
Locality-Oblivious Cache Organization
leveraging Single-Cycle Multi-Hop NoCs

Woo-Cheol Kwon
Department of EECS, MIT

Cambridge, MA 02139
wckwon@csail.mit.edu

Tushar Krishna ∗

Intel Corporation, VSSAD
Hudson, MA 01749

tushar.krishna@intel.com

Li-Shiuan Peh
Department of EECS, MIT

Cambridge, MA 02139
peh@csail.mit.edu

Abstract
Locality has always been a critical factor in on-chip data
placement on CMPs as accessing further-away caches has in
the past been more costly than accessing nearby ones. Sub-
stantial research on locality-aware designs have thus focused
on keeping a copy of the data private. However, this compli-
cates the problem of data tracking and search/invalidation;
tracking the state of a line at all on-chip caches at a directory
or performing full-chip broadcasts are both non-scalable and
extremely expensive solutions. In this paper, we make the
case for Locality-Oblivious Cache Organization (LOCO), a
CMP cache organization that leverages the on-chip network
to create virtual single-cycle paths between distant caches,
thus redefining the notion of locality. LOCO is a clustered
cache organization, supporting both homogeneous and het-
erogeneous cluster sizes, and provides near single-cycle ac-
cesses to data anywhere within the cluster, just like a private
cache. Globally, LOCO dynamically creates a virtual mesh
connecting all the clusters, and performs an efficient global
data search and migration over this virtual mesh, without
having to resort to full-chip broadcasts or perform expen-
sive directory lookups. Trace-driven and full system simu-
lations running SPLASH-2 and PARSEC benchmarks show
that LOCO improves application run time by up to 44.5%
over baseline private and shared cache.

Categories and Subject Descriptors C.1.2 [PROCESSOR
ARCHITECTURES]: Multiple Data Stream Architectures
(Multiprocessors)

∗ This work was carried out while Tushar Krishna was a graduate student at
MIT

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’14, March 1–5, 2014, Salt Lake City, Utah, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/2541940.2541976

Keywords Multiprocessor; CMP Cache Design; Cache Co-
herence; Locality; Network-On-Chip

1. Introduction
Chip Multi-Processors (CMPs) have become mainstream in
recent years, providing increased parallelism as core counts
scale. While a tiled CMP with a mesh Network-on-Chip
(NoC) is widely accepted to be a scalable architecture for the
many-core era [21, 22, 39, 43], on-chip cache organization
and coherence are far from solved problems.

Private and shared LLCs (Last Level Caches) form two
extremes of the design spectrum for cache organization. Pri-
vate caches offer the fastest access to data (∼10-20 cycles
for L2) but lead to overall reduction in cache capacity due
to replication, and make invalidations expensive (via broad-
casts or precise multicasts if all sharers are tracked). Shared
caches offer the best utilization of cache capacity, but every
access becomes remote, bringing in on-chip network delay
which conventionally increases as hop count scales with core
count. Almost all works on scalable cache organization try to
mimic the capacity of a shared cache and the performance of
a private cache. Prior approaches fundamentally boil down
to keeping data as close as possible to the requesting core,
like a private cache, but minimizing unnecessary replication.
These Locality-Aware approaches include optimized page
placement [3, 10, 14, 15, 19], line placement [12], intelli-
gent replication [7, 13, 46] and clustering [9, 18, 31, 35].

However, we believe that the locality-aware approach is
not just hard (ask any software/OS developer!), but also
fighting a losing battle since private cache capacity is not ex-
pected to increase much while applications are continuously
becoming more heavily multi-threaded with lots of sharing
and larger data sets. Current commercial designs, such as
Intel’s latest Xeon 5500 Series use a single homogeneous
chunk of 8MB L3 cache shared by 4-8 cores which takes 40-
75 cycles to access. Having a large many-ported central LLC
will lead to high delay, area and power penalties, and hence
the approach has been to physically distribute LLC banks
across tiles [7, 13, 30, 46]. At 256 cores, distributing a 16MB
LLC will lead to only 64kB chunks per tile. Moreover, com-

30 31 32 33

20 21 22 23

10 11 12 13

00 01 02 03

Core

L1D$

L2$

L1I$

NIC Router

Dir

Tag Index HNid Offset
Memory Address

Home Node (HN)
in cluster

Inter-cluster: Virtual
Mesh with Private L2

Intra-cluster: Physical
Mesh with Shared L2

Virtual Mesh with SMART (VMS)
created between Home Nodes

Heterogenous ClustersCluster Size = 4x4 Cluster Size = 4x1

1-2 cycle traversal within and across clusters using SMART NoC

Figure 1: Overview of LOCO

plex locality-aware approaches tend to complicate the cache
coherence protocol by adding more states and indirection to
the already non-scalable directory [17, 30, 32, 42] to track
these “intelligently” placed lines on-chip. Global data search
via full-state directories, or full-chip broadcasts are both
non-scalable and expensive. Hierarchical (clustered) cache
designs mitigate the tracking problem since the directory can
track lines at the cluster rather than core granularity. How-
ever, data search now requires multiple indirections (search
within local cluster→ indirection to directory→ forward to
remote cluster→ search within remote cluster→ response).

The underlying premise behind all locality-aware ap-
proaches is the conventional wisdom that accessing a re-
mote cache is expensive. Thus these designs actively opti-
mize both the cache allocation and replacement algorithms
to keep copies of data being used by the core in the local
(private) cache, and to minimize useless replicas that hog
up precious cache space. In this paper, we challenge this as-
sumption, and show that on-chip networks can be designed
in today’s (and future) technology to realize a single-cycle
access to a remote L2, essentially killing the motivation for
keeping data private in the first place.

We introduce Locality-Oblivious Cache Organization
(LOCO). LOCO is a co-design of the on-chip network and
cache-coherence protocol to support a hierarchical, flexible
private-shared cache organization. An overview is shown in
Figure 1. LOCO groups cores into virtual clusters of any
size, sharing a (distributed) chunk of the LLC. Within each
cluster, there can be only one copy of data. We leverage
a recently proposed network-on-chip (NoC) design called
SMART(Single-cycle Multi-hop Asynchronous Repeated
Traversal), that dynamically creates multi-hop paths in the
network and traverses messages within a single-cycle by us-
ing clockless drivers at each router. SMART enables near
single-cycle access to the home node within each cluster.
LOCO creates a Virtual Mesh with SMART(VMS) between
the home nodes of each cluster, and allows data replica-
tion across the home nodes. Efficient global searches are
performed across the chip by multicasting over the VMS, in-
stead of full-chip broadcasts or expensive full-bit directories.
Creating virtual topologies rather than using fixed, physical

ones provides immense flexibility in choosing the cluster
size at running applications, rather than at design time. To
increase effective on-chip capacity, LOCO allows evicted
data from one cluster to migrate to another, without adding
any complexity to the coherence protocol since there is no
directory tracking the lines across clusters that needs to be
updated. This is in contrast to prior work which has looked
at cache line migration [16] which tends to complicate the
coherence protocol and directory to support migration.

Evaluation results show that LOCO provides much supe-
rior performance over private and shared cache. For 64 cores,
full system simulation shows that LOCO reduces application
run time by 44.5% on average. In trace-driven simulation
conducted for both 64 and 256 cores, LOCO shows scalabil-
ity to higher core counts, giving 17.9% improvement for 256
cores, while the run time reduction for 64 cores is 13.9%.
Further, we show that LOCO can give higher performance
by providing adaptive cluster size according to application
characteristics.

The rest of this paper is organized as follows. Section
2 presents relevant background on SMART NoCs and the
underlying technology. Section 3 presents our LOCO design.
Section 4 reports experimental results. Section 5 reviews
related work, and Section 6 concludes this paper.

