1432

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 8, AUGUST 2013

SWIFT: A Low-Power Network-On-Chip
Implementing the Token Flow Control Router
Architecture With Swing-Reduced Interconnects

Jacob Postman, Student Member, IEEE, Tushar Krishna, Student Member, IEEE, Christopher Edmonds,
Li-Shiuan Peh, Member, IEEE, and Patrick Chiang, Member, IEEE

Abstract— A 64-bit, 8 x 8 mesh network-on-chip (NoC) is
presented that uses both new architectural and circuit design
techniques to improve on-chip network energy-efficiency, latency,
and throughput. First, we propose token flow control, which
enables bypassing of flit buffering in routers, thereby reducing
buffer size and their power consumption. We also incorpo-
rate reduced-swing signaling in on-chip links and crossbars
to minimize datapath interconnect energy. The 64-node NoC
is experimentally validated with a 2 x 2 test chip in 90 nm,
1.2 V CMOS that incorporates traffic generators to emulate the
traffic of the full network. Compared with a fully synthesized
baseline 8 x 8 NoC architecture designed to meet the same peak
throughput, the fabricated prototype reduces network latency by
20% under uniform random traffic, when both networks are run
at their maximum operating frequencies. When operated at the
same frequencies, the SWIFT NoC reduces network power by
38% and 25% at saturation and low loads, respectively.

Index Terms— Architecture, circuits, interconnect, low-power
design, on-chip networks, routing.

I. INTRODUCTION

ETWORKS-ON-CHIP (NoC) form the on-chip commu-
Nnication backbone between processing cores in many
core processor architectures. Aided by Moore’s law, increasing
core counts have become the answer to meet high performance
demands at low-power budgets, rather than designing increas-
ingly complex cores. However, for the tens to hundreds of
on-chip cores to become a reality, the NoC needs to be highly
scalable, and provide low-latency, high-throughput communi-
cation in an energy-efficient manner. Multicore research pro-
totypes, such as MIT’s 16-core RAW [1], UT Austin’s 40-core
TRIPS [2], and Intel’s 80-core TeraFLOPS [3] have adopted

Manuscript received October 12, 2011; revised May 17, 2012; accepted
July 21, 2012. Date of publication August 31, 2012; date of current version
July 22, 2013. This work was supported in part by the National Science
Foundation under Grant CCF-0811375 and Grant CCF-0811820, an NSF
Doctoral Fellowship, a DoE Early CAREER Award, the MARCO Interconnect
Focus Center, the Gigascale Systems Research Center, and gift donations from
Intel Corporation.

J. Postman and P. Chiang are with the Department of Electrical Engineering
and Computer Science, Oregon State University, Corvallis, OR 97333 USA
(e-mail: postmaja@eecs.oregonstate.edu; pchiang @eecs.oregonstate.edu).

T. Krishna and L.-S. Peh are with the Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA (e-mail: tushar@csail.mit.edu; peh@csail.mit.edu).

C. Edmonds is with Microsoft Corporation, Redmond, WA 98052-6399
USA (e-mail: edmondsc@gmail.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI1.2012.2211904

tile-based homogenous NoC architectures that simplify the
interconnect design and verification. The network routers are
laid out as a mesh, and communicate with one another in a
packet switched manner. While these designs demonstrated
the potential of multicore architectures, they also exposed
the rising contribution of the network toward the total power
consumed by the chip. For instance, 39% of the 2.3-W power
budget of a tile is consumed by the network itself in Intel’s
TeraFLOPS. If not addressed, this trend will become the major
stumbling block for the further scaling of processor counts.
This paper addresses some of these concerns. NoC routers
primarily consist of buffers, arbiters, and a crossbar switch,
and are interconnected with one another via links. Buffers are
required to prevent collisions between packets that share the
same links, and are managed by the control path. The crossbar
switches and the links form the datapath through which actual
data transmission occurs. Prior NoC prototypes have observed
that the primary contributers to NoC power are the buffers
(31% in RAW [1], 35% in TRIPS [2], 22% in TeraFLOPS [3]),
which are typically built out of SRAM or register files; the
crossbar switches (30% in RAW [1], 33% in TRIPS [2], 15%
in TeraFLOPS [3]); and the core-core links (39% in RAW [1],
31% in TRIPS [2], 17% in TeraFLOPS [3]).

Significant research in NoC router microarchitectures has
focused on performance enhancement (low-latency and high-
throughput). The MIT RAW [1], and its subsequent commer-
cial version, the Tilera TILEPro64 [4] use multiple physical
networks to improve throughput, each interconnected via very
simple low-latency routers, presenting one-cycle delay in the
router to traffic going straight and two-cycles for turning
traffic. The UT TRIPS [2] and Intel TeraFLOPS [3] enhance
throughput using virtual channels (VO)! [5]. However, VCs
increase the arbitration complexity because: 1) there are more
contenders for the input and output ports of the switch within
each router and 2) VC arbitration is required in addition
to switch arbitration. This forces all flits?2 to get buffered,
perform successful arbitrations, and then proceed through the
switch and the links to the next router, increasing both the
delay and the dynamic power consumption within each router.

lyCs are analogous to turning lanes on highways to avoid traffic leaving
different output ports from blocking each other, known as head-of-line
blocking.

2Flits are small fixed-sized sub-units within a packet, equal to the router-
to-router link width.

1063-8210/$31.00 © 2012 IEEE

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

POSTMAN et al.: SWIFT: A LOW-POWER NoC IMPLEMENTING THE TFC ROUTER ARCHITECTURE

"
0

1433

Network
Interface

Reduced Swing Ty vdd
C>\ (RS) traversal 7\6‘1@0‘”

/Router

3-cycle 3-cycle

1-cycle 1-cycle 1-cycle 1-cycle

3-cycle 3-cycle

@ o}

Ideal Communication
Delay = Wire Delay
Energy = Wire Energy

(a)

(®)

Fig. 1.

UT TRIPS [2] uses a three-cycle router pipeline, while Intel
TeraFLOPS [3] uses a five-cycle router pipeline, followed by
an additional cycle in the link. Even though these routers could
potentially be designed to run slower and finish all tasks within
a cycle, flits would still have to be buffered (and perhaps read
out in the same cycle upon successful arbitration).

To mitigate the long latencies in these multicycle VC
routers, recent research in NoCs has suggested ways to per-
form speculative arbitration [6], [7] or nonspeculative arbi-
tration by sending advanced signals [8]-[11], before the flit
arrives, to allow flits to traverse the switch directly, instead
of getting buffered. This presents a single-cycle router delay
to most flits, and reduces the power consumed in buffer
writes/reads. However, none of these designs have been proven
in silicon yet.

In this paper, we present the SWing-reduced Interconnect
For a Token-based NoC (SWIFT NoC), which is a novel
architecture/circuit co-design that targets power reduction in
both the control path (buffers) and the datapath (crossbar and
links). On the architecture front, this is the first fabricated
NoC prototype to target an aggressive one-cycle VC router,
with intelligent nonspeculative network flow-control (token
flow control [8]) to bypass router buffers. On the circuit
front, we identify that datapath traversal is imminent in any
router (speculative/nonspeculative single or multicycle) and
custom design a crossbar with low-swing links, a first of its
kind, and interface it with low-swing router-to-router links,
to provide a reduced-swing datapath. In contrast, previous
implementations of low-swing on-chip wires have restricted
their use to global signaling [12], [13]. Together, the buffer
bypassing flow control, and the reduced-swing crossbar and
links, provide two-cycle-per-hop on-chip communication from
the source to the destination over a reduced-swing datapath.
Compared to a state-of-the-art baseline NoC (which we model
similar to UT TRIPS [2] and TeraFLOPS [3]) operating at
its peak frequency and designed to meet the same saturation
throughput, the SWIFT NoC lowers low-load latency by 20%
with uniform random traffic. When running both the baseline
and SWIFT at the same frequency, the low-load latency
savings are 39%. In addition, SWIFT reduces peak control
path power by 49%, and peak datapath transmission power
by 62%, giving a total power reduction of 38% compared
to the baseline running at the same throughput. A high-level
overview of the SWIFT NoC is shown in Fig. 1.

To experimentally validate the entire NoC co-designed with
the proposed microarchitecture and circuit techniques, the

Baseline NoC
Delay >= 17 cycles (12 router + 5 link)
Energy =4 X Eputter + 4 X Expar + 5 X Ejink

SWIFT NoC
Delay = 9 cycles
I Energy =4x ExbarﬁRS +

buffersXbar link 5 X Ejink_rs
©

Overview of SWIFT NoC versus a baseline NoC and ideal communication. (a) Ideal communication. (b) Baseline NoC. (¢) SWIFT NoC.

SWIFT router is designed in Verilog and implemented using
a commercial 90 nm, 1.2 V CMOS standard cell library.
Next, the synthesized router logic is manually integrated with
the custom, reduced-swing crossbars and links. While the
proposed NoC is designed as an 8 x 8 2-D mesh, the fabricated
test-chip is comprised of a smaller, 2 x 2 mesh subsection of
four routers, verifying the design practicality, and validating
the network simulation results. At 225 MHz, the total power
savings of the entire network were measured to be 38% versus
a baseline, fully-synthesized, network design operating at the
same peak throughput.

The rest of this paper is organized as follows. Section II
provides the motivation for this paper. Section III presents the
microarchitecture of the SWIFT router. Section IV describes
the reduced-swing crossbar and link circuits. Section V
presents and analyzes our results. Section VI presents some
of our learnings and insights. Section VII concludes.

II. MOTIVATION

The ideal energy-delay of a NoC traversal should be that
of just the on-chip links from the source to the destination, as
shown in Fig. 1(a). However, this would require each core to
have a direct connection with all other cores which is not
scalable. Packet-switched NoCs [5] share links by placing
routers at the intersections to manage buffering, arbitration for
the crossbar switch, and routing of the flits in order to avoid
collisions while the link is occupied, at the cost of increased
delay and power, as shown in Fig. 1(b). In this paper, we make
two key observations.

