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Evolution has honed predatory skills in the natural world where localizing and

intercepting fast-moving prey is required. The current generation of robotic

systems mimics these biological systems using deep learning. High-speed

processing of the camera frames using convolutional neural networks (CNN)

(frame pipeline) on such constrained aerial edge-robots gets resource-limited.

Adding more compute resources also eventually limits the throughput at

the frame rate of the camera as frame-only traditional systems fail to

capture the detailed temporal dynamics of the environment. Bio-inspired

event cameras and spiking neural networks (SNN) provide an asynchronous

sensor-processor pair (event pipeline) capturing the continuous temporal

details of the scene for high-speed but lag in terms of accuracy. In this work,

we propose a target localization system combining event-camera and SNN-

based high-speed target estimation and frame-based camera and CNN-driven

reliable object detection by fusing complementary spatio-temporal prowess

of event and frame pipelines. One of our main contributions involves the

design of an SNN filter that borrows from the neural mechanism for ego-

motion cancelation in houseflies. It fuses the vestibular sensors with the

vision to cancel the activity corresponding to the predator’s self-motion.

We also integrate the neuro-inspired multi-pipeline processing with task-

optimized multi-neuronal pathway structure in primates and insects. The

system is validated to outperform CNN-only processing using prey-predator

drone simulations in realistic 3D virtual environments. The system is then

demonstrated in a real-world multi-drone set-up with emulated event data.

Subsequently, we use recorded actual sensory data from multi-camera and

inertial measurement unit (IMU) assembly to show desired working while

tolerating the realistic noise in vision and IMU sensors. We analyze the design

space to identify optimal parameters for spiking neurons, CNN models, and

for checking their e�ect on the performance metrics of the fused system.

Finally, we map the throughput controlling SNN and fusion network on

edge-compatible Zynq-7000 FPGA to show a potential 264 outputs per second

even at constrained resource availability. This work may open new research

directions by coupling multiple sensing and processing modalities inspired by

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1010302
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1010302&domain=pdf&date_stamp=2022-11-25
mailto:alele9@gatech.edu
https://doi.org/10.3389/fnins.2022.1010302
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1010302/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org






























Lele et al. 10.3389/fnins.2022.1010302

FIGURE 11

Both event and frame pipelines have internal accuracy vs. latency trade-o�s. (A) Accuracy of the event pipeline increases when the epoch

duration is large (lower throughput) with more events to infer from. (B) Di�erent feature extractors and object detectors cause performance

trade-o�s for CNN. The color coding shows the detector while the feature extractor is denoted in the figure. Resnet50+FasterRCNN is the most

accurate while Squeezenet+YOLO is the fastest. (C) Fused accuracy requires an accurate CNN with reasonably high speed for high accuracy. The

latency of SNN has a relatively low impact on fused accuracy while it determines the throughput. GoogleNet+FasterRCNN is the most suitable.

FIGURE 12

FPGA micro-architecture for throughput controlling event pipeline and fusion algorithm. The execution of layers 2, 3 and the fusion algorithm

determines the maximum potential throughput of 264 outputs per second. The asynchronous layer-1 has the capacity of handling 1.28 × 106

events per second.

to leak in between consecutive CNN inferences. This degrades

the overall fused latency for the ResNet50+FasterRCNN setup.

ResNet50+YOLO has worse fused accuracy compared to

squeezenet because of its longer inference latency in spite

of being slightly more accurate. This study shows that both

accuracy and latency on the CNN model are of key importance

in the final fused accuracy.

Spiking neural network latency determines the overall

throughput of the network and also controls the accuracy of

the SNN pipeline as seen in Figure 11A. However, it does not

have a critical impact on the overall fused accuracy of the

system. This shows that CNN model selection is imperative

in determining the fused accuracy of the system whereas

SNN latency is important in the final throughput of the

system. The previous results use the parameters tuned in this

section. This study provides a methodology to evaluate the

choice of the best model and SNN parameters corresponding

to a processing platform. Our Zynq-7000 FPGA analysis

focuses on edge-compute. A larger FPGA can reduce the

inference latencies for all CNN architectures and therefore

the choice of the best network may differ. An exhaustive

analysis of multiple compute platforms, object detection

architectures, and backbone networks may be taken up in

the future.

