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SMART: SINGLE-CYCLE MULTIHOP
TRAVERSALS OVER A SHARED

NETWORK ON CHIP
..................................................................................................................................................................................................................

SMART (SINGLE-CYCLE MULTIHOP ASYNCHRONOUS REPEATED TRAVERSAL) AIMS TO

DYNAMICALLY SET UP SINGLE-CYCLE PATHS (WITH TURNS) FROM THE SOURCE TO THE

DESTINATION FOR MESSAGE FLOWS SHARING A NETWORK ON CHIP. A FLOW-CONTROL

TECHNIQUE ARBITRATES FOR AND RESERVES MULTIPLE LINKS WITHIN A CYCLE. A ROUTER

AND LINK MICROARCHITECTURE ENABLES A MULTIHOP (9 TO 11 HOPS AT 1 GHZ IN 45 NM)

TRAVERSAL WITHIN A CYCLE.

......Increasing the number of on-chip
cores continues to be the de facto strategy to
scale performance in the presence of two
trends: technology scaling (that is, more tran-
sistors) due to Moore’s law, and single-core
frequency plateauing due to the Power Wall.
These cores are often connected by a shared
interconnect fabric, such as a ring or a mesh,
over which multiple communication flows
multiplex. As core counts go up, the average
number of “hops” between communicating
cores goes up as well—linearly with k for a
k-node ring or a k � k mesh. (We define a
hop to be the physical distance between
neighboring tiles. In this paper, 1 hop ¼ 1
mm, based on place-and-route of a Freescale
PowerPC e200z7 core in 45 nm.)

The number of hops directly impacts the
communication latency TN for a flit, which
is the smallest unit of a network packet, and
the granularity at which network resources

(links and buffers) are allocated. This can be
expressed as:

TN ¼ H tr þ twð Þ þ
XH

h¼1

tc hð Þ; ð1Þ

where H is the number of hops, tr is the
router’s intrinsic delay, tw is the wire (between
two routers) delay, and Tc ¼

P
tc hð Þ is the

network contention delay—the number of
cycles spent waiting to get access to the switch
and output link. Multiflit packets incur an
additional component Ts or a serialization
delay, which is set by the number of cycles
that a packet of length L takes to cross a chan-
nel with bandwidth b (that is, the number of
flits in the packet). The on-chip latency in
turn affects the completion time of cache
coherence transactions, because cache misses
often must be serviced by remote caches or
memory controllers. Slower requests and
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responses lead to a slower injection of new
requests due to dependencies, which leads to
poorer throughput and overall system slow-
down. The increased on-chip latency due to
the increased number of hops is a worrisome
trend, especially with ambitious design goals
of adding hundreds of cores to a single chip
for the exascale era.

In this work, we present a solution to
achieve close to an ideal one-cycle network
ðTN ¼ 1Þ traversal on a mesh for any source-
destination pair. Our proposed network on a
chip (NoC) is called Smart (Single-cycle
Multihop Asynchronous Repeated Traversal).
As the name suggests, we embed asynchronous
repeaters within each router’s crossbar and size
them to drive signals up to multiple hops
(11 in this work) within a single clock cycle
before getting latched. We present a network
flow-control mechanism to set up arbitrary
multihop paths with turns (that is, repeated
wires on demand) within a cycle, and then
traverse them within a cycle. We optimize
network latency as follows:

TN ¼ H=HPCð Þd e � ðtr þ twÞ

þ
XH

h¼1

tc hð Þ; ð2Þ

where HPC stands for number of hops per
cycle, the maximum value for which
ðHPCmaxÞ depends on the underlying tech-
nology. We reduce the effective number of
hops to ðH=HPCÞd e, without adding any
additional physical wires in the datapath
between distant nodes.

On a 64-core mesh, synthetic traffic
shows a 5- to 8-times reduction in average
network latency, whereas full-system Splash-2
and Parsec traffic shows a 27 and 52 percent
reduction in average runtime for private and
shared level-2 (L2) designs, respectively, com-
pared to a state-of-the-art NoC with one-cycle
routers. Smart is a more scalable and less
expensive solution than alternate approaches
to reduce network latency, which are discussed
in the “High-Radix Routers and Asynchro-
nous NoCs” sidebar.

