs at inter-
mediate routers to know (1) which ports they need to poll
for other ACKs, and (2) when all possible aggregations at
that router complete. For instance, in Fig. 6(a), the ACK
at the injection port of Router 5 only needs to poll input
ports West and North; once it merges ACKs from both di-
rections, it can move ahead. It does not need to wait for an
ACK from the South port because ACK B from Router 1
will reach the destination via Router 2, and not Router 5,
in this particular routing policy.

While a fixed route (like XY) by all ACKs serves this pur-
pose, it would result in heavy congestion across the Y links
leading to the destination because the destination would be-
come a hot-spot node. Instead, we make all ACKs for an
M:1 flow follow the reverse path of the 1-to-M Whirl route
they were on, as shown in Fig. 6(b). We term this as reverse
Whirl or rWhirl. This is realized by embedding the received
Whirl route (4-bit LTBW , LTBN , LTBE , LTBS) from the
broadcast into the response flit. Each router on the response
path can now decode these bits to compute the ‘LTB, RTB’
for each direction for the original broadcast and estimate the
output port for the ACK, as shown in Fig. 6(b)13.

Deadlock avoidance. rWhirl allows all possible turns,
and thus requires a deadlock avoidance mechanism. We
avoid deadlocks by using the same VC partitioning tech-
nique as we did for Whirl (see Fig. 3(b)). All ACKs that
start going South are forced to use VC-a, and not VC-b,
until they turn, after which they can use any VC. ACKs go-
ing in other directions can use any VC. This implements a
deadlock-free South-last turn model within VC-b, and guar-
antees deadlock freedom.

4.4 FANIN Flow Control/Protocol

4.4.1 master ACKs

Who does the aggregation? The first ACK that arrives
at a router is responsible for aggregating ACKs for that M:1
flow at that router, and we call it the master ACK. In most
cases, the first ACK to arrive at a router will be at the injec-
tion port. This is because any multicast that went through

13In certain protocols such as HyperTransport [11], the 1:M
source and the M:1 receiver are not the same. This is not
a problem because rWhirl essentially determines a load-
balanced and synchronized route for the ACKs. They do
not have to follow the exact reverse route of the broadcast.
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this router would have delivered the multicast flit to the lo-
cal NIC earlier than delivering it to the neighbor’s NIC, and
consequently the response ACKs would follow that order.
Exceptions to this could occur due to congestion at cache
controllers and cores. This master ACK gets buffered on
arrival. In parallel, it determines which input ports it needs
to poll based on the rWhirl route and the router’s location
relative to the destination, as shown in Fig. 6(b).
How is the aggregation done? The master ACK flit
checks the incoming links at its polling ports every cycle.
It does not poll flits already buffered in the router, which
will be explained later. Whenever a new ACK arrives at the
router (indicated by the ack bit) at an input port, its ack id

(see Section 4.4.2 for details) is compared against all master
ACKs (from different M:1 flows) polling this input port. On
a match, the master ACK updates its ack count, and the
flit that arrived is simply dropped. Dropping the flit entails
sending a credit back to the upstream router for the VC it
was going to be buffered in.
What happens to polling ports after aggregation?
Once the ACK flit aggregates a flit from an input port, it
does not remove that port from its polling list to account for
inefficient aggregation at upstream routers. For instance, in
Fig. 6(a), if Router 8 failed to aggregate ACK O, both ACKs
O and I would arrive at Router 4 from the North port, so
Router 4 should continue polling this port.
Can there be multiple masters for the same M:1 flow
at a router? If an ACK became a master, it means there
is no other ACK for the same M:1 flow at this router, else
there would have been an earlier master that would have
aggregated and dropped it on arrival. Thus, master ACKs
do not need to poll buffered flits within the router. There
is, however, the corner case of two ACKs arriving in the
same cycle from different input ports, in which case they
would both become master ACKs if no other master ACK
was looking out for them. To handle this special case, we
(a) make each input port store the VCid of the ACK flit
that arrived in the previous cycle, and (b) give ports an
arbitrary static priority: Inj > W > N > E > S. In the first
cycle after getting buffered, the master ACKs check the last
arrival VCs at their polling ports (in addition to polling the
links). If they find a match, the master ACK with higher
priority aggregates the ACKs with lower priorities, and the
latter VCs at the respective ports are made free.
How long should master ACKs wait at a router?
Here, we describe a solution for scenarios in which every
node (except the requester) responds with an ACK [1, 11].
For cases when this is not true, such as multicasts with few
destinations or certain coherence protocols [26, 29], an op-
portunistic aggregation by master ACKs, with no explicit
waiting is a better alternative.

