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ABSTRACT

Autonomous systems have reached a tipping point, with a myriad

of self-driving cars, unmanned aerial vehicles (UAVs), and robots

being widely applied and revolutionizing new applications. The

continuous deployment of autonomous systems reveals the need

for designs that facilitate increased resiliency and safety. The ability

of an autonomous system to tolerate, or mitigate against errors,

such as environmental conditions, sensor, hardware and software

faults, and adversarial attacks, is essential to ensure its functional

safety. Application-aware resilience metrics, holistic fault analysis

frameworks, and lightweight fault mitigation techniques are being

proposed for accurate and effective resilience and robustness as-

sessment and improvement. This paper explores the origination of

fault sources across the computing stack of autonomous systems,

discusses the various fault impacts and fault mitigation techniques

of different scales of autonomous systems, and concludes with chal-

lenges and opportunities for assessing and building next-generation

resilient and robust autonomous systems.

1 INTRODUCTION

The advent of autonomous systems, including self-driving cars,

Unmanned Aerial Vehicles (UAVs), and robots, has completely rev-

olutionalized several application domains such as automotive, avia-

tion, and agriculture, to name a few [1–3]. The overall market for

autonomous vehicles is expected to grow 30-fold over this decade

to over $2 Trillion in 2030 [4]. This has further spurred a series

of innovations both at the algorithm and system-level, resulting

in large-scale deployment such as Intelligent Swarms, increased

autonomy, and highly efficient custom hardware designs at low

form factors [5–10].

Like any computing system at-scale, autonomous systems also

face several challenges in deployment, primarily the need for de-

signs that facilitate increased resilience and safety. Increased tran-

sistor density and complexity in the overall manufacturing pro-

cess that arises out of transistor scaling to sub-10 nm nodes only

serve to exacerbate these challenges. Autonomous systems, par-

ticularly those operating in harsh environmental conditions, can

encounter various sources of errors and potential failures. These

include radiation-induced soft or transient errors (SER), timing

errors or memory bit failures due to voltage over-scaling, aging

or on-field permanent failures, changes in the input data due to

malfunctioning sensors or environmental conditions, or even Silent

Data Corruptions (SDCs) that were recently discovered at-scale re-

sulting in mercurial or unpredictable functionality in certain cores

or computing units [11]. Further, optimizations targeted towards
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Figure 1: Overview of autonomous systems, where data flows from

environment to sensors, going through compute (with hardware-

system-algorithm support) to output actions in a loop. Faults in

any stage may propagate through the cross-layer closed-loop au-

tonomous system and impact the final performance and reliability.

maximizing the performance and power efficiency, such as operat-

ing at reduced supply voltages, lower precision operation, or lower

resolution inputs, can have adverse consequences on the overall

reliability. Finally, targeted or adversarial errors, possibly from ma-

licious entities, can have catastrophic effects on the functionality

of autonomous systems. A small error in the model parameters or

adversarial or data poisoning attacks on the inputs can result in a

significant increase in misclassifications.

The ability of an autonomous system to tolerate or mitigate these

errors is essential to ensure its functional safety. Recent industry

studies [12, 13] have shown that evaluating the resilience of indi-

vidual components or parts of the compute/control stack is devoid

of a full end-to-end and cross-stack perspective that may both limit

reliability solutions as well as miss error propagation altogether

through a complex system. In contrast to standard metrics such as

Mean-Time-To-Failure (MTTF) used for large-scale cloud and data-

center systems, autonomous system resilience highly depends on

the application, sensor inputs, and the nature of the environment.

As a result existing methodologies for evaluating and ensuring Reli-

ability, Availability, and Serviceability (RAS) in CPU and GPU-based

multiprocessors, for instance, would not be effective in this context.

This underscores the need to develop new metrics, error detection,

and mitigation strategies specifically targeted for such systems. For

instance, estimating the end-to-end reliability of an autonomous

system that comprises an aggregation of several general-purpose

and custom computing components continues to remain a challenge

even today.



Table 1: Exampled fault sources in autonomous systems.

Resilience

Input Data

Fault

Environmental conditions (e.g., blur, contrast, brightness)

Sensor noise (e.g., camera, IMU, LiDAR, GPS)

Unreliable or tainted information from swarm agents

Hardware

Fault

Soft errors (radiation)

Memory bit failures (voltage over-scaling)

Timing errors (voltage droops, overclocking)

Aging/on-field permanent failures

Software

Fault

Software bugs

Incorrect or overly aggressive implementation

Robustness

Adversarial

Attack

Adversarial attack on ML model (perception, E2E learning)

Data poisoning attack on input data

Hardware

Error
Targeted hardware errors (Rowhammer, corrupted model)

In this paper, we explore the key considerations involved in de-

signing autonomous systems that are highly efficient, but are also

resilient to faults across the computing stack. We highlight key ob-

servations on the types of faults that are of interest in this domain,

metrics that determine the impact of these faults on the overall sys-

tem functionality, and methodologies for modeling, detecting, and

mitigating the errors induced due to these faults. Finally, we present

a series of challenges and opportunities for the research community

that could be instrumental in the development of reliable, efficient,

and scalable autonomous systems of the future.

