
SWIFT: A SWing-reduced Interconnect For a Token-based

Network-on-Chip in 90nm CMOS

Tushar Krishna†, Jacob Postman⋆, Christopher Edmonds⋆, Li-Shiuan Peh†, and Patrick Chiang⋆

†Department of EECS

Massachusetts Institute of Technology

{tushar, peh}@csail.mit.edu

⋆School of EECS

Oregon State University

{postmaja, edmondsc, pchiang}@eecs.oregonstate.edu

Abstract—With the advent of chip multi-processors (CMPs),
on-chip networks are critical for providing low-power commu-
nications that scale to high core counts. With this motivation, we
present a 64-bit, 8x8 mesh Network-on-Chip in 90nm CMOS
that: a) bypasses flit buffering in routers using Token Flow
Control, thereby reducing buffer power along the control path,
and b) uses low-voltage-swing crossbars and links to reduce
interconnect energy in the data path. These approaches enable
38% power savings and 39% latency reduction, when compared
with an equivalent baseline network. An experimental 2x2 core
prototype, operating at 400 MHz, validates our design.

I. INTRODUCTION

Due to the diminishing returns and power inefficiencies

of complex uniprocessor designs, computer architects now

implement multi-core processor chips to provide improved

performance with continued transistor scaling. The scala-

bility and performance of these multi-core designs depend

heavily on the on-chip communication fabric connecting

the cores. Because simple buses are not scalable beyond

a few cores, current commercial chips such as the 8-core

IBM Cell [1] use a ring to connect their cores together. For

core counts of several tens to even hundreds, Network-on-

Chip (NoC) research prototypes like MIT’s RAW [2], UT

Austin’s TRIPS [3], and Intel’s TeraFLOPS [4] have adopted

packet-switched mesh topologies because they are scalable

and provide a tile-based, homogeneous network architecture

that simplifies the interconnect design and verification. Un-

fortunately, network power becomes a major concern in these

packet-switched, router-based NoCs. For instance, 39% of

the 2.3W power budget of a tile is consumed by the network

in Intel’s TeraFLOPS. If not addressed, rising communica-

tions power between on-chip cores will be a major stumbling

block for further scaling of processor counts.

The primary contributers to NoC power are the buffers

(31% in RAW [2], 35% in TRIPS [3], 22% in Ter-

aFLOPS [4]), which are typically built out of SRAM or

register files; the crossbar switches (30% in RAW [2],

33% in TRIPS [3], 15% in TeraFLOPS [4]); and the core-

core links (39% in RAW [2], 31% in TRIPS [3], 17% in

This work was supported by NSF Grants CCF-0811375 and CCF-
0811820, the MARCO Interconnect Focus Center, and the Gigascale
Systems Research Center. We would like to thank the TAPO service for
providing fabrication services for our 90nm testchip, and ARM for providing
standard cell libraries and memory generators. We would also like to
thank Amit Kumar from Princeton University for helping us in designing
the SWIFT pipeline, and Kangmin Hu from Oregon State University for
assisting us in post-layout verification.

TeraFLOPS [4]). Buffers are required to prevent collisions

between packets that share the same links, and are managed

by the control path. The crossbar switches and links form

the datapath through which actual data transmission occurs.

Since both components are necessary for realizing a high-

throughput design, we make two key observations.

First, a router control path that tries to utilize the available

link bandwidth efficiently, by adaptive routing and intelligent

flow-control, can improve throughput, and reduce collisions

between flits1 at router input ports. This in turn can po-

tentially allow flits to bypass buffering, even at high traffic

rates, thereby reducing both latency and buffer read/write

power (through obviating the need for buffer reads/writes

and lowering the number of buffers needed for sustaining

required bandwidth). While there have been several proposals

from academia with this goal [5], [6], none have been

demonstrated on an actual chip implementation, thereby

enabling the evaluation of practical feasibility and overheads.

Second, when buffering is bypassed, the energy consumed

by a flit moving through the network reduces to just the data-

path traversal. Hence, implementing low-power crossbar and

link circuits becomes even more critical towards reducing

total network power. There have been several recent papers

that demonstrate low-swing global links [7], [8] in isolation,

but very few [9] have attempted to integrate these semi-

global, ground-shielded, 1-2mm low-swing links between

cores in an integrated SoC application. In addition, while

there have been previously reported crossbar designs that

utilize partial activation [9] and segmentation [10] to reduce

crossbar capacitance, low-swing links have not been utilized

directly within the crossbar (to the best of our knowledge).

Consequently, in this paper we present the SWing-reduced

Interconnect For a Token-based Network-on-Chip (SWIFT

NoC), an architecture that reduces overall NoC power by

addressing both of these preceding observations. To reduce

the power of the control path, we leverage Token Flow

Control (TFC) [6], a NoC optimization that allows flits to

dynamically bypass buffering at intermediate routers and

chooses routes adaptively in response to contention. This

provides buffer-less transmission from the source to the desti-

nation core. Along the datapath, we designed and integrated

1Packets are typically first broken down into smaller fixed-sized units
called flits. This allows for varying packet sizes. Each packet has one head
flit, some number of body flits and one tail flit.

978-1-4244-8935-0/10/$26.00 ©2010 IEEE 439

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:18 UTC from IEEE Xplore. Restrictions apply.

custom reduced-swing crossbars and core-core links that

substantially lower the data transmission power.

