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Abstract—Estimation of the signal-to-noise ratio (SNR) is
considered for a non-coherent M-ARY frequency shift keying
(NC-MFSK) receiver. It has been assumed that the transmitted
symbols undergo a slow flat fading channel where a block of data
is corrupted by an independent constant fade and additive white
Gaussian noise. Two approaches for SNR estimation are reported
in this paper: an approximate maximum likelihood approach and
another using the data statistics, both for data aided and non-
data aided systems. It has been shown that for a particular SNR
region of interest and depending upon the availability of pilot
symbols, a particular approach is suitable for SNR estimation.

I. I NTRODUCTION

Estimates of signal-to-noise ratio (SNR) are used in many
wireless receiver functions, including signal detection,power
control algorithms and turbo decoding etc. The motivation for
the study reported here is that SNR estimation is a way for
a receiver to determine if it is near the edge of the decoding
range of its source, and therefore, in a preferred location to
participate in a cooperative transmission [1]. Furthermore, if
the radios are energy constrained, e.g. if they are in a sensor
network, constant envelope modulations and non-coherent
demodulation may be desired to reduce circuit consumption
of energy. Therefore, in this paper, we consider the estimation
of SNR in an FSK non-coherent demodulator, over block
deterministic channels.

In many wireless indoor applications and fixed wireless
networks, the channel frequency response does not change
rapidly. Thus a block of data undergoes a constant non-random
fade. Estimation of SNR in such a case is of prime interest
for various receiver functions. Assumption of a slow fading
channel can be converted to a fast fading channel by assuming
sufficient channel interleaving or by frequency hopping. But
these techniques may not be suitable for some applications,
e.g. wireless sensor networks, where the sensor nodes should
be as simple as possible; devising such algorithms in these
applications tends to increase the transmitter complexity. Thus
a practical way of estimating SNR in slow fading environments
is desirable.

Several authors have attacked the problem of estimating
SNR for binary phase shift keying (BPSK) and frequency
shift keying (FSK). For example, [2] compares a variety of
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techniques for SNR estimation in AWGN for M-PSK signals.
Many approaches also include the channel effects such as
multipath fading and address the issues of SNR estimation
for fading channels for BPSK, e.g. in [3,4]. In [5], the authors
have estimated the average SNR for non-coherent binary FSK
(NCBFSK) receiver, assuming fast fading channel and unit
noise power spectral density. However, in implementations,
noise power must also be estimated. In this paper, we derive
two types of estimators of SNR, a sub-optimal/approximate
maximum likelihood estimator (MLE) and an estimator that
uses block statistics, such that neither of them assume any prior
knowledge of the noise power. We estimate SNR not only for
BFSK as in [5] but for any value of M in an M-FSK receiver.
We provide ML versions of partially data-aided (PDA), non-
data aided (NDA), and joint PDA-NDA estimators for the
SNR. The PDA approach uses only the training sequence
for estimation while the NDA approach does blind estimation
using the entire sequence. The joint PDA-NDA uses all the
information, operating blindly on the non-training part ofthe
sequence. The estimators derived in this paper are significantly
different and lead to dramatically different results from those
for fast fading channels, which are addressed in [7].

The rest of the paper is organized as follows. In the next
section, we describe the system model and the notations used
for the NC-MFSK case. Section III treats the derivations of
the SNR estimators, including three sub-cases for MLE and
also the estimator using data statistics. In Section IV, we will
discuss the simulation results for various estimators and overall
estimator performance in terms of mean-squared error. The
paper then concludes in Section V.

II. SYSTEM MODEL

Consider a slow (block) fading communication system
employing M-ARY FSK modulation, where a block of data
with k symbols undergoes a constant non-random fade and
the number of symbols in the constellation isM = 2n, for a
positive integern. The received symbols are given as

vi = Asi + ni, (1)

wherei is the time index.A is the complex signal amplitude
assumed constant over the entire frame andni is the noise
vector whose elements are drawn from a zero mean complex



Gaussian distribution with a variance ofN/2 per real dimen-
sion. Each ofvi, si, and ni are vectors with a dimension of
M × 1, and for si = [0, ..., 0, 1, 0, ..., 0]T , where 1 is in the
mith position(1 ≤ mi ≤M), wheremi indicates the symbol
transmitted at timei, and the other positions have a zero. For
the sake of simplicity, we assume that the average symbol
energy is unity so that the expected energy of theith received
symbol is given as|A|2. Thus the signal-to-noise ratio is given
by γ = |A|2

N
. Our interest is to find the estimate of the average

SNR using the observed data, after the square law, given as

xi =
[(
|v1|2

)T · · ·
(
|vk|2

)T
]T

. For the estimation schemes
considered, we assume that that there areg pilot symbols and
l data symbols so that the total packet length isk = g + l.
Throughout the paper, we assume perfect timing recovery at
the receiver.