Background
NoCs consist of shared links, with routers

at crosspoints. Routers perform multiplexing

of flits on the links, and buffer flits in case of
contention. Each hop consists of a router-
and-link traversal. A router performs the fol-
lowing actions:1

� Buffer Write (BW): The incoming flit
is buffered.

� Route Compute (RC): The incoming
head flit chooses an output port to
depart from.

� Switch Allocation (SA): Buffered flits
arbitrate among themselves for the
crossbar switch. At the end of this
stage, there is at most one winner for
every input and output port of the
crossbar.

� VC Selection (VS): Head flits that win
SA reserve a Virtual Channel (VC)
for the next router, from a pool of
free VCs.2

� The winners of SA proceed to Switch
(crossbar) Traversal (ST) and Link
Traversal (LT) to reach the next
routers.

A plethora of research in NoCs over the
past decade coupled with technology scaling
has allowed the actions within a router to
move from serial execution to parallel execu-
tion via look-ahead routing,1 simplified VC
selection,2 speculative switch arbitration,3,4

nonspeculative switch arbitration via look-
aheads5,6 to bypass buffering, and so on. This
has allowed the router delay tr (Equation 1)
to drop from three to five cycles in industry
prototypes7,8 to one cycle in academic NoC-
only prototypes.6 We use this state-of-the-art
one-cycle router as our baseline. ST and LT
can be done together within a cycle,6,8 giving
us tw ¼ 1. Thus, our baseline incurs two
cycles per hop (see Figure 1). In case of con-
tention, flits have to be buffered and could
wait multiple cycles before they win SA and
VS, increasing Tc , as shown at Routernþi.

The Smart interconnect
Adding asynchronous repeaters (that is, a

pair of inverters) at regular intervals on a long
wire is a standard way to reduce wire
delay.9,10 We perform a design-space explora-
tion of repeated wires in a commercial
45-nm silicon on insulator (SOI) technology
using the place-and-route tool Cadence
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Encounter. We fix the repeater spacing to
1 mm (our tile size), wire spacing to 3 times
the minimum allowed by the technology (to
lower the coupling capacitance), and keep
increasing the length of the wire, letting the
tool size the repeaters appropriately, until it
fails timing closure at our target cycle time of
1 nanosecond (ns)—that is, 1 GHz. We
translate the maximum distance that a signal
can be transmitted within 1 ns into a network
microarchitectural parameter hops per cycle
max ðHPCmaxÞ:

HPCmax ¼ (maximum mm per ns

� clock period in ns)

=(tile width in mm)

Figure 2 shows that HPCmax for repeated
wires at 45 nm is 16 (assuming 1 mm tiles

and 1 GHz clock). (The place-and-route
tool was found to zigzag wires to fit a
fixed global grid, adding unnecessary wire
length, limiting HPCmax. A custom design
can potentially go further and with a flatter
energy profile, as projected by the timing-
driven NoC power-modeling tool Dsent11).
We observe a similar trend for HPCmax at 32
nm and 22 nm, with energy going down by
19 and 42 percent. At smaller technology
nodes, global wires are not expected to
become faster (unlike transistors); however,
smaller tile sizes and fairly constant frequen-
cies should translate to a higher HPCmax.

Router logic delay limits the network fre-
quency to 1 to 2 GHz at 45 nm.6,8 Link driv-
ers are accordingly sized to drive only 1 mm
(1 hop) in 0.5 to 1 ns, before the signal is
latched at the next router. Smart removes this

..............................................................................................................................................................................................

High-Radix Routers and Asynchronous NoCs
High-radix router designs such as Fat Tree,1 Flattened Butterfly,2

and Clos3 are topology solutions to reduce average hop counts. They

advocate adding physical express links between distant routers. Each

router now has more than five ports, and channel bandwidth (b) is

often reduced proportionally to have similar buffer and crossbar area

and power as a mesh (radix-5) router, increasing the total number of

flits, adding serialization delay Ts to each packet. Moreover, more

ports complicates the routing, switch allocation, and virtual channel

allocation mechanism, often requiring a hierarchical switch allocator

and crossbar,4 increasing router delay tr to 4 to 5 at the routers where

flits must stop. The pipeline optimizations described in the main article

are hard to implement here. These designs also complicate layout

because multiple point-to-point global wires must span the chip.