The time of arrival of a particular ACK at an intermediate
router depends on the location of this router relative to the
source of the ACK. The master ACK at a router should
wait to aggregate the ACK from the router furthest from
it, before it proceeds. Fig. 6(c) shows the heuristic we use
to compute this waiting time: the time for the ACK from
Router 12 to arrive at Router 5 will be greater than or equal
to the zero-load, to-and-fro delay of the preceding broadcast,
and the current ACK (i.e., hops × (2 + 2)), assuming two
cycles per hop14 for the broadcast and ACK flits.

14See Section 3.4 and Section 4.6.

The ACK from the local NIC should be the master ACK
for the waiting time heuristic to hold. If an ACK arrives
from some other port and becomes the master ACK, this
means the NIC ACK has not yet arrived or has already left
after waiting. This breaks the heuristic’s assumptions, so
there is no point for this new ACK to wait. The master ACK
at the injection port, on arrival, computes furthest hops,
the number of hops between the current router and the
furthest router reachable via its polling ports via minimal
hops (which is Router 12 in Fig. 6(c)). The furthest router
would be at the corner, and is thus easy to compute us-
ing the current coordinates and polling ports. It then waits
for furthest hops×4 before starting switch allocation. The
master ACKs at all other ports do not wait, and instead per-
form opportunistic aggregation by polling input links every
cycle until they get to use the switch.

The policy of making ACKs wait at routers, while increas-
ing the chances of aggregating other ACKs (thereby reduc-
ing traffic), offers a trade-off because waiting ACKs occupy
router buffers, throttling new flits from entering the router.
Moreover, inefficient waiting could lead to a delayed com-
pletion of the preceding request. We evaluate our heuristic
in Section 5.2.

4.4.2 Comparison Logic for Aggregation

Two ACKs belonging to the same M:1 flow are identified
by identical destinations (6 bits in 8x8 mesh) and memory
addresses (32-40 bits). Comparing 38-46 bits at each router
at multiple ports is an overkill in terms of area and power,
and not very scalable. Hashing the address to fewer bits
adds the risk of conflicts during aggregation.

We solve this by leveraging the fact that at any point in
time, the number of unique M:1 flows is limited by the num-
ber of outstanding multicasts, which in turn is limited by the
size of the MSHR at each multicasting cache/directory con-
troller. In our design, each multicasting controller15 main-
tains a pool of multicast ids called m ids. Every time a new
multicast is sent, it is assigned a unique m id and the con-
troller marks this m id as busy. The number of busy m ids
at the controller represents the number of multicast requests
for which responses have not yet been received.

On receiving the multicast, the responding controllers em-
bed the same m id in the ACKs. This ensures that all
ACKs belonging to an M:1 communication will have the
same ack id = [dest id, m id] and thus this field can be com-
pared for aggregation instead of addresses.

When the multicasting controller receives all expected ACKs,
or an unblock16, it frees the corresponding m id, and can re-
issue it to future multicasts. Thus at any point in time the
ack id is unique to a particular M-to-1 communication flow.

The maximum number of unique m ids required at each
multicasting controller is equal to the number of MSHR en-
tries at the controller. In a 64-core CMP, the dest id is 6
bits, while the typical number of MSHR entries is less than
32 [1,11], giving an m id of 5 bits. This results in an ack id

of 11 bits. We can also choose to have fewer m ids than the
number of MSHR entries (to reduce the ack id bits further).
In this case, if all m ids are busy, and the multicasting con-
troller needs to send out a new multicast, it assigns it an

15This could be the requester [1,29] or the home node [11,26].
16In protocols like HyperTransport [11], all ACKs go to the
requester, which then sends an unblock message to its home
node, which is the multicasting controller.
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m id of -1. ACKs with m id of -1 are not aggregated in the
network, thus maintaining correctness17.

