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Abstract—Estimation of the signal-to-noise ratio (SNR) is techniques for SNR estimation in AWGN for M-PSK signals.
considered for a non-coherent M-ARY frequency shift keying Many approaches also include the channel effects such as
(NC-MFSK) receiver. It has been assumed that the transmittd  tinath fading and address the issues of SNR estimation
§ymbols undergo a.slow flat fading channel where a blqgk of dat for fading channels for BPSK, e.g. in [3,4]. In [5], the autho
is corrupted by an independent constant fade and additive wite g ' €.9. e ' .

Gaussian noise. Two approaches for SNR estimation are repd ~ have estimated the average SNR for non-coherent binary FSK
in this paper: an approximate maximum likelihood approach and (NCBFSK) receiver, assuming fast fading channel and unit
another using the data statistics, both for data aided and ne- poise power spectral density. However, in implementations
data aided systems. It has been shown that for a particular SR ise pnower must also be estimated. In this paper, we derive
region of interest and dependmg upon the avallablllty of plot two tvoes of estimators of SNR. a sub-optimal/a ' roximate
symbols, a particular approach is suitable for SNR estimatn. maxir)rlﬁjm likelihood estimator (l\,/ILE) and pan estirl‘?1pator that
. INTRODUCTION uses block statistics, such that neither of them assumerany p
knowledge of the noise power. We estimate SNR not only for
BFsK as in [5] but for any value of M in an M-FSK receiver.
We provide ML versions of partially data-aided (PDA), non-
data aided (NDA), and joint PDA-NDA estimators for the
8NR. The PDA approach uses only the training sequence
?ﬂr estimation while the NDA approach does blind estimation

range of |t§ Source, and_therefore,_m_a preferred Iocat_non using the entire sequence. The joint PDA-NDA uses all the
participate in a cooperative transmission [1]. Furthemnafr . . . . o
information, operating blindly on the non-training parttbg

the radios are energy constrained, e.qg. if they are in a senso . . . . . .
network, constant ge)r/welo e modula?ions ar}I/d non-coherée uence. The estimators derived in this paper are signiifca
f P different and lead to dramatically different results frohhose

demodulation may be desired to reduce circuit consumpti%} fast fading channels, which are addressed in [7]

of energy. Therefore, in this paper, we consider the esiimat . .
9y n TIS Paper, w ! The rest of the paper is organized as follows. In the next

of SNR in an FSK non-coherent demodulator, over block " . . :
C section, we describe the system model and the notations used
deterministic channels. . -
: : o . . for the NC-MFSK case. Section Il treats the derivations of
In many wireless indoor applications and fixed wireles ) . .
the SNR estimators, including three sub-cases for MLE and
networks, the channel frequency response does not change

rapidly. Thus a block of data undergoes a constant non-randg >~ the estimator using data statistics. In Section IV, Wle w
{scuss the simulation results for various estimators aeda

fade. Estimation of SNR in such a case is of prime intere L imator performance in terms of mean-sauared error. The
for various receiver functions. Assumption of a slow fadin : P ! . qu '
Japer then concludes in Section V.

channel can be converted to a fast fading channel by assu
sufficient channel interleaving or by frequency hoppingt Bu
these techniques may not be suitable for some applications,
e.g. wireless sensor networks, where the sensor nodesdshoulConsider a slow (block) fading communication system
be as simple as possible; devising such algorithms in themmaploying M-ARY FSK modulation, where a block of data
applications tends to increase the transmitter complekitys with £ symbols undergoes a constant non-random fade and
a practical way of estimating SNR in slow fading environnsenthe number of symbols in the constellation/is = 2", for a

Estimates of signal-to-noise ratio (SNR) are used in ma
wireless receiver functions, including signal detectipawer
control algorithms and turbo decoding etc. The motivation f
the study reported here is that SNR estimation is a way fi
a receiver to determine if it is near the edge of the decodi