Moreover, a topology solution works only for certain traffic, and incurs

higher latencies for adversarial traffic (such as near neighbor) because

of higher Ts. In contrast, Smart provides the illusion of dedicated phys-

ical express channels, embedded within a regular mesh network, with-

out having to lower the channel bandwidth or increase the number of

router ports. Given the same number of wires, it can virtually create

the same high-radix topology with lower tr and no additional Ts.

Asynchronous networks on chip (NoCs) have been proposed for

the system-on-a-chip (SoC) domain for deterministic traffic.5 Such a

network is programmed statically to preset contention-free routes for

quality of service, with messages then transmitted across a fully asyn-

chronous NoC (routers and links). Instead, Smart couples clocked

routers with asynchronous links, so the routers can perform fast cycle-

by-cycle reconfiguration of the links, and thus handle general-purpose

chip multiprocessors with nondeterministic traffic and variable

contention scenarios. Asynchronous bypass channels target chips

with multiple clock domains across a die,6 where each hop can incur

significant synchronization delay. They aim to remove this synchroni-

zation delay. This leads them to propose sending a clock signal with

the data so that the data can be latched correctly at the destination

router. However, unlike Smart, bypass and buffer modes cannot be

switched cycle by cycle, and flits must be speculatively latched at

every hop.
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constraint of latching signals at every hop.
We exploit the positive slack in the link-
traversal stage by replacing clocked link driv-
ers with asynchronous repeaters at every hop,
thus driving signals HPCmax-hops within a
cycle. HPCmax is a design-time parameter,
which can be inferred from Figure 2. If we
choose a 2-mm tile size, or a 2-GHz fre-
quency, HPCmax will go down by half. Asyn-
chronous repeaters also consume 14.3
percent lower energy per bit per mm than
conventional clocked drivers, as Figure 2
shows, giving us a win-win. Smart is a better
solution for exploiting the slack than deeper
pipelining of the router with a higher clock
frequency (such as Intel’s 80-core 5-GHz
five-stage router7), which, even if it were

possible to do, does not reduce traversal latency
(only improves throughput) and adds huge
power overheads owing to pipeline registers.

Figure 3a shows a Smart router. For
simplicity, we only show Corein ðCinÞ;
Westin ðWinÞ; and Eastout ðEoutÞ ports. (Cin

does not have a bypass path like the other
ports because all flits from the network inter-
face controller [NIC] must be buffered at the
first router before they can create Smart
paths.) All other input ports are identical to
Win, and all other output ports are identical
to Eout . Each repeater must be sized to
drive not just the link, but also the muxes
(2:1 bypass and 4:1 crossbar) at the next
router, before a new repeater is encountered.
Using the same methodology with Cadence
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Figure 2. Transmission energy as a function of transmission distance for repeated links at

1 GHz. A placed-and-routed repeated wire in 45 nm can go up to 16 nm in 1 ns. (Wire width:

DRCmin; wire spacing: 3 � DRCmin; metal layer: M6; repeater spacing: 1 mm.)
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Figure 1. Microarchitecture and pipeline of a state-of-the-art baseline ðtr ¼ 1Þ router. Each

network traversal takes two cycles per hop ðtr ¼ RC þ SAþ VS; tw ¼ ST þ LT Þ.
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Encounter, this reduces HPCmax to 11 at
1 GHz.

Figure 3a shows the three primary compo-
nents of the design:

� Buffer Write enable (BWena) at the
input flip-flop, which determines
whether the input signal is latched;

� Bypass Mux select (BMsel ) at the
input of the crossbar, which chooses
between the local buffered flit and
the bypassing flit on the link; and

� Crossbar select (XBsel ).

In the next section, we describe the flow
control to preset these signals.

Smart in a k-ary 1-mesh
We start by demonstrating how Smart

works in a k-ary 1-mesh (see Figure 4). Each

router has three ports: West, East, and Core.
(For illustration purposes, we only show Cin,
Win, and Eout in the figures.) As Figure 3a
shows, Eout xb can be connected either to
Cin xb or Win xb. The latter can be driven
either by bypass, local, or 0, depending on
BMsel .

The design is called Smart_1D (because
routers can be bypassed only along one
dimension). Bypassing routers at turns in a
k-ary 2-mesh will be described later. For pur-
poses of illustration, we will assume HPCmax

to be 3.

