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1 Scaling the reduced model
We write the variables in their scaled forms

h = [h]h∗ (1)

t = [t]t∗ (2)

τd = [τd]τ
∗
d (3)

τb = [τb]τ
∗
b (4)

ub = [ub]u
∗
b , (5)

where dimensional scales are bracketed and dimensionless variables are starred.
The first choice of scales is

[τd] =
ρig[h]2

L
, (6)

such that
τ∗d = (h∗)

2
. (7)

The form of (equation for sliding velocity) indicates that τd and τb will have the same scale.
Thus, we set [τb] = [τd]

τ∗b = ν exp(−c(e− ec)), (8)

With ν = a′

[τd]
. Leading to an expression for [ub]

[ub] =
AgW

n+1

4n(n+ 1)

(
[τd]

[h]

)n
, (9)
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and the dimensionless velocity is

u∗ = max

[(
h∗ − τ∗b

h∗

)
, 0

]n
. (10)

We can also go about setting the ice thickness scale using the steady state of the ice thickness
equation, which gives

acL = [h][ub], (11)

and then solving for [h]

[h] = L

[
AgW

n+1 (ρig)
n

4n(n+ 1)ac

]− 1
n+1

. (12)

A timescale can also be chosen by balancing accumulation with ice thickness change

[t] =
[h]

ac
. (13)

These non-dimensionalizations give rise to the scaled form of the undrained system

dh∗

dt∗
= 1− h∗u∗b (14)

m =

{
τ∗b u
∗
b + β − γ

h∗ if w∗ > 0
β − γ

h∗ if w∗ = 0
, (15)

α
dw∗

dt∗
=

{
m if w∗ > 0 or m > 0
0 otherwise , (16)

τ∗b =

{
ν exp(−c(e∗ − e∗c)) if w∗ > 0
∞ otherwise , (17)

u∗ = max

[(
h∗ − τ∗b

h∗

)
, 0

]n
, (18)

e∗ = max [e∗c , w
∗] , (19)

with the dimensionless parameters

α =
ρiLf

[t][τd][ub]
=

Lf
g[h]2

=
Lf
L2g

[
AgW

n+1 (ρig)
n

4n(n+ 1)ac

] 2
n+1

(20)

β =
G

[τd][ub]
=

G

acρig[h]
=

G

acρigL

[
AgW

n+1 (ρig)
n

4n(n+ 1)ac

] 1
n+1

(21)

γ =
ki∆T

[h][τd][ub]
=

ki∆T

acρig[h]2
=

ki∆T

acρigL2

[
AgW

n+1 (ρig)
n

4n(n+ 1)ac

] 2
n+1

. (22)

(The common bracketed term on the right-hand side above represents the inverse of the frictional
heating scale.)

α is the ratio of bed relaxation rate to frictional heating rate. β is the ratio of geothermal heating
to frictional heating. γ is the ratio of vertical heat conduction to frictional heating. Hereafter
asterisks are dropped in subsequent calculations with the non-dimensional system.
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2 Location of Hopf bifurcation (stability boundary)
The transition in between the two modes highlighted in the text is a Hopf bifurcation. Assuming
that the system is not degenerate (which numerical simulations indicate is not the case), then we
can determine the stability from the trace of the jacobian (which is also proportional to the real
parts of the eigenvalues)

St ≡ Tr(Jac) =
dF1

dh

∣∣∣∣
h0,w0

+
dF2

dw

∣∣∣∣
h0,w0

(23)

where F1 = dh
dt , F2 = dw

dt and h0 and w0 are fixed points. When St = 0 the system undergoes a Hopf
bifurcation from a stable fixed point (St < 0) to a stable limit cycle (St > 0). We can find where
this transition occurs by solving for St = 0.

We start by solving for the fixed points. This is simply done by combining equations (68) and
(69), resulting in

(h0)
2

+ βh0 − (h0)
n−1
n − γ = 0 (24)

This is not trivially solved for h0 (though it is nearly quadratic). We will return to this later on in
this section.

Next we turn to the stability parameter itself

St =
d

dh
(1− hu) +

d

dw

(
τbub + β − γ

h

α

)
(25)

Before proceeding with calculation of the stability parameter, we will find the scale of each term
to determine if one can be dropped. Having scaled the variables, we can easily see that

d

dh
(1− hu) ∼ O(1) (26)

The second term is different:
d

dw

(
τbub + β − γ

h

α

)
∼ O(α−1) (27)

for typical parameter values (as in Table 1), α ∼ O(10−1). So, we see that this second term dominates
the first term, which can be dropped from the stability calculation.