2 AUTONOMOUS SYSTEMS AND FAULT
SOURCES

This section introduces the autonomous system and its fault sources.

We first present an overview of the closed-loop cross-layer au-

tonomous system computing stack (Section 2.1). Then we highlight

the various fault originations that will impact the resilience and

robustness of autonomous systems (Section 2.2).

2.1 Autonomous Systems

Autonomous systems typically operate in a closed-loop manner,

where the data flows from the environment, going through the

autonomous system and back to the environment, as shown in

Fig. 1. This procedure involves sensing the environment (input data),

making autonomous decisions (compute), and finally actuating

within the environment (output action) in a loop.

Cross-layer compute stack is an integral component of the closed-

loop autonomous systems, spanning from autonomy algorithm,

system, and compute hardware, to achieve intelligence. Autonomy

algorithms interpret the environment and make decisions, which

typically includes two paradigms, namely physical model-based

autonomy (e.g., perception, localization, planning, control) and

learning-based autonomy (e.g., end-to-end learning). The system

layer provides communication functions and resource allocation

for autonomous applications with ROS [14], maps workloads to

compute units, and schedules tasks at runtime with Linux. Compute

hardware then executes algorithm kernels with the support of

different substrate platforms (e.g., CPU, GPU, FPGA, ASIC). All

of these cross-layer components work as a coherent closed-loop

system to achieve autonomous intelligence.

2.2 Fault Sources

Understanding where a fault originates from is necessary for ana-

lyzing how it propagates through the autonomous system to impact

resiliency and safety. We identify different fault sources and broadly

Table 2: Comparison of reliability evaluation metrics between pro-

cessors and autonomous systems.
Conventional

Reliability Metric

Application-aware

Reliability Metric

Failure-in-Time (FIT) rate

Mean-time-between-failure (MTBF)

UAV [23]

Flight distance

Flight energy

Navigation success rate

Car [22, 24]

Mission success rate

#Traffic violations

#Accidents

Time to traffic violation

Stopping distance

Robot [25] Collision Exposure Factor

categorize them based on two characteristics: resilience and robust-

ness, as summarized in Table 1.

2.2.1 Resilience. Resilience is the ability of autonomous systems

to tolerate errors that randomly occur occurred at input data and

various levels of the computing organizations.

Input data fault: Faults in input data can arise from environ-

mental conditions, sensors, and other agents in swarm systems.

Various occlusion, contrast, brightness, and blur conditions from

environments may add perturbations in sensing images and de-

grade perception accuracy. Noise and malfunction of sensors (e.g.,

camera, IMU, LiDAR, GPS) may alter the input information and

modify the autonomous systems’ interpretation of surrounding

states. Unreliable or tainted information from other agents in col-

laborative systems may confuse normal agents and result in wrong

decisions.

Hardware fault:Hardware faults include radiation-induced soft

errors [15], memory bit failures due to voltage over-scaling [16],

timing errors due to voltage droops or overclocking [17], and ag-

ing or on-field permanent stuck-at failures that are repeatable and

occur the sameway every time [18]. For example, a recent chip char-

acterization study reveals that lowering operation voltage brings

bit-flips in on-chip SRAM cells, and the failures consistently exist

under voltage scaling [19]. These failures may impact both memory

and compute units and exacerbate with the continuously increased

technology node density, wider datapaths, and voltage scaling.

Software fault: Software faults originate from either software

bugs in computer software or overly aggressive implementation,

such as software approximation and low precision [20, 21]. Timing

faults in network communication paths (e.g., data loss, out-of-order

or delayed data delivery) [22] may result in unexpected and incor-

rect values in the autonomous system as well.

2.2.2 Robustness. Robustness is the ability of autonomous sys-

tems to tolerate errors that are maliciously induced, such as adver-

sarial attacks and targeted hardware errors. Adversarial attacks

particularly impact input data or ML-based models. The poisoned

data may make the sensing images suspicious and be maliciously

tampered with to mislead output action. The attacked ML model

(e.g., in perception or end-to-end learning) may intend to generate

wrong decisions with the correct information or seek to increase

compute latency and energy consumption of autonomous systems.