Smart-hop setup request
Figure 3b shows the Smart router pipe-

line. A Smart-hop (single-cycle multihop
path) begins from a start router (where flits
are buffered). Unlike the baseline router,

Win
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BMsel
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XBsel

0bypass

local Win_xb

Cin_xb
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Asynchronous 
repeater

Xbar free_vc
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Routern+1

*only required for 

head flits

Flit pipeline

SSR pipelineRoutern
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Time
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ST+LT
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Figure 3. Changes to the router and pipeline to support single-cycle multihop traversals.

Smart router microarchitecture (a) and pipeline (b). BWena , BMsel , and XBsel are set up

during the control path (SSRþSA-G). During the datapath (STþLT), the flit can cross multiple

routers in a cycle if BWena is 0, and BMsel is set to bypass, and gets latched at the router

where BWena is 1.
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switch allocation in Smart occurs over two
stages: switch allocation local (SA-L) and
switch allocation global (SA-G). SA-L is
identical to the SA stage in the conventional
pipeline (described earlier): every start router
chooses a winner for each output port from
among its buffered (local) flits. In the next
cycle, each output port winner first broad-
casts a Smart-hop setup request (SSR) up to
HPCmax-hops from that output port. These
SSRs are dedicated repeated wires (which are
inherently multidrop) on the control path
that connect every router to a neighborhood
of up to HPCmax (see Figure 4). SSRs are
log2ð1þHPCmaxÞ-bits wide, and carry the
length (in hops) up to which the winning flit
wishes to go. For instance, SSR¼ 2 indicates
a 2-hop path request. Each flit tries to go as
close as possible to its destination router;
hence, SSR ¼ min(HPCmax; Hremaining).

During SA-G, all intermediate routers
arbitrate among the SSRs they receive, to set
the BWena, BMsel , and XBsel signals. The
arbiters guarantee that only one flit will be
allowed access to any particular I/O port
of the crossbar. In the next cycle (STþLT),
SA-L winners that also won SA-G at their
start routers traverse the crossbar and links up
to multiple hops till they are stopped by
BWena at some router. Thus, flits spend at
least two cycles (SA-L and SA-G) at a start
router before they can use the switch. SSR
traversal and SA-G occur serially within the
same cycle.

Single-cycle multihop paths are opportun-
istic, not guaranteed; flits can end up getting

prematurely stopped (that is, before their
SSR length) depending on the SA-G results
at different routers, which depends on
contention.

We illustrate all this with examples. In
Figure 5, router R2 has FlitA and FlitB buf-
fered at Cin, and FlitC and FlitD buffered at
Win, all requesting Eout . Suppose FlitD wins
SA-L during Cycle 0. In Cycle 1, it sends
SSRD ¼ 2 (that is, a request to stop at R4)
out of Eout to routers R3, R4, and R5. SA-G
is performed at each router. At R2, which is 0
hops away (< SSRD), BMsel¼ local and
XBsel ¼ Win xb!Eout xb. At R3, which is 1
hop away (< SSRD), BMsel ¼ bypass and
XBsel ¼ Win xb!Eout xb. At R4, which is 2
hops away (¼ SSRD), BWena ¼ high. At R5,
which is 3 hops away (> SSRD), SSRD is
ignored. In Cycle 2, FlitD traverses the cross-
bars and links at R2 and R3, and is stopped
and buffered at R4.

What happens if there are competing
SSRs? In the same example, suppose R0 also
wants to send FlitE 3 hops away to R3, as
shown in Figure 6. In Cycle 1, R2 sends out
SSRD as before; in addition, R0 sends
SSRE ¼ 3 out of Eout to R1, R2, and R3.
Now, at R2, there is a conflict between SSRD

and SSRE for the Win xb and Eout xb ports of
the crossbar. SA-G priority decides which
SSR wins the crossbar. For example, the
Prio¼Local scheme gives highest priority to
the local (buffered) flit, followed by the flit
from the neighboring router, followed by the
flit from the router two hops away, and so
on; so FlitE loses to FlitD. Figure 6 shows the

R0

SSR
1h2h3h 0h

BWen
BMsel
XBsel

SSRs for Wout

SSRs for Eout h = hop

Cin

Win

SA-G

Eout

log2 (1+ HPCmax)

SA-L

R1 R2 R3 R4

Figure 4. k-ary 1-mesh with dedicated Smart-hop setup request (SSR) links going up to