4.5 Single-cycle FANIN Router
FANIN’s regular pipeline is shown in Fig. 7(b), along with

the synthesized critical path delays for the rWhirl (rRC) and
ACK aggregation (AA) steps. We discuss Router 2 with-
out any loss of generality. We define critical stages as the
pipeline stages that add to the number of cycles per hop for
the aggregated ACKs. The master ACK at Router 2 always
needs to get buffered because it performs the aggregation
and needs to wait for incoming ACKs. However, this part of
the pipeline is overlapped by the flit arrival from Router 1 for
which this master ACK is waiting, and is thus non-critical.
Once the flit from Router 1 arrives, it gets aggregated and
dropped, and the master ACK at Router 2 starts switch al-
location (SA). It then performs switch traversal (ST). These
two router pipeline stages are critical. We leverage bypass-
ing, sending an advanced request (AR) ahead of the regular
flit, similar to Section 3.3.2, to shrink the number of critical
stages in the router to one, as shown in Fig. 7(c). The AR in
this scenario needs to carry the 11-bit ack id, 1-bit ack bit,
and 6-bit ack count. This AR can perform the aggregation,
while the actual flit traverses the link (and is then dropped
the next cycle on aggregation). This optimized ACK traver-
sal is shown in Fig. 7(c) and presents two critical stages
per hop for ACKs (one cycle in router, one in link). This
FANIN pipeline is used for the response message class of the
network. The request message class will follow the FANOUT
pipeline described earlier in Section 3.3.2.

4.6 Ideal M-to-1 Traversal
In summary, FANIN enables ACKs from the four quad-

rants of the chip to reach the destination router in a synchro-
nized manner (using rWhirl) as four aggregated ACKs that
incurred 1-cycle router and 1-cycle link critical delays at all
intermediate hops (using intelligent waiting and advanced
requests). At the destination, these ACKs get opportunisti-
cally aggregated into one ACK and proceed to the NIC, thus
reducing network load from M to a single ACK and pushing
energy-delay-throughput to the ideal.

5. EVALUATION RESULTS
For all our evaluations, we perform full-system simula-

tions using Wind River Simics [2]. We model FANOUT and

17GETS requests in Token Coherence [29] are also assigned
an m id of -1 since MSHR entries can become free before all
tokens are received in some cases.

FANIN in detail in the Garnet [5] on-chip network simula-
tor within the GEMS [30] infrastructure. This simulation
framework provides a cycle-accurate timing model. We use
Orion 2.0 [21] for estimating the power consumed by the
components of the network.

5.1 Target System and Configuration
We model a 64-core tiled CMP with the parameters shown

in Table 2. Our network and technology parameters are
shown in Table 3 and Table 4. The number of buffers/VCs
in all configurations is set by the buffer turnaround time
within the request/response message classes in the baseline.
For optimizing just FANOUT+FANIN relative to the ideal,
we achieve similar results with 2/3rd the buffer/VC space.

We evaluate the parallel sections of the SPLASH-2 [3]
and PARSEC [8] benchmarks for all configurations. Each
run consists of 64 threads of the application running on our
CMP. We run multiple times with small random perturba-
tions to capture variability in parallel workloads [7], and
average the results.