Targeted hardware errors, such as Rowhammer [26], ClkScrew

attack [27] and hardware fault attack [28] may result in contami-

nated storage data and wrong compute results, posing threats to

the autonomous systems. The distributed on-chip power control

mechanism could be subject to malicious or inadvertent energy

attacks [29].
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Contrast ConditionBrightness ConditionOriginal Environment

Brightness Contrast Flight Time (s) Flight Energy (kJ) Success Rate (%)

No noise (b=0) No noise (c=1) 124.3 67.5 100

b = 45 No noise (c=1) 131.6 72.2 99

b = 90 No noise (c=1) 145.1 77.9 96

No noise (b=0) c = 1.5 139.3 75.1 97

No noise (b=0) c = 2.0 162.7 89.8 92

Figure 2: The impact of environmental conditions (e.g., brightness

and contrast) on UAV autonomous system performance and safety.

3 FAULT IMPACT ON AUTONOMOUS
SYSTEMS

This section studies the fault impact on autonomous systems. First,

we discuss application-aware metrics for accurate and effective

resilience evaluation (Section 3.1). Next, we examine various fault

impacts on autonomous systems with an example navigation task

(Section 3.2). Finally, we review the existing fault injection frame-

work and highlight the significance of intelligent fault injection for

complex autonomous systems (Section 3.3).

3.1 Metric

Observation 1: Identifying application-aware metrics is critical for

holistic and effective autonomous system resilience evaluation.

Identifying correct metrics and establishing safety violation con-

ditions paves the way for evaluating autonomous system resilience.

Conventional reliability metrics, such as failure-in-time (FIT) rate

and mean-time-between-failure (MTBF), are effective in evaluat-

ing individual component resilience (e.g., CPU and GPU proces-

sor). However, these metrics miss capturing the fault propagation

through various components in autonomous systems.

Application-level performance and safety characteristics should

be incorporated into resilience metrics to reveal fault impact. Ta-

ble 2 presents exampled application-aware reliability metrics for

three autonomous applications. For UAVs, mission flight time, flight

energy, and success rate of the autonomous navigation task can

be used for UAV system resilience evaluation [23]. For self-driving

cars, AVFI [22] quantifies mission success rate, the number of traffic

violations, and time to traffic violation as application-aware failure

metrics to evaluate safety. Similarly, DriveFI [24] defines the in-

stantaneous safety criteria and stopping distance based on collision

avoidance conditions. For robots, Shah et al. [25] define collision

exposure factor as a metric to assess the failure circuit vulnerability

of motion planning task, based on the relation between physical

space and safety violation cases. These application-aware metrics

are able to capture end-to-end fault propagation across comput-

ing stack, and provide guidance in intelligent fault injection and

designing efficient domain-specific resilient techniques.

3.2 Fault Impact

Fault originated at various places (Section 2.2) may propagate

through the autonomous system and impact the application per-

formance and reliability (Fig. 1). Using application-aware metrics

(Section 3.1), we examine the fault impact on autonomous systems.

Gaussian noise
std = 0

Gaussian noise
std = 2.0

Gaussian Noise std (m) Flight Time (s) Flight Energy (kJ) Success Rate (%)

0 124.3 67.5 100

0.5 130.1 69.1 99

1.0 155.4 86.9 95

1.5 189.6 108.2 90

2.0 261.7 144.8 82

Figure 3: The impact of senor noises (e.g., Gaussian noise in camera

depth reading) on UAV autonomous system performance and safety.

Observation 2: Environmental conditions and sensor noises may

degrade the surrounding interpretation, and impact the performance

and safety of autonomous systems.

Fig. 2 demonstrates the environmental impact on autonomous

navigation applications, where we investigate two types of condi-

tions: brightness and contrast. We use UAV autonomous navigation

as a case study, where the task of the UAV is to fly from the start

position to the goal position in the shortest time without colliding

into any obstacles. The experiments are based on UAV simulators

MAVBench [30] and PEDRA [31]. For environment noise, we apply

noise model 𝑓 (𝐼 ) = 𝑏𝐼 +𝑐 on sensing images, where 𝐼 represents im-

ages, 𝑏 and 𝑐 represent brightness and contrast factor, respectively.

We evaluate {𝑏 = 0, 45, 90} and {𝑐 = 1.0, 1.5, 2.0} cases, and observe
that increased brightness and contrast result in lower task success

rate with higher mission time and energy. This is because bright-

ness and contrast make some objects appear whiter and increase

the difficulty for UAVs to detect, resulting in path detours and more

path planning actions. Various real-world weather conditions, such

as rain, fog, and snow, can manifest as different types of fault in

sensing images and result in potential safety violations [32].

