1. Find T, N, and the curvature κ for $r(t) = 3\sin(t)i + 3\cos(t)j + 4k$.

2. Find the limit:
$$\lim_{(x,y) \to (0,0)} \frac{3x^2 - y^2 + 5}{x^2 + y^2 + 2}$$

3. **True** or **False**: Suppose
$$\lim_{(x,y) \to (a,b)} f(x, y) = 5$$ along the lines $x = a$ and $y = b$ and $f(a, b) = 5$. Then f must be continuous at (a, b).

4. Find all second-order partial derivatives for $w = x\sin(x^2 y)$.

5. Evaluate dw/dt for $w = 2ye^x - \ln(z)$ if
$$x(t) = \ln(t^2 + 1), y = \arctan(t), z = e^t$$ at $t = 1$.

6. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ for the surface $z^3 - xy + yz + y^3 - 2 = 0$ at the point $(1, 1, 1)$.

7. Based on the contour plot below for a function $f(x, y)$, determine the sign $(+, -, 0)$ of

(a) $f_x(0, 2)$
(b) $f_y(2, -2)$
(c) the rate of change of f at $(-2, 0)$ in the direction towards $(-3, 3)$
(d) $Df(\sqrt{2}, 1, 1\sqrt{2})(-1, -1)$
(e) the rate of change of f in the direction tangent to the level curve through $(0, 1)$

8. Find the derivative of the function $f(x, y) = 2xy - 3y^2$ in the direction $4i + 3j$ at the point $(5, 5)$.

9. Find the tangent plane and normal line at $(2, 0, 2)$ of the surface $2z = x^2 = 0$.

10. Find all local maxima, local minima, and saddle points for $f(x, y) = x^2 + xy + y^2 + 3x - 3y + 4$.

11. Find the absolute maximum and minimum of $f(x, y) = 2x^2 - 4x + y^2 - 4y + 1$ on the closed triangular region bounded by the lines $x = 0, y = 2$, and $y = 2x$.

12. Find the maximum value of $f(x, y) = 49 - x^2 - y^2$ on the line $x + 3y = 10$.

13. Write an iterated integral using (a) vertical cross-sections and (b) horizontal cross-sections whose region of integration is the region bounded by $y = \sqrt{x}, y = 0, x = 9$.

14. Sketch the region of integration and evaluate the integral $\int_0^1 \int_0^\sqrt{y} 3y^3e^{xy} \, dx \, dy$.

15. Change to polar coordinates and evaluate the integral $\int_{-1}^1 \int_0^{\sqrt{1-x^2}} dy \, dx$.

16. Integrate the function $f(x, y, z) = 3 - 4x$ over the region below $z = 4 - xy$ and above the rectangle $0 \leq x \leq 2, 0 \leq y \leq 1$ in the xy-plane.
17. Find the volume of the region that lies inside the sphere \(x^2 + y^2 + z^2 = 2 \) and outside the cylinder \(x^2 + y^2 = 1 \).

18. Use the change of coordinates \(x(u, v) = \frac{u}{v}, y(u, v) = uv \) to evaluate the integral \(\iint_R \left(\sqrt{\frac{y}{x}} + \sqrt{xy} \right) \, dA \), where \(R \) is the region in the first quadrant bounded by \(xy = 1, xy = 9, y = x \), and \(y = 4x \).

19. Evaluate the line integral \(\int_C(xy + y + z) \, ds \) along the curve \(\mathbf{r}(t) = 2t \mathbf{i} + t \mathbf{j} + (2 - 2t) \mathbf{k} \) for \(0 \leq t \leq 1 \).

20. Find the flow of the field \(\mathbf{F} = \langle -4xy, 8y, 2 \rangle \) along the curve \(\mathbf{r}(t) = (t, t^2, 1), 0 \leq t \leq 2 \).

21. Find the counterclockwise circulation and the outward flux of the field \(\mathbf{F} = xi + yj \) around/through the unit circle centered at the origin.

22. Find the potential function for \(\mathbf{F} = e^{y+2z}(i + xj + 2zk) \).

23. Use Green’s Theorem to find counterclockwise circulation and outward flux of the field \(\mathbf{F} = (y^2 - x^2, x^2 + y^2) \) for the curve \(C \) enclosing the region bounded by \(y = 0, x = 3 \), and \(y = x \).

24. Let \(f \) be a function of three variables and let \(\mathbf{F} \) and \(\mathbf{G} \) be vector fields in \(\mathbb{R}^3 \). Which of the following expressions make mathematical sense? If you can compute any of them, do so.

 (a) \(\text{curl} (\text{div}(\mathbf{F})) \)
 (b) \(\text{curl}(\nabla f) \)
 (c) \(\text{div}(\mathbf{G}) \)
 (d) \(\text{curl}(\text{div}(f)) \)
 (e) \(\text{div}(\text{curl}(\mathbf{G})) \)
 (f) \(\text{div}(\nabla f) \)

25. Use a parameterization to write a double integral for the area of the surface \(S \) which is the portion of the cone \(z = 2\sqrt{x^2 + y^2} \) between the planes \(z = 2 \) and \(z = 6 \).

26. Evaluate \(\iint_S 2y \, d\sigma \) over the surface \(S \) which is the part of the cylinder \(y^2 + z^2 = 4 \) between \(x = 0 \) and \(x = 3-z \).

27. Let \(S \) be the surface that consists of the part of the paraboloid \(z = 4 - x^2 - y^2 \) above the \(xy \)-plane and below the cone \(z = 3\sqrt{x^2 + y^2} \).

 (a) Sketch \(S \).
 (b) Find a parameterization of \(S \).
 (c) Calculate the area of \(S \).

28. Let \(S \) be the surface consisting of the top half \(z \geq 0 \) of the sphere \(x^2 + y^2 + z^2 = 9 \), together with the disk \(x^2 + y^2 \leq 9, z = 0 \), its base in the \(xy \)-plane. Use the Divergence Theorem to evaluate \(\iiint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma \), where \(\mathbf{F}(x, y, z) = 3xy^2 \mathbf{i} + 3x^2y \mathbf{j} + z^3 \mathbf{k} \).

29. Let \(S \) be the part of the surface \(z = 4x^2 + y^2 - 4 \) beneath the plane \(z = 5 \). Let \(C \) be the bounding curve of \(S \) in the plane \(z = 5 \), traversed counterclockwise and suppose \(S \) is oriented accordingly (normals towards the \(z \)-axis). Let \(\mathbf{F}(x, y, z) = (2y, 4x, e^z) \). Use Stokes’ Theorem to evaluate the curl integral

\[
\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, d\sigma.
\]

30. Let \(S \) be the surface of the cylinder defined by \(y^2 + z^2 = 4 \) between the planes \(x = -1 \) and \(x = 3 \). Let \(\mathbf{F}(x, y, z) = e^{y^2} \mathbf{i} + e^z \mathbf{j} + e^z \mathbf{k} \).

 (a) Sketch \(S \).
 (b) Find a parameterization of \(S \).
 (c) Let \(\mathbf{n} \) be an outward pointing unit normal for \(S \). Evaluate

\[
\iint_S \mathbf{F} \cdot \mathbf{n} \, d\sigma
\]

 by direct calculation (do not use the Divergence Theorem).