5.1.1 Coherence Protocols

We run two broadcast-based coherence protocols, one de-
rived from HyperTransport (HT) [11], and one from Token
Coherence (TC) [29]. In HT, all cores send requests as uni-
casts to a stateless directory home node (ordering point),
which forwards it to all other cores via a broadcast. The
requester collects all acknowledgements, and then unblocks
the home node via a unicast. We enhance the protocol with
an optimization that merges multiple read requests to the
same cache line at the home node when those requests are
competing for the same unblock message. This optimiza-
tion reduces the additive queueing delay incurred by these
waiting requests, and also avoids broadcasting each of them,
lowering the application runtime of the baseline network by
39.6% on average. In TC, all cores broadcast their requests,
and only cores with tokens respond. Ordering races are re-
solved by broadcasting persistent requests. Because not all
nodes send back ACKs in TC, master ACKs in FANIN do
not wait at routers, and instead perform opportunistic ag-
gregation of the tokens. The proportion of 1-to-M and M-to-
1 flows in both these protocols, shown earlier in Fig. 1(a), is
important to keep in mind when understanding the results.

5.1.2 Baseline Network

We model a baseline network with hardware multicast
support, similar to VCTM [15], bLBDR [34], MRR [16],
and RPM [37], with routers forking flits (BASE fork@rtr)
as they move towards their destination. The baseline broad-
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Table 2: CPU and Memory
Processors 64 in-order SPARC
L1 Caches Private 32 kB I&D
L2 Caches Private 1MB per core

Coherence Protocol (1) HyperTransport [11]
(2) Token Coherence [29]

DRAM Latency 70ns

Table 3: On-chip Network
Topology 8x8 mesh

Router Ports 5
Ctrl VCs/port 12, 1-flit deep
Data VCs/port 3, 3-flit deep

Flit size 128 bits
Link length 1mm

Table 4: Process
Technology 45 nm

Vdd 1.0 V
Frequency 2.0 GHz

cast follows an XY-tree routing algorithm, as explained in
Section 3.1. The pass-gate matrix-crossbar from Fig. 4(b) is
used in the baseline for its low power and area.

5.2 Evaluation Results
Runtime with FANOUT and FANIN. We start by

comparing the performance benefits of FANOUT and FANIN,
with all their routing, flow-control, and microarchitecture
optimizations included, against the IDEAL, which was shown
in Fig. 1(b). Fig. 8(a) shows the normalized full-system ap-
plication runtime with FANOUT and FANIN for both pro-
tocols. With FANOUT, HT shows 10% improvement, while
TC shows 9.7% improvement, on average. With the addi-
tion of FANIN, we see 18.4% runtime reduction on average
for HT, and 11.4% for TC. This can be understood by the
message count breakdowns in Fig. 1(a). HT has 14.1% M-
to-1 injections, each of which translates to 63 flits, leading
to bursty congestion. FANIN thus has a higher impact on
performance. In contrast, TC has less than 2% M-to-1 traf-
fic, which is why FANIN adds only 1-5% speed-up relative
to FANOUT across the benchmarks.

These results show that the progress of applications is
limited more by ACKs in HT, and by broadcasts in TC.
FANIN and FANOUT respectively provide network solu-
tions to remove these bottlenecks and allow the application
to approach its runtime on the ideal networks. Compared to
IDEAL, FANOUT+FANIN is off by less than 1% for both
HT and TC.

Network latency with FANOUT and FANIN. The
full-system runtime behavior seen earlier can be understood
by looking at the network latency impact in Fig. 8(b). The
FANOUT design reduces average network latency by about
14% for HT and 50% for TC. This is again due to 45-55%
broadcasts in TC, as opposed to 11-17% broadcasts in HT.
The average latency of broadcast packets was observed to go
down by 40% on average in both HT and TC with FANOUT.
However, the dominance of bursty ACKs in HT increases its
average latency across all packets. The addition of FANIN
enables HT to observe a 50% reduction in network latency.
FANOUT+FANIN reduce the average network latency to
about 20 cycles for both HT and TC, which roughly trans-
lates to 2.5 cycles per hop18. FANOUT+FANIN thus en-
ables each network packet to incur just 0.5-cycle more la-
tency per hop on average than the minimum 2-cycle per
hop datapath.

