Efficient Control and Communication Paradigms for Coarse-Grained
Spatial Architectures

MICHAEL PELLAUER, Intel
ANGSHUMAN PARASHAR, Intel!
MICHAEL ADLER, Intel

BUSHRA AHSAN, Intel

RANDY ALLMON, Intel

NEAL CRAGO, Intel!

KERMIN FLEMING, Intel

MOHIT GAMBHIR, Intel

AAMER JALEEL, Intel®

TUSHAR KRISHNA, Intel?

DANIEL LUSTIG, Princeton University
STEPHEN MARESH, Intel
VLADIMIR PAVLQOV, Intel

RACHID RAYESS, Intel

ANTONIA ZHAI, Univserity of Minnesota
JOEL EMER, Intel! and MIT

Recently there has been interest in exploring the acceleration of non-vectorizable workloads with
spatially-programmed architectures that are designed to efficiently exploit pipeline parallelism. Such an
architecture faces two main problems: A) how to efficiently control each processing element (PE) in the sys-
tem, and B) how to facilitate inter-PE communication without the overheads of traditional shared-memory
coherent memory. In this paper, we explore solving these problems using triggered instructions, and latency-
insensitive channels. Triggered instructions completely eliminate the program counter and allow programs
to transition concisely between states without explicit branch instructions. Latency-insensitive channels
allow efficient communication of inter-PE control information, while simultaneously enabling flexible code
placement and improving tolerance for variable events such as cache accesses. Together, these approaches
provide a unified mechanism to avoid over-serialized execution, essentially achieving the effect of techniques
such as dynamic instruction reordering and multithreading.

Our analysis shows that a spatial accelerator using triggered instructions and latency-insensitive chan-
nels can achieve 8x greater area-normalized performance than a traditional general-purpose processor.
Further analysis shows that triggered control reduces the number of static and dynamic instructions in the
critical paths by 62% and 64% respectively over a program-counter style baseline, increasing the perfor-
mance of the spatial programming approach by 2.0x.

Categories and Subject Descriptors: C.1.3 [Computer Systems Organization]: Processor Architectures

1New affiliation: NVIDIA.
2New affiliation: Georgia Insititue of Technology

Author’s addresses: Michael Pellauer, Angshuman Parashar, Michael Adler, Bushra Ahsan, Randy Allmon,
Neal Crago, Kermin Fleming, Mohit Gambhir, Aamer Jaleel, Tushar Krishna, Stephen Maresh, Vladimir
Pavlov, Rachid Rayess, and Joel Emer, Intel Corporation, 77 Reed Road, Hudson, MA 01749.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2015 ACM 0734-2071/2015/02-ARTX $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:2 M. Pellauer et al.

Additional Key Words and Phrases: Spatial Programming, Reconfigurable Accelerators

ACM Reference Format:

Michael Pellauer, Angshuman Parashar, Michael Adler, Bushra Ahsan, Randy Allmon, Neal Crago, Kermin
Fleming, Mohit Gambhir, Aamer Jaleel, Tushar Krishna, Stephen Maresh, Vladimir Pavlov, Rachid Rayess,
and Joel Emer. Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures.
ACM Trans. Comput. Syst. X, X, Article X (February 2015), 32 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Recently, SIMD/SIMT accelerators such as GPGPUs have been shown to be effective
as offload engines when paired with general-purpose CPUs. This results in a comple-
mentary approach where the CPU is responsible for running the operating system and
irregular programs, and the accelerator executes inner loops of uniform data-parallel
code. The abundant number of threads allows the accelerator to bury long-latency
events such as cache misses and maintain good utilization of its datapaths.