3.4. Throughput estimation

The system requires a low-power (<10 W) edge application

at a high speed. It requires support for a highly compute-

intensive CNN with multi-channel convolution, as well as

memory-intensive SNN requiring membrane potential storage

and update for a large number of neurons. Thus, the hardware

requires parallelization for faster CNN and block-wise memory
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availability for SNN. The edge-TPU suits well for CNN but does

not support the high-speed requirement of the SNN. Similarly, a

dedicated SNN accelerator like Loihi (Davies et al., 2018) cannot

map the CNN effectively. Using individual optimized boards

requires additional effort in synchronization of the data and

adds latency of communication between the boards. Thus, a

programmable FPGA offers the optimal trade-off point in the

hardware space with decent support to both pipelines as well

as low-power edge applications. Spartan FPGA family lies in

the required low power range but has very limited resources.

Thus, we use Zynq 7000 FPGA for hardwaremapping (BERTEN,

2016).

The SNN and fusion pipeline controls the maximum

throughput of the network. The micro-architecture of the SNN

and fusion system is shown in Figure 12. The input from

the event camera, IMU, and depth camera is acquired at the

input layer from the IO. The output of the CNN pipeline is

assume to be acquired from an internal CNN block running the

CNN. Layer 1 requires asynchronous operation as outlined in

Section 2.1 while the next layers along with the fusion algorithm

operate after every time epoch. Both layer 1H and 1V are to

be implemented in a block RAM for quick access to incoming

event packets. This makes the SNN design memory intensive

for storing 480 × 640 (frame size) activations. The IF neurons

add up the event activity and store the spiking information for

the next layers to process it. A counter triggers layers 2 and 3

after the duration of an epoch to identify the position. Thus,

the minimum epoch duration (maximum SNN throughput)

depends upon the latency of execution of layers 2, 3, and fusion

algorithm together.

We implement the above architecture using Vitis High-

level Synthesis on Zynq 7000 SoC (xc7z035-fbg767-1). All

SNN layers along with the fusion algorithm are mapped onto

the FPGA. The FPGA is operated at a clock period of 12

ns which is the maximum allowed clock frequency provided

by the synthesis. Layer-1 takes 65 clock cycles per incoming

event including the spike generation. Thus, 780 ns are taken

for every incoming event allowing the processing of 1.28 M

event/s. Execution of layers 2, 3, and fusion algorithm takes

3.78 ms. Therefore, the minimum epoch duration is 3.78 ms

with a maximum throughput of 264 FPS. This confirms that

a straightforward implementation on an edge-FPGA is able to

provide humongous throughput for the SNN. The resources

consumed by the implementation above are 375 BRAM (75%),

1 digital signal processor (DSP) (0.1%), 1,073 flip flops (FF)

(0.3%), 1,782 Look-up Tables (LUT) (1%) showing low resource

consumption on board. The SNN implementation is memory

intensive whereas the CNN implementation is generally DSP

intensive with multiple parallel operations. Thus, we expect

complementary resource consumption by the event and frame

pipelines directly suitable for FPGAs. An end-to-end bandwidth

optimized implementation of both pipelines can be taken up in

near future.

Drone navigation typically uses companion computers

for vision processing that communicate the commands for

actuation to the flight controller that in turn drives the

motors. Autopilot software-hardware stacks like PX4 use UART

communication for receiving the actuation commands. The

maximum rate of communication lies in the kHz range.