2. Background: SMART NoC
A key enabler for LOCO is a network that allows single-
cycle traversals, thereby making an access to a remote L2 no
worse than an access to the local (in tile) L2 within a cluster.
What limits us from designing such single-cycle networks
today? It turns out that it is not the wires themselves. Global
wires (i.e. wires connecting two tiles) with repeaters have
been shown to traverse 10-16mm within 1ns [11, 20, 25, 29]
at technologies today. Assuming a tile-size of 1mm, this
translates to 10 to 16 hops at a GHz clock. As technology
scales, this delay is expected to remain similar1 [29]. This
trend of wires not becoming faster with scaling has often

1 Intuitively, as the feature size goes down, wires become thinner so their
resistance goes up, while their capacitance goes down (assuming wires are
kept at 2.5-3 times the minimum pitch in that technology to mitigate effects
of coupling capacitance), keeping wire delay approximately the same.

been considered a thorn in the flesh, and has been the mo-
tivation for most locality-aware designs. But we argue that
this trend does not hurt us since chip dimensions are ex-
pected to remain similar as well (∼20mm×20mm) due to
yield, and clock frequencies are going to remain constant
due to the power wall. If we couple these two observations
with the trend of same wire delay and smaller tile sizes (with
scaling), we can conclude that future technologies will allow
wires to traverse even more hops within a cycle, making a
compelling case for locality-oblivious designs.

But wire delay is not the end of the story. Even if wires
can allow cross-chip traversals at a GHz, the limiter is the
on-chip network, which multiplexes multiple flows over
the same wire segments, forcing a hop-by-hop traversal via
routers. The best router designs today [38] have been able to
reduce arbitration delay for the crossbar and wire segment to
a single-cycle, leading to 2 cycles per hop (one in the router,
and one on the link). But this still does not help if the data to
be fetched is many hops away on the chip. Adding 1-cycle
dedicated wires [25] across distant routers [28] has been one
approach for reducing network delay, but this comes with the
exorbitant cost of multi-stage arbiters and crossbars at each
multi-port router, thus forcing practical designs to make do
with few physical express links which then pay off only if
the traffic maps well to the topology.

SMART (Single-cycle Multi-hop Asynchronous Repeated
Traversal) [29] is a recent NoC architecture that builds
virtual single-cycle multi-hop paths within the network.
SMART can be overlaid on any topology, but throughout
this paper, we will assume a mesh topology. The reason why
we use SMART, and not a physical express topology like
Flattened Butterfly [28] with LOCO is to enable us to create
virtual meshes over varying cluster sizes. Here, we briefly
explain how SMART NoCs work. We will discuss how we
extend SMART for efficient broadcasts over LOCO’s VMS
in Section 3.2.

SMART replaces conventional clocked drivers on each
router-to-router link by clockless repeaters2. This is shown
in Figure 2a. Now, flits can traverse multiple hops within a
cycle, latched only at the final hop. Whether a flit is buffered
at intermediate routers is controlled by the buffer enable and
crossbar select signals, which are preset one cycle before
the flit arrives. The maximum number of hops that can be
traversed within a cycle is a design time parameter called
HPCmax (Hops Per Cycle) which will be described later.

A typical network traversal is shown in Figure 2b. At
every router, the winner of the arbitration for the switch’s
output port broadcasts a SMART Setup Request (SSR) up
to HPCmax hops via dedicated SMART links. The SSR
carries the length (in hops) up to which the flit wishes to go.

2 As for the energy consumption, clockless repeaters require 14.3% lower
energy than clocked drivers, but there is additional overhead due to multi-
hop data-path and SSR signaling, leading to similar overall energy to con-
ventional NoC [29].

For instance, in Figure 2b, SSRA = 3 indicates a 3-hop path
request from Flit A. Each router arbitrates among the SSRs
that it receives, giving higher priority to local/nearer flits
over farther flits, and sets up the buffer enable, and crossbar
select signals appropriately. In the next cycle, the actual
flits traverse the switches and links, bypassing intermediate
nodes, potentially going all the way through HPCmax hops
before stopping and being buffered. This process of sending
SSRs that pre-set routers a cycle before flits arrive continues
until the flit arrives at its destination.

We define SMART-hop to be dhops to dest/HPCmax e,
i.e. the minimum number of multi-hop single-cycle traver-
sals required to reach the destination. The best case latency
for a SMART-hop is 2 cycles (SSR followed by ST-LT)3.
But it could be more depending upon contention because
a flit could be stopped prematurely, before it completes its
SMART-hop, and/or because it could take multiple cycles
within the router before it wins the switch. Figure 2c illus-
trates an example of contention, where Router 31 arbitrates
between the SSRs of Flit A and Flit B, prioritizing the latter
to use the output link, and prematurely buffering the former.
In the next cycle, Flit A will arbitrate for the local switch,
and should it win, continue its traversal by sending a fresh
SSR.

In this work, we use the simpler SMART 1D design [29]
which does not allow bypassing at turns, i.e. turning flits
have to stop at the turning router, and send fresh SSRs for
the other dimension4. Thus an X-only and Y-only traversal
takes at least one SMART-hop, while an X+Y traversal takes
at least two SMART-hops as shown in Figure 2b. Each
SMART-hop takes 2-cycles in the best case. Going from one
corner of a 8× 8 mesh to the opposite corner (i.e. 14 hops) ,
with HPCmax=4, takes 4 SMART-hops, i.e. 8 cycles in the
best case. In a conventional NoC, it would take 28 cycles in
the best case.

Derivation of HPCmax. A test chip at 45nm recently
demonstrated that clockless repeated links can go up to
13mm with 1.0V full-swing (16mm with 300mV low-swing)
within 1ns [11]. Post-layout simulations of the synthe-
sized SMART control and data paths in 45nm indicate that
SSR traversal followed by arbitration limits the speed to
9-11mm/ns [29]. In this work we choose 8mm/ns-sized re-
peaters (to allow us to size our clusters as a power of 2
(Section 3.1). At 2GHz, for 1mm×1mm tiles, this gives us a
HPCmax of 4.

3 The best case latency for a conventional state-of-the-art NoC router is also
2 cycles per hop [38] as described earlier. Thus a conventional NoC will
take 2×HPCmax-cycles to cover a SMART-hop in the best case.
4 This is because SMART 1D was shown to be good enough to achieve most
of the performance benefits of SMART for LOCO, without the complexity
of incorporating bypass at turns.

Crossbar

buffer
enable

VCs +
Buffers

West

Core North

East

South

clockless
repeater

bypass

(a) SMART Router Microarchitec-
ture

30 31 32 33

20 21 22 23

10 11 12 13

2

1

3

4

SSRA = 3

SS
R

A
=

2

Flit A

(b) XY Traversal for Flit A with no contention.

30 31 32 33

20 21 22 23

10 11 12 13

2

1 SSRA = 3
SSRB = 21

2
Flit A Flit B

(c) Flit A prematurely stopped at Router 31 due to
contention with Flit B.

Figure 2: SMART: Single-cycle Multi-hop Asynchronous Repeated Traversal [29]

3. Locality-Oblivious Cache Organization
3.1 Local Cache Clustering
LOCO proposes a two-level hierarchical approach for L2
cache organization. At the local level, it first partitions the
CMP into multiple cache clusters. The clusters can be 1D
or 2D meshes of any size, as shown in Figure 1. The size
of the cluster depends on the applications’ working sets
and/or aggregate cache requirement [18, 23, 31, 35], and
is not the focus of this work. However, we do believe that
HPCmax should drive the cluster sizes, since any cache
within HPCmax hops can typically be accessed in 1 (X-only
or Y-only) to 2 (X+Y) SMART-hops (which corresponds to
2 to 4 cycles low-load latency), as explained in Section 2.
Cluster sizes less than HPCmax do not buy us much since
they only result in more replication without lowering access
delay.

Within a cluster, the organization of L2 cache slices is
like that of a distributed shared cache [4] where the mapping
of data to L2 cache slice is statically determined given the
address. As shown in Figure 1, the least significant bits of a
block address (HNid) are used to identify the home node for
fair load balancing as is usually done in shared caches.