Unfortunately, not every workload exhibits sufficiently uniform data parallelism to
take advantage of the efficiencies of this pairing. There remain many important work-
loads whose best-known implementation involves asynchronous actors performing dif-
ferent tasks, while frequently communicating with neighboring actors. The compu-
tation and communication characteristics of these workloads cause them to map ef-
ficiently onto spatially-programmed architectures such as Field-Programmable Gate
Arrays (FPGAs). Furthermore, a number of important workload domains exhibit such
kernels, such as signal processing, media codecs, cryptography, compression, pattern
matching and sorting. As such, one way to boost the performance efficiency of these
workloads is to add a new spatially-programmed accelerator to the system, comple-
menting the existing SIMD/SIMT accelerators.

While FPGAs are very general in their ability to map the compute, control and
communication structure of a workload, their lookup table (LUT) based datapaths
are oriented towards arbitrary logic prototyping rather than algorithmic acceleration.
An alternative is to use a tiled array of coarse-grained datapaths more like a proces-
sor’s Arithmetic-Logic Unit (ALU) — a Coarse Grained Reconfigurable Array (CGRA)
[Mirsky and DeHon 1996; Hauser and Wawrzynek 1997; Mei et al. 2003]. However,
CGRAs come with several challenges as well. How should each individual ALU be
controlled? How should the ALUs communicate data with each other, especially given
that communication is frequent? If a producer is not mapped onto a datapath directly
adjacent to a consumer will the program fail?

A number of prior works [Burger et al. 2004; Govindaraju et al. 2011; Swanson et al.
2007] have proposed spatial architectures with a network of ALU-based processing el-
ements (PEs) onto which operations are scheduled in systolic or dataflow order, with
limited or no autonomous control at the PE level. Other approaches incorporate au-
tonomous control at each PE using a program counter (PC) [Taylor et al. 2002; Yu
et al. 2006; Panesar et al. 2006]. Unfortunately, as we will show, PC sequencing of
ALU operations introduces several inefficiencies when attempting to capture intra-
and inter-ALU control patterns of a frequently-communicating spatially-programmed
fabric.

In this paper, we explore addressing these issues using triggered instructions and
latency-insensitive channels. Triggered instructions remove the program counter com-
pletely, instead allowing the processing element to concisely transition between states
of one or more finite-state machines (FSMs) without executing instructions in the dat-
apath to determine the next state. Latency-insensitive channels allow efficient com-
munication of inter-PE control information, while simultaneously enabling flexible
module placement and improving tolerance for unpredictable events such as cache ac-

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:3

Legend: [@ Instruction X, iteration Y]

Data read by instruction X

E o8
z. S8
= o &
g SE/
=3 ISRk
1S} N
z g
v
F<R =
E & &
o e/
C) Loop-Carried Dependence
on instruction 4 D) Spatial architecture

Fig. 1. Overview of the spatial programming approach.

cesses. Together, these approaches provide a unified mechanism to avoid over-serialized
execution, essentially achieving the effect of techniques such as dynamic instruction
reordering and multithreading, which each require distinct hardware mechanisms in
a traditional sequential architecture.

We evaluate out approach by simulating a spatially-programmed accelerator on a
range of workloads. Our analysis for this set of workloads, which span a range of al-
gorithm classes not known to exhibit extensive uniform data parallelism, shows that
such an accelerator can achieve 8x greater area-normalized performance than a tradi-
tional general-purpose processor. We provide further analysis of both a set of common
control idioms and the critical paths of the workload programs to illustrate how a trig-
gered instruction architecture contributes to this performance gain.

2. BACKGROUND AND MOTIVATION
2.1. Spatially-Programmed Architectures

Spatial programming is a paradigm whereby an algorithm’s dataflow graph is broken
into regions, which are connected by producer-consumer relationships. Input data is
then streamed through this pipelined graph. Figure 1 contrasts this to a more tradi-
tional Multiple-Instruction-Multiple-Data (MIMD) approach. In MIMD, core n is re-
sponsible for executing a full loop iteration containing each instruction A, B,C, ... of
the sequential body, keeping the intermediate data b,,,¢c,, etc. locally in its register
file. Cross-core communication is rare and is ideally protected with syncrhonization
primitives such as barriers.