The router microarchitecture of SWIFT is designed in

RTL and implemented using a conventional 90nm-CMOS

standard cell library provided by the foundry. The synthe-

sized router is manually integrated with the custom crossbar

and links. The targeted NoC is an 8x8 2-D mesh, while the

fabricated test chip is comprised of a 2x2 mesh subsection of

four routers that verifies the design practicality and validates

the simulated results.

This work makes the following contributions to the field

of NoC design:

• This is the first fabricated NoC that incorporates un-

conventional micro-architectural optimizations, such as

buffer-less bypassing and adaptive routing, and realizes

them in a single-cycle router pipeline. This implemen-

tation results in 39% lower latency and 49% lower

buffer power while sustaining the same throughput as

a baseline2.

• This is the first fabricated NoC that uses reduced-swing

interconnects in both the crossbar and the links. Data path

transmission power is lowered by 62%, when compared

with a baseline2 design.

• Our detailed discussions on the design choices we made

and corresponding impact on critical path delay, area,

power and overall network performance may present a

useful case study for NoC researchers and designers.

The total power savings of the entire network was measured

to be 38%.

The rest of the paper is organized as follows. Section

II provides relevant background. Section III describes the

design of the SWIFT router microarchitecture, while Section

IV details the reduced-swing crossbar and link designs.

Section V highlights the features added to the chip that

facilitate testing and measurements. Section VI presents and

analyzes our measured results. Section VII discusses related

work and Section VIII concludes.

II. BACKGROUND

This section gives a brief overview of a baseline router

microarchitecture, and Token Flow Control [6].

A. Baseline Router Microarchitecture

High throughput NoC designs are usually packet

switched [11], with routers at the intersection of links to

manage the flow-control (buffering and arbitration for the

crossbar switch) and routing of the flits. There are 3-pipeline

stages (buffering, switch allocation and switch traversal) in

our baseline router and are described in Section III-A. These

are modeled similar to previous NoC prototypes like the

TRIPS memory network [3] and Intel’s TeraFLOPS [4].

B. Token Flow Control

The ideal energy-delay of a NoC traversal is that of just the

on-chip links from the source to the destination. However,

in order for multiple packets to share a link, buffers are

2The baseline router used for all comparisons was modeled similar to [4],
[3] and is described in Section II-A.

necessary for temporary storage while the link is occupied.

This introduces latency, and also consumes power due to

the dynamic and leakage power of the register files used to

implement buffers.

No-load bypassing [11] allows incoming flits to skip being

buffered and move straight to the output port if there are no

other buffered flits at that input port. However, this technique

only works when there is very little traffic. Token Flow

Control (TFC) [6] goes a step further towards buffer-less

traversal by pre-allocating buffers and links in the network

using tokens, such that the majority of flits can bypass

buffering even when there are other contending flits.

Each TFC router contains 2 pipelines, a non-bypass

pipeline which is 3-stages long and the same as the baseline

described in Section II-A, as well as a bypass pipeline,

which is one-cycle and consists of just the crossbar traversal,

followed by the link traversal. A high-level overview of TFC

is shown in Figure 1(a).

Each router receives hints about the availability of buffers

in neighboring nodes in the form of tokens, which are

passed between routers up to d-hops away from each other.

The routing algorithm directs flits through paths with more

tokens, implying less congestion, while the flow control

mechanism allows the flit to try and bypass intermediate

router pipeline stages by sending lookahead signals one cycle

in advance. These lookaheads pre-allocate the crossbar at

the next router such that the corresponding flit can use the

bypass pipeline; and thereby traverse the crossbar and links

(datapath) directly, instead of getting buffered. A lookahead

is prioritized over locally-buffered flits so that a local switch

allocation is killed if it conflicts with a lookahead. If two

or more lookaheads from different input ports demand the

same output port, a switch priority vector is used to decide

the winner and the other lookaheads are killed. The flits

corresponding to the killed lookaheads will then have to be

buffered and go through the non-bypass pipeline.

TFC has three major advantages:

• Lower latency: Bypassing obviates the buffer write,

read, and arbitration cycles.

• Fewer buffers: The ability of flits to bypass at all loads

keeps the links better utilized while minimizing buffer

usage, and reducing buffer turnaround times. Thus, the

same throughput can be realized with fewer buffers.

• Lower power: Requiring fewer buffers leads to savings

in buffer power (dynamic and leakage) and area, while

bypassing further saves dynamic switching energy due to

a reduction in the number of buffer writes and reads.

III. DESIGN OF THE SWIFT ROUTER

In this section, we describe the microarchitecture of the

SWIFT router in detail. SWIFT is based on TFC, with

modifications to the architecture proposed in [6] to make

it implementable and meet timing. Each router supports two

pipelines: a non-bypass pipeline, and a bypass pipeline, as

described in Section II-B. Each flit/link is 64-bit wide. All

flits try to use the bypass pipeline at all routers, by sending

lookahead signals a cycle in advance. If the lookahead gets

killed, they use the non-bypass pipeline. These pipeline

440

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:18 UTC from IEEE Xplore. Restrictions apply.