III. E STIMATION TECHNIQUES

As mentioned previously, we will derive the ML estimators
for three cases, namely PDA, NDA and joint PDA-NDA.

A. Data-Aided Estimation

Without the loss of generality, theg pilot symbols are each
set to[1 0 ... 0]

T . The received symbols fromM branches
are denoted asxm,i, where first indexm denotes the branch
index wherem = 1, 2, ...,M and second indexi is the time
index such thati = 1, 2, ..., g. Thus the received symbol on
the first branch is given as

x1,i = |A+ ni|2, (2)

whereA andn are as defined in the previous section. Since the
noise is complex Gaussian, thus the resulting PDF ofx1,i will
be non-central chi square distribution, where the non centrality
parameterλ is given as

λ = (ℜ{A})2 + (ℑ{A})2 = |A|2. (3)

ℜ{A} andℑ{A} denote the real and imaginary parts of the
complex signal amplitudeA, respectively. Thus, the PDF of
x1,i is given as

px1,i
(x) =

1

N
exp

(

−x+ |A|2
N

)

I0

(
2
√
x|A|
N

)

, (4)

whereI0(.) is the modified Bessel function of zero order first
kind. The PDF for each of the rest of the branchesm =
2, ...,M , is exponential and is given as

pxm,i
(xm) =

1

N
exp

(

−xm
N

)

, m = 2, ...,M. (5)

Thus the joint PDF of the received symbols is given as

pxi
(x) =

1

NM
exp

(

−x1 + |A|2
N

−
k∑

m=2

xm
N

)

I0

(
2
√
x1|A|
N

)

(6)
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Fig. 1. Behavior of the ratios of Modified Bessel functions

The log-likelihood for theg received symbols is given as

Λxi
(x;A,N) = − gM ln(N) +

g
∑

i=1

ln

(

I0

(
2
√
x1,i|A|
N

))

− 1

N

(
g
∑

i=1

x1,i + g|A|2 +

M∑

m=2

g
∑

i=1

xm,i

)

.

(7)

To find the MLE of the SNR,̂γ, we use the property that
the ML estimate of the ratio of two parameters (|A|2 andN
here), is the ratio of the individual ML estimates of the two
parameters [6]. Taking the derivative of(7) with respect toA
and using the relationsd

dx
In(x) = In+1(x), ∂A

∂A
= 1, ∂A∗

∂A
=

0, and ∂AA∗

∂A
= A∗ [8], we get

∂Λxi
(x;A,N)

∂A
= −gA

∗

N
+

g
∑

i=1

I1

(
2
√
x1,i|A|
N

)

I0

(
2
√
x1,i|A|
N

)
A∗√x1,i

N |A| . (8)

An exact solution to the above equation is difficult to find
because of the non-linearity of modified Bessel function.
However, we observe that for high values of the argument, the
ratio of first order modified Bessel function to the zero order
modified Bessel function, i.e.I1(.)

I0(.)
, is approximately equal to

1. This phenomenon can be seen in Figure 1. Thus using this
approximation, the estimate of|A| is given as

|Â| =
1

g

g
∑

i=1

√
x1,i. (9)

Differentiating (7) with respect toN and using similar ap-
proximations, the estimate ofN is given as

N̂ =
1

Mg

[
g
∑

i=1

x1,i − g|Â|2 +

M∑

m=2

g
∑

i=1

xm,i

]

. (10)

Using (9) and (10), we can find the estimate of SNR for the
data-aided case.



B. Non-Data Aided Estimation

The PDF of the received symbol, given 1 at the nth position
is given as

pxi
(x|sn = 1) =

1

NM
I0

(
2
√
xn|A|
N

)

exp



− 1

N



xn + |A|2 +

M∑

m=1,m 6=n
xm







.

(11)

Assuming equal prior probabilities of transmitted symbols, the
unconditional joint PDF of the received symbols for M-FSK
is given as

pxi
(x) =

1

MNM
exp

(

− 1

N

[
M∑

m=1

xm + |A|2
])

[
M∑

m=1

I0

(
2
√
xm|A|
N

)]

.

(12)

For k received symbols, the log-likelihood function is given
as

Λxi
(x;A,N) = − kM ln(N) − 1

N

(
M∑

m=1

k∑

i=1

xm,i + k|A|2
)

− k ln(M) +

k∑

i=1

ln

[
M∑

m=1

I0

(
2
√
xm,i|A|
N

)]

.