Il. SYSTEM MODEL

is desirable. positive integem. The received symbols are given as
Several authors have attacked the problem of estimating
SNR for binary phase shift keying (BPSK) and frequency Vi = Asi +n;, (1)

shift keying (FSK). For example, [2] compares a variety 0\}cvherez' is the time indexA is the complex signal amplitude
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Gaussian distribution with a variance &%/2 per real dimen-
sion. Each ofv;, s;, andn; are vectors with a dimension of
M x 1, and fors; = [0, ...,0,1,0,...,0]7, where 1 is in the
m;th position(1 < m; < M), wherem; indicates the symbol
transmitted at time, and the other positions have a zero. Fc
the sake of simplicity, we assume that the average symt
energy is unity so that the expected energy ofitthereceived
symbol is given asA|%. Thus the signal-to-noise ratio is given
by~ = %. Our interest is to find the estimate of the averac
SNR using the observed data, after the square law, given

| 1(x)/ | 0(><)

X; = [(|V1|2)T (|vk|2)T " For the estimation schemes
considered, we assume that that theregpéot symbols and

[ data symbols so that the total packet lengthkis- g + 1.
Throughout the paper, we assume perfect timing recovery s : : : : :

the receiver. 0 5 10 15 20 25 30
X (dB)

Ill. ESTIMATION TECHNIQUES
Fig. 1. Behavior of the ratios of Modified Bessel functions

As mentioned previously, we will derive the ML estimators

for three cases, namely PDA, NDA and joint PDA-NDA. o ) o
The log-likelihood for they received symbols is given as

A. Data-Aided Estimation 2 7| A
| o A, (% A, N) = — gM In(N +Zln( ( VL '))
Without the loss of generality, the pilot symbols are each
setto[l 0 .. 0]".The received symbols from/ branches
are denoted as,, ;, where first indexm denotes the branch - le i+ glAP? + Z me .
index wherem = 1,2, ..., M and second index is the time m=2 i1
index such that = 1,2,...,g. Thus the received symbol on (7)
the first branch is given as To find the MLE of the SNR}y, we use the property that
the ML estimate of the ratio of two parametefgl|¢ and N
o1 = A+ il @ parametefsif

here), is the ratio of the individual ML estimates of the two
rp@rameters [6]. Taking the derlvatlve @f) with respect to4
and using the relationg-1,,(z) = I,11(z), 24 =1, & =

0, and 244~ = A* [8], we get

whereA andn are as defined in the previous section. Since t
noise is complex Gaussian, thus the resulting PDE;gfwill
be non-central chi square distribution, where the non aﬁtytr

arameter\ is given as 2\/_11 ilA
P g M, (GAN)  gA* Zq: I ( ) A* T ®
A= (R{AD> + (3 {4})* = |4~ ®3) 0A = (2«/lev,1lz4l) N|A|

Rt {A} andS {A} denote the real and imaginary parts of thén exact solution to the above equation is difficult to find
complex signal amplitudel, respectively. Thus, the PDF ofpecause of the non-linearity of modified Bessel function.
x1,; Is given as However, we observe that for high values of the argument, the
) n o /=14 ratio of first order modified Bessel function to the zero order
Py (1) = — exp (_x + 14 )Io ( V7| |) ., (4) modified Bessel function, i. eI— is approximately equal to
' N N N 1. This phenomenon can be Sden in Figure 1. Thus using this

wherel,(.) is the modified Bessel function of zero order ﬁrs?pprommatmn the estimate ofl| is given as

kind. The PDF for each of the rest of the branches= 1

2,..., M, is exponential and is given as Al = ;ZVCCM' ©)
=1

(Tm) = —Z,lf
e (T ex
Py s P

Thus the joint PDF of the received symbols is given as

(_x_m)’ m=2,..,M. (5) Differentiating(7) with respect toN and using similar ap-
proximations, the estimate df is given as

k

- [lez g|A|2+Zmez. (10)

m=2 i=1

1 r1+|AP T (2\/—|AI)
Pxi(X) N P ( N mZ:Q N )" N Using (9) and (10), we can find the estimate of SNR for the
(6) data-aided case.