Several prior works have proposed fully flexible data
mapping to L2 slices, so that the first requestor of data be-
comes the home node of the data [14, 19, 45]. These ap-
proaches aim at minimizing L2 access latency by placing
data into the local L2 cache in the same tile as the requesting
core, which is especially beneficial when the majority of data
is local (accessed by only one core). In contrast, LOCO em-
ploys static data mapping by address. The rationale behind
this is that, via SMART links, properly sized local clusters
provide low latency to any L2 slice inside the cluster. With
the width and height of the cluster set within HPCmax, ac-
cessing any L2 slice and back mostly takes only 4-8 cycles
in the network, which is of the same order as typical pri-
vate L2 access latencies. Fixed data mapping also allows
only one data copy inside a cluster, which leads to higher
cache hit rate by increasing effective cache capacity. Hence,
LOCO leverages SMART NoC to ensure fast L2 cache ac-

cess within a cluster, while delivering a larger shared cache
that overcomes the lower cache hit rate of small individual
private caches.

Static data mapping within a cluster has an additional
advantage over flexible mapping - when searching for data
in the other clusters, it suffices to check only one candidate
L2 per cluster. Moreover the locations are known a priori
by the address. As a result, static data mapping significantly
reduces the search space, and thus facilitates an efficient
global data search strategy over the entire chip. We will
present this strategy in the next section.

In a distributed shared cache with inclusive L2, any cache
request should first access the L2 cache slice at the home
node. As a result, a directory-based protocol is a natural
choice for maintaining cache coherence within LOCO clus-
ters. Directories at each home node keep track of sharers
only from the local cluster, not across the entire chip. This, in
turn, ensures that the storage overhead for directory is man-
ageable.

3.2 Global Data Search
At the global level, LOCO operates each cluster like a large
private cache. When the first requesting core receives data
from off-chip memory, the data is stored in its local cluster.
Subsequent requestors search for the data on-chip and repli-
cate them in their own local clusters for fast future look-up.

To realize fast access to data in other clusters, LOCO
adopts a broadcast protocol to maintain cache coherence
between clusters. Unlike a directory-based counterpart, a
broadcast protocol sends requests directly to all possible
sharers, thereby saving indirection latency in looking up a
tag directory.

However, broadcasting over the entire chip does not scale
to high core counts, as power consumption and bandwidth
demand grow prohibitively costly with increasing number of
cores. To tackle this scalability problem, we take advantage
of the nice topological property that LOCO’s cluster orga-
nization offers. As already mentioned, the home node loca-
tion within a cluster is fixed by the address. We can create a
Virtual Mesh with SMART links(VMS) between these home

nodes. Since SMART creates virtual multi-hop bypass paths,
different cluster sizes/shapes can result in different VMS
sizes/shapes. Figure 1 shows two 4x4 VMSs, for HNid=11
and HNid=33, in a 64-core system. The highlighted routers
on each VMS are called home routers, while all other routers
along the route are called intermediate routers. Flits only
stop at the home routers, and try to bypass all intermedi-
ate routers by creating single-cycle multi-hop paths between
home routers.

LOCO broadcasts a global cache requests only on a spe-
cific VMS (based on the address), avoiding costly broadcasts
to the entire chip. While the original SMART design only
supported unicasts, we extend it to support broadcasts over
VMSs. We modify two components in each router: route
computation and switch arbitration. Each broadcast uses an
XY-tree multicast routing algorithm, connecting all nodes in
the VMS into a tree, as shown in Figure 3 for the VMS with
HNid=11. At each home router, including the starting home
router, the flit requests for one or more output ports depend-
ing on its location on the tree (which can be identified by
its input port). For example, in the highlighted router in Fig-
ure 3, the flit enters the home router at the East input port,
and places a request for the West, North, South and Ejection
output ports. Each output port arbitrates independently, and
the flit can be granted one or more output ports depending
on contention. Each output port winner then sends out SSRs,
just like in the baseline SMART, except that a broadcast trig-
gers simultaneously SSRs across multiple directions, with
the SSR always set to HPCmax (4 in this design), indicat-
ing a request to stop at the next home router on the VMS. In
the next cycle, the flit performs ST-LT across multiple hops
along one or more directions. Forking of flits does not stretch
timing because select lines of the crossbar muxes automati-
cally fork the flit, and each output link has its own repeater.
In Figure 3, the flit completes the broadcast in 4 SMART-
hops, i.e., 8 cycles in the best case5. Without this broadcast
extension to SMART, 15 copies of the flit would have to be
created and sent from the source as unicasts, increasing con-
tention at routers, adding to network delay.

3.3 Inter-Cluster Victim Replacement (IVR)
To maximize usage of precious on-chip cache capacity,
LOCO leverages other clusters for victim caching. On any
L2 eviction at the cluster home node, a replacement request
is sent to the corresponding home node in a randomly cho-
sen cluster, with the timestamp of its last access. Timestamps
are approximations, implemented by incrementing a counter
every T cycles to reduce area overhead. On receiving this

5 The best case occurs when there is no contention in establishing SMART
paths in the network. In the worst case, the flit might stop at every interme-
diate router, which results in 32 cycles, the delay of a conventional network
with a single-cycle router pipeline. Network contention can further aggra-
vate the delay, forcing the flit to waste more cycles at each router waiting
to win arbitration. This downside of virtual SMART paths (compared to
physical express links) is modeled in our simulations.

E

S

W

NC

1

1

1

1

2

2

2

2

2

3

3

23 34

Figure 3: Example broadcast over a VMS

replacement request, the remote home node selects a local
victim, and compares the timestamp of its victim to that
of the migrating data. The cache line with the older times-
tamp is chosen to be the final victim, and is evicted to other
clusters for another replacement attempt. Choosing target
clusters randomly ensures balanced utilization of L2 cache
resource across the chip.

IVR effectively extends the reach of one cluster into oth-
ers. A cluster can retrieve its data stored in other clusters
in very few cycles, owing to the fast global data search ex-
plained in the previous section. IVR enables cores that heav-
ily use caches to offload to relatively underutilized clusters,
since evicted cache data from more cache demanding cores
are likely to have more recent timestamps.

We avoid deadlock by prohibiting the L2 cache from
waiting for the outgoing queue to the network during IVR.
If the L2 cache finds that the outgoing queue is full, it
sends the victim date directly to the off-chip memory via the
write-back virtual network. There is also a potential livelock
scenario in which the evicted data with the oldest timestamp
loops in the on-chip system endlessly. To prevent this, we
add a replacement counter in the header flit of the migrating
victim data. When this counter hits a certain threshold (4
is assumed in this design), the data is sent back to off-chip
memory.

3.4 Walkthrough Examples
The example system is a 64-core CMP employing a 8 × 8
mesh network, which is partitioned into 4 fixed-size local
clusters, each comprising 4 × 4 tiles; the entire system con-
sists of 2×2 local clusters. For our example, we assume hier-
archical L1/L2 cache organization with inclusive L2 cache.
L1 cache has MSI states for cache coherence, while L2 cache
has MOESI states. We will indicate the specific coherence
state for L1 or L2 caches by State:L1 or L2 respectively.

Figure 4a shows the steps involved in a cache hit. (1)
Node C, initially in I:L1 state, sends a READ request to local
home node H. (2) H, in S:L2 state, returns the data to the
requestor. When a cache hit occurs, the request is handled
within the cluster by a directory-based protocol, tracking the
16 potential sharers of the cluster. Hence, with no network

Read-Hit

M
em

o
ry C

o
n
tro

ller

1. READ Request to L2 cache

C

H

2. Local Home Node
returns READ Data

1

2

(a) Cache Hit Example

Read-Miss

M
em

o
ry C

o
n
tro

ller

1. READ Request to
L2 Cache

R

2. L2 Cache Miss: Broadcast
the Request on VMS

1

3
2

2

4

2

3. Data Owner
returns READ Data

4. Home Node returns READ Data
 to the Requestor

H0 H1

H2 H3

2

(b) READ Miss Example

Write

1. Request for Exclusive Access
2. Broadcast Inv. Request
on VMS

M
em

o
ry C

o
n
tro

ller

W

S

S

H0 H1

H2 H3

3

3 5

6

3. Home Nodes invalidate
Sharers in their Local Clusters

4. Sharers return Ack
to Local Home

5 & 6. Data & Ack return

4

4
2

2

2

1

(c) WRITE Example
Figure 4: Walkthrough Examples

contention, a SMART path enables L2 cache hits to take only
4 cycles at most. Figure 4b shows a case where the READ
request results in a cache miss. (1) The request sent from R
arrives at its local home node H0. (2) H0, in I:L2 state, finds
no matching tag entry at its L2 cache. Now it invokes the
second level protocol by broadcasting the request to other
clusters on the VMS for the address. The request is delivered
to H1, H2, and H3 along SMART links. The request is
sent to off-chip memory as well. (3) To ensure only one
sharer returns the data among multiple shares, the one with
ownership, i.e. in O state (H1 in our example) responds to
the request. For simplicity, this example only shows the case
where the data is cached on-chip. If there is no cached data
on-chip, the memory controller assumes the ownership and
returns the data from off-chip memory. (4) Finally, H0 stores
the data into its L2 cache and transits to S:L2 state. Now it
goes back to the first level protocol, and returns the data to
the requestor, R.