First, fabricated NoC prototypes in the past have typically
used relatively simple VC router architectures that do not
optimize buffer utilization. Data are always buffered without
regard to route availability. This dissipates unnecessary energy,
and introduces additional latency within a router pipeline.
Even if the datapath is available, all packets go through mul-
tiple pipeline stages within each router, including buffering,
routing, switch allocation, and switch (crossbar) traversal;
this is then followed by the link (interconnect) traversal. We
believe that the router control path can be optimized to utilize
the available link bandwidth more efficiently by exploiting
adaptive routing and intelligent flow-control, thus enhancing
throughput. This architectural enhancement allows many flits
to bypass buffering, even at high traffic rates. By obviating
the need for buffer reads/writes, fewer buffers are required to
sustain a target bandwidth. The result is a reduction in both

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

1434

. — -——-.
| = Tokens -» Tokens from West neighbors
=

(N) (‘ne) —_— ° 0
<5 01{ L'E o= /NFitRoute
e e (B e ® ®
i] u
N R
NIC NIC) ° °
N_onl IN-E_off N_on "
i
— c:;:‘;e E-N_on W-N_on 0 @
o] DRuRGRG
R R R R ?
() (®)
Fig. 2.

one-cycle LT.

the router latency and buffer read/write power. This approach
has been explored in academic literature [6]—[10], but has not
made it to main stream design.

Second, when buffering is bypassed, the energy consumed
by a flit moving through the network will be dominated
by both the switch and link traversal. Hence, implementing
low-power crossbar and link circuits becomes even more
critical for reducing total network power. There have been
several recent papers that demonstrate low-swing global
links in isolation [12]-[15], but only [15] has shown inte-
gration of low-swing links between cores within a prac-
tical SoC application. Previously reported crossbar designs
have utilized partial activation [15], segmentation [16], and
dynamic voltage scaling [17] to reduce crossbar power;
however, this is the first work in which low-swing links
are utilized within the densely-packed crossbar itself and
has recently been extended by automating the genera-
tion of low-swing crossbar and link circuits for modular
application to NoCs [18] that was outside the scope of
this paper.

The SWIFT NoC applies both these observations.

1) We enhance a state-of-the-art router pipeline with the
ability to form adaptive bypass paths in the network
using tokens [4]. Flits on bypass paths use one-cycle
pipelines within the router, while other flits use a three-
stage pipeline. This reduces buffer read/write power in
addition to lowering latency.

2) We custom design the router crossbar and core-to-core
links with reduced-swing wires to lower data transmis-
sion energy.

III. SWIFT ARCHITECTURE: BYPASS FLOW CONTROL

NoC design primarily involves the following components:
routing, flow-control, and router microarchitecture. Routing
determines which links the packet traverses from source to
destination. Flow-control determines when the packet can
traverse its links. Router microarchitecture implements the
routing and flow-control logic in a pipelined manner and
houses the crossbar switch to provide connectivity across
different directions. We describe the architectural design of
SWIFT NoC in detail, which is based on token flow control
(TFC) [8], providing relevant background where necessary.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 8, AUGUST 2013

/NTFC Traversal B Router Bypass Pipeline

lookahead

3 flit
Tookahead [

flit

b:
buffers 22"

1-cycle
router by

to bypass
buffering

SWIFT NoC architecture. (a) Routing using tokens. (b) Token distribution. (c) Bypass flow-control using lookaheads. (d) One-cycle router+

A. Related Work on NoC Prototypes

The TILEPro64 [4] from Tilera (inspired by MITs RAW
processor [1]) is a 64-core chip that uses five separate 8 x 8
mesh networks. One of these networks is used for transfer-
ring pre-defined static traffic, while the remaining four carry
variable-length dynamic traffic, such as memory, I/O, and user-
level messages. The TRIPS [2] chip from UT Austin uses two
networks, a 5 x 5 operand network to replace operand bypass
and L1 Cache buses, and a 4 x 4 on-chip network (OCN) to
replace traditional memory buses. The Intel TeraFLOPS [3]
80-core research chip uses an 8 x 10 network for memory
traffic. Table I compares the design components for these three
prototypes for their multiflit memory networks. The table also
summarizes the design of our state-of-the-art Baseline NoC
(designed for comparison purposes similar to UT TRIPS [2]
and Intel TeraFLOPS [3]), which will be described later in
Section V-B. The three prototypes used text book routers [5]
with simple flow control algorithms, as their primary focus was
on demonstrating a multicore chip with a nonbus and nonring
network. In the SWIFT NoC project, we take a step further,
and explore a more optimized network design, TFC [8], with
reduced-swing circuits in the datapath. We simultaneously
address network latency (buffer bypassing, one-cycle router),
throughput (adaptive routing, buffer bypassing at all traf-
fic levels using tokens and lookaheads), and power (buffer
bypassing, low-swing interconnect circuits, clock gating). The
SWIFT NoC optimizations can potentially enhance the simple
networks of all these multicore prototypes.

B. Routing With Tokens

In the SWIFT NoC, every input port sends a one-bit token
to its neighbor, which is a hint about buffer availability at that
port. If the number of free buffers is greater than a threshold
(which is three in order to account for flits already in flight),
the token is turned ON (by making the wire high), else it is
turned OFF. The neighbor broadcasts this token further to its
neighbors, along with its own tokens. Flits use these tokens
to determine their routes. They try to adapt their routes based
on token availability. Fig. 2(a) shows an example of this. The
shaded router receives tokens from its N, E, and NE neighbors.
The incoming flit chooses the East output port over the North
output port based on token availability. We implement minimal

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

POSTMAN et al.: SWIFT: A LOW-POWER NoC IMPLEMENTING THE TFC ROUTER ARCHITECTURE

TABLE I
COMPARISON OF NOC DESIGNS

Characteristic TILEPro64 [4] UT TRIPS [2] Intel TeraFLOPS [3] Baseline* SWIFT
(1 sta, 4 dyn nets) (OCN)
Process parameters
Technology 90 nm 130 nm 65 nm 90 nm 90 nm
Chip frequency 700-866 MHz 366 MHz 5 GHz Not available 400 MHz
Router area Not available 1.10 mm? 0.34 mm? 0.48" mm? 0.48 mm?
Network parameters
Topology 8 x 8 mesh 4 x 10 mesh 8 x 10 mesh 8 x 8 mesh 8 x 8 mesh¥
Flit size 32b 138 b 39b 64 b 64 b
Message length 1-128 flits 1-5 flits 2 or higher flits 5 flits 5 flits
Routing X-Y dimensional order | Y-X dimension order Source X-Y dimension order | Adaptive (West-first)
Flow control Wormhole Wormhole with VCs Wormhole with VCs Wormhole with VCs TFC [8]
Buffer management Credit-based Credit-based On/Off On/Off TFC [8]
Router parameters
Ports 5 6 5 5 5
VCs per port 0 (5 separate networks) 4 2 2 and 4 2
Buffers per port 12 (3/dynamic net) 32 8 and 16 8
Crossbar 5x5 6x6 5x5 5x5 5x5
*Not fabricated, only laid out for comparison purposes.
TBaseline tile was given same area as SWIFT for place-and-route.
2 x 2 mesh for test chip.
routing, with a west-first turn rule [5] to avoid deadlocks. | ;iu?m ‘ng‘ thfps \Y,d:ecuon‘ th:ps]| ega?a \Fﬁjype\
Any other adaptive routing algorithm can be used as well. Lookahead Flit

Each token is forwarded upto three-hops, via registers at
each intermediate router. Tokens are also forwarded up to the
network interfaces (NIC) at each router. The number three
was fixed based on experiments which can be found in the
TFC paper [8]. Intuitively, deeper token neighborhoods do
not help much since the information becomes stale with each
hop. Moreover, the route is updated at every hop based on the
tokens at that router, and the flit only needs to choose between
a maximum of two output ports (for minimal routing). Adding
more tokens would add more wires and registers without
returning much benefit.

For illustration purposes, Fig. 2(b) shows the token distrib-
ution relative to the shaded router in a two-hop neighborhood.
16 tokens enter the shaded router from a two-hop neigh-
borhood, plus one from the local port. However, West-first
routing algorithm allows us to remove tokens from the west
neighborhood (except the immediate neighbor) since a packet
has to go west irrespective of token availability, reducing the
total tokens from (16 + 1) to (11 + 1). Similarly, there
are a total of (36 4+ 1) tokens in a three-hop neighborhood.
Removing the west tokens allows us to reduce this number to
(22 4+ 1) bits of tokens per router and these act as inputs to
the combinational block that performs route computation.

C. Flow Control With Lookaheads

Conventional flow control mechanisms involve arbitration
for the crossbar switch among the buffered flits. Some prior
works [4], [7]-[10], [19] propose techniques to allow flits
that have not yet arrived to try and pre-allocate the crossbar.
This enables them to bypass the buffering stage and proceed

Fig. 3. Lookahead and flit payloads.

directly to the switch upon arrival. This not only lowers
traversal latency, but also reduces buffer read/write power.
The SWIFT NoC implements such an approach, based on
TFC [8], as shown in Fig. 2(c). TFC [8] has been shown
to be better than other approaches like express virtual chan-
nels (EVC) [9] as it allows flits to chain together tokens to
form arbitrarily long bypass paths with turns, while EVC only
allowed bypassing within a dimension upto a maximum of
three-hops. Other approaches to tackle buffer power include
adding physical links to bypass intermediate routers [20],
or using link repeaters as temporary buffers [4], [19], [21]
to reduce buffers within the router. These techniques can
enhance energy-delay further at the cost of more involved
circuit design.