(13)

The partial derivative with respect toA is given as

∂Λxi
(x)

∂A
= −KA

∗

N
+

k∑

i=1

∑M
m=1 I1

(
2
√
xm,i|A|
N

)

∑M

m=1 I0

(
2
√
xm,i|A|
N

)
A∗√xm,i
N |A|

(14)
Using some approximations of the modified Bessel functions
(see Appendix), the estimate of|A| is given as

|Â| =
1

k

k∑

i=1

max
m=1,...,M

√
xm,i. (15)

The noise power estimate is given in a similar manner as

N̂ =
1

Mk

[
M∑

m=1

k∑

i=1

xm,i − k|Â|2
]

. (16)

C. Joint Estimation Using Pilot and Data Symbols

Considerg pilot symbols andl data symbols, so that the
total packet is of lengthk = g + l. Assuming independent
received symbols, the joint PDF is the product of PDFs
resulting from the pilot and data symbols. So we use(6) for
i = 1, 2, ..., g and (12) for i = g + 1, ..., g + l = k. Thus the

log-likelihood function from the joint PDF is given as

Λjoint = − kM lnN − l lnM +

g
∑

i=1

ln

(

I0

(
2
√
x1,i|A|
N

))

+

k∑

i=g+1

ln

[
M∑

m=1

I0

(
2
√
xm,i|A|
N

)]

− k|A|2
N

− 1

N





g
∑

i=1

x1,i +

M∑

m=2

g
∑

i=1

xm,i +

M∑

m=1

k∑

i=g+1

xm,i



 .

(17)

Using similar approximations as in the previous section and
taking partial derivatives with respect toA andN and setting
them equal to zero result in the estimates of signal and noise
powers as

ˆ|A| =
1

k





g
∑

i=1

√
x1,i +

k∑

i=g+1

max
m=1,...,M

√
xm,i



 , (18)

N̂ =
1

kM





M∑

m=1

g
∑

i=1

xm,i +

M∑

m=1

k∑

i=g+1

xm,i − k|Â|2


 . (19)

D. EDS Approach

In order to get an estimate of SNR using the statistics of
the received data, we define anM ×M matrix Z, given as

Z = E {xm}E {xm}T
(
E
{

xmxTm
})−1

, (20)

where E {xm} = [E {x1} E {x2} · · · E {xM}]T . As-
suming equally likely probable transmitted symbols, the en-
semble average of the received data is given as

E {xm} =
1

M

[
|A|2 +MN

]
, m = 1, ...,M (21)

ThusE {xm}E {xm}T is given as

E {xm}E {xm}T =
1

M2

[
|A|2 +MN

]2
1M , (22)

where1M is anM×M matrix of all ones. The autocorrelation
matrix of the received data, given byE

{
xmxTm

}
, contains

E
{
x2
m

}
on the main diagonal given as

E
{
x2
m

}
=

1

M

[
|A|4 + 4N |A|2 + 2MN2

]
, m = 1, ...,M

(23)
while the rest of all elements will be(E {xm})2, where
E {xm} is given by(21). Thus we can write

E
{

xmxTm
}

=

[
|A|2 +MN

]2

M2









a 1 · · · 1

1 a · · · 1

...
...

. . .
...

1 1 · · · a









︸ ︷︷ ︸

H

(24)

where the elementa is given as

a =
E
{
x2
m

}

E {xm}2 = M
γ2 + 4γ + 2M

γ2 +M2 + 2Mγ
(25)



0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

5

10

15

20

25

z

S
N

R
 (

dB
)

 

 
M=4
M=8
M=16

Fig. 2. Relationship betweenγ andz

andγ = |A|2/N is the signal-to-noise ratio. It can be noticed
that the matrixH in (24) is a special kind of Hankel matrix
which is also circulant [9]. The inverse of such a circulant
matrix, of orderM , is given as

H−1 =
1

ζ









a+M − 2 −1 · · · −1

−1 a+M − 2 · · · −1

...
...

. . .
...

−1 −1 · · · a+M − 2









,

(26)
whereζ = a2 +(M −2)a− (M −1). Thus the matrixZ from
(20) is given as

Z = 1MH−1 =
a− 1

a2 + (M − 2)a− (M − 1)
1M (27)

We can now utilize only one of the element fromZ given by

z =
γ2 + 2Mγ +M2

M3 + 2M2γ +M2 + 2Mγ2 + 2Mγ − γ2
(28)

To make this approach practical, we replace the expectations
in (20) with the corresponding block averages to compute the
SNR estimate. We may solve forγ to get an estimate as

γ̂ =
1

2Mz − z − 1

[
M −Mz −Mz2

+
√

( −M4z2 +M3z2 +M3z + 2M2z2 − 2M2z)
]

(29)

It can be seen from(28) that z has a solution atz = 1/3 for
M = 2. Thus this method is not applicable for a BFSK system.
From Figure 2, we can observe that in the higher SNR regime,
the EDS approach will suffer badly and will not give accurate
estimates because all curves become steeper as the SNR rises
for anyM 6= 2. But it will be shown in the next section, that
the EDS approach shows best performance for larger data set
and in low SNR region over the MLE algorithms discussed
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Fig. 3. Effect on increasing M on NMSE for k=100

in the previous section, because there are no approximation
errors in this approach.