HPCmax (3 in this example) hops in each direction. The switch allocation local (SA-L) grant

sends SSRs. The switch allocation global (SA-G) unit sets BWena , BMsel , and XBsel based on

the SSRs from 0-hop, 1-hop, 2-hop, and 3-hop neighbors.
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values of BWena, BMsel , and XBsel at each
router for this priority. In Cycle 2, FlitE tra-
verses the crossbar and link at R0 and R1,
but is stopped and buffered at R2. FlitD tra-
verses the crossbars and links at R2 and R3
and is stopped and buffered at R4. FlitE now
goes through BW and SA-L at R2 before it
can send a new SSR and continue its network
traversal. A free VC with an empty buffer slot
is guaranteed to exist whenever a flit is made
to stop, as we will explain later. An alternate
priority, Prio¼Bypass, prioritizes flits from
the furthest router over the flits from the
nearer ones. Here, in Cycle 2, FlitE would
traverse all the way from R0 to R3, and FlitD

would be stalled.

False positives and false negatives
Can a flit arrive at a router, even though

the router isn’t expecting it (that is, a false
positive)? The answer is no. For correctness,
all routers must enforce the same SA-G

priority (Prio¼Local or Prio¼Bypass), thus
ensuring the same relative priority between
the SSRs. All flits that arrive at a router are
expected and will stop or bypass on the basis
of their SSR’s success in the previous cycle.
Different routers choosing different SA-G
priorities could result in misrouting beyond
the allowed HPCmax-hops.

Can a flit not arrive at a router, even
though the router is expecting it (that is, a
false negative)? Yes. It is possible for the
router to be set up for stop or bypass for
some flit, but no flit arrives. This can happen
if that flit was forced to prematurely stop at
some prior router, owing to some SSR inter-
action at that router that the current router is
not aware of. For example, suppose a local
flit at Win at R1 wants to eject out of Cout . A
flit from R0 will prematurely stop at R1’s
Win port if Prio¼Local is implemented.
However, R2 will still be expecting the flit
from R0 to arrive (the valid-bit from the flit
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Figure 6. Smart example: SSR conflict with Prio¼Local. The Prio¼Local scheme gives highest priority to the local (buffered)

flit, then the flit from the neighboring router, followed by the flit from the router two hops away, and so on. FlitE from R0 is

prematurely stopped at R2, before its intended destination R3, to allow R2 to send its own local FlitD on its East output link.
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is thus used in addition to BWena when decid-
ing whether to buffer). Unlike false positives,
this is not a correctness issue but rather a per-
formance (throughput) issue, because some
links go idle, when they could have been used
by other flits if more global information were
available.

Ordering
In Smart, any flit can be prematurely

stopped on the basis of the interaction of
SSRs that cycle. We must ensure that this
does not result in reordering between flits of
the same packet, or between flits from the
same source (if point-to-point ordering is
required in the coherence protocol).

The first constraint is in routing (relevant
to 2D topologies). Multiflit packets and
point-to-point ordered virtual networks
should use only deterministic routes to ensure
that prematurely buffered flits do not end up
choosing alternate routes while bypassing flits
continue on the old route.

The second constraint is in SA-G priority.
Every input port has a bit to track if there is a
prematurely stopped flit among its buffered
flits. When an SSR is received at an input
port, and there is either a prematurely buf-
fered head/body flit or a prematurely buf-
fered flit within a point-to-point ordered
virtual network, the incoming flit is stopped.

Guaranteeing free VC with buffers at stop routers
In a conventional network, a router’s out-

put port tracks the IDs of all free VCs at the
neighbor’s input port. A buffered head flit
chooses a free VC ID for its next router
(neighbor) before it leaves the router. The
neighbor signals back when that VC ID
becomes free. In a Smart network, the chal-
lenge is that the next router could be any
router that can be reached within a cycle. A
flit at a start router choosing the VC ID
before it leaves will not work because it is not
guaranteed to reach its presumed next router,
and multiple flits at different start routers
might end up choosing the same VC ID.
Instead, we let the VC selection occur at the
stop router. Every Smart router receives 1 bit
from each neighbor to signal if at least one
VC is free. (If the router has multiple virtual
networks, or vnets, for the coherence proto-
col, we need a 1-bit free VC signal from the

neighbors for each vnet. The SSR also needs
to carry the vnet number, so that the inter-
mediate routers will know which vnet’s free
VC signal to look at.)