Utilizing equations (17) and (19), we can proceed with the calculation of the stability parameter

St =
d

dw

(
τbub + β − γ

h

α

)
(28)

=
1

α

[
−cτbub +

nc (τb)
2

h

(
h− τb

h

)n−1]
(29)

=
cτbub
α

[
nτb

(h)
2 − τb

− 1

]
(30)

To find the stability boundary, we set this to zero and rearrange

0 =
cτbub
α

[
nτb

(h)
2 − τb

− 1

]
(31)
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(h)
2 − (n+ 1)τb = 0 (32)

Substituting in equation (69)
(h)

2 − (n+ 1)(γ − βh) = 0 (33)

(h)
2 − γ(n+ 1) + β(n+ 1)h = 0 (34)

β =
γ

h
− h

n+ 1
. (35)

Returning now to equation (24), we can substitute in the above expression for β and solve for h

(h0)
2

+

(
γ

h0
− h0
n+ 1

)
h0 − (h0)

n−1
n − γ = 0 (36)

(h0)
2 − (h0)

2

n+ 1
− (h0)

n−1
n = 0 (37)

h =

(
n+ 1

n

) n
n+1

. (38)

On the parameter plane, the stability boundary is thus found at

β =

(
n+ 1

n

)− n
n+1

γ −
(
n+1
n

) n
n+1

n+ 1
. (39)

3 The form of the Hopf bifurcation
When (h,w) are near (h0, w0), the dynamics are (generically) governed by the linearization of equa-
tions (15) and (16) about these points. Thus we let h = h0 + h′ and w = w0 + w′ and consider the
linear system

d

dt

(
h′

w′

)
=

(
M11 M12

M21 M22

)(
h′

w′

)
, (40)

where the matrix M depends on α, β, and γ. Explicitly,

M =

 −
(
nh

1/n
0 (1 + τ0/h

2
0) + 1/h0

)
nh
−1+1/n
0

− cw0τ0
αh2

0

(
γ + nτ0h

1+1/n
0 (1 + τ0/h

2
0)
)
− cw0τ0

αh0
(1− nτ0h−1+1/n

0 )

 , (41)

where τ0 = ae−be0 and τ ′ = ae−be
′
.

The next step is to make a linear transformation(
x
y

)
=

(
a b
c d

)(
h′

τ ′

)
(42)

such that, along the stability boundary, the system of equations (15) and (16) takes the form

d

dt

(
x
y

)
=

(
0 −ω
ω 0

)(
x
y

)
+

(
f(x, y)
g(x, y)

)
, (43)
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with f and g strictly nonlinear functions of x and y. Straightforward computations lead to the
simple choice (

ab
cd

)
=

(
M21 −M11

−M11 −M12

)
(44)

ω = detM (45)

The coefficient which indicates whether the transition is supercritical or subcritical is (?)

a = ∂3xf + ∂x∂
2
yf + ∂2x∂yg + ∂3yg +

1

ω

[
(∂x∂yf)∆f − (∂x∂yg)∆g − (∂2xf)(∂2xg) + (∂2yf)(∂2yg)

]
, (46)

where everything is evaluated at h′ = w′ = 0. If a > 0 (a < 0), then the transition is subcritical
(supercritical). Here we compute a to leading order in α.

The basic observation is that along Tr(M) = 0 we have(
M11 M12

M21 M22

)
=

(
O(1) O(1)
O(α−1) O(1)

)
(47)

(
ab
cd

)
=

(
O(α−1)O(1)
O(1)O(1)

)
(48)

This implies
dx

dt
= O(α−1) (49)

dy

dt
= O(α−1) (50)

∂

∂x
= O(α) (51)

∂

∂y
= O(1) (52)

Noting that ω = O(α−1), we count powers of α and see that only ∂3yg and (∂2yf)(∂2yg) can contribute
to a. To leading order,

a = ∂3yg +
1

ω
(∂2yf)(∂2yg). (53)

To leading order, ∂/∂y = (M21/ω) (∂/∂τ ′), f = M21 (dh′/dt)−M11 (dτ ′/dt), and g = −M12 (dτ ′/dt),
where we ignore linear terms in f and g which will vanish after differentiation in a. Hence we need
to compute

a = −
(
M21

ω

)3

M12
∂3φ

∂(τ ′)3
+

(
M21

ω

)4
M2

12

ω

[
∂2φ

∂(τ ′)2

] [
M21

∂2ψ

∂(τ ′)2
−M11

∂2φ

∂(τ ′)2

]
(54)

where ψ = dh′/dt and φ = dτ ′/dt. Because we take two derivatives of τ ′, not all terms in ψ and φ
are needed. It is sufficient to take

ψ(h′, τ ′) = −h0u′(h′, τ ′) (55)

φ(h′, τ ′) = −cw0

α
(τ0 + τ ′)2(u0 + u′(h′, τ ′)), (56)
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with
u0 + u′(h′, τ ′) =

1

hn0
(h20 − τ0 − τ ′)n (57)

u0 + u′(h′, τ ′) =
1

hn0
(h

(n−1)/n
0 − τ ′)n (58)

u0 + u′(h′, τ ′) =
1

h0

(
1− τ ′

h
1−1/n
0

)n
. (59)

Note that
∂2φ

∂(τ ′)2
= −cw0

α

[
2h−10 + 4τ0

∂u′

∂τ ′
+ τ20

∂2u′

∂(τ ′)2

]
(60)