Therefore, our throughput of 264 outputs per second is

not redundant from the electronics perspective and further

improvement is also desirable. From themechanical perspective,

customized mid-sized drones capable of carrying the weight

of the DVS, frame camera, and compute platform are shown

in Zhu et al. (2018) and Falanga et al. (2020). These drones

are demonstrated to move at ∼ 2 m/s. This corresponds to

an SNN output for every sub-centimeter displacement which

would be sufficient for tracking problems. High-speed drones

are typically lightweight and are unable to support large weights

of the cameras and compute assembly. A closed-loop study of

altering the sensor and compute weight on customized drones

could enable the search for the optimal point for the maximum

speed of the drone vs. sensor and compute weight. This can be

taken up in the future.

3.5. Comparison with prior work

We compare our method with previous demonstrations of

high-speed target localization (Table 1). YOLOv3 works with

a frame camera and performs reasonably fast (Redmon and

Farhadi, 2018) but works on a power-intensive GPU. Vibe

(Van Droogenbroeck and Barnich, 2014) works with the frame

difference between consecutive frames to identify the motion

but is eventually limited by the frame rate of the camera. The

approaches using event cameras typically show non-selective

identifications and tracking. This means that all moving objects

are identified without being selective. Falanga et al. (2020) uses

optical flow and event time stamp information to segregate

the moving object. Other non-selective tracking approaches

(Mitrokhin et al., 2018; Zhou et al., 2021; Vasco et al., 2017) use

TABLE 1 Previous work on high-speed target localization.

Reference Camera Platform Time Target

ms Selective

YOLOv3, Redmon and

Farhadi (2018)

Optical Titan X GPU 45 Yes

Vibe,

Van Droogenbroeck and

Barnich (2014)

Optical CPU T7300 599 No

Falanga et al. (2020) DVS Jetson TX2 3.5 No

Mitrokhin et al. (2018) DVS Intel i7 CPU 10 No

This work Both Zynq FPGA 3.78 Yes
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an energy minimizing optimization to find the 3D movement of

event clusters and find outliers in them to be classified as moving

objects. These non-selective methods are incomplete without an

added object distinguishing network. Additionally, the latency

of these optimizations is speculated to be typically higher

(Mitrokhin et al., 2018) compared to our SNN because of more

complex iterations. Convolutional neural networks have also

been used with modified objective functions for segmentation of

the scene into multiple objects (Stoffregen et al., 2019; Alonso

and Murillo, 2019). But the setup becomes computationally

expensive because of the convolutional backbone and the speed

may be compromised on an edge platform. A fused optical

and event-based localization capability is used in Yang (2019)

but requires a Tianjic neuromorphic ASIC. Our method shows

a high throughput using SNNs and accurate and selective

detection of prey drones using CNN. Thus, our method can

provide a high-speed implementation on an edge-platform

suited for UAV applications.

4. Discussion

4.1. Bio-inspired ego-motion cancelation

A key contribution of this work lies in the design of

the ego-motion filter using SNN inspired by neuro-biological

advances in recent years. The nullification of self-generated

action (reafference) finds ample examples in biology. Male

crickets cancel their chirp preventing them to respond to it

(Kim et al., 2015). Electric fish cancel the electric field generated

by their own actions (Kim et al., 2015). In primates, inputs

from the vestibular system are processed in the cerebellum

to keep track of the motion (Cullen et al., 2011). Recent

progress in neuroscience postulated the presence of differentially

weighed neural connections behind this phenomenon (Zhang

and Bodznick, 2008). The first neurophysiological evidence for

this is found as a distinct class of neurons in the vestibular

nucleus of the primate brainstem (Oman and Cullen, 2014).

Another model argued that when the estimated response of

an ego-action is close to the perceived action, the cancelation

happens through adaptive inhibitory circuitry (Benazet et al.,

2016). A similar observation was made earlier for humans

where “smooth pursuit eye movement” for a target moving in

a direction decreases the sensitivity of the vision for the opposite

direction (Lindner et al., 2001). The behavioral experiments

argue that locomotive insects send a copy of their reafference

perceived by the sense to an internal neuron circuitry for

cancelation. The key experimental study in the ego-motion

cancelation in the vision on drosophila (housefly) is recently

published where the neurons corresponding to optical flow

around yaw and pitch axis are probed (Kim et al., 2015).