(a) NoC traversal with TFC

BW

SA-I

BR

SA-O

VA

ST
LT

LA-LT

LA-RC

LA-CC

ST

LA-LT

Router n

Router n+1

LT

Time

Router n Router n+1

BYPASS PIPELINE

NON-BYPASS PIPELINE
Flit Pipeline

Lookahead

Pipeline

(b) Non-Bypass and Bypass Pipelines.
BW, BR: Buffer Write/Read; SA-I, SA-
O: Switch Alloc-Inport/Outport; VA: VC
Allocation; ST: Switch Traversal; LT: Link
Traversal; LA-RC: Lookahead Route Com-
pute; LA-CC: Lookahead Conflict Check;
LA-LT: Lookahead Link Traversal

VC State

Table
VC State

Table

Shared

Buffers

VC State

Table
VC State

Table

Crossbar

Switch

0

1

0

1

VC State

Table

LookAhead

Conflict

Check

Lookahead

Generator

Switch

Arbiter –

Inport

LookAhead

Route

Compute

VC Allocator

Xbar_select

Xbar_clock_gating

flit_in

tokens_in

lookahead_in

credit_in

lookahead_out

credit_out

token_out

tokens_forward

flit_out

Stage 1 Stage 2 Stage 3 Stage 4

BYPASS PATH

3

1

4

1

64

bypass_

disable

. . .

Switch

Arbiter –

Outport

(c) Router Microarchitecture

Fig. 1. Components of the SWIFT Network-on-Chip

interactions are highlighted in Figure 1(b), while the router

microarchitecture is shown in Figure 1(c).

A. Non-Bypass Pipeline and Microarchitecture

The non-bypass router pipeline, which is essentially simi-

lar to the baseline router pipeline3, is 3 stages long, followed

by 1 cycle in the link. The various stages are described next,

along with the blocks that are active during that stage.

Stage 1-Buffer Write (BW). The incoming flit is written

into buffers at each input port, which were implemented with

register files generated from the foundry memory generators.

These input buffers are organized as a shared pool among

multiple Virtual Channels (VCs)4. The addresses of the

buffers are connected as a linked list. An incoming flit that

requires a free buffer obtains the address from the head of

the linked list, and every buffer that is freed up appends its

address to the tail of the linked list. One buffer is reserved per

VC in order to avoid deadlock. Compared to private buffers

per VC which can be implemented as a FIFO, our shared

buffer design incurs an overhead of storing the read addresses

of all flits in the VC state table, but has the advantage of

reducing the numbers of buffers required at each port to

satisfy buffer turnaround time5.

Stage 1-Switch Allocation-Inport (SA-I). An input VC

is selected from each input port to place a request for the

switch. This is implemented using V:1 round robin arbiters

at each input port, where V is the number of VCs per port.

Round robin arbiters are simple to implement [11] and ensure

that every VC gets a chance to send a flit.

Stage 2-Switch Allocation-Outport (SA-O). The winners

of SA-I at each input port place requests for their correspond-

ing output ports. As no u-turns are allowed, there can be a

maximum of 4 input ports requesting the same output port.

These conflicts are resolved using 4:1 matrix arbiters, one for

each output port. Matrix arbiters are used for fair allocation

of the crossbar output port to all input ports [11]. Separating

switch allocation into two phases of simpler arbitration, SA-I

and SA-O, is a common approach to satisfy minimum cycle

3The primary difference is that the route computation in the baseline is
done in parallel to the buffer write, while it is done by the lookaheads in
SWIFT, as explained in Section III-B.

4VCs are like turning lanes on a highway, preventing flits with congested
outports from blocking flits with free outports, to enhance throughput [12].

5Minimum number of cycles before which same buffer can be reused.

time constraints [11]. Note that a flit may spend multiple

cycles in switch allocation due to contention.

Stage 2-VC Allocation (VA). At the end of SA-O, win-

ning head flits are assigned an input VC for their next hop.

(Body and Tail flits follow on the same VC). VC allocation

in our design is a simple VC selection scheme, based on [13].

Each output port maintains a queue of free VCs at the input

port of the next router. A switch request is allowed to be

placed for an output port only if the router connected to that

output port has at least one free input VC. The winning head

flit of a switch output port, at the end of SA-O, picks up the

free VC at the head of the queue and leaves. Thus there is no

arbitration required, simplifying the VC allocation process.

If the router receives a signal indicating a free VC from the

next router, the corresponding VC id is enqueued at the tail

of the queue. VA does not add any extra delay to the critical

path since the updating of the queue and the computation of

the next free VC id take place in parallel to SA-O.

Stage 2-Buffer Read (BR). Flits that won SA-I start a

pre-emptive read of the buffers, in parallel to SA-O. This

is because the register files require all input signals to be

ready before the clock edge. If we wait until SA-O declares

the winner of the switch output port, BR would have to be

pushed to the next cycle, adding latency. The drawback of

this is that there are wasted reads from the buffer which

would consume power. We solve this by biasing SA-I to

declare the same input VC as the winner until it succeeds to

use the crossbar. This ensures that the same address is read

out of BR to avoid additional switching power.

Stage 3-Switch Traversal (ST). The flits that won the

switch ports traverse the crossbar switch.

Stage 4-Link Traversal (LT). The flits coming out of the

crossbar traverse the links to the next routers.

B. Bypass Pipeline and Microarchitecture

The crux of our design is the 1-stage bypass router

pipeline (ST), which allows flits to zoom from the source

Network Interface (NIC) to the destination NIC, traversing

just the crossbars and links, without getting buffered. We

next describe two primary control logic components that

facilitate this bypass action, namely lookaheads and tokens

which were introduced in Section II-B.

Lookaheads. Each incoming flit is preceded by a looka-

head signal which is 14 bits wide in our design. This is

441

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:18 UTC from IEEE Xplore. Restrictions apply.