Next, we turn to WRITE operations in Figure 4c. (1)
Node W , in I:L1 state, issues the request for exclusive ac-
cess to its local home node H0. (2) To get exclusive access
right, H0 broadcasts invalidation requests on the VMS. (3)
Home nodes in each cluster invalidate their local sharers by
the first level protocol. Each home node checks a tag direc-
tory to retrieve the local sharer list and invalidates them. (4)
Local sharers in S:L1 state transit to I:L1 state, and send ac-
knowledgements to local home nodes. (5) After invalidating
local sharers, home nodes also transit to I:L2 state. In this
example, H1 was in O:L2 state. It sends the data back to
the home node of the requesting cluster, H0. On receiving
the data, H0 changes its state to M:L2 state. (6) W finally
receives the data, and transits to M:L1 state.

Next we will walk through inter-cluster victim replace-
ment in Figure 5. (1) A new READ request causes cache
replacement at the local home node H0. (2) H0 selects a
victim cache line and sends it to a random destination H1

(3) H1 receives the replacement request, and selects a local
victim cache line via timestamp comparison. If the times-
tamp of the migrated data is newer, H1 stores the migrated

migraton
M

em
o
ry C

o
n
tro

ller

1. READ Request
 to Local Home Node

R

2. Local Home Node evicts
a Victim to Random Destination

3. Compare Migrated Data to
Local Victim. Evict the older one

H0 H1

H2 H3

1

2

3

4

4. If hits Threshold, write
back the Victim

Figure 5: Inter-Cluster Victim Replacement Example

data in its L2 cache and evicts its local victim, migrating it
to a random destination, repeating the entire process. Other-
wise, replacement is denied, and instead the data is steered
to another random node. (4) H3 receives the victim data and
finds that the replacement counter has hit the threshold. It
sends the data as write-back to the off-chip memory.

4. Evaluation
We implemented LOCO and the underlying SMART NoC
(extended for efficient VMS broadcasts) in the C++-based
multi-core simulation tool GEMS [34], which incorporates
the cycle-accurate network model GARNET [1].

We perform trace-driven simulations for both 64-core and
256-core CMPs by feeding traces generated by Graphite [37]6

into GEMS. We also verify LOCO with full-system simu-
lations to provide more realistic evaluation results. As full-
system simulations on GEMS lead to unfeasibly long sim-
ulation time beyond 64 cores, full-system simulations were
conducted only for 64-core CMP to maintain the simulation
time within a week.

We ran SPLASH-2 [44] and PARSEC [8] benchmark
suites. Statistics are gathered at the end of the parallel por-

6 While Graphite provides fast, scalable full-system simulation up to 1000
cores, it does not at the moment provide a cycle-accurate network model
yet, which is crucial for correct evaluation of LOCO.

tion of each benchmark. Simulations run to completion for
the 64-core full-system simulations. However, due to simu-
lation time limitation, our trace-driven simulations simulate
up to 2 billion memory instructions including cache warm-
up sequences.

Table 1: Target System Configuration
Processing Tile

Processing cores 2-way in-order SPARC
Cache line size 32 Bytes

L1 cache Split 16KB I&D, 4-way, 1-cycle access latency

L2 cache Inclusive unified 64KB per each tile
8-way, 4-cycle access latency

Cache coherence MSI for L1 Cache, MOESI for L2 Cache

On-Chip Network
Topology 8x8 mesh for 64-core, 16x16 mesh for 256-core
Routing XY dimension-ordered

Virtual Networks (VNs) 5
Virtual Channels per VN 4

Link channel width 16 Bytes
HPCmax for SMART 4

Memory Interface
Directory 10-cycle access latency

Memory 4 memory controllers (one on each edge)
200-cycle access latency

4.1 Target CMP System
Our target system consists of strictly hierarchical L1/L2
caches. L1 cache is allowed to communicate only with
L2 caches, not directly with other L1 caches. We compare
LOCO with two baseline cache organizations: distributed
private and shared caches. Both baseline cache organiza-
tions and LOCO naturally get performance benefits from
SMART NoCs, since all multi-hop traversals can now take
just a single cycle. By running all cache organizations over
SMART NoCs, we seek to highlight that the performance
improvement over the baselines is strictly due to LOCO.
Cache Coherence. The baseline configurations operate on
a directory-based protocol. When a L1 cache miss occurs,
the request is delivered to the local L2 or the static home
node in the shared and private L2 respectively. Then, the
L2 cache communicates with other L2 caches or memory
controllers to retrieve data from the sharers or to invalidate
all shared data copies. The sharer information of each cache
line is stored in a directory at the home node (shared cache)
or at the memory controller (private cache).

LOCO uses 4x4 clusters (Figure 1), unless specified. We
use directory-based coherence within clusters, and a broad-
cast protocol between clusters. Broadcast protocols assume
an ordered interconnect, but LOCO’s virtual meshes (VMS)
do not provide ordering. As there have been recent proposals
such as Token coherence [33] and INSO [2] for maintaining
global ordering on a mesh topology, we can apply either one
to LOCO. For our evaluations, we used Token Coherence,
where a reader is required to have at least one token, while
a writer must collect all tokens to obtain exclusive access
right. With a L2 cache miss, the request is broadcast to all
relevant L2 caches for the cache line address. On receiving

0

0.5

1

1.5

2

2.5

3

N
o

rm
al

iz
e

d
 R

u
n

ti
m

e

Figure 6: Normalized runtime of distributed private caches
vs. distributed shared caches (64-core).

cache requests, L2 caches respond to the request by return-
ing tokens or data.
Directory Storage and Latency Overhead. One important
parameter impacting evaluation results is directory access la-
tency. For baseline caches, the directory should cover shar-
ers across the entire chip. A naive implementation based on
a bit-vector, for instance, will require additional 256 bits
per each cache line to keep track of sharers for a 256-core
system, which is the same amount of storage needed for
our 32-byte cache line. In contrast, a cluster-based approach
like LOCO requires just a 16-bit vector for tracking sharers
within the cluster. Directory storage overhead is one of key
problems in maintaining scalability of directory-based pro-
tocols. There have been a plethora of suggestions such as
sparse directory [17] or hierarchical directory [42] to mit-
igate directory storage overhead with a trade-off between
performance and scalability. Addressing the scalability is-
sues of a directory-based protocol is beyond the scope of
this paper. Instead, we assume that the home node can ac-
cess its directory in parallel with an L2 cache access without
additional latency. Further we do not consider any adverse
effect of directory storage overhead, which otherwise can be
traded off for larger L2 cache capacity. This is a generous
assumption for the baseline distributed shared cache organi-
zation. LOCO’s inter-cluster broadcast protocol also needs a
directory to record the ownership and related state bits, but
it requires less storage overhead thanks to clustering.