In contrast, in a spatial approach a single small core is responsible for executing in-
struction A for all iterations, with another core executing instruction B. Intermediate
data is passed to the next datapath rather than being kept locally. Therefore no single

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X4 M. Pellauer et al.

PE will execute an entire loop body—essentially the program has been transposed be-
tween time and space. Pedagocially, it is clearest to imagine the extreme approach of
mapping one instruction to each PE, but in practice there can be benefits to keeping
a small control sequence or Finite-State Machine (FSM) local. Ideally, the number of
operations in each pipeline stage is kept small, as performance is usually determined
by the rate-limiting step.

For an “embarassingly” parallel program like 1A, it may seem like a SIMD/SIMT
architecture will be a strictly more efficient execution substrate, and so the spatial
transposition is not needed. In practice there exists a large category of interesting
programs that contain loop-carried depedencies. As Figure 1C shows, these require
cross-iteration data passing, and skew the program’s dataflow graph in such a way
as to prevent vectorization. However, these programs are naturally implementable
in the spatial approach simply by using local registers to bypass the cross-iteration
data to the next instruction. In fact, the spatial program shown in Figure 1D can
implement programs 1A and 1C with no change in code mapping and no degreda-
tion of performance—the only difference is whether the output of instruction A is re-
circulated via a local register or not.

Just as data-parallel algorithms see large efficiency boosts when run on a vector
engine, workloads that are naturally amenable to spatial programming can see sig-
nificant boosts when run on an enabling architecture. A traditional processor would
execute such programs serially over time, but this does not result in any noticeable
efficiency gain, and may even be slower than other expressions of the algorithm. A
MIMD multicore can improve this by mapping different stages onto different cores,
but the small number of cores available relative to the large number of stages in the
dataflow graph means that each core must multiplex between several stages, so the
rate-limiting step generally remains large. Additionally, cross-thread communication
can generally only occur via shared virtual memory (SVM) which uses a coherence
protocol to actually interact with the on-chip network (OCN) and perform the data
transfers.

In contrast, a typical spatial-programming architecture is a fabric of hundreds of
small processing elements (PE) connected directly via an OCN which is exposed di-
rectly to the ISA. Given enough PEs, an algorithm may be taken to the extreme of map-
ping the entire dataflow graph into the spatial fabric, resulting in a very fine-grained
pipeline. This is the approach taken by a number of reconfigurable architectures.

FPGAs are the most successful spatially-programmed reconfigurable architecture
in use today. FPGAs are designed to emulate a broad range of logic circuits because
they are primarily targeted at ASIC prototyping and replacement. Consequently, they
use very fine-grain reconfigurable elements such as lookup tables (LUTs) [Compton
and Hauck 2002; Marquardt et al. 2000]. The LUTSs are chained into larger operations
using flexible-but-expensive OCNs. This generality limits the clock speed at which
mapped designs can be run while also creating a large search space of solutions for
place and route algorithms, leading to long compilation times.

When using reconfigurable architectures for direct algorithmic acceleration instead
of logic prototyping, these issues can be partially addressed by the observation that the
class of operations that the reconfigurable architecture needs to cover is more limited—
particularly when used in conjunction with a traditional CPU. As observed by several
efforts [Mirsky and DeHon 1996; Hauser and Wawrzynek 1997; Mei et al. 2003], this
limited class of operations creates opportunities to achieve higher area density and
better power/performance efficiency than conventional FPGAs while retaining suffi-
cient flexibility. This has led to several proposals [Burger et al. 2004], [Panesar et al.
2006; Taylor et al. 2002; Swanson et al. 2007; Mirsky and DeHon 1996; Hauser and

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:5

if (incoming > cur)

send(cur); cur := incoming;
else

send (incoming) ;

5 (83|32 PE PE D PE

icur = 27 icur = 17 icur undefi

Fig. 2. Example of a spatially-programmed sort.