Outport VCid Y_hops Y_direction X_hops X_direction

03-147-5813-9

Data Flit_type

2-063-3

(a) (b)

Fig. 2. (a) Lookahead Payload (b) Flit Payload

also true for flits coming from the NIC and going into

the NIC. The lookahead and flit payloads are shown in

Figure 2. Lookaheads carry information that would normally

be carried by the header fields of each flit, namely the

destination coordinates, the input VC id, and the output port

the corresponding flit wants to move out from.

Only the head flit’s lookahead holds the destination infor-

mation in the destination field; lookaheads of the body flits

have zeros, while that of the tail flit arrives with its LSB

‘high’ in order to signal the arrival of a tail flit.

The lookaheads perform actions in parallel to the regu-

lar non-bypass pipeline. The lookahead pipeline stages are

highlighted in black in Figures 1(b) and 1(c).

Lookahead Route Compute (LA-RC). The lookahead

of each head flit performs a route compute (LA-RC) to

determine the output port at the next router [14]. This is an

important component of bypassing because it ensures that all

incoming flits at a router already know which output port to

request, and whether to potentially proceed straight to ST. We

used West-first routing, an adaptive-routing algorithm that is

deadlock free [11]. The adaptive-routing unit is a combina-

tional logic block that computes the output port based on the

availability of the tokens from 3-hop neighboring routers,

which is explained later, rather than use local congestion

metrics as indication of traffic.

Lookahead Conflict Check (LA-CC). The lookahead

places a request for the output port in this stage. This happens

in parallel to the SA-O stage of the non-bypass pipeline. As

explained in Section II-B, a lookahead is given preference

over the winners of SA-O in TFC, and conflicts between

multiple lookaheads are resolved using a switch priority

vector (which prioritizes each input port every 20 cycles in

a round-robin manner). Muxes connect the input ports of

the winning lookaheads directly to the crossbar ports. The

corresponding flits that arrive in the next cycle bypass the

buffers, as shown in Figure 1(c). The flits corresponding

to the killed lookaheads, meanwhile, use the non-bypass

pipeline.

Lookahead Link Traversal (LA-LT). While the flit

performs its crossbar traversal, its lookahead is generated

and sent to the next router.

Tokens. Tokens indicate non-congested paths, as described

in Section II-B and Figure 1(a). We implemented the to-

kens as 1-bit wires going from a router to its three-hop

neighborhood6, via registers at each intermediate router. The

wire being high/low determines whether the token is on/off.

The token is set by the number of free buffers at each

input port. If the number of free buffers goes lower than a

threshold (which is three in order to account for flits already

in flight), the token is turned off. We propagate tokens up to

the network interfaces at each router, such that even source

and destination routers can be bypassed. Each router receives

6Three was chosen based on experiments in [6].

Fig. 3. (a) Reduced Swing Driver (RSD) (b) Sense Amplifier and SR Latch
Receiver

a total 23-bits of tokens7 and these act as inputs to the

combinational block that performs the route computation,

which was explained earlier.

IV. LOW-VOLTAGE SWING ON-CHIP WIRES

SWIFT’s bypass pipeline is comprised of two stages,

switch and link traversal, corresponding to the datapaths

through the crossbar switch and the core-to-core interconnect

respectively. Both are critical NoC components and major

contributors to power and area budgets, amounting to 32%

of the network power and nearly 10% of total chip area in [4].

Unlike locally connected logic cells that communicate

through short, locally-routed wires, crossbar and link inter-

connect exhibit long distances and close inter-wire coupling,

such that dynamic power consumption is dominated by large

wire capacitances rather than gate input capacitances. To

reduce the power required to drive these large capacitive wire

loads, reduced-voltage swing signaling was implemented

using dual voltage supply differential reduced-swing drivers

(RSD), followed by a simple sense-amplifier receiver as

shown in Figure 3. The lower supply voltage is generated

off-chip, allowing for signal swings to be adjusted easily

during testing as the difference between the two supplies. In

practice, voltage supplies 0.2V to 0.4V below the core logic

supply are often already available on-chip for SRAM caches

or other components that operate at a reduced supply voltage.

Occupying 7.8um2 and 15.2um2 respectively, the same driver

and receiver are used in both the crossbar and link designs.

While differential signaling approximately doubles the

wire capacitance of each bit by introducing a second wire, it

removes the necessity of multiple buffer stages and enables

the use of reduced voltage swings, resulting in quadratic

power savings in the datapath. For example, if the power

required to drive a wire is given by Eq. (1), then the

power required to drive the differential wires at 200mV is

approximately given by Eq. (2).

P(swing=1.2V) =
1

2
CwireV

2 f (1)

P(swing=200mV) =
1

2
(2Cwire)

1

36
V 2 f =

1

18
P(swing=1.2V) (2)

Hence, reducing the voltage swing from 1.2V to 200mV

results in greater than 94% reduction in the power required

to drive the interconnect wire. At 200mV swing, more

7There are a total of 36 tokens in a 3-hop neighborhood and one is
received from the local port, as can be inferred from Figure 1(a). However,
the West-first algorithm in our design allowed us to remove tokens from
the west neighborhood since a packet has to go west irrespective of token
availability.

442

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. (a) Simple Grid Crossbar (b) This Design: Crossbar with distributed
low-swing bit cells

than 98% of the crossbar and link power is consumed by

the clock distribution, switch selection signals, driver input

capacitance, and the sense amplifiers used to resolve the low-

voltage swing signals. Further reductions in voltage swing

require either larger transistors or offset correction in the

receiver to overcome input offset, diminishing the return on

additional voltage swing reduction in the datapath. Therefore,

area-efficient sense amplifiers comprised of near-minimum

sized transistors and with approximately 100mV simulated

3σ offset are used rather than larger or more complex devices

that achieve better input sensitivity.