4.2 Evaluation Results: Trace-Driven Simulation
To evaluate the performance of LOCO, we simulated three
cache configurations: LOCO CC represents LOCO with just
local cache clusters managed by a directory-based proto-
col providing global coherence. In LOCO CC, when a L2
cache miss occurs, the request is sent to the directory at the
memory controller to obtain the sharer list. Next, it either
receives a data copy from one of the sharers, or invalidates
all sharers upon writes. It should be noted that the traver-
sals to/from the directory are expedited through the SMART
NoC as well. LOCO CC+VMS adds broadcasting on VMS
between LOCO clusters. Finally, LOCO CC+VMS+IVR
incorporates inter-cluster victim replacement as well.
Private vs Shared Cache. Figure 6 plots the runtimes of pri-
vate caches , normalized to that of shared caches, both run-
ning atop SMART NoCs. It should be pointed out that base-
line shared caches stand to gain more benefit from SMART

NoCs as there is more global, cross-chip traffic compared
to private caches. We observe that the performance of pri-
vate caches is severely degraded due to high cache miss, on
average 2.3 times slower than shared cache. This is due to
small L2 cache slice (64KB),7 assumed, which is arrived at
given our assumption of small 1mm×1mm tiles in a many-
core chip. From here onwards, we thus assume distributed
shared caches as the baseline for comparison, unless stated
otherwise.
L2 Cache Hit Latency. LOCO’s clustering is designed to
provide fast L2 cache access within a cluster, mimicking a
large private L2 cache. Figure 7 shows the additional cache
access latency of each cache configuration over that of a dis-
tributed private cache, i.e. the average latency of the baseline
private cache is deducted from the other configurations.

For the 64-core CMP, as shown in Figure 7a, LOCO adds
2.9 cycle-latency on average for L2 cache access than pri-
vate cache, while shared cache adds 11.5 cycles on aver-
age. Since each SMART-hop takes 2 cycles without network
contention, LOCO requires just 1.5 more SMART-hop-delay
than private cache, while the baseline shared cache needs ad-
ditional 3.7-SMART-hop delay. In other words, since a base-
line private caches takes 1-hop to send a request, and 1-hop
to receive a response, LOCO takes just 3.5-SMART-hop de-
lay on average.

As core counts increase, the benefit of LOCO also in-
creases in comparison with shared cache. For 256-core CMP,
as shown in Figure 7b, L2 access latency of shared cache in-
creases by 4.5 cycles over 64-core CMP, while the latency
of LOCO remains relatively unchanged with a marginal in-
crease of 0.08 cycles.
L2 Cache Miss Rate. High cache hit rate is another goal
of LOCO’s clustering, enabled by the larger cache capacity
of an entire cluster. Figure 8 shows L2 cache misses per
a thousand instructions of various benchmarks, averaged
across the entire simulation time. For 64-core CMP, LOCO
increases L2 cache miss moderately over shared cache, by
0.33% for 64-core CMP and by 0.43% for 256-core CMP.
Combined with L2 hit latency results above, this shows that
LOCO comes reasonably close to our goal of offering low
latency benefits of private cache while delivering the high
cache hit rate of shared cache at the same time.
Impact of LOCO’s Broadcast over Virtual Meshes. Fig-
ure 9 shows the cost involved in searching on-chip cached
data with and without VMS, i.e. the average delay needed
to find on-chip data stored in other clusters. This delay in-
cludes L2 cache access latency, directory latency, and net-
work delay. In LOCO without VMS, the search is based
on a directory protocol, which incurs indirection latency for
directory look-up. As shown in the figures, VMS provide
34.8% reduction in search cost for 64-core, and 39.9% for

7 We note that we used very small-scale working sets in our simulations for
tractability. In a real system, larger L2 caches will not result in significantly
lower cache miss rates with realistic working sets.

256-core, respectively. This reduction is achieved via fast
hardware broadcast support for VMS within SMART NoC
routers, and by avoiding directory look-up latency. We note
that VMS gives higher benefit for 256-core CMP with in-
creased network delay.
Impact of LOCO’s inter-cluster victim replacement. An-
other goal of LOCO is to effectively utilize on-chip cache ca-
pacity to reduce expensive off-chip memory access. LOCO
CC+VMS+IVR is designed to address this. Figure 10 com-
pares the number of off-chip memory accesses of differ-
ent cache configurations, normalized against the baseline
shared cache. IVR shows 15.6% reduction of off-chip mem-
ory access over LOCO CC for 64-core, and 17.9% for 256-
core. Overall, LOCO CC+VMS+IVR almost matches that of
shared cache on average.

It is interesting to note that although shared cache has the
largest effective cache capacity, in disallowing any redun-
dancy across L2 cache slices, LOCO CC+VMS+IVR some-
times outperforms shared cache in reducing off-chip mem-
ory access, for example, barnes and swaptions for 64-core
CMP. This is because LOCO CC+VMS+IVR extends the
limited 8-way set-associativity of shared cache by migrat-
ing victims to other clusters. In a 64-core CMP, for instance,
LOCO effectively creates a 8x4=32-way cache distributed
across 4 distant clusters.
Overall Performance. Figure 11a shows normalized run-
times of each feature of LOCO progressively, against the
baseline shared cache for 64-core CMP with trace-driven
simulations. On average, LOCO CC delivers 5.5 % reduction
in application runtime, LOCO CC+VMS results in further
4.8% reduction, and LOCO CC+VMS+IVR gives an ad-
ditional 3.7% reduction. Overall, LOCO improves runtime
by 13.9%, on average, across all benchmarks. For 256-core
CMP, as shown in Figure 11b, LOCO gives higher runtime
reduction of 17.9%, which shows scalability of LOCO to
higher core counts.
Comparison to LOCO with Alternative NoC Architec-
tures. So far, all simulations for both the baselines and
LOCO run on top of SMART NoC. To demonstrate that
LOCO’s performance is hinged upon SMART NoC’s ca-
pability to instantly establish a virtual, single-cycle multi-
hop path, we turn to evaluation of LOCO with an alterna-
tive NoC architectures: conventional NoC and high-radix
routers. When LOCO runs on top of conventional NoC and
thus without VMS broadcasting, it is essentially reduced to
the baseline clustered cache with increased network latency
by stopping at every intermediate router.

High-Radix routers use the same clockless repeated wire
technology as SMART, to go up to 4 hops within 1 cycle,
and represent an alternate way of leveraging low wire de-
lay. We implement a Flattened Butterfly topology [28] which
adds dedicated physical links from every router to its 1-
hop, 2-hop, 3-hop and 4-hop neighbors to enable LOCO to
run with 4x4 cluster sizes. Each home node is now always

0
2
4
6
8

10
12
14

L2
 H
it
 L
at
e
n
cy
 In

cr
e
as
e

(c
yc
le
s)

Shared Cache LOCO

(a) 64-core CMP

0

5

10

15

20

25

L2
 H
it
 L
at
e
n
cy
 In

cr
ea
se

(c
yc
le
s)

Shared Cache LOCO

(b) 256-core CMP
Figure 7: Increase of L2 access latency over Private Cache

0

5

10

15

20

25

30

C
ac
h
e
 M

is
s
 p
e
r
 1
0
0
0

In
st
ru
ct
io
n
s

Shared Cache LOCO

(a) 64-core CMP

0

5

10

15

20

25

30

C
ac
h
e
 M

is
s
 p
e
r
 1
0
00

In
st
ru
ct
io
n
s

Shared Cache LOCO

(b) 256-core CMP
Figure 8: L2 Cache miss per a thousand instructions according to cache configurations

0

20

40

60

80

100

O
n
‐C
h
ip
 D
at
a
Se
ar
ch

D
e
la
y(
cy
cl
e
s)

LOCO CC LOCO CC + VMS

(a) 64-core CMP

0
20
40
60
80

100

O
n
‐C
h
ip
 D
at
a
Se
a
rc
h

D
e
la
y(
cy
cl
e
s)

LOCO CC LOCO CC+VMS

(b) 256-core CMP
Figure 9: Global search delay for data cached on-chip

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o
rm

a
liz
ed

 O
ff
ch
ip
 M

e
m
o
ry

A
cc
e
ss

LOCO CC +VMS LOCO CC+VMS + IVR

(a) 64-core CMP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o
rm

al
iz
ed

 O
ff
ch
ip
 M

em
o
ry

A
cc
e
ss

LOCO CC+VMS LOCO CC+VMS+IVR

(b) 256-core CMP
Figure 10: Normalized off-chip memory access against baseline Shared Cache

1-cycle away unlike SMART where 1-cycle is opportunis-
tic, and the network has 4x higher bisection throughput be-
cause of the additional wires. However, each router is now
20-ported instead of the 5-ported SMART/baseline router,
which requires multi-stage arbiters and crossbars, increasing
the router pipeline to at least 4-stages [27, 28, 40] unlike the
2-stage SMART router. There is also a 6.7X area and 2.3X
power overhead as compared to SMART by modeling both
designs in DSENT [41].