B. Non-Data Aided Estimation log-likelihood function from the joint PDF is given as

_ T_he PDF of the received symbol, given 1 at the nth posﬂm&njomt — _EMInN —ln M+ Zln (Io ( VT, |))
Is given as pt N
k M
1 2./Tn| Al 2/ Tmil Al k| A|2
pxi(x|5n=1)=NMfo< N +.Z In ZIO N -5
i=g+1 m=1
1 9 M 1 g M g Mk
exp | — % Tn + A" + 1275 Tm| |- - leyﬂrzzxmyﬂrz Z Tmi | -
m=Lmzn i=1 m=2 i=1 m=1i=g+1
(11) (17)

Assuming equal prior probabilities of transmitted symbtise Using similar approximations as in the previous section and

unconditional joint PDF of the received symbols for M-FSKaking partial derivatives with respect tband N and setting
is given as them equal to zero result in the estimates of signal and noise
powers as

k

N 1|
) w2 Al =+ ;\/ﬁ+ >, max T, (18)

. =1,
i=g+1

1 1 [ & )
Px, (X) =N P | Ty Z Ty, + | A
m=1

3 (2

For k received symbols, the log-likelihood function is given
as D. EDS Approach

Mk In order to get an estimate of SNR using the statistics of
Ag, (X A, N) = — kM In(N) — % (Z mei T k|A|2> the received data, we define &i x M matrix Z, given as

. A 1 M g M k .
m=1 i=1 m=1i=g+1

R Z=E{n} B} (BE{xt) ™, (20)
k M 92 T 1|A| T
—kIn(M)+> In | Y I <7VN> . where E{xn} = [E{z1} E{x2} --- E{zm}]". As-
i=1 m=1 suming equally likely probable transmitted symbols, the en
(13) semble average of the received data is given as
The partial derivative with respect td is given as E{zn,} = % [|A|2 + MN] , m=1.,M (21)
. (X) KA i Mo (2”};@"‘”) A* B ThusE {X,,} E {x,»}" is given as
0A N oHEeM L (LN'A') N|A| B} B}’ = o5 AP+ MN] 1, (22)

. . . - (14). wherel,, is anM x M matrix of all ones. The autocorrelation
Using some approximations of the modified Bessel functions_ . ; . o .
. ) o matrix of the received data, given b¥ {x,,x%,}, contains

(see Appendix), the estimate pd| is given as

E {22} on the main diagonal given as

1
. 1 2 _ 4 2 2 _
M (23)
while the rest of all elements will b&E {z,,})°, where
The noise power estimate is given in a similar manner as g {z,,} is given by(21). Thus we can write

N = m lz me,i — k|A|2 . (16) [|A|2 +MN}2 1 a --- 1
m=1i=1 E {XmX£} = T . . . (24)
C. Joint Estimation Using Pilot and Data Symbols 1 1 a
Considerg pilot symbols and data symbols, so that the M

total packet is of lengthk = ¢ + . Assuming independent
received symbols, the joint PDF is the product of PDlég/
resulting from the pilot and data symbols. So we (&g for . E{x},} Y 72 +4y+2M (25)
i=1,2,..,gand(12) fori =g +1,...,9 + 1 = k. Thus the E{zn,}? v2 + M2+ 2M~

here the element is given as




SNR (dB)

Fig. 2. Relationship between and z

NMSE

SNR (dB)

Fig. 3. Effect on increasing M on NMSE for k=100

and~y = |A|?/N is the signal-to-noise ratio. It can be noticedn the previous section, because there are no approximation
that the matrixH in (24) is a special kind of Hankel matrix errors in this approach.
which is also circulant [9]. The inverse of such a circulant

matrix, of orderM, is given as

a+M -2 -1 -1
. 1 -1 a+ M —2 -1
H == ,
¢ s T
-1 -1 a+M -2

(26)
where¢ = a? + (M —2)a— (M —1). Thus the matrixX from
(20) is given as

a—1
a?+ (M —-2)a— (M —-1)
We can now utilize only one of the element frafngiven by
L 2 4 2M~ + M?
M3+ 2M%y + M2 4 2M~2 + 2My — 2

Z=1yH ' = 1n (27)

(28)

To make this approach practical, we replace the expect;aticgn
in (20) with the corresponding block averages to compute t