Wawrzynek 1997; Mei et al. 2003] that use an array of coarser-grained multi-bit ALUs
as the datapath of PEs in a spatially-programmed architecture.

Within the domain of array-of-ALU approaches is a class of architectures that do
not feature any autonomous control mechanism inside each ALU. These architectures
are either purely systolic [Kung 1986], statically map only one operation per ALU
[Govindaraju et al. 2011], or schedule operations onto the ALUs in strict dataflow
order [Burger et al. 2004]. These architectures rely on being able to transform control-
flow graphs into predicated dataflow graphs. Such approaches are effective at mapping
the control structures of a subset of problems, but do not approach the flexibility or
generality of architectures with internal autonomous control at each PE. Another class
of proposals calls for general autonomously-controlled PEs [Taylor et al. 2002; Yu et al.
2006; Panesar et al. 2006] using variants of the existing PC-based control model.

The PC-based control model paired with SVM has historically been the best choice
for MIMD CPUs that run arbitrary and irregular programs. In the remainder of this
section, we demonstrate that these existing paradigms introduce unacceptable ineffi-
ciencies in the context of spatial programming.

2.2. Spatial Programming Example

As a concrete example, let us explore how a well-known workload can benefit from
spatial programming. Consider the simple spatially-mapped sorting program shown
in Figure 2. In this approach, the worker PEs communicate in a straight pipeline. The
unsorted array is streamed in by the first PE. Each PE simply compares the incoming
element to the largest element seen so far. The larger of the two values is kept, and the
smaller sent on. Thus after processing &k elements worker 0 will be holding the largest
element, and worker k& — 1 the smallest. The sorted result can then be streamed out to
memory through the same straightline communication network.

This example represents a limited toy workload in many ways—it requires k PEs
to sort an array of size k, and worker 0 will do £ — 1 comparisons while worker & — 1
will only do 1 (an insertion sort, with a total of k% comparisons). However, despite its
naivete this workload demonstrates some remarkable properties. First, the utilization
of the datapaths is quite good—in the final step all & datapaths can simultaneously
execute a comparison, with an overall average of g per cycle. Second, the communica-
tion between PEs is local and parallel—on a typical mesh network fabric it is easy to
map this workload so that no network contention will ever occur. The communication

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:6 M. Pellauer et al.

{if (listA > listB ||

e (listA.finished && !'listB.finished))
ffor x = 1..NPASSES i} send (1istB);
i for vy = 1..k ifelse if (!listA.finished)

// control loopg send (1listA) ;

- [l re

U

pE ...| 53283

.111130(72
-|10(14 (88

Fig. 3. A more realistic spatial merge sort.

flows are completely statically determined by the configuration—no dynamic packet
routing is required. Finally—and most interestingly—this approach sorts an array of
size k with exactly k loads and k stores. The loads and stores that a traditional CPU
must use to overcome its relatively small register file are replaced by direct PE-to-PE
communication. This reduction in memory operations is critical in understanding the
benefits of spatial programming. We have been able to characterize the benefits as
follows:

— Direct communication uses roughly 20x lower power than communication through
an L1 cache, as the overheads of tag matching, load-store queue search, address
translation, and large data array read are removed.

— Cache coherence overheads, including network traffic and latency are likewise re-
moved.

— Reduced memory traffic lowers cache pressure, which in turn increases effective
memory bandwidth for remaining traffic.

Finally, it is straightforward to expand our toy example into a realistic merge sort
engine able to sort a list of any size (Figure 3). First, we begin by programming a PE
into a small control FSM that handles breaking the array into sub-arrays of size k
and looping (this control loop could also be executed on the main CPU, as the sorting
passes can be quite long). Second, we slightly change the worker PEs’ programming
so that they are doing a merge of two distinct sorted sub-lists. With these changes our
toy workload is now a radix k merge sort capable of sorting a list of size n in n x logg(n)
loads. Because k can be in the hundreds for a reconfigurable fabric, the benefits can
be quite large. In our experiments we observed 17x fewer memory operations com-
pared to a general-purpose CPU and an area-normalized performance improvement of
8.8x (Section 6), which is better than the currently best-known GPGPU performance
[Merrill and Grimshaw 2010].