Figure 12 shows that conventional NoC and high-radix
routers increase both L2 access latency and global on-chip
data search delay. For 256-core, the overhead by conven-
tional NoC is 2.01x for L2 hit latency, and 1.99x for global
on-chip data search delay, while the overhead by high-radix
routers is 3.10x for L2 hit latency, and 1.59x for global on-
chip data search delay. Figure 13 shows the runtimes normal-
ized against shared cache running atop SMART NoC. LOCO
with SMART NoC reduces the runtime by 18.9% for 64-
core, and by 24.6% for 256-core , compared to LOCO with
conventional NoC. The increased router latencies of high-
radix routers result in 22.7% runtime increase for 64-core,

and 24.4% increase for 256-core, compared to LOCO with
SMART. We note that LOCO with high-radix routers under-
perform even LOCO with conventional NoC. This is because
high-radix routers increases L2 access latency significantly
within a cluster, since the request always go through 4-stage
pipelined routers both at the source and at the destination.
Cluster Size and Topology. Till now we presented results
with 4x4 clusters. Now, for 64-core CMP, we explore the
impact of alternative cluster sizes and topology: 4x1 and
8x1. Cluster sizes of 4x1 allow a SMART-hop distance of 1
for every pair of two nodes within the cluster, while cluster
sizes of 8x1 and 4x4 have up to 2 SMART-hops. As shown
Figure 14a, smaller cluster sizes lead to reduced L2 cache
hit latencies; 1.17 and 0.45 cycles are reduced for cluster
size 4x1 and 8x1, respectively. However, smaller cluster
sizes lead to 35% and 20% higher L2 cache miss rates on
average, as shown in Figure 14b. Cluster size should be
chosen considering trade-off between L2 cache hit latency
and miss rate. Figure 14d compares the runtimes of LOCO
with different cluster sizes. The optimal cluster size and
topology is dependent on application, since these trade-offs

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

al
iz
ed

 R
u
n
ti
m
e

Shared Cache LOCO CC LOCO CC+VMS LOCO CC+VMS+IVR

(a) 64-core CMP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
o
rm

a
liz
e
d
 R
u
n
ti
m
e

Shared Cache LOCO CC LOCO CC+VMS LOCO CC+VMS+IVR

(b) 256-core CMP
Figure 11: Normalized runtimes of LOCO and Hybrid Caches against baseline Shared Cache

0

2

4

6

8

10

12

Barnes Blackscholes LU NLU Radix Swaptions Vips Water_spatial AVG

L2
 H

it
 L

at
en

cy
 In

cr
ea

se

(c
yc

le
s)

LOCO + SMART NoC / 64-core LOCO + Conventional NoC / 64-core LOCO + High-Radix Routers / 64-core

LOCO + SMART NoC / 256-core LOCO + Conventional NoC /256-core LOCO + High-Radix Routers / 256-core

(a) L2 Hit Latency

0

50

100

150

Barnes Blackscholes LU NLU Radix Swaptions Vips Water_spatial AVG

O
n

-C
h

ip
 D

at
a

Se
ar

ch

D
el

ay
(c

yc
le

s)

LOCO + SMART NoC / 64-core LOCO + Conventional NoC / 64-core LOCO + High-Radix Routers / 64-core

LOCO + SMART NoC / 256-core LOCO + Conventional NoC /256-core LOCO + High-Radix Routers / 256-core

(b) Global on-chip Data Search Delay
Figure 12: Comparison to LOCO with Conventional NoC and with High-Radix routers: Memory Latency

0

0.5

1

1.5

Barnes Blackscholes LU NLU Radix Swaptions Vips Water_spatial AVG

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

LOCO + SMART NoC / 64-core LOCO + Conventional NoC / 64-core LOCO + High-Radix Routers / 64-core

LOCO + SMART NoC / 256-core LOCO + Conventional NoC /256-core LOCO + High-Radix Routers / 256-core

Figure 13: Comparison to LOCO with Conventional NoC
and with High-Radix routers: Normalized Runtime

can have different impact on the performance according to
application characteristic. For example, cluster size 4x1 has
89.9% higher cache miss rate for swaptions than cluster size
4x4, while the increase is mere 15.6% for water spatial. As
a result, cluster size 4x1 has the worst runtime for swaptions,
while it is the best for water spatial.

Table 2: Multi-program workloads for 64-core CMP
Work- Description
load Number of instances x Benchmark(Number of Threads)

W0 4xBlackscholes(4), 4xFerret(4), 4xFmm(4), 4xLu(4)
W1 4xNlu(4), 4xSwaptions(4), 4xWater Nsq(4), 4xWater Spatial(4)
W2 4xBlackscholes(4), 4xFerret(4), 4xWater Nsq(4), 4xWater Spatial(4)
W3 4xFmm(4), 4xLu(4), 4xNlu(4), 4xSwaptions(4)
W4 4xBlackscholes(4), 4xFerret(4), 4xNlu(4), 4xSwaptions(4)
W5 2xBlackscholes(8), 2xFerret(8), 2xFmm(8), 2xLu(8)
W6 2xNlu(8), 2xSwaptions(8), 2xWater Nsq(8), 2xWater Spatial(8)
W7 2xBlackscholes(8), 2xFerret(8), 2xWater Nsq(8), 2xWater Spatial(8)
W8 1xBlackscholes(16), 1xFerret(16), 1xFmm(16), 1xLu(16)
W9 1xNlu(16), 1xSwaptions(16), 1xWater Nsq(16), 1xWater Spatial(16)

Multi-program Workloads. The need for clustering in
cache organization naturally occurs with mapping of het-
erogeneous tasks onto CMP, where the memory is shared
mostly within the same task. Thus, local L2 caches of cores
running the same task can be clustered into a shared cache
to provide reduced L2 hit latency within the cluster, while it
operates as private cache globally [18, 31, 35]. The result-
ing clustered cache is similar to LOCO CC, where the cluster
size is determined by the number of threads(cores) required
for individual task. One of important design goals in clus-
tered cache is to allocate the cache resource among different

tasks for high utilization of on-chip cache, and thus to reduce
costly off-line memory access. Several previous works have
proposed dynamic reallocation of cache resources adapted
by memory demand of each task [18, 31], which, in turn,
poses intriguing problem of managing the increased cost
of global data search. LOCO can address this problem by
inter-cluster victim replacement, which allows one cluster to
utilize less utilized cache resource in other clusters across
the chip.

In the evaluation, both the baseline clustered cache and
LOCO provide shared cache within clusters. On the other
hand, each task in the workloads is assumed to have exclu-
sive address space with each other, thus the second level
cache coherence is not required. The baseline clustered
cache is modelled only to provide shared cache and cache
coherence within the cluster. Atop the baseline clustered
cache, LOCO performs inter-cluster victim replication with
faster retrieval of migrated data on VMS in global scale.
Table 2 summarizes the workloads used for the evaluation.
While LOCO supports flexible heterogeneous clusters in
which each cluster can have any size and can be changed at
any time as depicted in Figure 1, we assume that all clusters
are of the same size while running each workload for the
ease of simulation; clustered cache and LOCO have clus-
ter size 4x1 for W0 through W4, cluster size 8x1 for W5
through W8, and cluster size 4x4 for the rest. Each indi-
vidual task is mapped onto a single cluster. For example,
with the workload W0, every instance of tasks requires 4
threads, thus 64-core CMP is divided into 16 clusters of
size 4x1. As there are 4 instances of barnes, 4 clusters run
their own instance of barnes independently, another 4 clus-
ters run blackscholes, and so on. For all cache organizations,
the same SMART NoC with HPCmax = 4 is applied as
usual. Figure 15a shows off-chip memory access normalized
against shared cache. On average, clustered cache increases
off-line memory access by 26.6%, while LOCO reduces off-

0
0.5

1
1.5

2
2.5

3
3.5

4

L2
 H

it
 L

at
en

cy
 In

cr
e

as
e

(c
yc

le
s)