In the SWIFT NoC, the crossbar is pre-allocated with the
help of lookahead signals, which are 14-bit signals sent for
each flit, one-cycle before it reaches a router. The implementa-
tion of the lookahead generation and traversal to enable a one-
cycle advanced arrival will be explained later in Section III-D.

A lookahead is prioritized over locally-buffered flits, such
that a local switch allocation is killed if it conflicts with a
lookahead. If two or more lookaheads from different input
ports arrive and demand the same output port, a switch priority
pointer at the output port (which statically prioritizes each
input port for an epoch of 20 cycles for fairness) is used to
decide the winner and the other lookaheads are killed. The flits

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

1436

| | _BYPASS PATH |

Inport Outport

,
| I L fiit_out
| | L ¢
fliting [0 0 m L
N]
64 1 -
I T e ‘
[
| Buffers i [:‘—“
| —Lﬂ r—>
l L
Crossbar | |
tokens_in| oo S Switch | E‘—“
1 ; ! token_out
o t
lookahead_in ! *
= LookAhead | tokens_fwd
14 Conflict A2 |
credit_in | ; [Nl disable | ! credit_out
t
31 r |
| |
| witch it xbar_select |
| III o I [xbar_clk! ggting |
| Arbiter [:’—»
|
|
|

I lookahead_out

Generator

VC Allocator
Stage 2

(a)

Fig. 4. SWIFT architectural design. (a) SWIFT router microarchitecture. (b) SWIFT nonbypass and bypass pipelines.

Stage 1 Stage 3 Stage 4

corresponding to the killed lookaheads get buffered similar to
the conventional case. Since the bypass is not guaranteed, a
flit can proceed only if the token from the neighbor is ON
(indicating an available buffer).

The lookahead and flit payloads are shown in Fig. 3.
Lookaheads carry information that would normally be carried
by the header fields of each flit: destination coordinates, input
VC id, and the output port the corresponding flit wants to go
out from. They are thus not strictly an overhead. Lookaheads
perform both switch allocation, and route computation.

The SWIFT flow control has three major advantages over
previous prototypes with simple flow control.

1) Lower Latency: Bypassing obviates the buffer write,

read, and arbitration cycles.

2) Fewer Buffers: The ability of flits to bypass at all loads
keeps the links better utilized while minimizing buffer
usage, and reducing buffer turnaround times. Thus, the
same throughput can be realized with fewer buffers.

3) Lower Power: Requiring fewer buffers leads to savings
in buffer power (dynamic and leakage) and area, while
bypassing further saves dynamic switching energy due
to a reduction in the number of buffer writes and reads.

The SWIFT NoC guarantees that flits within a packet do
not get re-ordered. This is ensured by killing an incoming
lookahead for a flit at an input port if another flit from the
same packet is already buffered. Pt-to-pt ordering is however
not guaranteed by SWIFT. This is because lookaheads are
prioritized over locally buffered flits, which could result in
two flits from the same source to the same destination getting
re-ordered if the first one happened to get buffered at some
router while the second one succeeded in bypassing that router.
Most OCN designs use multiple virtual networks to avoid
protocol level deadlocks. While request virtual networks often
require pt-to-pt ordering for consistency reasons, response
virtual networks often do not place this constraint, and TFC
can be used within these virtual networks.

A potential network traversal in the SWIFT NoC using
tokens and lookaheads is shown in Fig. 2(d).

D. Router Microarchitecture

SWIFT tries to present a one-cycle router to the data by
performing critical control computations off the critical path.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 8, AUGUST 2013

SA-I, SA-O: Switch Alloc-Inport/Outport
BW, BR: Buffer Write/Read
g . LA: Lookahead
VA: V|r1_ua| Channel Allocation LA-RC: LA Route Compute
ST: Switch (Crossbar) Traversal LA-CC: LA Conflict Check

LT: Link Traversal LA-LT: LA Link Traversal

‘ NON-BYPASS PIPELINE

Flit Pipeline
Router n BW (] p
(| -SA-I _SA-0 LA-LT Lookahead
VA Pipeline
[LT
Router n+1 BYPASS PIPELINE
LARC
] tace | LaLt
.
Time
(b)

Lookahead
received

Is lookahead for
head flit?

YES

Determine next

Use route from VC
router from current

Stipatpor state table
Compute output
port at next router LookAhead

such that the route
has maximum
tokens ON

Route Compute

Update route in VC
state table

Fig. 5. Flow chart for LA-RC.

The modifications over a baseline router are highlighted in
black in Fig. 4(a). In particular, each SWIFT router consists
of two pipelines: a nonbypass pipeline which is three-stages
long (and the same as a state-of-the-art baseline), and a bypass
pipeline, which is only one-stage and consists of the crossbar
traversal. The router pipeline is followed by a one-cycle link
traversal. The three-stage baseline pipeline is described in the
appendix.

Fig. 4(b) shows the pipeline followed by the lookaheads to
enable them to arrive a cycle before the flit, and participate
in the switch allocation at the next router. All flits try to use
the bypass pipeline at all routers. The fallback is the baseline
three-stage nonbypass pipeline.

1) Lookahead Route Compute (LA-RC): The lookahead of
each head flit performs a route compute (LA-RC) to determine
the output port at the next router [22]. This is an important
component of bypassing because it ensures that all incoming
flits at a router already know which output port to request, and
whether to potentially proceed straight to ST. We use West-first
routing, an adaptive-routing algorithm that is deadlock free [5].
The adaptive-routing unit is a combinational logic block that
computes the output port based on the availability of the
tokens from three-hop neighboring routers, rather than use
local congestion metrics as indication of traffic. An overview
of LA-RC is shown in Fig. 5.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

POSTMAN et al.: SWIFT: A LOW-POWER NoC IMPLEMENTING THE TFC ROUTER ARCHITECTURE

Lookahead
received

LookAhead Conflict Check

Is lookahead for

YES head flit?

NO

Is token from next router
ON? (=> free buffer)

Does next
router have free
VCs?

NO
NO

Disable

Disable bypass
bypass —
Is any flit in this packet
buffered at current router?
Disable
bypass
More than one
lookahead requesting
same output port?
NO YES

Grant output port to
lookahead using
switch priority vector

Enable
bypass

Grant output port to
lookahead

Same output port
granted by SA-O?

Kill SA-O
grant

Fig. 6. Flow chart for LA-CC.

2) Lookahead Conflict Check (LA-CC): The lookahead
places a request for the output port in the LA-CC stage,
which grants it the output port unless there is a conflict or
the output port does not have free VCs/buffers. An overview
of LA-CC is shown in Fig. 6. LA-CC occurs in parallel to the
SA-O stage of the nonbypass pipeline, as shown in Fig. 4(a).
A lookahead is given preference over the winners of SA-O, and
conflicts between multiple lookaheads are resolved using the
switch priority vector described earlier in Section III-C. Muxes
connect the input ports of the winning lookaheads directly to
the crossbar ports. The corresponding flits that arrive in the
next cycle bypass the buffers, as shown in Fig. 4(a). Any flits
corresponding to killed lookaheads, meanwhile, get buffered
and use the nonbypass pipeline.

3) Lookahead Link Traversal (LA-LT): While the flit per-
forms its crossbar traversal, its lookahead is generated and sent
to the next router. All the fields required by the lookahead,
shown in Fig. 3, are ready by the end of the previous stage
of LA-RC and LA-CC. Fig. 4(b) shows how the lookahead
control pipeline stages interact with the flit pipeline stages in
order to realize a one-cycle critical datapath within the router.

IV. SWIFT CIRCUITS: LOW-SWING ON-CHIP WIRES

When flits are able to bypass buffering, SWIFT’s pipeline
reduces to the one-cycle bypass pipeline comprised of just one-
cycle switch traversal (ST), and one-cycle link traversal (LT)
that results in two cycles per hop. These two stages correspond

1437

to the data movement that flits take through the crossbar
switch and through the core-to-core interconnect, respectively.
Crossbars provide the physical connection between input and
output router ports, allowing the flow of data to be directed by
routing logic. Core-to-core links provide the communication
channel between adjacent network routers.

Unlike locally connected logic that drive relatively short,
locally-routed wires, crossbars and links are primarily com-
posed of tightly-packed, parallel wires that traverse longer
distances with close inter-wire coupling. The energy consumed
in these components is dominated by the dynamic switching
of these wire capacitances rather than transistor gate input
capacitances. When flit buffering is bypassed within the router,
the energy required to drive these wire capacitances quickly
begins to dominate the network power consumption. Low-
voltage swing circuit techniques provide an energy-efficient
alternative to full-swing digital CMOS signaling that reduces
the dynamic energy of interconnect wires without sacrificing
performance.

A. Related Work on On-Chip Signaling Techniques

Previous works, such as [17], have explored the use of
conventional dynamic voltage scaling for reducing crossbar
and link power in standard digital logic implementations.
Though techniques based on standard logic cells are simpler to
implement than custom circuits, they suffer from two major
disadvantages. First, in order to reduce the supply voltage,
the operating frequency must also be reduced. This limits the
savings that can be achieved in signaling energy to times
during which the network utilization is low enough that
reduced performance can be tolerated. Second, the reduction
in voltage signal swing on the interconnect wires is limited
to the minimum supply voltage that all attached logic circuits
will function at. Thus, custom circuits for low-voltage swing
signaling are required in order to reduce wire energy while
still maintaining performance.

Custom circuit techniques have targeted improved mW/Gb/s
on multi-gigabit/second serial links for on-chip wires up to
10 mm. In these cases, signal swings as low as 120 mV are
used on global differential RC wires [12], [13] or transmission
line structures [23] either for transporting data directly or for
sending control signals to efficiently allocate network buffers
and links [24]. However, in order to achieve high performance
across long distances, these designs require large transceiver
areas of 887 um? [12] and 1760 um? [13]. These area
overheads make them largely unsuitable for the shorter, wide
data busses within NoC core-core links and crossbars.