This shows that the visual neurons received the motor-related

inputs in-flight turns causing the visual inputs to be strongly

suppressed. This is very similar to the method we propose where

we have the visual response cancelation using the vestibular ego-

motion using inhibitory synapses (differential cancelation). We

showed this neuro-inspired network is capable of detecting the

prey with high confidence when it is close to the predator for

high-speed response.

4.2. Neuro-mimetic multi-pathway
processing

Our system is inspired by the multi-pathway model of the

visual processing proposed and found inmany animals. Multiple

neural paths specialize in specific tasks and combine their

inferences. The wavelength insensitive neurons are observed to

work for regular vision but UV sensitive neurons work for prey

tracking and foreground cancelation for larvae zebrafish (Zhou

et al., 2020). It has been stated that the color-intensive pathway

in the brain is slower compared to grayscale but richer in spatial

details of the information (Gegenfurtner and Hawken, 1996).

Monkeys have visual pathways optimized for global slow and

locally fast signals for high-speed tracking (Mazade et al., 2019)

(similar to our work). Houseflies also process local and global

motion data separately (Gollisch and Meister, 2010). Humans

have rods and cones in the retina separating color vision from

grayscale activity at the beginning of the processing pipeline.

The motion and color-sensitive pathways were suggested to be

different in housefly (Yamaguchi et al., 2008). This matches with

our design where spatially detailed color information (frame

pipeline) and temporally fine event information (event pipeline)

are gathered separately and processed in separate pathways

before merging into the fusion algorithm. Another feature of our

work is that SNN and CNN are suited for different phases of

chasing (cases 1–3). This has a parallel where different neuronal

clusters are observed to be active in different stages of hunting

for zebrafish (Förster et al., 2020). When the predator is at a

distance and following the prey, a set of neurons suited for

small object detection and tracking are active. However, as the

prey is approached and becomes bigger in size different sets

of neurons take over the detection task. Therefore, merging

and cooperation between the neural paths may have even more

interesting insights and applications in the future.

4.3. Usage of hard-coded networks

Our SNN takes a rigid synaptic weight structure processing

the asynchronous incoming event stream for canceling the ego-

motion. A natural criticism about it can be a lack of training

methodology to allow learning. However, many instinctive

tasks have been observed in insects which are postulated to
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be shaped by evolution without a learning response (Kanzaki,

1996). Furthermore, the plasticity is high in the initial phase

of life and then converges to learnt behaviors after the neural

development is near completion (Arcos-Burgos et al., 2019).

The argument that most of the animal behavior is encoded

in the genome instead of being learned (Zador, 2019) also

supports this approach. Hard-coded SNNs have been used

with with event-cameras for numerous tasks like stereo depth

estimation (Osswald et al., 2017), optical flow computation

(Orchard et al., 2013), lane-keeping (Bing et al., 2018), and

looming object avoidance (Salt et al., 2017). We believe that the

accuracy of our network can be improved with SNNs trained

for drone detection. This provides the first-order demonstration

of shallow and fast computation of ego-motion cancelation

as a step in building bio-inspired SNN robots for high-

speed applications.

4.4. Other related works

Simultaneous use of event and optical camera has been

approached in Liu et al. (2016) for predation task in wheeled

robots as well. This simultaneous event and frame-based

approach uses an event camera to identify the region of

interest while CNN does the object recognition on the identified

region saving energy consumption and boosting the processing

speed. However, the CNN latency for a single frame processing

persists. The region of interest identification task becomes

challenging with the cluttered background that we utilize in

our work, limiting the performance of this system. Another

hybrid approach has been used in a fused SNN + CNN

approach for optical flow calculation (Lee et al., 2021). The

events are accumulated using SNN and are merged into a

CNN for more accurate optical flow calculation. However,

the CNN backbone remains critical for every inference and

the throughput gets eventually limited by the compute. Our

approach has the independent frame and event-based pipelines

similar to Lele and Raychowdhury (2022) that only provide

their respective outputs for the fusion algorithm which works

in linear time.