Fig. 3 assesses the sensor noise impact on UAV autonomous

navigation application, where we inject Gaussian noise in depth

reading of RGBD camera with various scales. We observe that

Gaussian noise inflates and obscures the objects, making the UAV

plan the trajectory more often since the original planned path may

be falsely perceived to lead to a collision. This causes the average

flight time to increase by 2.1×, with 2.1×more energy consumption.

False perception can even fail the navigation task, either making

the UAV collide into obstacles or fail to find feasible paths, resulting

in up to 18% success rate drop. This observation aligns with [30].

Faults from other sensor modules can impact application safety

as well. For example, [32] reveals that Radar faults will degrade

distance and velocity information, and propagate into self-driving

car systems, resulting in unsafe and traffic rule violations in both

high-speed and low-speed driving scenarios. Reproducible and rig-

orous fault models for each type of sensor need to be established

to facilitate accurate end-to-end resilience assessment.

Observation 3: Hardware faults in memory and compute units

can propagate through the autonomous system and impact applica-

tion performance and safety. Meanwhile, the frontend module (e.g.,

perception) demonstrates higher resilience than the backend module

(e.g., planning and control).

Fig. 4 shows the memory bit failure impact on a learning-based

autonomous navigation task. Recent chip characterization stud-

ies [16, 33] reveal that aggressive SRAM supply voltage scaling for
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(b) Memory bit failure impact.

Figure 4: The impact of memory bit failures (due to voltage over-

scaling) on UAV autonomous system performance and safety.

energy efficiency improvement will cause bit-level failures in SRAM

on account of process variation. The error rate increases exponen-

tially with lowered voltage, and errors are persistent across supply

voltages for a fixed memory array (Fig. 4(a)). Applying the mem-

ory fault model to a learning-based autonomous navigation task,

we observe that learning-based autonomy has inherent resilience

when the number of bit-flips is small. However, as the bit error rate

increases, the errors have higher chances of propagating through

the system and making UAV detour optimal trajectory, resulting in

longer flight time or even collision to fail the task (Fig. 4(b)).

Fig. 5 explores the silent data corruption impact on a physical

model-based autonomous navigation task. Physical model-based

autonomy typically involves multiple stages, where the percep-

tion stage builds a detailed representation of surroundings and

locates the agent, the planning stage finds an optimal collision-free

path, followed by the control stage to continuously track the dif-

ferences between actual poses and pre-planned path and move the

agent. We pick a typical kernel in each stage and inject a single

transient bit-flip at the source or destination register of execution

instruction [23]. The fault emulates silent data corruption in the

processor’s functional units. As Fig. 5(a) shows, we observe that

in this application, fault in fronted perception has less impact on

task performance, while faults in backend planning and control

have a higher chance of leading to task failure. This is because

perception has more information redundancy than planning and

control. One corrupted voxel in perception may still be remedied by

other normal voxels and result in correct planning results, however,

backend stages usually only include critical information and can

directly lead to a detour (Fig. 5(b)) [23]. Similarly, in a self-driving

car, fault in the backend compute module (e.g., throttle, PID con-

troller, steer) brings more traffic violation [24]. This observation

provides opportunities for intelligent and adaptive fault mitigation.

Observation 4:Adversarial attacks in data collection, model train-

ing, and model deployment pose reliability and safety threats to au-

tonomous systems.

Adversarial robustness aims to study the weaknesses of a model

in its lifecycle that could possibly be exploited by a bad actor and

result in negative impacts [34]. The lifecycle spans data collection

and processing, model training, and model deployment. A threat

model specifies the capability of the bad actor and the attacker’s

objective. For example, data poisoning attack assumes an attacker

can manipulate a subset of the training data such that models

trained on the tampered dataset will carry certain vulnerabilities

to be exploited, such as a backdoor attack that is able to control the

prediction of the model upon the presence of some trigger patter

at the data input. Another well-known weakness is adversarial
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Figure 5: The impact of compute silent data corruption (SDC) on

UAV autonomous system performance and safety.

example, a crafted perturbed data sample to evade the prediction

of a target model while maintaining high similarity to the original

natural instances. These adversarial examples can also be realized

in the physical space as adversarial objects. In particular, many

physical adversarial examples are shown to be evasive to object

detectors (e.g., adversarial stop sign [35], adversarial T-Shirt [36],

and adversarial make-up [37]), which is an essential component

in autonomous systems. For instance, the authors in [36] showed

that their adversarial T-Shirt could achieve 74% and 57% attack

success rates in the digital and physical worlds against YOLOv2,

respectively, which means in a majority of the frames, the target

model makes incorrect object detections for a person wearing the

adversarial T-Shirt. There are also specialized adversarial attacks

proposed for autonomous systems, such as the phantom attack

targeting advanced driver-assistance systems [38]. Many attacks

can be executed given limited information and feedback, such as

using the principle of query-based black-box attacks [39, 40].