Alternative energy-efficient, low-swing signaling techniques
are needed for the shorter wires and dense transceiver
requirements in NoC topologies. Capacitively-coupled trans-
mitters are explored in [25], achieving speeds of 5-9 Gb/s
across 2-mm links. However, the feed-forward capacitor
increases transmitter area and requires DC-balanced coding
or resistive DC biasing to prevent common-mode drift due
to the intrinsic AC-coupling. Current-mode signaling, [14],
dissipates constant static current throughout the entire
clock period, mitigating its energy-efficiency figure-of-merit.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

1438

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 8, AUGUST 2013

Core-to-core Links

Bit01234567

Port 4
Bit 0 N
-
~Port 0 ¢ RX
T SEito Y I
RSD
PORTO0 PORT 1
OUTPUT OUTPUT
2..1 J,g
% % % % =
M A £3
.
o, %]] o A S
E2 RX
oz ™ % ™ % _
290
<\ PR % 53
=> N
([
oz PR —w
o= Z0
232
Sa

N

PORT4 PORT3 PORT2
OUTPUT OUTPUT OUTPUT

Vvss

(@

Fig. 7.
outputs ports. (d) Clocked sense amplifier receiver (RX).

Differential low-voltage swing (Vswing = 0.45 V) is used
in [15], but several important differences with our proposed
NoC are notable. First, Vswing is 1.5x or more larger than
this paper, such that receiver offset (due to process variation)
and noise coupling from full-swing digital logic below are not
problematic. Second, the wire-dominated crossbars in [15] do
not utilize low-voltage swing techniques.

To reduce the energy required to drive large capacitive wire
loads, reduced-voltage swing signaling was implemented using
dual voltage supply, differential, reduced-swing drivers (RSD),
Fig. 7(a), followed by a simple sense-amplifier receiver as
shown in Fig. 7(d). The nominal chip supply voltage is used
for the upper voltage supply while the lower supply voltage
is generated off-chip. This allows for signal swings to be
easily adjusted during testing as the voltage difference between
the two supplies and sets the common mode voltage without
requiring static power dissipating (except for leakage) in either
the driver or receiver. In practice, a voltage supply 0.2 V-
0.4 V below the core logic voltage is often already available
on-chip for the SRAM caches [26] or other components that
operate at a reduced supply voltage, and is therefore a small
implementation overhead.

Using a second supply offers a number of advantages
over single-supply, low swing signaling techniques. First, the
energy required to drive the low-swing signal scales quadrat-
ically with voltage swing. Second, links are actively driven,
making them less susceptible to crosstalk than capacitively-
coupled wires, easing constraints on the link routing and
any surrounding noisy environment. Finally, the dual supply
drivers require no DC biasing of the common mode, compared
with feed-forward capacitive coupling as in [25].

While differential signaling approximately doubles the wire
capacitance of each bit by introducing a second wire, it
removes the necessity of multiple inverter buffer stages for
driving long wires and enables the use of reduced voltage
swings, resulting in quadratic energy savings in the datapath.
Thus, if the energy required to drive a single-ended full
swing wire is given by (1), then the energy required to
drive the differential wire pair at 200 mV is approximately

(c) (d)

Crossbar and link circuit implementation. (a) RSD. (b) Bit-slice array crossbar layout. (c) Crossbar bit-slice schematic with link drivers at slice

given by (2).

1
5 CwireV2
1 1
E (2Cwire) %Vz

ey

Eswing =12V

= %Eswing=l.2 \'%

Hence, reducing the voltage swing from 1.2 V to 200 mV
results in greater than 94% reduction in the energy required to
drive the interconnect wire. The link pitch density is limited by
the transmitter/receiver layout areas, such that bandwidth/mm
is minimally changed for the differential wiring signaling.

The area-efficient sense amplifier receivers, shown in
Fig. 7(d) are comprised of near-minimum sized transistors and
exhibit approximately 100-mV simulated input offset across
Monte Carlo simulations. Occupying 7.8 um? and 15.2 um?,
respectively, the same driver and receiver circuits are used in
both the crossbar and link designs. Note for comparison, in
the technology used, the smallest DFF standard cell available
for a full swing implementation occupies 14.8 yum?.

Further reductions in voltage swing requires either larger
transistors or offset correction in the receiver in order to
overcome the receiver input offset due to process variation.
However, at 200-mV signal swing, the energy required to drive
the wires accounts for only 2% of the energy consumed in the
links and crossbar, with the rest being accounted for in the
clock distribution, driver input capacitance, sense amplifier
and in the case of the crossbar, the port selection signals.
Therefore, the resulting increases in receiver area required to
further reduce the voltage swing result in diminishing returns
for improved energy efficiency.

Datapaths in the crossbar range in length from 150 um
to 450 pm. Differential wires are tightly packed and spaced
apart by 0.28 xm, limited not by the minimal wire spacing but
by the via size. Link lengths are asymmetric across different
ports, with wire routes ranging from 65 ym to 1 mm in length.
Each of the proposed NoCs routers contains 640 differential
pairs and transceivers, making dense wiring, small transceiver
sizes, and minimal energy/bit at network operating speed the
primary design requirements.

)

Eswing =02V =

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

POSTMAN et al.: SWIFT: A LOW-POWER NoC IMPLEMENTING THE TFC ROUTER ARCHITECTURE

B. Reduced-Swing Crossbar

The simplest and most obvious crossbar layout is to route a
grid of vertical and horizontal wires with pass-gates or tri-state
buffers at their intersection points, as shown in Fig. 7(c). While
simple, this approach suffers from a number of major disad-
vantages, including poor transistor density, low bandwidth, and
a bit-to-area relationship.

In practice, higher crossbar speeds and improved density
can be achieved in a standard digital synthesis flow using
mux-based switches that place buffered muxes throughout the
area of the crossbar. For larger crossbars in particular, speed
can be further improved by pipelining the crossbar traversal,
allowing sections of the wire load to be driven in separate
clock cycles. While simple to implement in digital design
flows, both approaches introduce additional loading in the
form of increased fan-out buffering and clock distribution that
results in increased power consumption. Furthermore, network
latency is also negatively impacted.

The crossbar implemented in our design improves energy
efficiency by replacing crossbar wires with low-swing sig-
naling circuits. This approach seeks to drive the large wire
capacitances of the crossbar with a reduced voltage swing,
without introducing additional buffers or clocked elements.
Implemented as a bit-sliced crossbar, each of the 64-bits in
each of the five input buses is connected to a one-bit wide, five-
input to five-output crossbar. An 8 x 8 grid is then patterned
out of 64 of these bit-cell crossbars in order to construct a
64-bit wide, 5 x 5 crossbar as shown in Fig. 7(b).

Each crossbar bit-slice consists of five Strongarm sense
amplifiers receivers (RX), a 5 x 5 switching matrix (20 single-
ended pass-gates), and five low-swing transmitters (RSD) at
each bit-slice output, as shown in Fig. 7(c). Each of the five
reduced-swing differential inputs is driven externally to the
input of the crossbar by a RSD, which is connected to the
output of the router logic. At the positive clock edge, each of
the five low-swing differential inputs is first converted to full-
swing logic by the sense amplifier, then driven through a short
6-um wire via a single-ended pass-gate transistor controlled
by the switch arbiter, and finally sent out of the selected output
port via the interconnect RSD. In our routing scheme, U-turns
are not allowed, so each of the five crossbar input ports can
be assigned to one of four possible output ports.

The receiver acts as a sense-amplifier flip-flop with low-
swing differential inputs, replacing the flip-flop that would
otherwise reside at the output of the crossbar-traversal pipeline
stage. Like mux-based crossbars, this crossbar topology results
in irregular datapaths across the 64 b parallel interconnect,
requiring that the maximum crossbar speed be bounded by
the longest datapath delay through the crossbar.

Full-swing select signals are routed on M1 and M2, dif-
ferential data signals are routed on minimum width wires on
M3-MS5, and a separate clock wire is routed on M7 for each
port. The clock distribution path is routed to closely match the
worst case RC delay of the datapath to match clock skews.
The crossbar switch allocator also implements clock gating,
activating only the crossbar receive port that is expected to be
used for switch/LT.

1439

Differential Pair

Link J

Shielding 7=+
Logic
(a)

o 140 =
TS 120 - —-Shielded
S E100 | . unshielded |
Tx 80
= © 60
=
== 20
8° o :

0 0.25 0.5 0.75 1
Aggressor Distance from Pair (um)

(b)

1.25

Fig. 8. (a) Layout of differential mode link shielding and (b) effectiveness
of differential mode shielding at reducing crosstalk from full swing aggressor
logic.

C. Differential Mode Shielding for Crosstalk Reduction

A major concern for reduced-swing signaling is the
increased susceptibility of the low swing signals to crosstalk
from a routers full-swing digital logic on lower metal layers.
While differential signaling and adjacent wire twisting [27]
are effective at rejecting common-mode crosstalk from nearby
wires, care must be taken to minimize any asymmetric capac-
itive coupling from potential aggressor signals.

Complete ground plane shielding below the entire signal
path establishes both a well-defined routing environment,
and provides the best protection against full-swing digital
coupling. Unfortunately, this conservative shielding environ-
ment also contributes additional capacitance to the already
wire-dominated load.

An alternative approach used here is to route shielding
on M6 between and in parallel to the differential pairs on
M7 as shown in Fig. 8(a). In this manner, differential mode
crosstalk which degrades both timing and signal margin by
coupling asymmetrically onto one of the differential wires is
significantly reduced. Common-mode crosstalk that couples
equally onto both wires is intrinsically rejected by the differ-
ential input of the receiver. This approach can improve energy-
efficiency by shielding only the differential mode crosstalk
while reducing the per-unit length wire capacitance attributed
to wire shielding. Thus, lower capacitance is achieved when
compared with full plane ground shielding at the cost of
greater common-mode coupling. Hence, the reduced-voltage
swing can be decreased close to the minimum level obtained
from complete ground shielding.