Event camera-based moving object tracking problem

has also been addressed using model-based approaches like

cluster detection (Delbruck and Lang, 2013), corner detection

(Vasco et al., 2016), ICP (Ni et al., 2012), region of

interest tracking (Mohan et al., 2022), etc. However, these

works operate with either a stationary camera or stationary

environment as opposed to independently moving prey

and predator in this case. A modification to the region

proposal algorithm to identify the independently moving

object from velocity estimation can be incorporated to allow

tracking using a moving predator platform. Combining these

approaches with hybrid processing may open up interesting

future directions.

4.5. Potential limitations

It is worthwhile to speculate on the limitations of the

proposed system. The performance assumes both pipelines to

be working reliably for interdependent cooperation. Therefore,

reasonable lighting conditions would be required for the CNN

pipeline although event cameras are known to work in low-light

environments. The stability of the drone under windy conditions

where the drone drifts creating spurious activity will require

accurate IMU sensors for ego-motion cancelation. Vibrations of

drone frames can also corrupt the event stream and IMU data.

Therefore, a stable flight is desirable for the accurate functioning

of the SNN filter. High altitude flight is expected to be easier with

sparser occlusions. We observe that the rapid motion of prey

drones causes image blur in the frame-based camera corrupting

the CNN output. Therefore, a high-quality image acquisition

or image stabilization mechanism may be needed in ultra-rapid

response implementations. Histogram-based method utilized in

SNN filter may get limited if directly applied to simultaneous

tracking of multiple objects. Recent works have demonstrated

region proposal on low-cost event-accumulated binary images

followed by multi-object tracking even in presence of occlusion

showing low computation and memory costs (Acharya et al.,

2019; Mohan et al., 2022). Customized circuits for this

application (Bose and Basu, 2022) demonstrate high throughput

and energy efficiency. Such methods can be applied for multi-

object tracking in place of layer-4 after canceling the activity

caused by the self-motion. Finally, selective tracking of an object

from multiple moving targets can be addressed in the future

by altering the spatio-temporal filtering algorithm to handle the

position from multiple SNN and CNN outputs.

4.6. Hardware implementation

Numerous interesting possibilities for circuit

implementation for such hybrid systems are also possible.

We evaluated a hybrid processing method with FPGA.

However, the latency of memory access and clocked sequential

nature of FPGA limits the performance of SNN. Dedicated

asynchronous SNN hardware like Loihi, truenorth (Akopyan

et al., 2015; Davies et al., 2018) would overcome the bottleneck

allowing massive parallelism with very low power. However,

these general-purpose SNN ASICs have a large hardware

overhead for the relatively simple network that we propose.

Processing the entire flow of the algorithm on a single die with

optimized circuits will allow the exploitation of a truly hybrid

framework from sensing to implementation at the constrained

power budget. Non-volatile crossbar arrays like resistive RAM

also show high throughput and low-power CNN processing

capability (Chang et al., 2022) that can be augmented with

on-chip SNNs. Additional exploration in this direction needs to

be taken up in the future.
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5. Conclusion

We proposed a visual target localization system that

leverages the fusion of frame and event-based cameras

with corresponding processing neural networks to attain

the accuracy and latency advantages simultaneously. The

ego-motion canceling SNN and object detecting CNN exploit

the temporal and spatial resolution of the respective sensors

in two independent pipelines. The SNN filter incorporates

the connectivity from the insect brains and multi-pipeline

processing and interplay between SNN and CNN has a neuro-

biological basis in primate and insect brains. The system is

shown to work using a virtual environment and real-world

demonstrations. The feasibility of implementation on a low-

resource FPGA shows a potential throughput of 264 FPS.

This work may open exciting possibilities in building hybrid

SNN systems to mitigate the fundamental issues in frame-

based processing.
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