3.3 Fault Injection Tool and Methodology

Observation 5: Intelligent fault injection (FI) scheme can reduce FI

experiment time, prune FI test space, and efficiently identify safety-

critical scenarios.

Fault injection is a critical and well-established technique for

system resilience evaluation. Taking hardware transient fault as

an example, several FI tools targeted different computing stack lay-

ers have been recently proposed, such as PINFI [41], NVBitFI [42],

LLFI [43], GemFI [44] at architecture-level, Ares [45], PytorchFI [46],

TensorFI [47] at application-level. These tools are used to inject

faults by randomly sampling from fault locations and obtain stati-

cally significant estimation for resilience evaluation.

However, the conventional random FI method faces several chal-

lenges in autonomous system resilience evaluation. First, random

FI cannot guarantee to cover all safety-critical scenarios. This is

because some safety-critical bits are clustered in the state space,

making random FI cannot mine them [48]. Second, random FI in

autonomous systems will incur huge performance overhead and

result in long experiment durations. The resilience evaluation of

the autonomous system needs to be conducted at the end of each

scenario run to precisely capture the error propagation impact. We

observe that a single navigation task in UAV simulator PEDRA [31]

or MAVBench [30] typically takes 4 minutes. That implies it would

cost 2.8 days for one set of FI evaluations on a single scenario with

1000 runs, even with negligible overhead. Similarly, [24] discloses

that it roughly takes 5 minutes for one FI experiment on one proces-

sor on the Apollo platform, meaning 3.5 days per driving scenario

with 1000 runs, resulting in prohibitively expensive cost.
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Therefore, it is imperative to speed up FI and reduce the experi-

ment cost. The key idea is to prune FI test space and efficiently mine

the safety-critical scenarios. Several techniques can contribute to

developing an intelligent FI scheme.

First, application-specific characteristics can be involved in FI

scheme. BinFI [48] approximates the error propagation of au-

tonomous systems based on the insight that functions of ML model

often exhibit monotonicity and are tailored for specific purposes,

and adopt binary-search like FI scheme to pinpoint safety-critical

scenarios with much lower cost compared to random FI.

Second, FI can be transformed into multi-phase hierarchical

fault analysis. Shah et al. [25] present a two-phase metric-aware FI

scheme, where environment-agnostic FI is first conducted to mea-

sure motion planning resilience metric collision exposure factor

(Table 2) of all bit locations, and then FI is only conducted on a

subset of bit locations with distinct metric values to approximate

faulty probability of all other bits. Similarly, Rubaiyat et al. [32]

demonstrate a two-phase FI for environmental resilience assess-

ment, where the first phase identifies potential safety violation

scenarios and then pass to FI campaigns in the second phase.

Third, machine learning method can contribute to revealing

safety-critical scenarios and speed up FI experiments. DriveFI [24]

integrate Bayesian network (BN) in FI framework, where BN is

able to provide an interpretable formalism to model faults propaga-

tion across the autonomous system. Bayesian FI is able to efficient

pinpoint 561 critical faults in less than 4 hours, achieving 3690×

acceleration. These intelligent FI techniques efficiently prune the

FI space, mine critical scenarios, and provide guidance for smart

error mitigation techniques that selectively protect critical parts.

4 FAULT DETECTION AND MITIGATION ON
AUTONOMOUS SYSTEMS

This section discusses the techniques for mitigating fault impacts

and improving the resilience of autonomous systems. First, we

discuss the selective redundancy-based mitigation methods from

both sensors and compute. Next, we examine the lightweight cost-

effective protection schemes with a UAV case study, and highlight

the need to understand the relationships among performance, effi-

ciency, and reliability metrics. Finally, we review the key techniques

for improving the adversarial robustness of autonomous systems.

Observation 6: Selective redundancy is still effective for improving

resilience, especially for large-scale autonomous systems.

Selective redundancy, replicating a set of system components to

run identical functions, is a prominent technique for autonomous

systems. Missing or discounting redundancy may pose resiliency

threat to safety-critical autonomous systems, such as recent Boeing

737 MAX crash due to a lack of sensor modality redundancy [49].

Redundancy can be selectively adopted to any stage of the au-

tonomy pipeline. For sensors, two or more sensor systems could

be used to detect obstacles, and they can be integrated to exploit

complementary environmental contexts by fusing data from vari-

ous sensing modalities [50]. For compute, both hardware-level and

software-level selectively redundancy can be deployed for safety-

critical systems. Hardware-level techniques include circuit and

architecture-based error detection and correction schemes, thread

duplication, power redundancy, SoC duplication, etc. Software-level

techniques include algorithm-based error detection and correction
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Figure 6: Comparison of software-based lightweight fault detection

and recovery scheme [54] and redundancy-based approaches (DMR

and TMR) on DJI Spark UAV platform from end-to-end autonomous

system flight performance perspective.

schemes, instruction retry and duplication, etc. Fallback systems are

recently developed by selectively duplicating computing hardware

and software to meet the safety envelope in self-driving car [51].