∂3φ

∂(τ ′)3
= −cw0

α

[
6
∂u′

∂τ ′
+ 6τ20

∂2u′

∂(τ ′)2
+ 3τ30

∂3u′

∂(τ ′)3

]
(61)

∂2ψ

∂(τ ′)2
= −h0

∂2u′

∂(τ ′)2
, (62)

up to terms which vanish at h′ = τ ′ = 0.
We notice that the Newtonian case (n = 1) is singular. Indeed, in this case

a(n = 1) = −cw0

α

(
M21

ω

)3

M12h
−1
0 −

c2w2
0

α2

(
M21

ω

)4
M11M

2
12

ω

[
2h−10 − 4τ0h

−1
0

]2
(63)

Since M11 < 0,M21 < 0, and M12 > 0, both terms are positive. Hence a(n = 1) > 0 and the
transition is always subcritical.

In the limit n → ∞ (implicitly we are assuming n < 1/α), we can count powers of n to see the
dominant terms. With respect to n, h0 = O(1), τ0 = O(1), and all elements of M are O(n). Each
derivative of u′ brings down a power of n, hence we see that both terms in a are O(n). We find

a(n→∞) = −cw0

α

(
M21

ω

)3

M12
3τ30n

3

h
4−3/n
0

+
c2w2

0

α2

(
M21

ω

)4
M2

12

ω

(
τ20n

2

h
3−2/n
0

)2

×
[
−h0M21 +M11

cw0

α
τ20

]
+O(1).

(64)
One can compute that −h0M21 +M11

cw0

α τ20 = O(1), rather than O(n) as expected, and hence only
the first term in a contributes as n→∞. This is positive, hence the transition is again subcritical.

Calculation of this parameter for n = 3 is non-trivial and likely does not have an analytic form.
Numerical experiments appear to indicate that for all n > 1 there is a subcritical Hopf bifurcation.

4 Boundary between steady-streaming with and without drainage
To find the condition dividing the steady-streaming with drainage from steady-streaming without
drainage regimes, we start by looking for fixed points in the undrained limiting case which satisfy

0 = 1− hu (65)

0 = τbub + β − γ

h
(66)
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u =
(
h− τb

h

)n
. (67)

We combine equations (65) and (67) to

τb = (h)
2 − (h)

n−1
n (68)

and combine equations (65) and (66) to

τb = γ − βh. (69)

We know that in the steady-streaming regime without drainage, τb > 0. From equations 68 and
69 we can say

h > 1 (70)

h <
γ

β
. (71)

Ultimately, we find a condition for the steady-streaming regime without drainage

γ > β. (72)

When this condition is violated, we are in the steady-streaming with drainage regime that results
in τb → 0, a zero-strength bed.

5 Approximating steady-streaming velocity without drainage
We need to solve for the fixed point of u in the case that τb > 0 in order to determine the steady
streaming velocity in the case without drainage. We start by combining equations 68 and 69 to get

h2 + βh− γ − h1− 1
n = 0. (73)

This is a quadratic equation in h with an extra term. Equation (65) gives us u = h−1, so all we
need in order to solve for u is an expression for h.

Our approach here is to solve equation (73) using a perturbation method. (For an overview of
this approach see ?). This follows from the observation that if we replace the last term in equation
(73) with h1+ε where ε = − 1

n , then we can find an exact solution in the limit that ε → 0. That is,
the solution of

h2 + βh− γ − h = 0, (74)

is
h0 =

1

2
(1− β) +

1

2

√
(β − 1)

2
+ 4γ. (75)

We can now find corrections to this zero-order approximation by assuming that equation (73)
has the following solution

h(ε) = h0 + a1ε+ a2ε
2 + . . . (76)

Retaining just the O(ε2) terms

h(ε) ≈ h0 + a1ε+ a2ε
2, (77)
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we insert this expression into equation (73), collecting terms in orders of ε

h20 + βh0 − γ + (2h0a1 + βa1) ε+
(
2h0a2 + a21 + βa2

)
ε2 −

(
h0 + a1ε+ a2ε

2
)1+ε

= 0. (78)

The last term on the LHS of this equation requires more care in expansion. We first expand the
generic expression h1+ε with a Taylor series retaining only O(ε2) terms

h1+ε ≈ h+ εhlnh+
1

2
ε2hln2h. (79)

Inserting equation (77) above, collecting terms in ε and neglecting higher order terms, we have

h1+ε ≈ h0 + (a1 + h0lnh0) ε+

(
a2 + a1lnh0 + a1 +

1

2
h0ln

2h0

)
ε2. (80)

Combining this back with equation (78)[
h20 + (β − 1)h0 − γ

]
+ (2h0a1 + βa1 − a1 − h0lnh0) ε

+
(
2h0a2 + a21 + βa2

)
ε2 + h0 + (a1 + h0lnh0) ε+

(
a2 + a1lnh0 + a1 +

1

2
h0ln

2h0

)
ε2 = 0. (81)

The first bracketed term on the LHS here is exactly zero, from equation (74). Thus, we can now set
each of the ε coefficients to zero and solve for a1 and a2

a1 =
h0lnh0

2h0 + β − 1
(82)

a2 =
a1 (lnh0 + 1− a1) + 1

2h0ln
2h0

2h0 + β − 1
(83)

Together with equations (75) and (77), keeping in mind that ε = − 1
n and u = h−1 this gives

us zero, first and second order approximations on the non-dimensional equilibrium sliding velocity
for steady-streaming without drainage (accurate, respectively to 5%, 1% and 0.1% of numerically
determined values). The zero-order approximation is reproduced in the text.