Network energy with FANOUT and FANIN. Fig. 9
shows the breakdown of network energy with FANOUT and
FANIN for HT and TC. The energy consumed by the AA
logic (comparators and adders) in FANIN is also accounted
for. For HT, the overall network energy actually goes up
by 4.3% with FANOUT. The reason for this increase can
be seen from the relative breakdown of buffer and crossbar
energy. Buffer reads do go down with FANOUT (due to

18Assuming an average hop count of eight in an 8x8 mesh.

the single-cycle pipeline enabled by the mXbar), but only
by 3.9% because the buffer accesses are dominated by the
ACKs in HT. The crossbar energy, meanwhile, goes up by
10.1% because the mXbar consumes more energy than the
baseline crossbar for unicasts, as explained earlier in Table 1.

When FANIN is added, however, the network energy goes
down by 60.2% on average. The advantage of FANIN is not
only the reduction of traffic, leading to fewer buffer, cross-
bar, and link traversals, but also the reduction of contention,
thereby complementing FANOUT’s optimizations.

For TC, the story is different. The dominance of broad-
casts means that FANOUT gives a 19.7% reduction in en-
ergy, primarily due to a reduction in buffer reads (due to
the mXbar) and buffer writes (due to multicast bypassing).
FANIN lowers the energy further by 2%.

Compared to the IDEAL in energy19, FANOUT+FANIN
is off by 9.6% on average for both HT and TC, as opposed
to 32.1% in the baseline. If we reduce the number of VCs
by 2/3rd, to satisfy turnaround in FANOUT+FANIN rather
than baseline, FANOUT+FANIN is 7.9% off IDEAL energy,
while still less than 1% off IDEAL runtime.

Impact of components of FANOUT. In Fig. 10(a), we
show the effect on full-system runtime of stand-alone com-
ponents of FANOUT (Whirl, mXbar, bypass). Whirl shows
4% runtime savings for nlu and fluidanimate in HT and 6%
for lu in TC. These are applications that have 1.3-2X higher
injection rates than the others, and thus benefit from a load-
balanced network. For the other applications, the XY-tree
of the baseline does as well as Whirl. mXbar shows about 5-
10% runtime reduction in TC for most benchmarks. In HT,
nlu, canneal and swaptions benefit from mXbar but other
benchmarks do not because the performance starts getting
limited by the ACKs. Buffer bypassing by itself shows 3-4%
runtime improvement in average in both HT and TC. With-
out the mXbar, flits need to get buffered to fork out of the
router, and buffers are bypassed only at those routers where
no forks need to occur.

When all three components of FANOUT come together,
flits follow load-balanced paths, fork through the mXbar,
and avoid getting buffered, resulting in a 10% improvement
in runtime on average, which is higher than what any one
technique provides.

Impact of components of FANIN. We discuss the im-
pact of FANIN on HT in Fig. 10(b). We first evaluate the
performance of FANIN with opportunistic aggregation (i.e.,
with no waiting). This results in a 6.9% runtime improve-
ment. The ratio of received-to-injected ACKs goes down to
0.31 on average, which means one-third of the ACKs for an
M:1 flow get aggregated.

Next, we add our heuristic of waiting for furthest hops×4
cycles. The ideal ratio of received-to injected ACKs should
be 1/63 (all cores except the requester send an ACK) =

19The energy consumed in the ideal networks is just
wire/datapath energy, i.e. ST and LT.

80
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:21:30 UTC from IEEE Xplore.  Restrictions apply. 



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

ba
rn

es fft lu nl
u

ra
di

x

w
at

er
- n

sq

w
at

er
-s

pa
tia

l

bl
ac

ks
ch

ol
es

ca
nn

ea
l

flu
id

an
im

at
e

sw
ap

tio
ns

x2
64

A
V

E
R

A
G

E

ba
rn

es fft

fm
m lu nl
u

ra
di

x

w
at

er
-n

sq

w
at

er
-s

pa
tia

l

bl
ac

ks
ch

ol
es

ca
nn

ea
l

flu
id

an
im

at
e

sw
ap

tio
ns

x2
64

A
V

E
R

A
G

E

SPLASH-2 PARSEC SPLASH-2 PARSEC

AMD HyperTransport Token Coherence

N
or

m
al

iz
ed

 A
pp

lic
at

io
n 

R
un

tim
e 

FANOUT IDEAL 1-to-M FANOUT+FANIN IDEAL 1-to-M + M-to-1
Better 

BASE_fork@rtr 

(a) Full-system application runtime (normalized against BASE fork@rtr)