Cluster Size:4x1 Cluster Size:8x1 Cluster Size:4x4

(a) L2 Hit Latency

0
5

10
15
20
25
30
35

C
ac

h
e

 M
is

s
 p

er
 1

00
0

In

st
ru

ct
io

n
s

Cluster Size:4x1 Cluster Size:8x1 Cluster Size:4x4

(b) L2 Misses per 1000 instructions

0
20
40
60
80

100

O
n

-C
h

ip
 D

at
a

Se
ar

ch

D
el

ay
(c

yc
le

s)

Cluster Size:4x1 Cluster Size:8x1 Cluster Size:4x4

(c) Global on-chip Data Search Delay

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

 Cluster Size:4x1 Cluster Size:8x1 Cluster Size:4x4

(d) Normalized Runtime
Figure 14: Performance of LOCO according to different cluster sizes

0

0.5

1

1.5

2

W0 W1 W2 W3 W4 W5 W6 W7 W8 W9 N
o

rm
al

iz
e

d
 O

ff
ch

ip

M
e

m
o

ry
 A

cc
es

s

Shared Cache LOCO CC LOCO CC+VMS+IVR

(a) Normalized Off-chip Memory Access

0

0.5

1

1.5

W0 W1 W2 W3 W4 W5 W6 W7 W8 W9

N
o

rm
al

iz
e

d
 R

u
n

ti
m

e
 Shared Cache LOCO CC LOCO CC+VMS+IVR

(b) Normalized Runtime
Figure 15: LOCO with multi-program workloads

0

2

4

6

8

10

C
ac

h
e

 M
is

s
 p

er
 1

00
0

In

st
ru

ct
io

n
s

Shared LOCO

(a) L2 Misses per 1000 instructions

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
ed

 R
u

n
ti

m
e

 LOCO CC LOCO CC + VMS LOCO CC + VMS + IVR

(b) Normalized Runtime against Shared Cache
Figure 16: Full system simulation of LOCO for 64-core CMP

line memory access to almost the same level as shared cache,
just 5.1% higher than shared cache. As a result, Figure 15b
shows that LOCO reduces the runtime of clustered cache by
13.8%, which is 20% improvement over shared cache.

4.3 Full System Simulations
Trace-driven simulations do not properly capture dependen-
cies between instructions that cause busy-waiting or spin-
ning, which can have high performance impact. In this sec-
tion, we present full system simulation results to evaluate the
performance of LOCO more realistically. Due to tool limita-
tion, we conducted full system simulations only for 64-core
CMP. We leave verifying LOCO with full system simula-
tions at high core counts as future work.

Figure 16b shows normalized runtimes for PARSEC and
SPLASH-2 benchmarks8 against shared cache. On average,
LOCO CC delivers 26% reduction in application runtime,
LOCO CC+VMS further results in 8% reduction, and LOCO
CC+VMS+IVR gives an additional 10% reduction. Overall,

8 For full system simulations, we were unable to obtain results of swaptions
and vips due to long simulation time. Instead, we added results of canneal,
fft, fmm fluidanimate, and water nsq, which in turn, failed in trace-driven
simulations due to out-of-memory errors.

LOCO improves runtime by 44.5% on average. We note that
benchmarks such as blackscholes, lu, and radix, show sig-
nificantly reduced runtime with just clustering. In contrast,
barnes and fft are not improved much by only clustering.
This is because the communication pattern in the first group
is highly concentrated between neighboring cores, while the
latter group exhibits widely distributed communication pat-
terns across the die [5]. Although the latter benchmarks lack
locality by nature, LOCO successfully reduces the runtimes
of barnes with VMS, or fft with IVR, giving consistent per-
formance improvement across the benchmarks.

5. Related Work
For the first time, SMART NoC provides a practical mech-
anism by which any core within Hmax hops away can be
reached in a single cycle, at any time. LOCO leverages
this unique mechanism with adaptive cluster sizes, vir-
tual meshes for inter-cluster broadcasts, and using remote
nodes for storing victims. None of these make sense without
SMART, and as we will next discuss, many prior cache orga-
nizations will work better with SMART, but none leverages
SMART as well as LOCO.

Locality-optimized data placement. There has been a
plethora of recent studies that optimizes locality for higher
performance. One such approach is the dynamic mapping of
pages to L2 cache slices in a shared cache, often with the
aid of the OS [3, 10, 14, 15, 19]. There has been significant
work on improving data locality at the cache line granularity
as well. Cache line is relocated closer to the core [12, 26],
or replicated into the local L2 cache [45, 46], which can be
further improved by selective replication [7, 13].

All these works will have to be reformulated to leverage
SMART NoCs. For instance, with SMART, locality-aware
mapping or replication need no longer be limited to a local
L2 cache slice, but instead, can be expanded to all L2 caches
within Hmax. Similarly, we can remove unnecessary redun-
dancy by retaining only a single copy of data within a radius
of Hmax. In fact, these are exactly the observations that mo-
tivated LOCO’s clustering. However, unlike these previous
approaches, LOCO is not only concerned with data locality,
but also leverages SMART NoC to maximize cache utiliza-
tion by way of inter-cluster broadcasts and victim replace-
ment.
Clustered cache organizations. Hierarchical or clustered
caches have been proposed as a scalable cache solution by
many researchers. In [32, 42], the communication bottleneck
to a central directory is mitigated by distributing hierarchical
directories across the chip. More recent studies have focused
on providing flexible sized clusters to best serve application
demands [9, 18, 23, 31, 35]. LOCO provides an efficient
mechanism for supporting flexible clusters while maintain-
ing coherence and balancing cache utilization across clus-
ters with IVR, unlike the complex hardware monitoring and
remapping mechanisms required by prior techniques.

In this paper, we did not focus on the policies for deter-
mining the most appropriate cluster size, as this depends
on the applications’ working sets and/or aggregate cache
requirement [18, 23, 31, 35]. To find optimal cluster size,
LOCO can leverage previous works which flexibly adjust
cluster sizes according to the cache performance [18, 23,
31].
Cache search and coherence. Substantial research has pro-
posed flexible data location in L2 cache slices, which leads
to the additional overhead of searching for the current data
location. Here, we focus on search techniques that manages
at the granularity of cache lines. One approach is to use a
central tag to keep track of dynamic locations of each cache
line [9, 12]. As a central tag directory might be a communi-
cation bottleneck, several researchers employed local tag di-
rectories instead [13, 24, 35]. A local tag directory can only
function as a backup, since it is impossible to assign to every
core its own tag directory covering the entire on-chip cached
memory. The most common strategy is to maintain the tag
directory at static home node locations [19, 24, 31, 45, 46],
while actual data can be stored at other places. This leads

to an indirection cost to access the home node whenever ac-
cessing data.

To avoid this indirection cost, broadcast can be used [7,
12, 13, 18, 26, 35, 36]. However broadcasting over large-
scale CMPs is simply unacceptable in terms of latency and
energy consumption. The broadcasting cost is mitigated by
using local tag directories as caches [13, 35], or by broad-
casting only to relevant destinations [18, 36], which is sim-
ilar to our approach. In this paper, we further optimize
broadcast latency with our virtual meshes (VMS) leveraging
SMART NoC (Section 3.2), which offers a scalable solution
to many-core CMPs.
Co-design of cache organization with novel intercon-
nects. There have been prior studies that investigate alter-
native cache designs driven by emerging interconnect tech-
nologies as well. Transmission line caches [6] enable area
and energy-efficient cache organization by exploiting on-
chip transmission lines which can substantially reduce wire
delay at the cost of wire bandwidth density. ATAC [30] lever-
ages on-chip optical links as a high-bandwidth, low-energy
broadcast bus for scalable broadcast-based coherence. Like
these prior works, LOCO is motivated by novel intercon-
nects, SMART. However, LOCO is not limited to a specific
topology of custom-designed links determined at the design
time, due to the flexible nature of SMART NoC. LOCO can
adapt to applications or programmers’ needs, and thus tailor
a cache organization to SMART characteristics so as to truly
be locality-oblivious.