A. Reduced-Swing Link

A significant body of work exists exploring high-

speed, energy-efficient, on-chip interconnects that attempt to

achieve the lowest mW/Gbps on narrow interconnect wires

across distances up to 10mm. However a typical 2D-mesh

NoC is likely to require wide, parallel links spanning a

distance of just 1-2mm [4], limiting the practicality of pre-

viously proposed on-chip interconnects. For instance, while

[7] and [8] achieve 3Gbps and 4Gbps on a 10mm link, the

transceivers occupy 887um2 and 1760um2 respectively. By

contrast, in this design, the combined driver and receiver area

is only 23um2, allowing the many transceivers required for a

wide data bus to be realized in an acceptable area footprint.

A major concern for the proposed interconnect is suscep-

tibility to crosstalk interference from digital logic signals on

lower metal layers, as reduced-swing signals are particularly

sensitive to coupled noise from nearby full-swing wires. To

address this, shielding wires were routed on M6 between and

in parallel to the differential pairs on M7. This differential-

mode shielding approach adds less capacitance to the signal

wires than routing ground shielding under the entire link,

while still minimizing crosstalk from signals that would

couple asymmetrically on to one of the differential wires.

Worst case simulated differential mode crosstalk from a 1mm

full swing aggressor signal is reduced from 128mV with-

out shielding to 29mV with shielding, providing sufficient

voltage margin to preserve signal integrity at 200mV signal

swing and 100mV receiver input offset.

B. Reduced-Swing Crossbar

An obvious approach to the crossbar layout is to route

a grid of vertical and horizontal wires with pass-gates or

tri-state buffers at their intersection points, as shown in Fig-

ure 4(a). While simple, this approach suffers from a number

of major disadvantages including poor transistor density, low

bandwidth and a n2 bit-to-area relationship. Higher crossbar

speeds and improved density can be achieved using mux-

based switches that place buffered muxes throughout the area

of the crossbar or by implementing crossbar pipelining to

improve speed by allowing sections of the wire load to be

driven in separate clock cycles. While simple to implement

in digital design flows, both approaches introduce additional

loading in the form of increased fanout buffering and clock

distribution that results in increased power consumption.

Based on these observations, the crossbar implemented in

this design improves both performance and energy efficiency

by replacing crossbar wires with low-swing interconnect.

This approach seeks to drive as much of the large wire ca-

pacitances of the crossbar as possible with a reduced voltage

swing, without introducing additional clocked elements or

buffers. Implemented as a bit-sliced crossbar, each of the

64-bits in each of the five input buses is connected to a

one-bit wide, 5-input to 5-output crossbar, along with the

corresponding bits from each of the other four ports. An 8x8

grid is then patterned out of 64 of these bit-cell crossbars in

order to construct a 64-bit wide, 5x5 crossbar.

Each crossbar bit-slice consists of 5 sense amplifiers, 20

pass-gates and 5 RSDs as shown in Figure 4(b). Each of

the five reduced-swing differential inputs is driven at the

periphery of the crossbar by an RSD connected to the output

of the router logic. At the positive clock edge, each of the

five low-swing differential inputs is converted to full-swing

logic by the sense amplifier and drives a short 6um wire

through a pass-gate transistor, and then into the interconnect

RSD at one of the four possible output ports (U-turns are not

allowed). The receiver, which consists of a near-minimum

sized, 9-transistor sense-amplifier followed by a minimum-

sized NAND-SR latch, acts as a DFF with low-swing dif-

ferential inputs, replacing the flip-flop that would otherwise

reside at the output of the crossbar-traversal pipeline stage.

Like mux-based crossbars, this crossbar topology results

in irregular datapaths across the 64b parallel interconnect,

requiring that the maximum crossbar speed be bounded by

the longest datapath delay through the crossbar. Full-swing

select signals are routed on M1 and M2, differential data

signals are routed on minimum width wires on M3-M5, and

a separate clock wire is routed on M7 for each port. The

clock is custom-routed to closely match the worst case RC

delay of the datapath in order to minimize clock skew.

V. DESIGN FEATURES FOR TESTABILITY

In this section, we describe the various features added to

the design to facilitate testing and measurement.

Network Interfaces (NIC). Each router is connected to

a Local Network Interface (L-NIC) which houses a traffic

injector and a traffic receiver.

The traffic injectors generate uniform random traffic (traf-

fic to destinations that are randomly generated using a PRBS

generator), at an injection rate specified via a scan chain.

They also generate lookaheads based on tokens. To avoid

the need for buffering, the traffic injectors generate packets

one at a time. Each traffic injector uses a 32-bit counter that

signifies the current time stamp, synchronized via the global

443

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. SWIFT NoC overview and die photo with node 1 layout overlay
Specs: Freq=400MHz, Voltage=1.2V, Area=4mm2, Transistors=688K

reset signal. Data flits carry their generation time in the data

field to aid in the calculation of flit latency.

The traffic receivers at the L-NICs receive flits and send

back the free VC and On/Off token signals. In addition, they

compute the total received packets and total packet latency.

For the 2x2 mesh test chip, in addition to the L-NICs,

each router includes Congestion Network Interfaces (C-

NICs) connected to its two unconnected ports at the edges

of the mesh. These are added to enable simulations of the

router with varying activity at all ports. The C-NICs also

incorporate a traffic injector and a traffic receiver. They also

send out tokens to emulate a larger mesh. Overall we have

12 traffic injectors on the chip, as shown in Figure 5.