0

5

10

15

20

25

30

35

40

45

50

55

b
a
rn

e
s ff
t

lu

n
lu

ra
d
ix

w
a
te

r-
n
s
q

w
a
te

r-
s
p
a

ti
a
l

b
la

c
k
s
c
h
o
le

s

c
a
n
n
e
a

l

f l
u
id

a
n
i m

a
te

s
w

a
p
ti
o
n

s

x
2
6
4

A
V

E
R

A
G

E

b
a
rn

e
s ff
t

fm
m lu

n
lu

ra
d
ix

w
a
te

r-
n
s
q

w
a
te

r-
s
p
a

ti
a
l

b
la

c
k
s
c
h
o
le

s

c
a
n
n
e
a

l

fl
u
id

a
n
im

a
te

s
w

a
p
ti
o
n

s

x
2
6
4

A
V

E
R

A
G

E

SPLASH-2 PARSEC SPLASH-2 PARSEC

AMD HyperTransport Token Coherence

A
v
g

 N
e
tw

o
rk

 L
a
te

n
c
y
 (

c
y
c
le

s
) 

BASE_fork@rtr FANOUT FANOUT+FANIN

Better 

(b) Average network latency

Figure 8: Impact of FANOUT and FANIN on performance.
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(a) Network energy for HyperTransport (normalized against
BASE fork@rtr)
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(b) Network energy for Token Coherence (normalized against
BASE fork@rtr)

Figure 9: Impact of FANOUT and FANIN on network energy.
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Figure 10: Impact of routing and flow-control components of FANOUT and FANIN.

0.015. However, because we do not perform any waiting at
the destination router, the destination NIC should receive
four ACKs, instead of 63, making the best achievable ratio

= 4/64 = 0.0625. We observe that the received-to-injected
ACKs goes down from 0.31 to 0.065 with our heuristic, which
is only 4% higher than the best FANIN can achieve. The
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runtime goes down by another 3%. While the waiting heuris-
tic is needed to approach the ideal network’s runtime, higher
wait times degraded runtime because waiting ACKs reduce
available router buffers, and inefficient waiting could delay
request completion.

We also study the impact of rWhirl versus XY routing.
Interestingly, XY performs comparably to, and sometimes
slightly better than, rWhirl for most benchmarks, except nlu
and swaptions. The reason is that XY forces all ACKs to
travel X first, which results in all routers in the North/South
of the destination receiving ACKs from three directions (while
routers in East/West of the destination receive ACKs from
only one direction). If the wait-time is perfect, this should
not matter. However, because it is only a heuristic, the wait-
ing master ACK at the North/South routers in XY ends up
performing 3% more aggregations than in the rWhirl case.
This result highlights that, for ACKs, the waiting and ag-
gregation ratio has a higher impact on runtime than the
load-balancing across network paths.

6. CONCLUSIONS
We present FANOUT and FANIN which approach ideal

energy-delay-throughput for 1-to-M and M-to-1 on-chip traf-
fic, respectively. FANOUT is an in-network forking method-
ology for 1-to-M flows, comprising of a load-balanced rout-
ing algorithm for multicasts, a crossbar circuit that forks
flits at the similar delay/energy as unicasts, and a single-
cycle router. FANIN is an in-network aggregation method-
ology for M-to-1 flows, comprising of a synchronized routing
algorithm for ACKs, an intelligent waiting heuristic for ef-
ficiency, and a single-cycle router. We demonstrate that
FANOUT and FANIN can provide network scalablility to
shared memory coherence protocols that frequently use broad-
casts and wide multicasts. The optimizations we propose,
however, are much more general, and can also be ported to
enhance user-level messaging systems that use 1-to-M and
M-to-1 communication.
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