6 Asymptotics of small α relaxation oscillations
Below, we sketch the leading order structure of the solution to our ice stream model in more detail for
the case of a rapidly-adjusting bed water content (small α). This allows us to show that oscillatory
solutions consists of two distinct phases, one in which the ice stream is stagnant and thickening,
and another in which the ice stream is active and thinning, with velocity computable simply as a
function of ice thickness on both. This is analogous to the glacier surge model proposed by ?. The
details of the relationship between basal shear stress and water content of the bed are then no longer
germane to the the structure of the ice thickness oscillation, except during brief transients when the
ice stream switches on or off. In fact, even our choice of a Coulomb friction law rather than a power
law to relate τb to velocity and bed water content is largely irrelevant. These simplifications also
allows us to derive some simplified formulas for oscillation period and amplitude in some parametric
limits.

We neglect drainage and basal cooling, treat the heat capacity of basal ice as negligible, take β,
γ, τ0 and c as O(1) constants, and treat α as small. The reduced model is then given by equations
(15)-(22).
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6.1 Stagnant and active branches
With α� 1, equation (16) will be reduced to its steady-state version except during brief transients.
There are two such steady states, corresponding to a stagnant and an active ice stream, respectively.
For a stagnant ice stream,

u = 0 (84a)

τb < h2 (84b)
h < γ/β (84c)

in which case equation (15) becomes
ḣ = 1 (84d)

so h increases linearly with time. We call this the zero-velocity or stagnant branch.
The other case is the active ice stream with u > 0 so h2 > τb > 0, In this case h2 − τb = hu1/n

so τb = h2 − hu1/n. Substituting for τb in equation (16) yields, at leading order in α

(h2 − hu1/n)u = γ/h− β, . (85)

Note that the friction law, equation (17), was not involved at all in this calculation, so the fact
that τb is independent of u (which is one of the defining characteristics of a Coulomb friction law)
is irrelevant to the behaviour of u for the active ice stream. In particular, equation (85) defines
u = U(h) implicitly as a function of h for some range of h. Note that τb = h2 − hu1/n ≥ 0 and so
we require h ≤ γ/β. We will show next that there is also a lower bound hc on h for a solution to
equation (85) to exist. This is the ice thickness attained at surge termination.

In equation (85), the left-hand side has a global maximum with respect to u at u = (n/(n+1))nhn,
where the left-hand side attains a value of (nn/(n+ 1)n+1)hn+2. In order for equation (85) to have
a solution, this must be greater than γ/h− β. In other words, we must have

nn

(n+ 1)n+1
hn+3 + βh ≥ γ, (86)

which defines the critical value hc by turning the weak inequality sign into an equality. There is a
single, non-zero solution uc = U(hc) = (n/(n+ 1))nhnc to equation (85) at h = hc.

The left-hand side of equation (85) is a concave function (with negative second derivative) for
u > 0, and is positive for 0 < u < hn, attaining 0 at the end points of that interval. Therefore, in
general, there will be either two values of u in (0, hn) that satisfy equation (85), or none at all. It is
straightforward to show that, in order to ensure stability on the fast α−1 time scale for changes in
w, we must choose the larger of the two solutions where solutions exist, and that this solution also
satisfies dU/dh > 0.

Note that from equation (17), we also require h2 − hu1/n = τb < τ0. It is therefore possible that
the non-zero steady state velocity U(h) will cease to exist at values h > hc, namely if τ0uc < γ/hc−β.
Physically, this would correspond to an inability to generate sufficient friction to keep dissipation
rates high enough to balance conductive heat loss. For simplicity, we ignore this possibility below,
assuming that τ0 is large enough for this possiblity not to become an issue.

Given u = U(h), h then evolves according to

ḣ = 1− hU(h) (87)
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on this solution branch, which we call the surge or active branch of the solution. Repeated oscillations
can only occur if this evolution equation does not have a stable steady-state solution. This requires
that we have hU(h) > 1 for all thicknesses that admit a non-zero velocity solution U(h). since U
increases with h, this is tantamount to hcU(hc) > 0.