In our test chip, the traffic injectors work in two modes:

non-congestion and congestion. In the non-congestion mode,

only the 4 traffic injectors in the L-NICs inject packets to

be sent to the other three L-NICs in the 2x2 network. In the

congestion mode, we try to mimic the traffic within the 2x2

network as if it were at the center of an 8x8 mesh. The 4 L-

NICs and the 8 C-NICs inject traffic meant for the other 63

nodes in the hypothetical 8x8 network. Injection rate at the

C-NICs is set at double the L-NIC injection rate to correctly

model the channel load of one slice of an 8x8 mesh [11].

Error Detection. Specific error bits are set at each of the

four routers and the four L-NICs if flits are received out-of-

order or at incorrect destinations. All of these error bits are

scanned out at the end of the simulation to determine the

frequency at which the chip fails.

Scan Chains. A 1640-bit scan chain connects through the

12 NICs in the 2x2 chip to set the various parameters (PRBS

seeds, the injection rates, and the modes of operation) at

the beginning of a simulation. Bypassing, clock-gating and

congestion modes can each be enabled or disabled. At the

end of the simulation, the scan chain reads out the packet

statistics (total packets received, total latency, simulation

cycles) and the error bits.

VI. RESULTS

In this section, we report the simulated/measured results

of the SWIFT NoC, and compare it to a baseline NoC.

A. The SWIFT Network-on-Chip

SWIFT NoC parameters are shown in Table I. We chose

2 VCs and 8 buffers based on simulations. This is also

the minimum number of buffers required per port with one

buffer reserved per VC for deadlock avoidance, and six being

the buffer turnaround time with on-off signaling between

0

10

20

30

40

50

60

70

80

90

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

A
vg

 P
ac

ke
t

La
te

n
cy

 (
cy

cl
es

)

Injection Rate (packets/node/cycle)

SWIFT (2VC, 8buf)

Baseline (2VC, 8buf)

Baseline (4VC, 16buf)

(a) 8x8 network

0

5

10

15

20

25

30

35

40

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18A
v

g
 P

a
c
k

e
t
 L

a
t
e

n
c
y

 (
C

y
c
le

s
)

Injection Rate (packets/node/cycle)

Bypass Enable (Sim) Bypass Disable (Sim)

Bypass Enable (Meas) Bypass Disable (Meas)

(b) 2x2 chip

Fig. 6. Performance Results

neighboring routers [11]. We used standard-cell libraries

from ARM for synthesis. The ‘Place and Route’ of the

router RTL met timing at 600MHz. The use of standard-

cells, instead of custom layouts, limits our router design from

running at GHz speeds like [4]. The custom crossbar and

links are operational at 2GHz with 250mV swing, based on

extracted simulations. In an actual Chip-Multi Processor, a

tile consists of both the processing core, and a router, with the

router accounting for less than a quarter of the tile area [4].

Since we do not integrate processing cores in this design, we

place the routers next to each other for area reasons. This

results in assymetric link lengths in our chip, but we size

each driver and sense amplifier for 1mm links. A photo of

our prototype test chip overlaid with the layout of node 1 is

shown in Figure 5.

Due to the 4mm2 network size, we use a synchronous

clock with tunable delays to each core rather than a globally-

asynchronous, locally-synchronous approach as in [4], which

was outside the scope of this work. The test chip operates at

400MHz at low load, however is limited to 225MHz at high-

injection due to voltage supply droop caused by excessive

resistance in the power distribution.

B. Evaluations

For a fair comparison of performance and power, we

designed and laid out a baseline VC router and crossbar in

the same 90nm technology, implementing the state-of-the-art

pipeline described in Section II-A.

Performance. We evaluate the latency-throughput charac-

teristics of SWIFT with uniform random traffic. Figure 6(a)

shows the average simulated packet latencies of the networks

as a function of injected load with the SWIFT 8x8 network

displaying a 39% latency reduction at low load and achieving

the same saturation throughput8 as that of the baseline

router, but with half as many buffers (eight versus sixteen).

Accordingly, the baseline parameters were fixed as shown in

Table I for a fair comparison.

The measured latency versus injection curves for our 2x2

prototype chip match those from RTL simulation, as shown

in Figure 6(b), confirming the functionality of the chip. The

2x2 network delivers a peak throughput of 113 bits/cycle.

We do not provide an extensive performance evaluation

of the TFC microarchitecture, as that was done in [6] under

various synthetic and real traffic conditions.

Power. The power distributions for the SWIFT and base-

line routers are shown in Figure 7. Because the L-NIC shares

a supply with the router, and the crossbar shares a supply

8Saturation throughput is defined as the point where the latency becomes
3 times the no-load latency.

444

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:18 UTC from IEEE Xplore. Restrictions apply.

TABLE I

COMPARISON OF NOC DESIGNS

Characteristic Intel TeraFLOPS [4] UT TRIPS [3] Baseline⋆ SWIFT

Process parameters

Technology 65nm 130nm 90nm 90nm

Chip Frequency 5GHz 366 MHz NA 400 MHz

Router Area 0.34mm2 1.10mm2 0.48†mm2 0.48mm2

Network parameters

Topology 8x10 mesh 4x10 mesh 8x8 mesh 8x8 mesh‡

Flit size 39b 138b 64b 64b

Packet Length 2 or higher flits 1-5 flits 5 flits 5 flits

Routing Source Y-X dimension order X-Y dimension order Adaptive (West-first)

Flow Control Wormhole with VCs Wormhole with VCs Wormhole with VCs TFC [6]

Buffer Management On/Off Credit-based On/Off TFC [6]

Router parameters

Ports 5 6 5 5

VCs per port 2 4 4 2

Buffers per port 32 8 16 8

Crossbar 5x5 6x6 5x5 5x5
⋆ Not fabricated, only laid out for comparison purposes.