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X7

load_a: 1d %r4, Qr2 // Load listA tail ptr (written by producer)
check_a: cmp.ne %r0, %r4, %r3 // If listA head == tail then q is empty
bnez check_b // Not empty, so proceed to listB
monitor @r2 // Wait for producer to update tail
Jjump load_a // Re-load and check in case timeout occured
load_b: 1d %r9, Qr7 // Load 1listB tail ptr (written by producer)
check_b: cmp.ne %r0, %r9, %r8 // If listB head == tail then q is empty
bnez check_o // Not empty, so proceed to output list
monitor @r7 // Wait for producer to update tail
jump load_b // Re-load and check in case timeout occured
load_o: 1d %r13, eri1 // Load listOut head ptr (written by consumer)
Static Insts 48
Avg Insts/Iteration 32
Avg Memory Ops/Iteration | 10

Fig. 4. Merge sort worker representation using SVM queues introduces unacceptable overheads per com-
parison. Methods such as memory monitors can avoid active polling, but do not reduce pointer chasing and
load/store latency between disparate caches.

2.3. Limitations of PC-based Control

To illustrate the inefficiencies of existing MIMD paradigms in the spatial programming
context, let us code the merge sort PE shown in Figure 3. We first explore whether a
completely unmodified ISA is suitable for this task. In a multicore system, the typical
approach is to use SVM for the queue buffering, along with sophisticated polling mech-
anisms such as memory monitors for communicating occupancy. As shown in Figure 4,
such a style introduces many inefficient instructions for pointer chasing, address offset
arithmetic, and head/tail comparisons just to setup the user-specified sort comparison
inherent to the algorithm. Even if the queues are not stalled, and the monitors un-
neccesary, the loop would execute an average of 32 instructions per sort-comparison in
the best case, including 7 loads and 3 stores. Furthermore, in a spatially-programmed
fabric having hundreds of PEs communicating using shared memory would create
unacceptable bandwidth bottlenecks. It would also be wasteful—communicating with
your neighbor should not have to go through a centralized location.

Instead, let us modify the ISA to expose direct communication channels between
PEs as data registers and status bits. The ISA must contain a mechanism to query
if the input channels are not empty, and output channels are not full, to read the
first element, and to enqueue and dequeue. Furthermore we add an architecturally-
visible tag to the channel that merge sort uses to indicate that the end of a sorted
sub-list has been reached (EOL). We name the resulting theoretical assembly language
PC+RegQueue, and give a representation of the merge sort PE in Figure 5. This code
removes all the problematic memory references and pointer manipulation from the
original example, but several inefficiencies are still noticeable. First, it uses active
polling to test the register-mapped queue status, an obvious power waste. Second, it
falls victim to over-serialization. For example, if new data on 1istA arrives before that
on 1istB there is no opportunity to begin processing the 1istA-specific part of the code.
Finally, the code is quite branch-heavy when compared to that typically found on a
traditional core, and some of these branches are hard to predict.

This illustrates that simply augmenting a traditional RISC-style ISA with a
channel-based communication paradigm is not sufficient to enable efficient spatial
programming. In order to be fair to this PC-based ISA we must try to improve the
architecture somehow. Figure 6 summarizes the techniques that we explore below.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:8 M. Pellauer et al.

check_a: beqz %in0O.notEmpty, check_a // listA
check_b: beqz %inl.notEmpty, check_b // listB
check_o: beqz %out0O.notFull, check_o // outList
beq %in0.tag, EOL, a_done
beq %inl.tag, EOL send_a
cmp.1t %r0, %in0.first, %inl.first
bnez %r0, send_a
send_b: enq %outO, %inl.first

deq %inl
jump check_a

send_a: enq %outO, %in0.first
deq %in0

jump check_a
a_done: beq %inl.tag, EOL, done
jump send_b

done: deq %in0
deq %inl
return;
Static Insts 18
Avg Insts/Iteration 10
Avg Branches/Iteration 7
Speedup vs shared 5.2x vs cache hits (no monitor needed)
memory queues (Fig 4) 14.0x vs misses and monitor case

Fig. 5. PC+RegQueue ISA merge sort worker representation using register-mapped queues.