IV. SIMULATION RESULTS

In this section, we compare the normalized mean squared
error (normalized with respect to the square of the true value
of the average SNR) of the estimators using simulations for
different values ofM and for different packet lengths averaged
over 10,000 trials. Figure3 shows the NMSE vs. true SNR for
the PDA estimator, with 100 pilot symbols in the packet for
increasing values ofM . We observe that the estimates become
more and more accurate as we have more and more branches
with noise only. Thus increasingM indirectly increases the
number of samples, which gives lower NMSE. Although not
shown in the figures, this behavior is found in all techniques
discussed in Section III.

In Figure 4, the packet is assumed to comprise 100 pilot
symbols and 900 data symbols. The NDA andJoint cases
perform similarly because most of the packet is data and
the NMSE is high in the low SNR region. This can be
attributed to the approximation errors in the low SNR regime.
The EDS method outperforms the ML estimation with a
considerable margin for low values of SNR because there
are no approximation errors in the EDS scheme. However,
it shows bad behavior at high SNR due to the steepness of
curves from Figure 2. To do a fair comparison, we assume
that both the pilot and the data symbols are available to the
NDA and EDS approaches for the estimation. For high SNR,
the Joint estimation scheme works the best as expected. The
crossing of the curves suggests that an adaptive mode of SNR
estimation can also be derived consisting of estimation from
the pilot only (PDA) or EDS during the low SNR while using
the entire data packet for estimating high SNR values. In that
case, the overall NMSE will remain minimum over a wide
range of SNR values.

Figure 5 treats the short packet scenario, with 8 pilot
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symbols and 28 data symbols. The EDS approach does not
perform well because of the limitations of the availabilityof
data (the approximation error of the ensemble averages with
time averages for small data set is large). Thus for a short
length packet and with the availability of pilot, theJoint data
estimation performs best. If the pilot is not available, then the
NDA MLE also gives better performance.

V. CONCLUSION

We have derived the MLE and statistical based estimators
for SNR for a non-coherent MFSK receiver assuming different
degrees of data knowledge in a packet. It is thus concluded
that different scenarios lead to different results based onpacket
length, availability of pilot sequence, and the region of SNR
considered (low/high).

APPENDIX

For simplicity, lets discuss the case whereM = 2. In that
case, the summation term (denoted byB) is given by

B =

k∑

i=1

∑2
m=1 I1

(
2
√
xm,i|A|
N

)

∑2
m=1 I0

(
2
√
xm,i|A|
N

)
√
xm,i

=

k∑

i=1

I1

(
2
√
x1,i|A|
N

)√
x1,i + I1

(
2
√
x2,i|A|
N

)√
x2,i

I0

(
2
√
x1,i|A|
N

)

+ I0

(
2
√
x2,i|A|
N

)

(30)

Since 2|A|
N

is constant throughout, thus denoting it asψ and
separating terms in the above equation,B can be written as

k∑

i=1






√
x1,i

I0(ψ
√
x1,i)

I1(ψ
√
x1,i)

+
I0(ψ

√
x2,i)

I1(ψ
√
x1,i)

+

√
x2,i

I0(ψ
√
x1,i)

I1(ψ
√
x2,i)

+
I0(ψ

√
x2,i)

I1(ψ
√
x2,i)






Using the approximationI0(x)
I1(x) ≈ 1, one term in each de-

nominator is always 1. For the other term, it can be observed
that at high argument values, the modified Bessel function
approaches a very high value. Thus if

√
x1,i >

√
x2,i, then

In(
√
x1,i) >> In(

√
x2,i), wheren is the order of modified

Bessel function, which implies that
I0(

√
x2,i)

I1(
√
x1,i)

≈ 0. Thus
the denominator of first term approaches a 1, while the
same phenomenon is reversed for the other term where the
denominator approaches extremely large value. Thus overall
we are left with the maximum term, i.e.

√
x1,i. ThusB can

be approximated for anyM as

B ≈
k∑

i=1

max
m=1,...,M

√
xm,i (31)
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