The cycle alloted to the crossbar and LT stages provides
sufficient timing margin for the reduced-swing signals to settle
even in the presence of crosstalk-induced delay. However,
signal integrity of the reduced-swing wires after the value has
settled, but immediately before it is sampled by the sense-amp
quantizer is a greater concern. Extracted SPICE simulations
were used to evaluate the worst-case crosstalk on a 1-mm
differential link, comparing differential-mode shielding with
no signal shielding. A 1 mm, full-swing aggressor signal was

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

1440

o

Traffic Generator| [Traffic Generator

Router 2 and T Router 3 and
Traffic Generator | ¢ [Traffic Generator
=

N
10}eIoUsS Oljjel]

IS

Router 0 and
Traffic Generator

@

5
2
5
2
5
(9]
o
e
5,
2
S
o
@
2
k3
(9]
o
IS
f
=

o

BN RN AN

\.
o
N
w
s
o
>

R - Router
L - Local-Network Interface (L-NIC)
C - Congestion-Network Interface (C-NIC)

Fig. 9. 2 x 2 SWIFT network prototype overview and die photo overlaid
with node 1 layout.

routed on M5 in parallel to the differential wires of the link on
M7, with shielding inserted on M6. The aggressor crosstalk
was measured by sweeping the aggressor laterally from the
center of the differential pair (where all the crosstalk appears
as common-mode), up to a distance of 1.25 um from the center
of the pair. Fig. 8(b) shows a 4.4x reduction in the worst-case
aggressor noise coupling using the proposed differential-mode
shielding.

Maxwell 2-D field-solver was used to more accurately
predict the effectiveness of differential-mode shielding at
reducing capacitance on the signal line. When modeled with
the 90-nm process specification, this approach shows a 19%
reduction in capacitance on the signal wires when compared
with a complete grounded plane design. If the signal swing
is increased to compensate for the conservative, worst-case
differential mode crosstalk estimation of 29 mV from the
strongly-driven, 1-mm parallel aggressor modeled in Fig. 8(b),
the differential mode shielding yields a net energy savings
when the signaling voltage swing is below 250 mV.

V. RESULTS

In this section, we report both the simulated and measured
results of the SWIFT NoC prototype, and compare it to a
baseline NoC.

A. SWIFT NoC

The SWIFT NoC parameters are shown in Table 1. We chose
eight buffers per port, shared by 2 VCs. This is the minimum
number of buffers required per port, with one buffer reserved
per VC for deadlock avoidance and six being the buffer
turnaround time with on—off signaling between neighboring
routers. We used standard-cell libraries provided by ARM
Corporation for synthesis. The place and route of the router
RTL met timing closure at 600 MHz. The process technology
used and use of standard cells instead of custom layouts, limits
our router design from running at GHz speeds, such as in [3].
Note that based on extracted layout simulations, the custom
reduced-swing transceivers are designed to operate at 2 GHz
across 1-mm distances with 250-mV voltage swing.

We fabricated a 2 x 2 slice of our 8 x 8 mesh, as shown in
Fig. 9. We added on-chip pseudo-random traffic generators at

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 8, AUGUST 2013

all local four network interfaces and at the eight unconnected
ports at the corners of the mesh, resulting in a total of
12 traffic generating NICs.

In an actual chip-multi processor, a tile consists of both the
processing core and a router, with the router accounting for
approximately a quarter of the tile area [3]. Since we did not
integrate processing cores in this design, we handle to place the
routers in order to conserve area. This results in asymmetric
link lengths in our chip, with drivers sized for the worst-case
of 1-mm links. A photo of our prototype test-chip overlaid
with the layout of node 1 is shown in Fig. 9.

Due to the 4 mm? network size, we used a synchro-
nous clock rather than a globally-asynchronous, locally-
synchronous approach as in [3], which was outside the scope
of this paper. The test chip operates at 400 MHz at low load,
and 225 MHz at high injection rates with a supply of 1.2 V. We
found that the performance of the test chip was limited from
achieving higher clock speeds due to resistive drops in the
power routing grid that were not caught prior to fabrication.

B. Baseline NoC

To characterize the impact of the various features of the
SWIFT NoC, we implemented a baseline VC router in the
same 90-nm technology.

A VC router needs to performs the following actions: buffer
the incoming flit (buffer write or BW), choose the output port
(route compute or RC), arbitrate and choose an input VC
winner for each input port of the switch (switch allocation-
inport or SA-I), arbitrate and choose an input port winner
for each output port of the switch (switch allocation-outport
or SA-O), arbitrate and choose a VC for the next router
(VC allocation or VA), read winning flits out of the buffer
(buffer read or BR) and finally send the winning flits through
the crossbar switch (ST) to the link connecting to the next
router/NIC.

We design our baseline router similar to the UT TRIPS [2]
and Intel TeraFLOPS [3] routers which use VCs. We design
a three-stage router pipeline, the details of which are given
in the Appendix. We leverage recent research in shared input
buffers [5], lookahead routing [22], separable allocation [28],
and VC selection instead of full VC allocation [11] allowing
us to optimize the design heavily and perform many of
the router actions, which were discussed earlier, in parallel.
A target frequency specification of 600 MHz or more restricted
by 90-nm standard cells led us to the three-stage baseline
design. UT TRIPS [2] also uses a three-stage router pipeline
operating at 366 MHz. Intel TeraFLOPS [3] uses a five-
stage router pipeline (and an additional stage in the link),
but is able to operate at 5 GHz? due to custom blocks
instead of standard-cells. The SWIFT NoC is the first NoC
prototype demonstrating a one-cycle router pipeline in silicon
that bypasses buffering completely to save power. The Tilera
TILEPro64 [4] uses five separate networks, instead of using
VCs. As a result, it does not need to perform SA-I or VA.

3Theoretically, Intel’s router could perform all operations within one-cycle
for operating frequencies less than 1 GHz, but flits would still have to get
buffered (and read out the same cycle upon successful arbitration).

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

POSTMAN et al.: SWIFT: A LOW-POWER NoC IMPLEMENTING THE TFC ROUTER ARCHITECTURE

@ 40 -o-Bypass Enable (Sim) --Bypass Disable (Sim)
——Bypass Enable (Meas) ---Bypass Disable (Meas)

o un

—

e—_

o

/9/

XX

wi

B R NN W W
o (%]

o wun

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
Injection Rate (packets/node/cycle)

Avg Packet Latency (Cycle

Fig. 10. Network performance results for fabricated 2 x 2 chip.
el g
gao | 4
U ./ 3 X,
EM 1 / /
>60 |
§ 50 | {Jj
E 40 | // fxgx
24 | —"‘X"'“"__-x—_‘ff
o
L | -~Baseline_2-8 (2VC, 8buf)
@ | -*-Baseline_4-16 (4VC, 16buf)
< -O-SWIFT (2VC, 8buf)
0 = = sl ol el) i
0 0.01 002 003 004 005 006 007
Injection Rate (packets/node/cycle)
Fig. 11. Network performance results in cycles for 8 x 8 networks.

In addition, an XY-routing scheme allows the router to present
a one-cycle delay to flits going straight, and two-cycles to
flits that are turning. TILEPro64 s design philosophy of using
physical instead of VCs is a research topic in itself, and thus
comparing SWIFT to it quantitatively is beyond the scope of
this paper.

The nonbypass pipeline in SWIFT is the same as the base-
line pipeline, thus allowing us to compare the performance,
power, and area of the SWIFT and the baseline designs and
the impact of our additions (bypass-logic and the reduced-
swing crossbar).

Once we finalized the baseline router pipeline, we swept
the number of VCs and buffers in the baseline such that the
peak operating throughput of both the baseline and the SWIFT
NoC was the same. This is described in Section V-C. We used
two of the configurations for power comparisons, which are
described in Section V-D.

C. Network Performance

Fig. 10 demonstrates that the measured and simulated
latency curves match, confirming the accuracy and functional-
ity of the chip. The 2 x 2 network delivers a peak throughput
of 113 bits/cycle.

The primary focus of this paper was to implement the
TFC router in silicon, and integrate reduced-swing circuits
in the datapath. Thus, we do not perform a full performance
analysis of the design across different traffic patterns. The
original TFC paper [8] evaluates TFC for synthetic uniform-
random, tornado, bit-complement, and transpose traffic. It
also evaluates the impact of TFC with real-world application
traces from the SPLASH benchmark suite. In this paper, we
evaluate the latency-throughput characteristics of the SWIFT

1441
SA-l winner SA-O req SA-O resp Next state
ready ready ready ready
*Update VC and
buffer next states
Baseline critical path (Stage 2) : 1160 ps
36 FO4 Delays
Lookahead SA-O req kill_lookahead SA-O resp Next state
read ‘ready rgady ready ready
Kill SA-O Update VC and
LA-CC winners buffer next states
119ps 682ps 1021ps
SWIFT critical path (Stage 2) : 1560 ps .
49 FO4 Delays o

Fig. 12. Critical paths of the SWIFT router and baseline router.
90 yay
- ;f{// I
=70 ’ / v
£ 60 / ="
E 50 {'__,x-"\"):/
o ——
§ 30 To=—<
0 30 ~~Baseline_2-8 (2VC, 8 buf)
Z 0 ~<~Baseline_4-16 (4VC, 16buf)
~C-SWIFT (2VC, 8buf)
04— ER AL b il L :
0O 2 4 6 8 10 12 14 16 18 20
Injection Rate (Gbps/node)
Fig. 13. Network performance results in ns for 8 x 8 networks.

NoC with uniform random traffic via on-chip traffic generators
to validate the chip functionality. We also use this analysis
to set the parameters of an equivalent baseline router (same
operating throughput) for a fair comparison of power.