Feature Description Notes

PEs use program counters, communicate
using SVM queues.

Expose register-mapped queues to ISA,

PC (Baseline) High latency, bottlenecks.

+RegQueue test via active polling. Poor power efficiency.

+FusedDeq Dgstructlve read qf queue registers Good improvement.
without separate instructions.

+RegQSelect Allow indirect jump based on register Minimal improvement.
queue status bits.

+RegQStall Issge stalls' on queue 1.np1.1t/outpu.t Bubbles, over-serialization.
registers without special instructions.

+QMultiThread Stalling on empty/full queue yields Significant additional
thread. hardware.

L Predicate registers that can be set Boolean expressions

+Predication . . >
using queue status bits. don’t compose.

+Auemented ISA augmented with all of the above Used in our evaluations

g features except +QMultiThread. (Section 6).

Fig. 6. Adding features to a PC-based ISA to improve efficiency for spatial programming.

One idea to improve queue accesses is to allow destructive reads of input channels.
In such an ISA the SRC fields of the instruction are supplemented with a bit indicating
whether a dequeue is desired. This is an important improvement because it reduces
both static and dynamic instruction count. Merge sort’s implementation on this archi-
tecture can remove 3 instructions compared to Figure 5.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:9

start: beq %in0.tag, EOL, a_done
beq %inl.tag, EOL, send_a
cmp.ge p2, %inO.first, J%inl.first
send_b: (p2) enq %outO, %inl.first (deq %inl)
send_a: (!p2) enq %outO, %in0.first (deq %in0)
jump start
a_done: cmp.ne p2, %inl.tag, EOL
(p2) jump send_b
nop (deq %in0O, deq %inl)
return;

Static Insts

Avg Insts/Iteration (Issued)

Avg Insts/Iteration (Committed)
Avg Branches/Iteration
Speedup vs PC+RegQueue (Fig 5) | 1.

B WO O O ©

X

Fig. 7. PC+Augmented ISA merge sort worker.

The next idea is to replace the active polling with a seleci—an indirect jump based
on queue status bits. This is a marginal improvement in instruction count but does
not help power efficiency. A better idea is to add implicit stalling to the ISA. In this
case the queue registers such as %in0 would be treated specially—any instruction that
attempts to read/write them would require the issue logic to test the empty/full bits
and delay issue until the status becomes correct. Merge sort’s implementation on this
architecture is the same as in Figure 5, but removes the first three instructions en-
tirely.

Of course, the downside of this is that the ALU will not be used when the PE is
stalled. Therefore the next logical extension is to consider a limited form of multi-
threading. In this ISA any read/write of a queue would make the thread eligible to be
switched out and replaced with a ready one. This is a promising approach, but we be-
lieve that the overheads associated with it—duplication of state resources, additional
muxing, and scheduling fairness—run counter to the fundamental spatial-architecture
principle of replicating simple PEs. In other words, the cost-to-benefit ratio of multi-
threading is unattractive. We reject out-of-order issue for similar reasons.

The final ISA extension we consider is predication. We define a variant of our ISA
that is able to test and set a dedicated set of boolean predicate registers. Figure 7
shows a re-implementation of the merge sort worker in a language with predication,
implicit stalling, and destructive reads. It is interesting to note how little predication
improves the control flow of the example. This is because of several limitations:

— Instructions are unable to read multiple predicate registers at once (inefficient con-
junction).