† Baseline tile was given same area as SWIFT for place-and-route.
‡ 2x2 mesh for test chip.

Fig. 7. Power breakdown of the SWIFT router and Baseline router

with the link, it was not possible to measure all of the blocks

separately. Instead, post-layout, extracted simulations were

performed to obtain an accurate relative breakdown of the

power consumption of the different components which were

compared and validated with chip measurements.

With the C-NICs, bypassing, and clock-gating all en-

abled, we performed experiments for both low (0.03 pack-

ets/node/cycle) and high (1 packet/node/cycle) injection

rates. The low-swing drivers were set to 300mV signal swing,

while VDD was set to 1.2V for a 225MHz clock frequency.

We observe a power reduction versus the post-layout baseline

router simulation of 49.4% in the buffers (control path) and

62.1% in the crossbar and links (datapath), giving a total

power reduction of 38.7% at high injection, with the chip

consuming a peak power of 116.5 mW.

Chip measurements with bypassing disabled showed that

the feature reduces buffer power by 28.5% at high injection

and by 47.1% at low injection, with greater power savings

at low injection due to most flits being able to bypass buffer

reads and writes.

Lookahead signals allow the crossbar allocation to be

determined a cycle prior to traversal, making per-port, cycle-

to-cycle clock gating possible. This was implemented in

the crossbar’s forwarded clock, reducing the crossbar clock

distribution power by 77% and 47% and sense amplifier

power by 73% and 43% at low and high injection respec-

Kill SA-O

winners

SA-O resp

ready

Update VC and

buffer next states

Next state

ready

kill_lookahead

ready

SA-O req

ready

LA-CC

SWIFT critical path (Stage 2) : 1560 ps

119ps 682ps 1021ps

Lookahead

ready

Next state

ready

SA-O req

ready

Baseline critical path (Stage 2) : 1160 ps

SA-I winner

ready

290 ps

SA-O resp

ready

690ps

Update VC and

buffer next states
SA-O

Fig. 8. Critical Paths of the SWIFT router and Baseline router

tively. Simulations show clock gating the links would save

an additional 43% of the total crossbar and link power at

low injection and 17% at high injection.

The average energy efficiency of the crossbar and link at

the network saturation point was observed to be 64fJ/bit.

C. Overheads

Many of the architectural and circuit novelties in SWIFT

are features that would enhance any baseline design, since

at a high-level, they perform a more efficient allocation of

network links and buffers, and enable low-power traversal.

However, the comparison of the SWIFT router with the base-

line would only be complete if the trade-offs and overheads

are analyzed.

Timing. Figure 8 shows the the critical paths of the

SWIFT and baseline routers, and it occurs during the SA-O

stage in both cases9. The baseline is 400ps faster. Disecting

the various components of the critical path gives interesting

insights. The generation of the SA-O request signals, and the

updation of the VC and buffer states is faster in SWIFT due

to fewer number of VCs and buffers. The primary bottleneck

in SWIFT turns out to be the 339ps incurred in killing the

SA-O winners. The SWIFT router performs SA-O and LA-

CC independently, in parallel, and then kills all the SA-O

assignments which conflict with the lookahead assignments

9Note that our choice of the VC selection scheme made the delay of the
VC allocation stage trivial, whereas if a separable VC allocator was used,
like that in [4], that would have been the critical path.

445

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:18 UTC from IEEE Xplore. Restrictions apply.

for the same input or output ports of the crossbar, to maintain

higher priority for lookaheads. In hindsight, we could have

done this faster by combining LA-CC and SA-O: muxing

out requests from SA-I winners (buffered flits) if lookaheads

arrived at those input ports, and then arbitrating for output

ports using SA-O, biasing it to give preference to lookaheads.

Area. The baseline and SWIFT routers primarily differ

in the following hardware components: tokens, lookahead

signals with corresponding bypassing logic, buffers, VCs,

and crossbar implementation. We estimate the standard-

cell area contributions of each of these components, and

compare these in Table II. For the custom crossbar, we

use the combined area of the RSD, switching devices and

sense amplifier circuits as the metric to compare against the

matrix crossbar’s cell area. The total area of the SWIFT

router is 25.7% smaller than the baseline router. This is

the essential take-away of the SWIFT design: the 8% extra

circuitry for tokens and bypassing, in turn results in a 11.2%

reduction in buffer area and 49.3% reduction in control area

(due to fewer VCs and corresponding smaller decoders and

allocators) required to maintain the same peak bandwidth,

thereby reducing both area and power!

The SWIFT NoC also has some wiring overheads. The 23-

bit token signals from the 3-hop neighborhood at each router

add 7% extra wires per port compared to the 64-bit datapath.

The 14 lookahead bits at each port carry information that

is normally included in data flits and so are not strictly an

overhead10. Additionally, while Table II highlights that the

active device area of the reduced swing custom crossbar is

less than that of a synthesized design, differential signaling

requires routing twice as many wires as well as potentially

requiring an additional metal layer if shielding is required

for the application.