1) Average Packet Latency (Cycles): We first compare the
average packet latencies of the 8 x 8§ SWIFT NoC and the
baseline NoC in cycles via RTL simulations. Fig. 11 plots
the average packet latency as a function of injection rate for
SWIFT, and two interesting design points of the baseline:
Baseline_2-8 (2VC, 8 buffers) and Baseline_4-16 (4VC,
16 buffers). At low loads, SWIFT provides a 39% latency
reduction as compared to the baseline networks. This is due
to the almost 100% successful bypasses at low traffic. At
higher injection rates, Baseline_2-8 saturates at 21% lower
throughput. SWIFT leverages adaptive routing via tokens, and
faster VC and buffer turnarounds due to bypassing, in order to
improve link utilization which translates to higher throughput.
Baseline_4—16 matches SWIFT in peak saturation throughput
(the point at which the average network latency is three times
the no-load latency) in bits/cycle.

2) Average Packet Latency (ns): Fig. 12 shows that the
critical paths of the SWIFT and the baseline routers, which
occur during the SA-O stage in both designs, amount to 49 and
36 FO4 delays, respectively. We observe that the baseline
is 400 ps faster, and therefore a dissection of the various
components of the critical path provides interesting insights.
The primary bottleneck in the SWIFT microarchitecture occurs
when SA-O winners need to be quenched, exhibiting an
additional 339 ps of extra delay. Note that the SWIFT router
was designed to perform the SA-O and LA-CC stages in

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

1442

B Xbar+Links (sim)

@ Clocking-Xbar+Links (sim)
A Clocking-Router (sim)

M Buffers (sim)

B Allocators (sim)

& Control (sim)

OL-NIC (sim)

B Xbar+Links (meas: dynamic)
Xbar+Links (meas: leakage)
® Router (meas :dynamic)

| D Router (meas: leakage)

(mgw)

Power
~N
o

Baseline_4-16|
(sim)

SWIFT
(sim)

SWIFT
(sim)

SWIFT
(meas)

Baseline_2-8
(sim)
(4 VC, 16 buf)| (2 VC, 8 buf)

ClkGate =0 | ClkGate =1

(a)

ClkGate =1

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 8, AUGUST 2013

B Xbar+Links (sim)

@ Clocking-Xbar+Links (sim)
Clocking-Router (sim)

O Buffers (sim)

@ Allocators (sim)

o

1.78

|7/ &

V/ $33¢{ | B Control (sim)
333 1 O L-NIC (sim)

2.88 $333 sim

¢¢¢4 | El Xbar+Links (meas: dynamic)

3334 Xbar+Links (meas: leakage)

Router (meas :dynamic)

M Router (meas: leakage)

Power (mv’!)

=
S)

SWIFT
(sim)

SWIFT
(sim)

SWIFT
(meas)

Baseline_4-16
(sim)

Baseline_2-8
(sim)

(4 VC, 16 buf)| (2 VC, 8 buf) | ClkGate =0 | ClkGate =1

(b)

ClkGate = 1

Fig. 14. Tile power at (a) high traffic injection (1 packet/NIC/cycle) and (b) low traffic injection (0.03 packets/NIC/cycle) rates.

parallel, followed by the removal of SA-O assignments in
case they conflicted with the lookahead assignments for the
crossbar, in order to maintain higher priority for the looka-
heads. In hindsight, if we had allowed both the lookahead
and local VC requests to move to the same switch arbiters,
relaxing lookahead priority, the critical path would have been
significantly reduced.

If we take these critical paths in account, the baseline
network can run at a frequency 1.34 times faster than SWIFT.
Under this operating condition, Fig. 13 shows the performance
results of the 8 x 8 NoCs in nanoseconds, instead of cycles.
The SWIFT NoC shows a 20% latency reduction at low-load
as compared to the baselines, and similar saturation throughput
as Baseline_2-8.

D. Power

We compare the SWIFT and baseline routers at the same
performance (throughput) points for fairness. In Section V-C,
we observed that Baseline_4—16 matches SWIFT in saturation
throughput if both networks operate at the same frequency.
Baseline_2-8 matches SWIFT in saturation throughput if it
operates at a higher frequency, or if the networks are operating
at low loads. We report power numbers for both Baseline_2-8
and Baseline_4-16 for completeness.

We perform power simulations and measurements at a
frequency of 225 MHz and VDD of 1.2 V, and the results
are shown in Fig. 14(a) and (b) at high and low loads,
respectively. In both graphs, all 12 traffic generator NICs are
injecting traffic. The low-swing drivers were set to 300-mV
signal swing. Because the L-NIC shares a supply with the
router while the crossbar shares a supply with the reduced-
swing links, it was not possible to measure each of the
blocks separately. Instead, post-layout extracted simulations
were performed to obtain an accurate relative breakdown of
the power consumption of the different components, which
were then compared and validated with chip measurements of
the combined blocks.

At high loads, operating at the same frequency,
Baseline_4-16 matches SWIFT in performance, but has
49.4% higher buffer (control path) and 62.1% higher crossbar
and link (datapath) power. SWIFT [last two bars in Fig. 14(a)]
achieves a total power reduction of 38.7% at high injection,
with the chip consuming a peak power of 116.5 mW.

Link Clock
14% _ o

. 6% _Xbar Clock
B 18%

<" Link
i
| Senseamp
N 2T%

Senseamp

18%
Link

Datapath
5%

Fig. 15. Contributions to datapath energy at network saturation.

At low loads, operating at the same frequency, Baseline_2-8
can match SWIFT in performance, but consumes 24.6% higher
power than SWIFT [last two bars in Fig. 14(b)].

Baseline_2-8 and SWIFT have the same VC and buffer
resources. SWIFT adds buffer bypassing logic (using tokens
and lookaheads), and the low-swing crossbar. Thus comparing
Baseline_2-8 and the first bar of SWIFT shows us that buffer
bypassing reduces power by 28.5% at high loads, and 47.2%
at low loads, while the low-swing datapath reduces power by
46.6% at high loads and 28.3% at low loads. These results are
intuitive, as buffer write/read bypasses have a much higher
impact at lower loads when their success rate is higher, while
datapath traversals are higher when there is more traffic.

Lookahead signals allow the crossbar allocation to be
determined a cycle prior to traversal, making per-port, cycle-
to-cycle clock gating possible. Therefore, clock gating was
implemented at each crossbars input port, using the cross-
bars forwarded clock, reducing the crossbar clock distribution
power by 77% and 47%, and sense amplifier power by 73%
and 43% at low and high injection, respectively.

The combined average energy-efficiency of the crossbar
and link at the network saturation point is measured to be
128 fJ/bit, based on chip measurements of the crossbar and
link currents, and the count of the received packets. This
value is further broken down into component contributions
in Fig. 15.

1) Link and Crossbar Circuits: Fig. 16 shows the distrib-
ution of energy consumption in the driver, wire, and receiver
of a I-mm link as a function of wire signaling voltage swing.
Energy/bit/mm values are averaged across 10 000 cycles of
random data at 2 GHz.

When not limited by the routers critical path, the reduced-
swing transceivers are operational across 1-mm wires at

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

POSTMAN et al.: SWIFT: A LOW-POWER NoC IMPLEMENTING THE TFC ROUTER ARCHITECTURE

90 ... Wire energy

—Driver energy
_|--- Receiver energy

60

—Total energy

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Signal Swing (V)

Link Energy at 2Ghz (fJ/bit)
'S
o

Fig. 16. Circuit contributions to link energy.

400 -

240m
182ps
0 100 200 300 400 500 600 700
Time (ps)

Voltage (mV)

Fig. 17. Post-layout simulated eye at output of 1-mm link showing 52% eye
opening at 2 GHz.

2 GHz with a 250-mV signal swing (post-layout simulations),
achieving a theoretical peak throughput of 640 Gb/s per
crossbar. From post-layout simulations, 28 fJ/bit is observed
for transmission across 1-mm links, including RSD input
capacitance, wire energy, and sense amplifier. Fig. 17 shows
52% eye closure (240 mV) at the sense amplifier input of the
1-mm link, representing approximately the worst RC delay-
path observed in the fabricated chip. A comparison with
previous interconnect works is summarized in Table II.

2) Overheads: The west-first adaptive routing logic used
for tokens, the lookahead arbitration logic, and the bypass
muxes account for less than 1% of the total power consumed
in the router, and are therefore not a serious overhead. This
is expected, as the allocators account for only 3% of the total
power, consistent with previous NoC prototypes. The control
power of the SWIFT NoC is observed to be 37.4% lower
than Baseline_4—16, due to fewer buffers and VCs (hence
smaller decoders and muxes) required to maintain the same
throughput.

The overall control power of SWIFT is approximately 26%
of the entire router power, as seen in Fig. 14. This high
proportion is primarily due to a large number of flip-flops
in the router, many of which were added conservatively to
enable the design to meet timing constraints, and could have
been avoided by using latches. In addition, the shared buffers
require significant state information in order to track the free
buffer slots and addresses needed for each flit, adding more
flip-flops to the design.