During SA-G, if an SSR requests an out-
put port without a free VC, BWena is made
high and the corresponding flit is buffered.
This solution does not add any extra multihop
wires for VC signaling. The signaling is still
between neighbors. Moreover, it ensures that
a head flit comes into a router’s input port
only if that input port has free VCs; otherwise,
the flit is stopped at the previous router.

This solution is conservative because a flit
will be stopped prematurely if the neighbor’s
input port does not have free VCs, even if
there was no competing SSR at the neighbor
and the flit would have bypassed it without
having to stop.

Body/tail flits identify which VC to go to
at the stop router by using their injection_
router ID. Every input port maintains a table
to map a VC ID to an injection router ID
(the table size equals the number of multiflit
VCs at that input port). Whenever the head
flit is allocated a VC, this table is updated.
The injection_router ID entry is cleared
when the Tail arrives. The VC is freed when
the Tail leaves. We implement private buffers
per VC, with depth equal to the maximum
number of flits in the packet (that is, virtual
cutthrough) to ensure that the body/tail will
always have a free buffer in its VC.

What if two body/tail flits with the same
injection_router ID arrive at a router? We
guarantee that this will never occur by forcing
all flits of a packet to leave from a router’s out-
put port before flits from another packet can
leave from that output port. This guarantees a
unique mapping from injection_router ID to
VC ID in the table at every router’s input port.

What if a head bypasses, but the body/tail
is prematurely stopped? The body/tail still
must identify a VC ID to get buffered in. To
ensure that it does have a VC, we make the
head flit reserve a VC not just at its stop
router, but also at all of its intermediate
routers, even though it does not stop there.
This is done from the bypassing flit’s valid,
type, and injection_router fields. The tail flit
frees the VCs at all the intermediate routers.
Thus, for multiflit packets, VCs are reserved
at all routers, just like the baseline. But the
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advantage of Smart is that VCs are reserved
and freed at multiple routers within the same
cycle, reducing the buffer turnaround time.

Additional optimizations
We optimize Smart further to push it

toward the ideal (TN ¼ 1) NoC.

Bypassing the destination router. So far, we
have assumed that a flit starting at an injection
router traverses one (or more) Smart-hops
until it reaches the destination router, where it
gets buffered and requests for the Cout port.
We add an extra ejection-bit in the SSR to
indicate whether the requested stop router
corresponds to the destination router for the
packet, and not any intermediate router on
the route. If a router receives an SSR from
H-hops away with value H (that is, a request
to stop there), H < HPCmax, and the ejec-
tion-bit is high, it arbitrates for Cout port dur-
ing SA-G. If it loses, BWena is made high.

Bypassing SA-L at low load. We add no-load
bypassing1 to the Smart router. If a flit comes
into a router with an empty input port and
no SA-L winner for its output port for that
cycle, it sends SSRs directly, in parallel to get-
ting buffered, without having to go through
SA-L. This reduces tr at lightly loaded start
routers to 2, instead of 3, as shown in Figure
3b for Routernþi.

With both ejection and no-load bypass
enabled, if HPCmax is larger than the maxi-
mum hops in any route, a flit will only spend
two cycles in the entire Smart network in the
best case (one cycle for SSR and one for
STþLTall the way to the destination NIC).

Smart in a k-ary 2-mesh
We demonstrate how Smart works in a

k-ary 2-mesh. Each router has five ports:
West, East, North, South, and Core.

Bypassing routers along dimension
We start with a design in which we do not

allow bypass at turns—that is, all flits must
stop at their turn routers. We reuse Smart_1D
described for a k-ary 1-mesh in a k-ary 2-
mesh. The extra router ports only increase the
complexity of the SA-L stage, since there are
multiple local contenders for each output
port. Once each router chooses SA-L winners,

SA-G remains identical to our earlier descrip-
tion. Each output port has multidrop SSR
wires spanning upto HPCmax-routers along
that dimension. Each input port of a router
receives HPCmax set of SSR wires, one from
each router. The SSR requests a stop or a
bypass along that dimension. Flits with turn-
ing routes perform their traversal one dimen-
sion at a time, trying to bypass as many routers
as possible, and stopping at the turn routers.