— Composing multiple predicates into more complex boolean expressions (disjunc-
tions, etc) must be done using the ALU itself.

— Jumping between regions requires that the predicate expectations be set correctly.
(Note that the branch from a_done is forced to use p2 with a positive polarity.)

— Predicated false instructions introduce bubbles into the pipeline (Section 5).

Taken together, these inefficiencies mean that conditional branching remains the
most efficient way to express the majority of the code in Figure 7. While we could
continue to try to add features to PC-based schemes in order to improve efficiency, in
the remainder of the paper we demonstrate that taking a different approach altogether

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:10 M. Pellauer et al.

ALGORITHM 1: Traditional Guarded Action Merge Sort Worker

rule sendA

when listA. first() # EOL and listB. first() # FOL and listA.data < list B.data do
outList.send(listA. first());
listA.deq();

end rule

rule sendB

when listA. first() # EOL and listB. first() # FOL and list A.data > list B.data do
outList.send(listB. first());
listB.deq();

end rule

rule drainA

when listA. first() # EOL and listB. first() = EFOL do
outList.send(listA. first());
listA.deq();

end rule

rule drainB

when listA. first() = EOL and listB. first() # FOL do
outList.send(listB. first());
list B.deq();

end rule

rule bothDone

when listA. first() = EOL and listB. first() = EOL do
listA.deq();
list B.deq();

end rule

can efficiently address these issues while simultaneously removing over-serialization
and providing the benefits of multi-threading.

3. LOCAL PE CONTROL: TRIGGERED INSTRUCTIONS

A large degree of the inefficiency discussed in the previous section stems from the issue
of efficiently composing boolean control flow decisions. In order to overcome this, we
draw inspiration from the historical computing paradigm of guarded actions, a field
that has a rich technical heritage including Dijkstra’s language of guarded commands
[Dijkstra 1975], Chandy and Misra’s Unity [Chandy and Misra 1988], and the Bluespec
hardware description language [Bluespec, Inc. 2007].

Computation in a traditional guarded action system is described using rules com-
posed of actions — state transitions — and guards — boolean expressions that de-
scribe when a certain action is legal to apply. A scheduler is responsible for evaluating
the guards of the actions in the system and posting ready actions for execution, tak-
ing into account both inter-action parallelism and available execution resources. Al-
gorithm 1 illustrates our merge sort worker in traditional guarded action form. Note
how this paradigm naturally separates the representation of data transformation (via
actions) from the representation of control flow (via guards). Additionally, the inherent
side-effect-free nature of the guards means that they are a good candidate for parallel
evaluation by a hardware scheduler.

A triggered instruction architecture (TIA) applies this concept directly to controlling
the scheduling of operations on a PE’s datapath at an instruction-level granularity. In

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

Efficient Control and Communication Paradigms for Coarse-Grained Spatial Architectures X:11

the historical guarded action programming paradigm, arbitrary boolean expressions
are allowed in the guard, and arbitrary data transformations can be described in the
action. To adapt this concept into an implementable ISA, both must be bounded in
complexity. Furthermore, the scheduler must have the potential for efficient imple-
mentation in hardware. To this end, we define a limited set of operations and state
updates that can be performed by the datapath (instructions) and a limited language
of boolean expressions (triggers) built from a variety of possible queries on a PE’s ar-
chitectural state.

The architectural state of our proposed TIA PE is composed of the following elements:

— A set of data registers (R/'W).

— A set of predicate registers (R/'W).

— A set of input-channel head elements (R-only).
— A set of output-channel tail elements (W-only).

Each channel has three components — data, a tag and a status predicate that reflects
whether an input channel is empty or an output channel is full. Tags do not have any
special semantic meaning — the programmer can use them in a variety of ways.