E. Area

The baseline and SWIFT routers primarily differ in
the following hardware components: tokens, lookahead sig-
nals with corresponding bypassing logic, buffers, VCs, and
crossbar implementation. We estimate the standard-cell area
contributions for each of these components and compare them

1443
TABLE 1T
SUMMARY OF INTERCONNECT TRANSCEIVERS
Inverter . Measured
Simulated
[13] [25] and i crossbar
link
Flip-flop and Link
Process 90 nm 90 nm 90 nm 90 nm 90 nm
Data rate 4 Gb/s 9 Gb/s 1 Gb/s 2 Gb/s 225 MHz
Link length | 10 mm 2 mm 1 mm 1 mm ~2 mm
C =729 pm?
R “ S| 7.8 um? "
TX Area |1120 um*|Wp = 1.6 um|6.35 um 2x 7.8 um
Wp =24 um
Wy =4u
RX area [1760 um?| Not available |14.8 gum?| 152 yum? |2 x 15.2 um?
Signal swing|~200 mV 120 mV 1.2V 250 mV 250 mV
Energy/bit 356 fJ 105 fJ 305 fJ 28 fJ 128 fJ
TABLE III

AREA COMPARISON (ABSOLUTE AND PERCENTAGE)

Component | SWIFT Area, % of total | Baseline Area, % of total
Tokens 1235 um?2, 0.82% 0
Bypass 10682 um?, 7.10% 0
Buffers 72118 um?2, 47.94% 81231 um?2, 40.08%
Crossbar 15800 um?2, 10.50% 21584 um?2, 10.64%
Control 50596 um?2, 33.63% 99856 um?Z, 49.27%
Total 150431 um?, 100% 202671 um?, 100%

in Table III. For the custom crossbar, we use the combined area
of the RSD, transistor switching grid, and sense amplifier cir-
cuits as the metric to compare against the matrix crossbars cell
area. The total area of the SWIFT router is 25.7% smaller than
the Baseline_4-16. This is an important benefit of the SWIFT
design: the 8% extra circuitry, required for implementing
tokens and bypassing, results in a 11.2% reduction in buffer
area and 49.3% reduction in control area (due to fewer VCs
and corresponding smaller decoders and allocators) required
to maintain the same peak bandwidth, thereby reducing both
area and power.

Note that the SWIFT NoC exhibits some wiring overheads.
The 23-bit token signals from the three-hop neighborhood at
each router add 7% extra wires per port compared to the 64-bit
datapath. The 14 lookahead bits at each port carry information
that is normally included in data flits, and are therefore not
strictly an overhead. To lessen this overhead, the flit width
could have either been shrunk or packets could have been
sent using fewer flits, which would further enhance SWIFTs
area and performance benefits over the baseline. Finally, while
Table III highlights that the active device area of the reduced-
swing custom crossbar is less than that of a synthesized design,
differential signaling requires routing twice as many wires as
well as potentially requiring an additional metal layer beneath,
if shielding is required to mitigate digital crosstalk from below.

VI. INSIGHTS

In this section, we discuss some of the insights gained from
this paper.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

1444

A. Tradeoffs

The immediate tradeoff of TFC versus the baseline that
is visible from the results of this paper is the critical path.
However, we believe that the TFC critical path can be shrunk
further by a more optimized LA-CC. A relaxed priority for
lookaheads over local requests, or a more optimized priority
arbiter would have helped us to reduce the 339 ps of clear
overhead.

The proportion of control power in our router is another
aspect that requires additional work. Fig. 14 highlighted that
about 26% of the router power is in the control, which pri-
marily consists of state within the VCs and the input port. The
shared buffer is a major contributor: 1) every VC needs to track
where its 5 flits are buffered and 2) a linked list of free buffers
has to be maintained. While we clock-gated the crossbar, all
flip flops at the routers were still active irrespective of traffic.
Adding clock-gating/power-gating within the router will also
help to reduce the control power.

In our implementation of TFC [8], we implemented nor-
mal tokens. Normal tokens only perform speculative bypass
and require VC reservation at every hop to account for the
lookahead getting killed and forcing buffering. Guaranteed
tokens from the TFC design allow flits to perform a guaranteed
bypass and enhance throughput further by enabling flits to
bypass intermediate routers that do not have any free buffers.
We plan to incorporate this aspect in future work.

B. Technology Projections

We used a 90-nm process in this paper, which is about
two generations away from the current state-of-the-art tech-
nology. Moving to a smaller technology node impacts both
the microarchitectural aspects of this design as well as the
circuits.

In terms of microarchitecture, a newer technology will help
to shrink the critical path. A synthesis of the same design in
IBM 45 nm resulted in a critical path of Ins as opposed to
1.56 ns in 90 nm. A faster technology node thus enables an
intricate pipeline like TFC to be realizable.

Moving to smaller process nodes introduces additional
considerations for the interconnect and low-swing circuits.
Interconnect energy continues to scale more slowly than logic
energy as core-to-core wire lengths remain relatively static
and on-chip communication requirements increase, resulting
in an increasing benefit for implementing area efficient low-
swing interconnect driver and receiver circuits. At the same
time, the number of low-swing interconnects may increase
dramatically, resulting in the manual implementation of these
circuits to require an unreasonable amount of design effort.
Automated implementation and validation of these low-swing
interconnects will become critical in order to keep up with
the pace of digital design flows, and is an ongoing area
of research.

Finally, device variation is projected to worsen, requiring
that sense amplifier circuits either be increased in size relative
to logic or implement a compact input offset calibration, [29],
in order to provide sufficient sensitivity to low-voltage input
signals without bloating area.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 8, AUGUST 2013

VII. CONCLUSION

In this paper, we presented a NoC that utilizes low-power
architecture and circuit co-design to improve the power,
latency, and throughput of a NoC. In particular, a token-
based smart pipeline bypassing scheme, and a reduced-swing
crossbar and interconnect together contribute to latency and
power improvements in an 8 x 8 network running uniform ran-
dom traffic, while requiring half as many buffers as extracted
simulations of a baseline NoC using virtual-channel routers.
Under uniform random traffic, a reduction of 38% in peak
network power was reported when networks were operated
at identical frequency conditions, while a 20% reduction in
low-load latency was reported when both networks are run at
their maximum operating frequencies. Reduced swing circuits
achieve 62% power savings in the datapath versus a full-swing,
synthesized implementation. Differential mode shielding was
also presented as a means to enable protected, reduced-swing
signaling over digital logic with less capacitive loading than
full ground plane shielding. Many of the architectural and
circuit novelties in SWIFT would enhance any NoC router/link
design, as SWIFT performs more efficient allocation of net-
work links and buffers, enabling low-power traversal. We hope
this paper paves the way for more such prototype designs.
Demonstrating a SWIFT-like NoC design on a multicore chip
with real application traffic is part of our future work.

APPENDIX
BASELINE NONBYPASS PIPELINE MICROACHITECTURE

The actions performed by NoC routers are buffer write/read,
routing, switch allocation, VC allocation, and switch TRA-
VERSAL. These actions can be pipelined into multiple stages
based on implementation decisions, and target frequencies.
We implement a highly optimized three-stage pipeline that
builds on the simpler routing architectures in UT TRIPS [2]
and Intel TeraFLOPS [3] by leveraging research in shared
input buffers [5], lookahead routing [22], separable allocation
[28], and parallel SA/VA [11], [28]. We use this both for our
baseline router, and as the nonbypass pipeline in the SWIFT
router. These stages are shown in Fig. 4(a). Flits in the SWIFT
NoC traverse this pipeline if bypassing fails due to one of the
paths shown in the flow chart of Fig. 6.

A. Stage 1-BW

Incoming flits are written into buffers at each input port,
which were implemented with register files generated from the
foundry memory generators. These input buffers are organized
as a shared pool among multiple VCs [5]. The addresses of
the buffers are connected as a linked list. An incoming flit
that requires a free buffer obtains the address from the head
of the linked list, and every buffer that is freed up appends its
address to the tail of the linked list. One buffer is reserved per
VC in order to avoid deadlock. Compared to private buffers per
VC, which can be implemented as a FIFO, our shared buffer
design incurs an overhead of storing the read addresses of all
flits in the VC state table, but has the advantage of reducing
the numbers of buffers required at each port to satisfy buffer

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

POSTMAN et al.: SWIFT: A LOW-POWER NoC IMPLEMENTING THE TFC ROUTER ARCHITECTURE

turnaround time (minimum number of cycles before which the
same buffer can be reused).

B. Stage 1-SA-1

An input VC is selected from each input port to place a
request for the switch. This is implemented using V:1 round
robin arbiters at each input port, where V is the number of
VCs per port. Round robin arbiters are simple to implement
[5] and ensure that every VC gets a chance to send a flit.

C. Stage 2-SA-O

The winners of SA-I at each input port place requests for
their corresponding output ports. As no u-turns are allowed,
there can be a maximum of four input ports requesting the
same output port. These conflicts are resolved using 4:1 matrix
arbiters, one for each output port. Matrix arbiters are used for
fair allocation of the crossbar output port to all input ports
[5]. Separating switch allocation into two phases of simpler
arbitration, SA-I and SA-O, is a common approach to satisfy
minimum cycle time constraints [28]. Note that a flit may
spend multiple cycles in switch allocation due to contention.

D. Stage 2-VC Allocation (VA)

At the end of SA-O, winning head flits are assigned an
input VC for their next hop. (Body and Tail flits follow on
the same VC). VC allocation in our design is a simple VC
selection scheme, based on [11]. Each output port maintains
a queue of free VCs at the input port of the next router. A
switch request is allowed to be placed for an output port only
if the router connected to that output port has at least one-free
input VC. The winning head flit of a switch output port, at
the end of SA-O, picks up the free VC at the head of the
queue and leaves. Thus, there is no full-fledged arbitration
required, simplifying the VC allocation process. If the router
receives a signal indicating a free VC from the next router,
the corresponding VC id is enqueued at the tail of the queue.
VA does not add any extra delay to the critical path since the
updating of the queue and the computation of the next free
VC id take place in parallel to SA-O.

E. Stage 2-BR

Flits that won SA-I start a pre-emptive read of the buffers,
in parallel to SA-O. This is because the register files require
all input signals to be ready before the clock edge. If we wait
until SA-O declares the winner of the switch output port, BR
would have to be pushed to the next cycle, adding latency. The
drawback of this is that there are wasted reads from the buffer
which would consume power. We address this by biasing SA-I
to declare the same input VC as the winner until it succeeds
to use the crossbar. This ensures that the same address is read
out of BR to avoid additional switching power.

F Stage 3-ST

The flits that won the switch ports traverse the crossbar
switch.