Bypassing routers at turns
In a k-ary 2-mesh topology, all routers

within an HPCmax neighborhood can be
reached within a cycle, as shown in Figure 7a
by the shaded diamond. We now describe
Smart_2D, which lets flits bypass both the
routers along a dimension and the turn
routers. We add dedicated SSR links for each
possible XY/YX path from every router to
its HPCmax neighbors. Figure 7a shows
that the Eout port has five SSR links, in com-
parison to only one in the Smart_1D design.
During the routing stage, the flit chooses one
of these possible paths. During the SA-G stage,
the router broadcasts one SSR out of each out-
put port, on one of these possible paths. We
allow only one turn within each HPCmax

quadrant to simplify the SSR signaling.
In the Smart_2D design, there can be

more than one SSR from H-hops away, as
shown in the example in Figure 7b for router
Rj ; it receives SSRs from routers Rm and Rn,
which are both one hop away. Router Rk

receives the same SSRs. Rj and Rk both need
to prioritize the same SSRs to not create false
positives (for example, if Rj prioritizes the SSR
from Rn and Rk prioritizes the SSR from Rm,
the flit from Rn will get misrouted). To arbi-
trate between SSRs from routers that are the
same distance away, we add a second level of
priority based on direction. We arbitrarily
choose straight-hops > left-hops > right-
hops, where straight, left, and right are relative
to the I/O port. Figures 7c and 7d plot con-
tours through routers that are the same num-
ber of hops away and highlight each router’s
relative priority. For the intermediate router
Rj in Figure 7b, the SSR from Rm will have
higher priority (10) over the one from Rn (11)
for the Nout port, as it is going straight, based
on Figure 7c. Similarly, at Rk, the SSR from
Rm will have higher priority (20) over the one
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from Rn (21) for the Sin port, based on Figure
7d. Thus, both routers Rj and Rk will unam-
biguously prioritize the flit from Rm to use the
links, whereas the flit from Rn will stop at
Router Rj. We can also infer from Figures 7c
and 7d that every router sees the same relative
priority for SSRs based on distance and direc-
tion, thus guaranteeing no false positives.

Smart implementation
The Smart control path (see Figure 4)

consists of HPCmax-hops repeated wire delay
(SSR traversal), followed by logic gate delay
(SA-G). This gave an HPCmax of 13 for
Smart_1D and 9 for Smart_2D, following

the methodology described earlier. The
Smart datapath (see Figure 5) is modeled as a
series of 128-bit 2:1 mux (for bypass) fol-
lowed by a 4:1 mux (crossbar), followed by a
128-bit 1-mm link. This gave an HPCmax of
11. Picking the lowest of the two gave us an
HPCmax of 11 for Smart_1D and 9 for
Smart_2D. In our evaluations, we set
HPCmax ¼ 8, which allows bypass of all
routers along the dimension and the ejection,
in our target 8-ary 2-mesh.

Evaluation
We use the GEMS12 and Garnet13 infra-

structure for all our evaluations, which

SSR
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N
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Rn Rj
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Figure 7. Smart_2D: SSRs and their SA-G priorities. k-ary 2-mesh with SSR wires from shaded start router (a). Conflict

between two SSRs for Nout port (b). Fixed priority at Nout port of inter-router (c). Fixed priority at Sin port of inter-router (d).
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provides a cycle-accurate timing model. All
evaluations are for an 8 � 8 mesh. We
assume 1 GHz frequency and 45 nm tech-
nology. The baseline (tr ¼ 1) in all our runs
is a state-of-the-art NoC with one-cycle
routers. We also model ideal (TN ¼ 1); this
is an ideal but impractical fully connected
NoC, in which every flit is magically sent
from the source NIC to its destination NIC
in one cycle with zero contention. All Smart
designs are called Smart-HPCmax_1D/2D,
and Prio¼Local is assumed.

Synthetic traffic
We start by running Smart with synthetic

traffic patterns. We inject 1-flit packets to
first understand the benefits of Smart without
secondary effects due to flit serialization, and
VC allocation across multiple routers. For
the same reason, we also give enough VCs
(12, derived empirically) to allow both the
baseline and Smart to be limited by links,
rather than VCs for throughput.