6. Conclusion
This work presents LOCO, a locality-oblivious cache orga-
nization scheme that leverages recent innovations in low-
latency NoC architectures to redefine the notion of local-
ity. SMART NoCs enable flits to traverse up to HPCmax-
hops (4 in this design) within one cycle at 2GHz. LOCO
is a hybrid private-shared cache organization that partitions
the chip into virtual clusters of varying sizes. It provides in-
creased hit rate within each cluster with fast access latencies,
and fast global data search across chip over virtual meshes.
It also enables data migration across clusters to reduce off-
chip accesses. LOCO demonstrates better performance than
both private and shared caches, and provides a scalable cache
organization and management solution as we move towards
1000-core chips.

Acknowledgments
The authers acknowledge the support of Semiconductor Re-
search Corporation (SRC) and the Defense Advanced Re-
search Projects Agency (DARPA) through the Semiconduc-
tor Technology Advanced Research network (STARnet), un-
der the Center for Future Architectures (C-FAR) research
center.

References
[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. Garnet: A

detailed on-chip network model inside a full-system simula-
tor. In ISPASS, 2009.

[2] N. Agarwal, L.-S. Peh, and N. K. Jha. In-network snoop or-
dering (inso): Snoopy coherence on unordered interconnects.
In HPCA, 2009.

[3] M. Awasthi, K. Sudan, R. Balasubramonian, and J. B. Carter.
Dynamic hardware-assisted software-controlled page place-
ment to manage capacity allocation and sharing within large
caches. In HPCA, 2009.

[4] R. Balasubramonian, N. P. Jouppi, and N. Muralimanohar.
Multi-Core Cache Hierarchies. Synthesis Lectures on Com-
puter Architecture. Morgan & Claypool Publishers, 2011.

[5] N. Barrow-Williams, C. Fensch, and S. W. Moore. A com-
munication characterisation of splash-2 and parsec. In IISWC,
2009.

[6] B. M. Beckmann and D. A. Wood. TLC: Transmission Line
Caches. In MICRO, 2003.

[7] B. M. Beckmann, M. R. Marty, and D. A. Wood. Asr: Adap-
tive selective replication for cmp caches. In MICRO, 2006.

[8] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec bench-
mark suite: characterization and architectural implications. In
PACT, 2008.

[9] J. Chang and G. S. Sohi. Cooperative caching for chip multi-
processors. In ISCA, 2006.

[10] M. Chaudhuri. Pagenuca: Selected policies for page-grain
locality management in large shared chip-multiprocessor
caches. In HPCA, 2009.

[11] C.-H. O. Chen, S. Park, T. Krishna, S. Subramanian, A. P.
Chandrakasan, and L.-S. Peh. SMART: A Single-Cycle Re-
configurable NoC for SoC Applications. In DATE, 2013.

[12] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Distance as-
sociativity for high-performance energy-efficient non-uniform
cache architectures. In MICRO, 2003.

[13] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing
replication, communication, and capacity allocation in cmps.
In ISCA, 2005.

[14] S. Cho and L. Jin. Managing distributed, shared l2 caches
through os-level page allocation. In MICRO, 2006.

[15] B. Cuesta, A. Ros, M. E. Gómez, A. Robles, and J. Duato. In-
creasing the effectiveness of directory caches by deactivating
coherence for private memory blocks. In ISCA, 2011.

[16] N. Eisley, L.-S. Peh, and L. Shang. Leveraging on-chip net-
works for data cache migration in chip multiprocessors. In
PACT, 2008.

[17] A. Gupta, W.-D. Weber, and T. C. Mowry. Reducing memory
and traffic requirements for scalable directory-based cache
coherence schemes. In ICPP (1), 1990.

[18] M. Hammoud, S. Cho, and R. G. Melhem. Dynamic cache
clustering for chip multiprocessors. In ICS, 2009.

[19] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Reactive nuca: near-optimal block placement and replication
in distributed caches. In ISCA, 2009.

[20] R. Ho. On-Chip Wires: Scaling and Efficiency. PhD thesis,
Stanford University, 2003.

[21] Y. Hoskote, S. R. Vangal, A. Singh, N. Borkar, and S. Borkar.
A 5-ghz mesh interconnect for a teraflops processor. IEEE
Micro, 27(5):51–61, 2007.

[22] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain,
V. Erraguntla, M. Konow, M. Riepen, M. Gries, G. Droege,
T. Lund-Larsen, S. Steibl, S. Borkar, V. K. De, and R. F. V.
der Wijngaart. A 48-Core IA-32 Message-Passing Processor
with DVFS in 45nm CMOS. In ISSCC, 2010.

[23] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler. A nuca substrate for flexible cmp cache sharing. In
ICS, 2005.

[24] N. D. E. Jerger, L.-S. Peh, and M. H. Lipasti. Virtual tree
coherence: Leveraging regions and in-network multicast trees
for scalable cache coherence. In MICRO, 2008.

[25] B. Kim and V. Stojanovic. Characterization of equalized and
repeated interconnects for noc applications. IEEE Design and
Test of Computers, 25:430–439, 2008.

[26] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-
uniform cache structure for wire-delay dominated on-chip
caches. In ASPLOS, 2002.

[27] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta. Microarchi-
tecture of a high-radix router. In ISCA, 2005.

[28] J. Kim, W. J. Dally, and D. Abts. Flattened butterfly: a cost-
efficient topology for high-radix networks. In ISCA, 2007.

[29] T. Krishna, C.-H. O. Chen, W. C. Kwon, and L.-S. Peh. Break-
ing the on-chip latency barrier using SMART. In HPCA, 2013.

[30] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel,
L. C. Kimerling, and A. Agarwal. ATAC: All-to-All Comput-
ing Using On-Chip Optical Interconnects. In BARC, 2007.

[31] H. Lee, S. Cho, and B. R. Childers. Cloudcache: Expanding
and shrinking private caches. In HPCA, 2011.

[32] Y.-C. Maa, D. K. Pradhan, and D. Thiébaut. A hierarchical
directory scheme for large-scale cache-coherent multipmces-
sors. In IPPS, 1992.

[33] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token co-
herence: Decoupling performance and correctness. In ISCA,
2003.

[34] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s general execution-driven multiprocessor
simulator (gems) toolset. SIGARCH Computer Architecture
News, 33(4):92–99, 2005.

[35] M. R. Marty and M. D. Hill. Virtual hierarchies to support
server consolidation. In ISCA, 2007.

[36] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. K.
Martin, and D. A. Wood. Improving multiple-cmp systems
using token coherence. In HPCA, 2005.

[37] J. E. Miller, H. Kasture, G. Kurian, C. G. III, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal. Graphite: A distributed
parallel simulator for multicores. In HPCA, 2010.

[38] S. Park, T. Krishna, C.-H. Chen, B. Daya, A. Chandrakasan,
and L.-S. Peh. Approaching the theoretical limits of a mesh

NoC with a 16-node chip prototype in 45nm SOI. In DAC,
2012.

[39] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
D. Burger, S. W. Keckler, and C. R. Moore. Exploiting ilp,
tlp, and dlp with the polymorphous trips architecture. IEEE
Micro, 23(6):46–51, 2003.

[40] S. Scott, D. Abts, J. Kim, and W. J. Dally. The BlackWidow
high-radix clos network. In ISCA, 2006.

[41] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agar-
wal, L.-S. Peh, and V. Stojanovic. DSENT - a tool connect-
ing emerging photonics with electronics for opto-electronic
networks-on-chip modeling. In NoCS, 2010.

[42] D. A. Wallach. PHD: A Hierarchical Cache Coherent Proto-
col. MS Thesis. MIT, 1992.

[43] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards,
C. Ramey, M. Mattina, C.-C. Miao, J. F. B. III, and A. Agar-
wal. On-chip interconnection architecture of the tile proces-
sor. IEEE Micro, 27(5):15–31, 2007.

[44] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The splash-2 programs: Characterization and methodological
considerations. In ISCA, 1995.

[45] M. Zhang and K. Asanovic. Victim migration: Dynamically
adapting between private and shared cmp caches. Technical
report, MIT, 2005.

[46] M. Zhang and K. Asanovic. Victim replication: Maximizing
capacity while hiding wire delay in tiled chip multiprocessors.
In ISCA, 2005.