Power. The west-first adaptive routing combinational logic

(using tokens), the lookahead arbitration logic, and the

bypass muxes account for less than 1% of the total power

consumed in the router, and are thus not a serious overhead.

This is expected because the allocators account for only 3%

of the total power, consistent with previous NoC prototypes.

The control power of the SWIFT NoC is infact observed

to be 37.4% lower than the baseline NoC because of fewer

buffers and VCs (hence smaller decoders and muxes) re-

quired to maintain the same throughput.

The overall control power of SWIFT is about 26% of

the router power, as can be seen from Figure 7. The high

percentage is primarily due to a large number of flip-flops

in the router, many of which were added conservatively

to enable the design to meet timing, and could have been

avoided or replaced by latches. In addition, the shared buffers

require significant state information to track free buffer slots

and addresses for each flit that adds more flip-flops.

VII. RELATED WORK

MIT’s RAW [2], UT Austin’s TRIPS [3], and Intel’s

TeraFLOPS [4] are previously fabricated mesh NoCs. RAW

uses four physical 4x4 mesh networks with no VCs. The

10The flit width can then either be shrunk or packets can be sent using
fewer flits, both not incorporated in our results, which will further enhance
SWIFT’s area or performance benefits over the baseline.

TABLE II

AREA COMPARISON (ABSOLUTE AND PERCENTAGE)

Component SWIFT Area, % of total Baseline Area, % of total

Tokens 1,235 um2, 0.82% 0

Bypass 10,682 um2, 7.10% 0

Buffers 72,118 um2, 47.94% 81,231 um2, 40.08%

Crossbar 15,800 um2, 10.50% 21,584 um2, 10.64%

Control 50,596 um2, 33.63% 99,856 um2, 49.27%

Total 150,431 um2, 100% 202,671 um2, 100%

TRIPS memory-memory network is a 4x10 mesh with VC

routers, and Intel’s TeraFLOPS is an 8x10 mesh with VC

routers. Table I compares our baseline and SWIFT network

designs with the TRIPS and TeraFLOPS network, as they are

closest to our baseline VC router. The SWIFT NoC is unique

because it is the first fabricated NoC to simultaneously

address network latency (buffer-less bypassing, single-cycle

router), throughput (adaptive routing, buffer-less bypassing at

all traffic through tokens), and power (buffering, low-swing

interconnect circuits, clock gating). Furthermore, unlike prior

NoC designs that use VCs, the SWIFT design uses shared

buffers and VC selection to simplify VC management.

VIII. CONCLUSIONS

In this work, we presented the SWIFT NoC (SWing-

reduced Interconnect For a Token-based Network-on-Chip)

which enables bufferless traversal in the network through a

reduced-swing datapath. We experimentally demonstrated a

90nm-CMOS test chip for a 2x2 mesh network that validates

the benefits of this router architecture and circuitry.

REFERENCES

[1] J. A. Kahle et al., “Introduction to the Cell multiprocessor,” IBM
Journal of Research and Development, vol. 49, no. 4/5, 2005.

[2] M. B. Taylor et al., “The raw microprocessor: A computational fabric
for software circuits and general-purpose programs,” IEEE Micro,
vol. 22, no. 2, pp. 25–35, 2002.

[3] P. Gratz et al., “On-chip interconnection networks of the TRIPS chip,”
IEEE Micro, vol. 27, no. 5, pp. 41–50, Sept. 2007.

[4] Y. Hoskote et al., “A 5-GHz mesh interconect for a teraflops proces-
sor,” IEEE Micro, vol. 27, no. 5, pp. 51–61, Sept. 2007.

[5] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express virtual
channels: Towards the ideal interconnection fabric,” in Proc. Int. Symp.
Computer Architecture, June 2007.

[6] A. Kumar, L.-S. Peh, and N. K. Jha, “Token flow control,” in Proc.
41st International Symposium on Microarchitecture, November 2008.

[7] J. Bae, J.-Y. Kim, and H.-J. Yoo, “A 0.6pj/b 3gb/s/ch transceiver in
0.18 um cmos for 10mm on-chip interconnects,” in IEEE International
Symposium on Circuits and Systems, May 2008, pp. 2861–2864.

[8] B. Kim and V. Stojanovic, “A 4gb/s/ch 356fj/b 10mm equalized on-
chip interconnect with nonlinear charge-injecting transmit filter and
transimpedance receiver in 90nm cmos,” IEEE International Solid-
State Circuits Conference,, pp. 66–68, Feb. 2009.

[9] K. Lee, S.-J. Lee, and H.-J. Yoo, “Low-power network-on-chip for
high-performance soc design,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 14, pp. 148–160, 2006.

[10] H.-S. Wang, L.-S. Peh, and S. Malik, “Power-driven design of router
microarchitectures in on-chip networks,” in Proc. Int. Symp. Microar-
chitecture, Nov. 2003, pp. 105–116.

[11] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Pub., 2003.

[12] W. J. Dally, “Virtual-channel flow control,” in Proc. Int. Symp.
Computer Architecture, May 1990, pp. 60–68.

[13] A. Kumar et al., “A 4.6Tbits/s 3.6GHz single-cycle noc router with a
novel switch allocator in 65nm CMOS,” in Proc. Int. Conf. Computer
Design, Oct. 2007.

[14] M. Galles, “Scalable pipelined interconnect for distributed endpoint
routing: The SGI SPIDER chip.” in Proc. Hot Interconnects 4, Aug.
1996.

446

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:20:18 UTC from IEEE Xplore. Restrictions apply.