The two evolution equations (84) and (87) combined with the requirement that h > hc on the
active branch and h < γ/β on the stagnant branch are sufficient to describe the overall dynamics
predicted in our model. We exploit this in the next section to show how in certain limits of β and
γ, we are able to give estimates of the oscillation amplitude and period, or able to predict that no
oscillations will occur. We then still need to show that rapid transitions can indeed occur between
the two branches as envisaged, which we defer to the end of our discussion as the relevant analysis
is a great deal more complicated than the material that follows immediately below.

Before we proceed, we note that the structure of the solution we are constructing is that of a
standard relaxation oscillation such as that produced by the van der Pol osillator (?). In both cases,
the solution remains on the nullcline for the rapidly evolving variable during most of the limit cycle
except for the rapid transition phases we are about to describe below. In the present case, this
rapidly evolving variable is w. The primary difference between our oscillator and the canonical van
der Pol oscillator is that our variable w satisfies an evolution equation that is non-smooth, as ẇ
changes discontinuously when w reaches zero from above (in which case τbu+ β − γ/h > 0).

6.2 The stagnant and active branches in parametric limits of β and γ

Next, we show that if β and γ are large or small (but not so much as to invalidate the asymp-
totic structure developed for small α above), we can draw several conclusions about the resulting
surge cycle (or indeed, whether surges occur at all) from the behaviour of the active and stagnant
branches in those parametric limits. We work through several of these limits in turn. For the case of
β, γ = O(1), no such results are possible analytically, as the active branch solution cannot be found
analytically.

Our arguments below are built around four observations. First, transitions from stagnant to
active occur at at h = γ/β. Second, the reverse transition occurs at some value h = hc at which
equation (86) holds with equality. Third, a solution to equation (85) that corresponds to τb > 0
must have h < γ/β. Hence solutions on the stagnant branch have h < γ/β, while solutions on the
active branch have hc < h < γ/β. Fourth, in order for oscillations to occur, we must also have
hU(h) > 1, or a stable steady state can form on the active branch.

6.2.1 γ ∼ β � 1

When γ ∼ β � 1, the transition from stagnant to active occurs at an O(1) value γ/β. However, the
active branch exists down to small values of h; from equation (86), we see that hc = O(γ1/(n+3)),
and correspondingly, uc = O(γn/(n+3)). But this implies that uchc = O(γ(n+1)/(n+3), and hence
uchc < 1. A stable solution therefore exists on the active branch, corresponding to steady ice stream
flow.

6.2.2 γ = O(1), β � 1

The stagnant to active transition now occurs at a large (O(β−1)) thickness γ/β, while from equation
(86) we estimate that hc = O(1), and correspondingly uc = O(1). In this parameter regime, it is
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therefore possible that uchc < 1 and that there is a stable on the active branch, but equally, there
may not be. In the latter case, there will be oscillations, and we can find leading order expressions
for their amplitude and period.

Both are dominated by the stagnant phase. First, the ampltidue of the oscillation is γ/β − hc ∼
γ/β(1 − O(β)) at leading order. Meanwhile equation (84) shows that, to build ice to a thickness
γ/β from an initial thickness hc = O(1) takes a length of time ∼ γ/β(1 + O(β)). By contrast, the
surge phase has a much shorter duration. Initially, thickness h in the surge phase is O(β−1), and
correspondingly u ∼ hn = O(β−n). The time scale for thinning early in the surge phase scales as
u−1 ∼ βn. Subsequently, near the transition from active to stagnant, we have u and h of O(1),
corresponding to an O(1) time scale. Both of these are much smaller than the length of time γ/β
required at leading order for the stagnant phase, which therefore gives the leading order estimate
for the period of oscillation as γ/β.

6.2.3 γ � 1, β = O(1)

Here, the transition from stagnant to fast occurs at a small thickness h = γ/β = O(γ), corresponding
to a small velocity u = (γn). The velocity after transition to the active branch is therefore too
small, and the ice stream will actually thicken rather than thin. This falls outside the remit of the
asymptotic model we have formulated above. To allow hu to increase beyond γ/β is possible if,
instead of insisting on equation (85) as the steady state version of equation (16), we allow w →∞.
In that case, τb ∼ 0 from equation (17) and at leading order u = hn from equation (19). A steady
state for h will then be attained when uh = hn+1 = 1, so h = 1„ with w going to infinity. Allowing
drainage in the model would potentially alleviate w growing without bound.

6.2.4 γ � 1, β = O(1)

The transition from stagnant to active occurs at a large h = γ/β = O(γ). From equation (86),
we have hc = O(γ1/(3+n) with uc = O(γn/(3+n). Hence hcuc is large and oscillations are bound to
occur. We can again find leading order expressions for amplitude and period, as we did for the case
γ = O(1), β � 1.

Specifically, the stagnant phase dominates again, h has to increase from hc = O(γ1/(n+3)) to
γ/β, which at leading order takes an amount of time γ/β(1 +O(γ−(n+2)/(n+3)), and the amplitude
of the oscillation is also γ/β − hc = γ/β(1 + O(γ−(n+2)/(n+3)). Velocities at the beginning of the
surge phase are of O(γn), so the time scale for initial thinning is O(γ−n). The transition from active
to stagnant occurs when u is reduced to O(γ1/(3+n)), with associated time scale O(γ−1/(n+3), which
is still much less than the error in the computation of the length of the stagnant phase above. The
entire cycle therefore takes length γ/β(1 +O(γ−(n+2)/(n+3)).