SNR estimate. We may solve farto get an estimate as
1
oMz —z—1

+ V(= M2 + M32% + M2 4+ 2M22% — 2M22)}
(29)

q = (M — Mz— M2*

It can be seen fronf28) that z has a solution at = 1/3 for

IV. SIMULATION RESULTS

In this section, we compare the normalized mean squared
error (normalized with respect to the square of the trueevalu
of the average SNR) of the estimators using simulations for
different values of\/ and for different packet lengths averaged
over 10,000 trials. Figurg shows the NMSE vs. true SNR for
the PDA estimator, with 100 pilot symbols in the packet for
increasing values af/. We observe that the estimates become
more and more accurate as we have more and more branches
with noise only. Thus increasing/ indirectly increases the
number of samples, which gives lower NMSE. Although not
shown in the figures, this behavior is found in all techniques
discussed in Section lIl.

In Figure 4, the packet is assumed to comprise 100 pilot
symbols and 900 data symbols. The NDA aduint cases
perform similarly because most of the packet is data and
e NMSE is high in the low SNR region. This can be
tributed to the approximation errors in the low SNR regime
e EDS method outperforms the ML estimation with a
considerable margin for low values of SNR because there
are no approximation errors in the EDS scheme. However,
it shows bad behavior at high SNR due to the steepness of
curves from Figure 2. To do a fair comparison, we assume
that both the pilot and the data symbols are available to the
NDA and EDS approaches for the estimation. For high SNR,
the Joint estimation scheme works the best as expected. The

M = 2. Thus this method is not applicable for a BFSK systenerossing of the curves suggests that an adaptive mode of SNR
From Figure 2, we can observe that in the higher SNR reginestimation can also be derived consisting of estimatiomfro
the EDS approach will suffer badly and will not give accuratthe pilot only (PDA) or EDS during the low SNR while using
estimates because all curves become steeper as the SNR tiseentire data packet for estimating high SNR values. Ih tha
for any M # 2. But it will be shown in the next section, thatcase, the overall NMSE will remain minimum over a wide
the EDS approach shows best performance for larger datarsetge of SNR values.

and in low SNR region over the MLE algorithms discussed Figure 5 treats the short packet scenario, with 8 pilot



N APPENDIX

10 T
Ehh ~ v —PDA For simplicity, lets discuss the case whéve = 2. In that
R - ° o NDA case, the summation term (denoted Byis given by
\ Joint
0| \ — * —EDS || 2 2 il A
W Ny E LED D (7\/11\[“)
Vg - 2 B :Z 2 | (/ElA VZm,i
AN % i=1 D=1 1o (T)
% -1 Viﬁ ' E 2y /| A 2 A
=5 Vg / k I (MTTH) VT + 1 (%II) VT2
“ RETEPEE440 So e tetba: = N PNl
‘ﬁ(\k 7(/ - B =1 IO ( ]1\/11 _) + IO ( ]2\/11
I ; ] (30)
\{?\:‘( : v
Sk Since 24 is constant throughout, thus denoting it @asand
. separating terms in the above equatidhcan be written as
10 0 5 10 15 20 25 30
SNR (dB) k

Z VL1,i i VT2i
. . o _ | Io(vyars) | lo(vymmi)  lo(vy@ia) | lo(vyFaa)
Fig. 4. NMSE for different schemes with M=8, k=1000, (g=100) i=1 T (1/1 zl,i) T (1/1 zl,i) T (1/1 Zz)i) T (w Zz)i)
Using the approximationﬁ’g—fc) ~ 1, one term in each de-
. ——on nominator is always 1. For t?]e other term, it can be observed
il ? ~ % “noal] that at high argument values, the modified Bessel function
Q i . 7%‘32‘ approaches a very high value. Thus fit;; > /T2, then

Tow s ¥ L,(y/Z1:) >> L.(\/72.), Wheren is th(e or?er of modified
i ich impli o(VT2i)
Bessel function, which implies tha§W ~ 0. Thus

v, ; : the denominator of first term approacﬁé)s a 1, while the
N, same phenomenon is reversed for the other term where the
TR A £ R denominator approaches extremely large value. Thus dveral
L we are left with the maximum term, i.g/z1;. Thus B can

10 g S S TRPUND O | be approximated for any/ as

NMSE

k

B = max Tomi (31)
m=1,... M

10" i i i i
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