A trigger is a programmer-specified boolean expression formed from the logical con-
junction® of a set of queries on the PE’s architectural state. Triggers are evaluated by
a hardware scheduler (described shortly). The set of allowable trigger query functions
are carefully chosen to maintain scheduler efficiency while allowing for a large degree
of generality in the useful expressions. These query functions are:

— Predicate Register Values (optionally negated): A trigger can specify a re-
quirement for one or more predicate registers to be either true or false, e.g., p0 &&
'pl && p7.

— Input/Output Channel Status (implicit): The scheduler implicitly adds the
empty status bits for each operand input channel to the trigger for an instruction.
Similarly, a not-full check is implicitly added to each output channel an instruction
attempts to write. The programmer does not have to worry about these conditions,
but must understand while writing code that the hardware will check them. This
facilitates convenient, fine-grained, producer/consumer interaction.

— Tag Comparisons against Input Channels: A trigger may specify a value that
an input channel’s tag must match, e.g., in0.tag == EOL.

An instruction represents a set of data and predicate computations on operands
drawn from the architectural state. Instructions selected by the scheduler are exe-
cuted on the PE’s datapath. An instruction has the following read, compute and write
capabilities:

— An instruction may read a number of operands, each of which can be data at the
head of an input channel, a data register, or the vector of predicate registers.

— An instruction may perform a data computation using one of the standard func-
tions provided by the datapath’s ALU. It may also generate one or more predi-
cate values that are either constants (true/false) or derived from the ALU result
via a limited set of datapath-supported functions, e.g., reduction AND, OR and XOR
operations, bit extractions, ALU flags such as overflow, etc.

— An instruction may write the data result and/or the derived predicate result into
a set of destinations within the architectural state of the PE. Data results can be

3Although the architecture natively allows only conjunctions in trigger expressions, disjunctions
can be emulated by creating a separate triggered instruction for each disjunctive term.

ACM Transactions on Computer Systems, Vol. X, No. X, Article X, Publication date: February 2015.

X:12 M. Pellauer et al.

// p0 = Have we done a comparison yet?
// pl = Result of comparison. Is listB.head > listA.head?

doCheck:
when (!pO && %inO.tag !'= EOL && %inl.tag !'= EOL) do
cmp.ge pl, %inO.data, %inl.data (p0 := 1)

sendA:
when (pO && pl) do
enq %outO, %inO.data (deq %in0, pO := 0)
sendB:
when (pO && !pl) do
enq %outO, %inl.data (deq %inl, pO := 0)

drainA:
when (%inO.tag !'= EOL && J%inl.tag == EOL) do
enq %outO, %inO.data (deq %in0O)

drainB:
when (%inO.tag == EOL && ’%inl.tag != EOL) do
enq %outO, %inl.data (deq %inl)

bothDone:
when (%inO.tag == EOL && %inl.tag == EOL) do
nop (deq %inO, deq %inl)

Static Insts 6
Avg Insts/Iteration 2
Speedup vs PC+RegQueue (Fig5) | 5x
Speedup vs PC+Augmented (Fig 7) | 3x

Fig. 8. Triggered instruction merge sort worker.

written into the tail of an output channel, a data register, or the vector of predicate
registers. Predicate results can be written into one or more predicate registers.

Figure 8 shows our merge sort expressed using triggered instructions. Note the den-
sity of the trigger control decisions—each trigger reads at least two explicit boolean
predicates. Additionally, conditions for the queues being notEmpty or notFull are rec-
ognized implicitly. Only the comparison between the actual multi-bit queue data val-
ues is done using the ALU datapath, as represented by the doCheck instruction. Pred-
icate pO is used to indicate that the check has been performed, while p1 holds the
result of the comparison. Note also the lack of over-serialization. Only the explicitly
programmer-managed sequencing using pO is present.

An example TIA PE is illustrated in Figure 9. The PE is pre-configured with a static
set of instructions. The triggers for these instructions are then continuously evaluated
by a dedicated hardware scheduler that dispatches legal instructions to the datapath
for execution. At any given scheduling step, the trigger for zero, one, or more instruc-
tions can evaluate to true. The <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>