6.2.5 γ = O(1), β � 1

As in the case γ � 1, β = O(1), the transition from stagnant to active occurs at a small thickness
γ/β = O(β−1), and as in that previous case, we again expect a solution that settles into a steady
state h = 1 for h, with w diverging to infinity.
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6.2.6 γ ∼ β � 1

The transition from stagnant to active now happens at an O(1) value γ/β, corresponding to an O(1)
velocity. However, the range between hc and γ/β is now very narrow: from equation (86), we can
see that hc ∼ γ/β + β−1nn/(n + 1)n+1(γ/β)n+3. There are three possiblities: either hU(h) < 1 at
h = γ/β, and we have a situation analogous to the case γ = O(1), β � 1 above, with h settling
to a steady state at unity and w growing without bound. Alternatively, there could be an value
of h between hc and γ/β such that hU(h) = 1, with the ice stream settling into a steady state
there. However, given that hc is close to γ/β, this is an unlikely outcome. Lastly, it is possible
that hcU(hc) > 1 and the ice stream will undergo oscillations. This will have very small amplitude
γ/β − hc ∼ β−1, with a period that also scales as β−1.

6.3 Transitions between stagnant and active branches
Next, we look again at the case of oscillations, and complete the asymptotic analysis of limit cycle
solutions by describing the leading order structure of the transitions between stagnant and active
branches.

6.3.1 Transition from stagnant to active

At the time when h reaches γ/β, w will have attained 0 as β < γ/h during the stagnant phase and,
with u = 0, only the second case in equation (16) can be attained on setting the left-hand side to
zero.

Suppose for simplicity that τ0 > (γ/β)2. Physically, this means that the strength of the bed at
the critical void ratio ec is large enough to prevent sliding from recommencing at the critical thickness
h = γ/β at which melting begins. To reactivate sliding with h close to γ/β then requires a finite
(O(1)) amount of melt to be generated first, so that τb drops to the critical value (γ/β)2 at which
sliding recommences. Label the finite amount of melt required to attain τb = τ0 exp(−c(w − ec)) =
(γ/β)2 by ws = ec + c−1 log[(γ/β)2/τ0]. This finite amount of melt is generated by h rising slightly
above γ/β, reducing conductive loss sufficiently to allow melt to take place.

Let t = ts be the time at which h = γ/β is attained. Then define a fast time scale for this initial
melt process as T1 = α−1/2(t− ts), and let h = γ/β+α1/2h1.With these rescalings, at leading order

dh1
dT1

= 1,
dw

dT1
=
β2

γ
h1.

Clearly h1 and therefore w increase linearly with T1. Eventually ws is attained at a finite T1 = Ts =
γws/β

2.
Sliding recommences at T1 = Ts. There is an initial interval over which both frictional dissipation

and conductive heating play similar roles, as velocity starts from zero so there is at first no dissipation.
This is analogous to the corner layer of the van der Pol oscillator solution (?). In this initial
sliding stage, we can rescale as w = ws + α1/2nW2, T2 = α−1+(n−1)/2n(t − ts − α1/2Ts), h =
γ/β + α1/2Ts +O(α−1−(n−1)/2n). equation (16) becomes at leading order

dW2

dT2
=

(
γ

β

)n+1

cnWn
2 +

(
β2

γ

)
h1.
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This solution to this equation initially grows linearly due to the second (conductive heating) term
on the right hand side, but eventually the first (dissipation) term on the right-hand side becomes
dominant. With n > 1, this eventually leads to finite-time blow-up at some T2 = Tb, with W2

behaving as

W2 ∼
β(n+1)/(n−1)

γ(n+1)/(n−1)cn/(n−1)[(n− 1)(Tb − T2)]1/(n−1)
(88)

This blow-up of course in reality corresponds to the main transition from the zero-velocity branch
to the surge branch, during which w becomes much larger than ws.

To capture this requires a further rescaling to the fast time scale α. for which we put T3 =
α−1(t − ts − α1/2Ts − α−1+(n−1)/2nTb), W3 = w, U3 = u, h = γ/β + α1/2. With this rescaling, we
get at leading order that τb = h2 − hU1/n = (γ/β)2 − (γ/β)U1/n and β − γ/h = 0 so that equation
(16) becomes

dW3

dT
= [(γ/β)2 − (γ/β)U1/n]U, (89)

with W3 and U linked through equations (17) and (19) by U = (γ/β)[1 − exp(c(ws −W ))]n. U is
therefore an increasing function of W , and the fixed point U = 0, W = ws is unstable. Matching
with the corner layer solution through equation (88) leads to an initial condition

W3 ∼
β(n+1)/(n−1)

γ(n+1)/(n−1)cn/(n−1)[−(n− 1)T3]1/(n−1)
(90)

as T3 → −∞ that describes the initial evolution away from the fixed point. The large T3 solution is
given by U = (γ/β)n; this is the solution obtained from equation (19) by setting τb = 0, and actually
corresponds to W3 → ∞. u = U = (γ/β)n is also the larger of the two solutions to equation (85)
when h = γ/β, and the large T3 behavior therefore corresponds to h ∼ γ/β, U ∼ U(h) as expected
in order to match with the surge branch.