1445

G. Stage 4-LT

The flits coming out of the crossbar traverse the links to the
next routers.

ACKNOWLEDGMENT

The authors would like to thank the Trusted Access Program
Office, Simi Valley, CA, for fabrication of our test chip, and
ARM for providing standard cell libraries. They would also
like to thank A. Kumar from Intel Corporation, Santa Clara,
CA, for help in designing the SWIFT pipeline, K. Hu from
Broadcom Corporation, Irvine, CA, for assisting in post-layout
verification, and the reviewers for their patience and detailed
feedback.

REFERENCES

[1] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal,
“The raw microprocessor: A computational fabric for software circuits
and general-purpose programs,” IEEE Micro, vol. 22, no. 2, pp. 25-35,
Mar.—Apr. 2002.

[2] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar, S. W.
Keckler, and D. Burger, “On-chip interconnection networks of the TRIPS
chip,” IEEE Micro, vol. 27, no. 5, pp. 41-50, Sep.—Oct. 2007.

[3] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz
mesh interconnect for a teraflops processor,” IEEE Micro, vol. 27, no. 5,
pp. 51-61, Sep.—Oct. 2007.

[4] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown, III, and A. Agarwal, “On-chip
interconnection architecture of the Tile processor,” IEEE Micro, vol. 27,
no. 5, pp. 15-31, Sep.—Oct. 2007.

[5] W. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Mateo, CA: Morgan Kaufmann, 2003.

[6] R. Mullins, A. West, and S. Moore, “Low-latency virtual-channel routers
for on-chip networks,” in Proc. 31st Annu. Int. Symp. Comput. Arch.,
Jun. 2004, pp. 1-188.

[7]1 H. Matsutani, M. Koibuchi, H. Amano, and T. Yoshinaga, “Prediction
router: Yet another low latency on-chip router architecture,” in Proc.
High-Perform. Comput. Arch., Feb. 2009, pp. 367-378.

[8] A. Kumar, L.-S. Peh, and N. K. Jha, “Token flow control,” in Proc. 41st
Int. Symp. Microarch., Nov. 2008, pp. 342-353.

[9]1 A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express virtual channels:
Toward the ideal interconnection fabric,” in Proc. 34th Annu. Int. Symp.
Comput. Arch., Jun. 2007, pp. 150-161.

[10] L. Xin and C. S. Choy, “A low-latency NoC router with lookahead
bypass,” in Proc. Int. Symp. Circuits Syst., Jun. 2010, pp. 3981-3984.
A. Kumar, P. Kunduz, A. P. Singhx, L.-S. Pehy, and N. K. Jhay,
“A 4.6 Thbits/s 3.6 GHz single-cycle NoC router with a novel switch
allocator in 65 nm CMOS,” in Proc. 25th Int. Conf. Comput. Design,
Oct. 2007, pp. 63-70.

[12] J. Bae, J.-Y. Kim, and H.-J. Yoo, “A 0.6 pJ/b 3 Gb/s/ch transceiver in
0.18 um CMOS for 10 mm on-chip interconnects,” in Proc. IEEE Int.
Symp. Circuit Syst., May 2008, pp. 2861-2864.

B. Kim and V. Stojanovic, “A 4Gb/s/ch 356 fJ/b 10 mm equalized
on-chip interconnect with nonlinear charge-injecting transmit filter and
transimpedance receiver in 90 nm CMOS,” in Proc. IEEE Int. Solid-State
Circuits Conf., Feb. 2009, pp. 66-68.

D. Schinkel, E. Mensink, E. A. M. Klumperink, E. van Tuijl, and B.
Nauta, “A 3-Gb/s/ch transceiver for 10-mm uninterrupted RC-limited
global on-chip interconnects,” [EEE J. Solid-State Circuits, vol. 41,
no. 1, pp. 297-306, Jan. 2006.

K. Lee, S.-J. Lee, and H.-J. Yoo, “Low-power network-on-chip for high-
performance SoC design,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 14, no. 2, pp. 148-160, Feb. 2006.

H.-S. Wang, L.-S. Peh, and S. Malik, “Power-driven design of router
microarchitectures in on-chip networks,” in Proc. 36th Annu. IEEE/ACM
Int. Symp., Dec. 2003, pp. 105-116.

[11]

[13]

[14]

[15]

[16]

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

1446

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 8, AUGUST 2013

L. Shang, L.-S. Peh, and N. Jha, “Dynamic voltage scal-
ing with links for power optimization of interconnection net-
works,” in Proc. High-Perform. Comput. Arch., Feb. 2003, pp.
91-102.

C.-H. Chen, S. Park, T. Krishna, and L.-S. Peh, “A low-swing crossbar
and link generator for low-power networks-on-chip,” in Proc. Int. Conf.
Comput.-Aided Design, Nov. 2011, pp. 779-786.

A. Kodi, A. Louri, and J. Wang, “Design of energy-efficient chan-
nel buffers with router bypassing for network-on-chips (NoCs),”
in Proc. Int. Symp. Qual. Electron. Design, Mar. 2009, pp.
826-832.

J. Kim, J. Balfour, and W. Dally, “Flattened butterfly topology for
on-chip networks,” in Proc. 40th Annu. IEEE/ACM Int. Symp. Micro,
Chicago, IL, Dec. 2007, pp. 172-182.

G. Michelogiannakis, J. Balfour, and W. Dally, “Elastic-buffer flow
control for on-chip networks,” in Proc. High-Perform. Comput. Arch.,
Feb. 2009, pp. 151-162.

M. Galles, “Scalable pipelined interconnect for distributed endpoint
routing: The SGI SPIDER chip,” in Proc. High-Perform. Interconn.,
Aug. 1996, pp. 1-6.

J. Oh, M. Prvulovic, and A. Zajic, “TLSync: Support for multiple fast
barriers using on-chip transmission lines,” in Proc. 38th Annu. Int. Symp.
Comput. Arch., 2011, pp. 105-116.

T. Krishna A. Kumar, P. Chiang, M. Erez, and L.-S. Peh, “NoC with
near-ideal express virtual channels using global-line communication,” in
Proc. High-Perform. Interconn., 2008, pp. 11-20.

D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, and B. Nauta,
“Low-power, high-speed transceivers for network-on-chip communica-
tion,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 17, no. 1,
pp. 12-21, Jan. 2009.

S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, R. Varada, M.
Ratta, and S. Vora, “A 45 nm 8-core enterprise Xeon® proces-
sor,” IEEE J. Solid-State Circuits, vol. 45, no. 1, pp. 7-14, Jan.
2010.

E. Mensink, D. Schinkel, E. Klumperink, E. van Tuijl, and B.
Nauta, “Optimally-placed twists in global on-chip differential inter-
connects,” in Proc. Eur. Solid-State Circuits Conf., Sep. 2005, pp.
475-478.

L.-S. Peh and W. J. Dally, “A delay model and speculative architecture
for pipelined routers,” in Proc. High-Perform. Comput. Arch., Jan. 2001,
pp. 255-266.

J. Postman and P. Chiang, “Energy-efficient transceiver circuits for short-
range on-chip interconnects,” in Proc. Custom Integr. Circuits Conf., Sep.
2011, pp. 1-4.

Jacob Postman (S’10) received the B.S. degree in
electrical and electronics engineering and computer
engineering from Oregon State University, Corvallis,
in 2008, where he is currently pursuing the Ph.D.
degree in computer engineering.

His current research interests include energy-
efficient on-chip interconnect circuits and their
encompassing systems.

Mr. Postman was a recipient of the NSF Graduate
Research Fellowship.

Tushar Krishna (S’08) received the B.Tech. degree
from Indian Institute of Technology Delhi, New
Delhi, India, and the M.S.E. degree from Princeton
University, Princeton, NJ, in 2007 and 2009, respec-
tively, both in electrical engineering. He is currently
pursuing the Ph.D. degree with the Department
of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge.

His current research interests include computer
architectures and on-chip networks.

Christopher Edmonds received the B.S. degree in
electrical and electronics engineering and computer
science from Oregon State University, Corvallis, in
2009. He is currently pursuing the M.S. degree in
computer science with Stanford University, Stanford,
CA.

He is currently engaged in research with
Microsoft.

Li-Shiuan Peh (S’99-M’01) received the B.S.
degree in computer science from the National Uni-
versity of Singapore, Singapore, in 1995, and the
Ph.D. degree in computer science from Stanford
3 University, Stanford, CA, in 2001.
<= She has been an Associate Professor of electrical
engineering and computer science with the Massa-
I chusetts Institute of Technology, Cambridge, since

2009. From 2002 to 2009, she was with Princeton
University, Princeton, NJ. Her current research inter-
ests include low-power on-chip networks, parallel
computer architectures, and mobile computing.

Dr. Peh was a recipient of the ACM Distinguished Scientist Award in
2011, the CRA Anita Borg Early Career Award in 2007, the Sloan Research
Fellowship in 2006, and the NSF CAREER Award in 2003. She is a member
of ACM.

Patrick Chiang (S’99-M’04) received the B.S.
degree in electrical engineering and computer sci-
ences from the University of California, Berkeley, in
1998, and the M.S. and Ph.D. degrees in electrical
engineering from Stanford University, Stanford, CA,
in 2001 and 2007, respectively.

He is currently an Associate Professor of elec-
trical engineering and computer science with
Oregon State University, Corvallis. He is a Visiting
Professor of developing wireless biomedical sensors
with Fudan University, Shanghai, China. His current
research interests include energy-efficient circuits and systems, including near-
threshold computing, low-power serial link interfaces, and energy-constrained
medical sensors.

Dr. Chiang was a recipient of the Department of Energy Early CAREER
Award in 2010 and a NSF-CAREER Award in 2012. He is an Associate Editor
of the IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS,
and on the Technical Program Committee of the IEEE Custom Integrated
Circuits Conference.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 15,2020 at 05:22:14 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