Smart across different traffic patterns. Figure 8
compares the performance of three Smart
designs: Smart-8_1D and Smart-8_2D
(which are both achievable designs), and
Smart-15_2D, which reflects the best that
Smart can do in an 8 � 8 mesh (with maxi-
mum possible hops ¼ 15), against the base-
line and ideal. The striking feature about
Smart from is that it pushes low-load latency
to four and two cycles, for Smart_1D and
Smart_2D, respectively, across all traffic pat-
terns, unlike the baseline, for which low-load
latency is a function of the average hops.
Thus, Smart truly breaks the locality barrier.
Smart-8_2D achieves most of the benefit of
Smart-15_2D for all patterns, except Bit
Complement (BC), since average hop counts
are� 8 for an 8� 8 mesh.

Impact of HPC max. Next, we study the impact
of HPCmax on performance. We plot the aver-
age flit latency for BC traffic (which has high
across-chip communication) for HPCmax from
1 to 12, across 1D and 2D in Figure 9. Smart-
1_1D is identical to the baseline (tr ¼ 1) net-
work (as it does not need SA-G). We make
two key observations. First, at an HPCmax of 8,
Smart shows a 5.4 times reduction in latency.
This means that a 1-GHz Smart NoC can be
beaten by an NoC with one-cycle routers only
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if the latter can run at a speed greater than 5.4
GHz, making a strong case for Smart from
both a performance and power perspective. A
high HPCmax would be available in many-core
chips with small low-frequency cores for the
low-power embedded domain. Second, at a
low HPCmax of 2 and 4, Smart gives a 1.8 to 3
times reduction in low-load latency compared
to HPCmax of 1. This makes a Smart-like
design a better choice than an NoC with one-
cycle routers even in multicores with large
high-frequency cores that will limit the value
of HPCmax. Note also that as we scale to
smaller feature sizes, cores shrink while die
sizes remain unchanged, so the same intercon-
nect length will translate to a larger HPCmax.

Full-system traffic
Full-system simulations use Wind River

Simics within GEMS,12 with 64 in-order
Sparc cores. We model 32-Kbyte private
instruction and data L1 caches, and a
1-Mbyte L2 cache slice per tile. We evaluate
the parallel sections of Splash-214 and Par-
sec15 for both private and shared L2, over a
MOESI directory protocol. Each run consists
of 64 threads of the application running on
our chip multiprocessor.

Figure 10 shows that Smart-8_1D and
Smart-8_2D lower application runtime by 26

and 27 percent, respectively, on average, for a
private L2 where only L2 misses traverse the
network; this is only 8 percent away from an
ideal (TN ¼ 1) network. The runtime reduc-
tion goes up to 49 and 52 percent, respectively,
with a shared L2 design, where both L1 and
L2 misses traverse the network (making net-
work latency even more critical), which is 9
percent off from an ideal (TN ¼ 1) network.
Smart-15_2D does not give any significant
runtime benefit over Smart-8_2D.

A ggressive NoC pipeline optimizations
can lower router delays to just one cycle.

However, this is not good enough for large
networks with multihop paths. The solution
of adding explicit, fast physical channels to
bypass routers comes with its own set of
problems in terms of layout complexity, area,
and power. We present Smart, a solution to
traverse multihop paths within a single cycle
by virtually bypassing all routers along the
route, without adding any physical channels
on the datapath. In the best case, the network
latency with Smart, from Equation 2, is just
2 cycles if there is no contention (that is, for
all h, tcðhÞ ¼ 0), and H is less than HPCmax.
In the worst case of tcðhÞ > 0 at every hop h,
the achieved HPC will be 1, which is the
same as the baseline.

Although transistors become faster with
technology scaling, wires do not. This trend
of communication becoming slower relative
to logic has been projected in the past as a
motivation to keep global chip-wide commu-
nication to a minimum and heavily optimize
for locality. This work rebuts this conclusion.
We project that communication (wire) delay
in cycles will actually remain relatively con-
stant as technology scales, as chip dimensions
are not increasing due to yield, and clock fre-
quencies have also plateaued owing to the
power wall. In addition, tile sizes tend to go
down as technology scales. The same wire
delay will thus translate to a higher HPCmax

as technology scales, making Smart even
more attractive. Locality will no longer be
that critical with Smart NoCs.

This work opens up a plethora of research
opportunities in circuits, NoC architectures,
and locality-oblivious many-core architec-
tures to optimize and leverage Smart NoCs.
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