6.3.2 Transition from active to stagnant

The reverse transition from a surging to a non-surging ice stream occurs when h computed through
equation (87) on the surge branch reaches the critical value hc below which equation (85) has no
solution. This transition is harder to describe as we cannot compute hc analytically. However,
generically we can write equation (85) in the form

F (u, h) = (h2 − hu1/n)u+ γ/h− β = 0,

and the critical thickness hc corresponds to a saddle-node bifurcation point (hc, uc) at which

F (uc, hc) = 0,
∂F

∂u
(uc, hc) = 0. (91)

With u > 0, the evolution equation equation (16) can also be written as

α
dw

dt
= F (u, h), (92)

with w = ec − c−1 log[(h2 − hu1/n)/τ0], so that dw/du > 0.
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Define

Fuu =
∂2F

∂u2
(uc, hc), Fh =

∂F

∂h
(uc, hc), wu =

dw

du
(uc, wc).

We have Fuu < 0 while Fh > 0 and uw > 0.
Let tc be the time at which h computed from equation (87) reaches hc. First, we need to describe

the onset of shutdown, when the increase in conductive heating due to ongoing thinning contributes
equally to reduction in bed water content as does the reduction in dissipative heating as u ‘falls off’
the surge branch. This is again analogous to the corner layer in the van der Pol oscillator. Rescale
as

T4 = α−2/3(t− tc), (u− uc) = α1/3U4, h− hc = α2/3H4. (93)

By Taylor expanding around (uc, hc), we can then show that the leading order form of equation (92)
is now

wu
dU4

dT4
=

1

2
FuuU

2
4 + FhH4 (94a)

dH4

dT
= 1− uchc. (94b)

By assumption, we have uchc > 1, so H4 decreases linearly with time. As a matching condition with
the surge branch computed from equations (85) and (87), we have H4 ∼ (1− uchc)T4 as T4 → −∞,
and this therefore remains the solution for H4 in time throughout the corner layer. We also have
the matching condition

U4 ∼
[
−2Fh
Fuu

]1/2
H

1/2
4

as T4 → −∞. When T4 and hence H4 is positive, U4 will grow increasingly negative, initially due
to the second term in equation (97) and later due to the first, quadratic term that once again leads
to finite time blow-up at some time Tt, with U4 behaving as

U4 ∼
Fuu

2wu(Tt − T4)
. (95)

Once more, finite time blow-up actually corresponds to a rapid transition, this time to the zero
velocity branch. This is captured by the rescaling

T5 = α−1(t− tc − α2/3Tt), W5 = w, h = hc +O(α2/3), (96)

which leads to the equivalent of equation (89), at leading order

dW5

dT5
= [h2c − hcU1/n]U + γ/hc − β (97)

now with W5 = ec− c−1 log[(h2c−hcU1/n)/τ0], so W5 is again an increasing function of U . Matching
with the solution of equation (94a) gives U5 ∼ uc − Fuu/(2wuT5) as T5 → −∞. With U < uc, the
right-hand side of equation (97) will be negative (recall that it is zero when U = uc). Hence W5

will decrease, as will U . U reaches zero in finite time, completing the transition to the zero-velocity
branch at h = hc. This completes the limit cycle solution.
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7 Approximating binge-purge period and critical thicknesses
for realistic α = O(10−1)

7.1 Critical stagnation thickness
Equation (86) gives us the exact location of the critical stagnation thickness on the active branch (for
small α, though this applies equally well here). Here we rearrange and place a term ε on the linear
term (perturbation expansions in other terms either fail or yield worse asymptotic approximation
on hs)

ηhn+3
s + εβhs − γ = 0 (98)

with η = nn

(n+1)n+1 .
As above, in supplementary section 5, use a perturbation method. (For an overview of this

approach see ?.) We solve the ε = 0, zero-order approximation first

ηhn+3
0 − γ = 0 (99)

ηh0 =

(
γ

η

) 1
n+3

. (100)

We can now find corrections to this zero-order approximation by assuming that equation (86)
has the following solution

hs(ε) = h0 + a1ε+ a2ε
2 + . . . (101)

Retaining just the O(ε2) terms

hs(ε) ≈ h0 + a1ε+ a2ε
2, (102)

We substitute this into equation equation (98)

η
(
h0 + a1ε+ a2ε

2
)n+3

+ εβ
(
h0 + a1ε+ a2ε

2
)
− γ = 0, (103)

expanding and only retaining terms in O(ε2)[
ηhn+3

0 − γ
]