How to make the selective redundancy system minimal with re-

source and energy constants is still to be explored.

Observation 7: Lightweight and application-aware fault detec-

tion and mitigation are crucial for the performance and resilience of

resource-constrained autonomous systems.

The redundancy approach is effective for fault mitigation, how-

ever, the incurred area and power overhead may degrade system

performance for resource-constraint systems. Take UAV navigation

as an example, the increased hardware power dissipation requires

extra cooling necessities, which will increase the onboard payload

and lower the flight velocity, resulting in longermission time and en-

ergy [52]. Meanwhile, the power overhead will reduce the available

operation time for battery-powered autonomous systems. Thus, for

resource-constrained and cost-sensitive systems, lightweight fault

protection schemes are critical for both performance and resilience.

Domain-specific properties can be taken into account to achieve

lightweight cost-effective fault mitigation. In physical model-based

autonomy, MAVFI [23] applies a two-layer autoencoder to monitor

the anomaly behaviors of UAV cross-stage variables (e.g., veloc-

ity, time to collision, yaw), and triggers the signal to cease the

error propagation to flight commands. In learning-based autonomy,

neural network-specific strategies, such as range-based anomaly de-

tection [15, 53], will be effective for autonomous system resilience

improvement. The unique end-to-end learning process exposes op-

portunities for lightweight protection. Wan et al. [54] propose a

software-based adaptive exploration-to-exploitation ratio adjust-

ment scheme. Once faults are detected, the UAV will automatically

conduct more exploration actions to avoid being stuck in the wrong

states and adapt itself to the fault pattern.

We evaluate the system performance overhead of range-based

and adaptive protection scheme [54] on a DJI Spark UAV using a

validated UAV roofline model [55]. As shown in Fig 6, the light-

weight fault mitigation scheme incurs negligible UAV performance

degradation (flight mission time increase). By contrast, the triple

module redundancy (TMR) scheme incurs a flight time increase

by 1.89× on DJI Spark with the same task, because higher thermal

design power and weight payload lower the UAV agility and veloc-

ity. This further corroborates that application-aware lightweight

protection techniques are needed for resource-constrained systems.

Observation 8: Reliability, performance, and efficiency metrics

are correlated with each other, and should be considered concurrently

when designing autonomous systems.
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Achieving high reliability, performance, and efficiency is gener-

ally of significance when building autonomous systems, but these

design metrics do not come in isolation. Optimizing for a single

metric may bring negative effects to other metrics. As Fig. 6 demon-

strates, when we optimize the resilience with the dual module

redundancy (DMR) technique on a micro-UAV DJI Spark, the re-

dundancy increases power and payload overhead, and lowers UAV

safe flight velocity by 21.3%, resulting in 1.27× longer mission time.

Though redundancy increases reliability, it can also negatively af-

fects the UAV task performance. Similarly, as Fig. 4 reveals, when

we optimize the processor energy efficiency by lowering the supply

voltage of SRAM, the voltage over-scaling will incur bit-flips in

memory cells. The memory bit failures propagate through the UAV

system and finally result in longer flight time with higher total

flight energy, even a few task failure cases. Though low-voltage

increases processor efficiency, it poses threats to system reliability

and may even result in lower task efficiency with higher energy

consumption. Thus, we need to understand the relationships among

different metrics and the consequences of each optimization tech-

nique and then take all of these factors into consideration to build

a high-performance, efficient, yet resilient autonomous system.

Observation 9: Holistic and systematic inspection of possible

vulnerabilities and adversarial training can effectively improve au-

tonomous system robustness. Incorporating application-specific prop-

erties can enhance the robustness detection performance.

Many lessons learned from studying and improving the adver-

sarial robustness of general machine learning algorithms can be

well transferred to autonomous systems. Based on the AI model

inspector framework [34], the methods for improving robustness

can be divided into two categories: detection and mitigation. In the

detection phase, a systematic inspection of possible vulnerabilities

considering different threat models can provide both qualitative

and quantitative assessments of the model’s status against adversar-

ial attacks. Moreover, before the model makes an inference of the

current state, a detector should be used in place to discern anoma-

lous inputs, such that the model can refuse to make a prediction or

call for a deeper investigation to reduce the risk of making wrong

decisions. An effective detector usually needs to incorporate do-

main knowledge and task-specific properties to enhance detection

performance and make minimal harm in normal instances, such as

the use of spatial/temporal dependency as intrinsic data properties

[56], and the use of response consistency for detecting models with

backdoors [57]. In the mitigation phase, the most effective strat-

egy against adversarial examples thus far is adversarial training

[58–60], which incorporates self-generated adversarial examples

during model training for improved robustness. Similarly, one can

take a given model and finetune it using robust training methods to

mitigate the adversarial effects [61, 62]. Finally, attack-independent

robustness evaluation and certification-based approaches can be

used to quantify the level of robustness [63, 64].