+ (n+ 3)a1ηh
n+2
0 ε+ (n+ 3)a2ηh

n+2
0 ε2 +

(
n+ 3

2

)
a21h

n+1
0 ε2 + εβh0 + βa1ε

2 = 0. (104)

The first bracketed term on the LHS is exactly the solution of the zero-order approximation. Oth-
erwise, we collect terms in ε1 and solve for a1[

(n+ 3)a1ηh
n+2
0 + βh0

]
ε = 0 (105)

Substituting in h0 and collecting terms in the relevant parameters yields

a1 = − β

n+ 3

(
η2γn+1

)− 1
n+3 (106)

Similarly, we collect terms in ε2 and solve for a2[
(n+ 3)a2ηh

n+2
0 +

(
n+ 3

2

)
a21h

n+1
0 ε2 + βa1

]
ε2 = 0 (107)
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Substituting in h0 and a1, we collecting terms in the relevant parameters and solve for a2

a2 = − n

2(n+ 3)2
β2
(
η3γ2n+3

)− 1
n+3 (108)

With these three terms in hand, we take ε → 1 and construct an approximation for (non-
dimensional) hs:

hs =

(
γ

η

) 1
n+3

− β

n+ 3

(
η2γn+1

)− 1
n+3 − n

2 (n+ 3)
2 β

2
(
η3γ2n+3

)− 1
n+3 (109)

7.2 Stagnation period
When the ice stream falls off the active branch at hs and onto the stagnant branch, the dynamics
of the ice stream model become considerably simpler (as u∗ = 0). Notably, we have the following
evolution of the till water content:

α
dw

dt
= β − γ

h
, (110)

and a linear evolution in ice thickness:

h(t) = hs + t, (111)

(assuming that there is not any considerable change in h∗ during the transition from the active to
stagnant branch). We see that we can solve exactly for the evolution in till water content:

α
dw

dt
= β − γ

hs + t
(112)

w(t) =
β

α
(hs + t)− γ

α
ln (hs + t) + w0 (113)

Or rather, in reference to a time ∆t since stagnation:

w(∆t) =
β

α
∆t− γ

α
ln

(
1 +

∆t

hs

)
(114)

7.2.1 A quick estimate of period

To derive a quick estimate on the period (which we will use later to derive a more accurate estimate)
we note that the change in driving stress, h2, during the stagnant phase is relatively small in
comparison to the change in basal shear strength. Thus, we attempt to find ∆t by looking for the
roots of equation (114). Also, we note that the trajectory of till water content is almost symmetric
with a minimum value attained when h = γ

β . Thus, we can approximate equation (114) as the
quadratic

w(∆t) = ∆t2 − 2

(
γ

β
− hs

)
∆t (115)

This equation readily admits two roots, the first being ∆t = 0 and the second being:

∆t = 2

(
γ

β
− hs

)
(116)
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7.2.2 Long way around

We now attempt to solve for the time since stagnation, ∆t, at which the bed fails critically, which
should occur when

h2 = τb, (117)

or in terms of our time evolution for till water content and a linearly accumulating ice stream
thickness:

(hs + ∆t)
2

= h2sexp

(
−b
[
β

α
∆t− γ

α
ln

(
1 +

∆t

hs

)])
(118)

Rearranging and applying various log rules:

∆t−
(
γ

β
− 2α

bβ

)
ln

(
1 +

∆t

hs

)
= 0 (119)

Expanding in the first term of log about our earlier estimate of period, ∆t = 2
(
γ
β − hs

)
, we have

∆t−
(
γ

β
− 2α

bβ

)ln

(
2
γ

βhs
− 1

)
+

∆t− 2
(
γ
β − hs

)
2 γβ − hs

+O(h2)

 = 0 (120)

And then solving for ∆t, we get

∆t =
γ − 2α

b

β − 1
2 γβ−hs

(
γ − 2α

b

) [ln

(
2
γ

βhs
− 1

)
−

γ
β − hs
γ
β −

hs
2

]
(121)

For γ that is O(1) it is the case that 2α
b << γ unless the till layer is O(10). This corresponds

to a situation where the change in driving stress during stagnation is small compared to the change
in bed strength, a valid assumption for all but the strongest binge-purge oscillations (for which this
entire derivation does not apply anyway). The following simplification can be made:

∆t =
γ

β − γ
2 γβ−hs

[
ln

(
2
γ

βhs
− 1

)
−

γ
β − hs
γ
β −

hs
2

]
(122)

This provides a good estimate on the period of binge-purge oscillations. In this approximation,
we have neglected the purge phase, which only contributes significantly to the period near the
stability boundary. Also, in the reduced model we are not taking into account any till-freezing or
basal cooling, thus these approximations becomes increasingly poor for large REHF (in the strong
binge-purge regime). However, this approximation is still within 10% of numerically derived period
estimates in the weak binge-purge parameter regime away from the stability boundary.
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Figure 1: Phase portrait of the reduced model referenced in sections 3.1 and in the supplemental
material.
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