5 CHALLENGES AND OPPORTUNITIES

Challenge 1: Cross-layer and end-to-end resilience and robustness

evaluation of autonomous systems.

Autonomous systems typically span multiple computing layers

(hardware and architecture, runtime and system, algorithm and

application), and contain multiple cyber-physical components (sen-

sors, compute platforms, actuators). Evaluating resilience within an

individual component or part of the stack may miss the error propa-

gation through the whole system and drive misleading observations

or suboptimal solutions.

Opportunity: The complexity of autonomous systems reveals

the need to analyze the resilience and robustness in a cross-layer

and end-to-end manner, from both vertically (cross-layer) and hori-

zontally (end-to-end) view, with suitable application-aware metrics

(Fig. 1). For example, hardware faults may get masked when they

propagate up the computing stack, and understanding the masking

potential and propagation potential is critical in fault analysis and

mitigation for autonomous systems. Similarly, faults in autonomous

system frontend perception stage may becomemasked as they prop-

agate to backend planning and control stages, resulting in different

resilience characteristics. Besides, constructing a methodology for

holistic end-to-end resilience and robustness assessment of au-

tonomous systems with open-source fault injection tools, would

considerably help people understand autonomous system resilience

features and propose effective protection solutions.

Challenge 2: Systematic and quantitative comparison and bench-

marking resilience and robustness of autonomous systems.

Given the increasing need to facilitate resilient and robust au-

tonomous system design and the rapid advances of algorithms

and hardware platforms, benchmarking the system resilience in a

comparable, systematic, and quantitative way is critical. Existing

autonomous system benchmarking suites, such as SLAMBench [65]

and RTRBench [66], mainly focus on algorithm efficiency and per-

formance, while missing resilience and robustness consideration.

Opportunity: There is a need to formulate methodologies and

techniques to develop a comprehensive benchmark platform for the

resilience and robustness evaluation of autonomous systems. Such

benchmark suites need to cover a diverse set of reliability aspects

(e.g., hardware resilience and adversarial robustness). Standardized

resilience and robustness benchmarks, such as RobustBench [67]

and IBM ART toolbox [68], can be extended to support autonomous

system evaluation. The benchmark needs to capture both inner-

kernel and intra-kernel resilience. The inner-kernel resilience can

be evaluated by injecting fault in a single autonomy component and

directly observing its output. The intra-kernel resilience needs to

evaluate in an end-to-end manner with fault propagating through

the system across layers of stack, and requires the composability of

metrics to accurately quantify the autonomous system resilience.

Benchmarking the autonomous systems will guide the software

and hardware developers to investigate the trade-offs in resilience,

performance, and efficiency of different autonomy components

and system compositions, facilitating the building of safety-critical

systems in a validatable and holistic manner.

Challenge 3: Suitable fault injection method for each component

in heterogeneous systems, and accurate assessment of autonomous

system-level resilience based on the component-level evaluation.

Autonomous systems are usually composed of many cyber (e.g.,

compute) and physical (e.g., sensors) components. For compute

platform, it is typically designed in a heterogeneous approach, in-

cluding CPU, GPU, and domain-specific accelerators. Each compo-

nent may have its unique features and affect overall autonomous

system resilience to various degrees.
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Opportunity: The complex cyber-physical system and hetero-

geneous computing hardware expose the opportunity to develop

domain-specific FI techniques and accurate system-level resilience

estimation. On the one hand, prior FI tools are usually designed for

CPUs and GPUs where they target specific ISAs and microarchi-

tectures for high accuracy and efficiency. However, many domain-

specific accelerators in autonomous systems cannot be directly

assessed by these tools due to their specialized ISAs and microar-

chitecture. Suitable fault injection techniques for accelerators need

to be explored. On the other hand, the system resilience is depen-

dent on many compute components and dataflow graphs, so the

overall resilience estimation cannot be determined by simple addi-

tion or bound of each component. Therefore, the component-level

resilience and robustness at the individual SoC level need to be as-

sessed in the context of the entire autonomous system in a realistic

manner. Fault mitigation solutions at the SoC level also need to

work in unison with the overall system resilience strategy [69].

Challenge 4: Accurate resilience and robustness assessment of

end-to-end learning-based autonomous systems.

End-to-end learning (E2E) is one promising autonomy paradigm

in autonomous systems, where the agent takes sensor information

as inputs and directly generate actions through unsupervised learn-

ing (e.g., reinforcement learning) [70, 71]. E2E has different learn-

ing properties than well-studied ML-task in autonomous systems

(e.g., ML-based perception). ML-based task typically adopts offline

training and deployment procedure (e.g., train the policy on high-

end and perform inference on edge), while E2E usually requires

real-time adaptation and fine-tuning on edge due to the simulation-

to-real gap. Besides, different from single-step non-sequential infer-

ence in supervised ML-task, the performance of E2E policy depends

on how effective it is in the long-term decision-making process.

Opportunity: The unique unsupervised and sequential learning

characteristics of E2E-based autonomy unveil the opportunities to

accurately assess its resilience and robustness properties. Faults at

one stage might propagate to subsequent stages in the sequential

decision-making process. Faults may impact the on-device train-

ing process and even degrade policy convergence. Recently, [54]

explores how transient and permanent faults impact E2E-based

autonomous navigation tasks with application-aware metric and

lightweight fault mitigation schemes. A comprehensive resilience

and robustness evaluation of E2E-based autonomous systems, along

with energy and performance optimization techniques, is critical for

democratizing learning-based autonomy for autonomous systems.

Challenge 5: Evaluation and improvement of the resilience and

robustness of swarm intelligence autonomous systems.

Going beyond a single autonomous agent, swarm-intelligent is

attracting increasing attention, where multiple agents collaborate

with each other to perform a task. Swarm autonomous systems

can be designed in either a centralized or decentralized manner,

and need to operate robustly in the presence of faults since the

information from a group of the swarmmay be unreliable or tainted.

Opportunity: There is an opportunity to assess the resilience and

robustness of swarm intelligence systems, especially when multiple

agents interact with each other. Recently, FRL-FI [72] investigates

how transient hardware faults impact federated learning-based

swarm UAV autonomous navigation, and explores the different

resilience characteristics of servers and agents. Leveraging the

insight that faults in server UAV impact swarm systems more, FRL-

FI proposes an application-aware server-centric fault mitigation

technique which is lightweight and able to improve swarm auton-

omy resilience. [73] explores adversarial noise impact on federated

learning-based swarm UAV autonomous navigation, and improves

robustness by adaptively adjusting server-agent communication in-

tervals. Another opportunity lies in how to make the fused map and

perception information of swarm autonomous system error- and

attack-tolerant using software-hardware solutions. State-of-the-art

fault detection and adversarial robustness methods can be incorpo-

rated into swarm systems (e.g., IBM-developed cloud-backed swarm

cognition [74]) for resilience assessment. Suitable metrics and tech-

niques for improved collaborative perception and decision-making

autonomy can help achieve swarm autonomous resilience.

Challenge 6: Lightweight and plug-and-play fault detection and

mitigation techniques for autonomous systems.

The increasing complexity in hardware and software design, and

strict constraints in energy and real-time of autonomous systems

make full system fault testing and recovery incur high overhead and

may degrade system performance. How to accurately determine

critical and non-critical tasks and protect the system with mini-

mal resources by leveraging application-aware properties remains

underspecified and challenging.

Opportunity: There is a need for lightweight and plug-and-play

fault detection and mitigation techniques. The insight that some

components are more critical to faults exposes the opportunity

for adaptive fault mitigation schemes. For instance, frontend and

backend kernels exhibit different resilience, implying different mit-

igation schemes may be applied. It is also critical to identify the

safety-critical parts or the minimal subset of computing systems

that can guarantee safe operation, while meeting real-time con-

straints. Targeted tests can be generated for quick and lightweight

resilience evaluation instead of whole system assessment, which can

reduce the engineering and development efforts. Besides, the unique

temporal and spatial data diversity of autonomous systems can be

leveraged as redundancy to improve resilience. DiverseAV [75]

exploits the temporal sensor data diversity by distributing the sen-

sor data between two software agents, achieving fault detection

for hardware faults in autonomous systems with low computa-

tional overhead. In light of the rapid evolution of hardware for au-

tonomous systems, the development of post-silicon software-based

solutions capable of mitigating hardware faults and minimizing the

cost of re-architecting the design has been becoming essential.

6 CONCLUSION

The autonomous system is rising, and the ability of an autonomous

system to tolerate or mitigate against errors is essential to ensure its

functional safety and resilience. This paper presents the cross-layer

closed-loop autonomous systems and illustrates associated fault

sources, fault impact, and fault mitigation techniques, along with

several key observations. We conclude the paper by discussing the

challenges, research opportunities, and roadmap for assessing and

building next-generation resilient and robust autonomous systems.
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