
Signals and Systems for All Electrical Engineers

Aaron D. Lanterman, Jennifer E. Michaels, and Magnus B. Egerstedt

August 22, 2016

2

Contents

Change Log i

Preface iii
0.1 The DSP First Legacy . iii
0.2 Forward to the Past . iv
0.3 Putting Educational Eggs in Many Baskets – Not Just One v
0.4 For All Electrical Engineers . v
0.5 Tough Choices . vi

1 What are Signals? 1
1.1 Convenient continuous-time signals . 1

1.1.1 Unit step functions . 1
1.1.2 Delta “functions” . 3
1.1.3 Calculus with Dirac deltas and unit steps . 4

1.2 Shifting, flipping and scaling continuous-time signals in time 4
1.3 Under the hood: what professors don’t want to talk about . 5

2 What are Systems? 9
2.1 System properties . 10

2.1.1 Linearity . 10
2.1.2 Time-invariance . 11
2.1.3 Causality . 11
2.1.4 Examples of systems and their properties . 12

2.2 Concluding thoughts . 13
2.2.1 Linearity and time-invariance as approximations . 13
2.2.2 Contemplations on causality . 14
2.2.3 How these properties play out in practice in a typical “signals and systems” course . . 14

3 Why are LTI Systems so Important? 15
3.1 Review of convolution for discrete-time signals . 15
3.2 Convolution for continuous-time signals . 16
3.3 Review of frequency response of discrete-time systems . 16
3.4 Frequency response of continuous-time systems . 17
3.5 Connection to Fourier transforms . 18

3

4 CONTENTS

3.6 Finishing the picture . 19
3.7 A few observations . 19

4 More on Continuous-Time Convolution 21
4.1 The convolution integral . 21
4.2 Properties of convolution . 22
4.3 Convolution examples . 23
4.4 Some final comments . 28

5 Cross-Correlation and Matched Filtering 29
5.1 Cross-correlation properties . 30
5.2 Cross-correlation examples . 31
5.3 Matched filter implementation . 31
5.4 Delay estimation . 32
5.5 Causal concerns . 33
5.6 A caveat . 34
5.7 Under the hood: squared-error metrics and correlation processing 34

6 Review of Fourier Series 37
6.1 Fourier synthesis sum and analysis integral . 37
6.2 System response to a periodic signal . 38
6.3 Properties of Fourier series . 38
6.4 Fourier series of a symmetric “square wave” . 39

6.4.1 Lowpass filtering the square wave . 40
6.5 What makes Fourier series tick? . 41
6.6 Under the hood . 43

7 Fourier Transforms 45
7.1 Motivation . 45
7.2 A key observation . 46
7.3 Your first Fourier transform: decaying exponential . 47

7.3.1 Frequency response example . 47
7.4 Your first Fourier transform property: time shift . 48
7.5 Your second Fourier transform: delta functions . 48

7.5.1 Sanity check . 49
7.6 Rectangular boxcar functions . 49

7.6.1 Fourier transform of a symmetric rectangular boxcar 49
7.6.2 Inverse Fourier transform of single symmetric boxcar 50
7.6.3 Observations about our boxcar examples . 50

7.7 Fourier transforms of deltas and sinusoids . 51
7.8 Fourier transform of periodic signals . 52

8 Modulation 53
8.1 Fourier view of filtering . 53

8.1.1 Filtering by an ideal lowpass filter . 54
8.2 Modulation property of Fourier transforms . 54

CONTENTS 5

8.2.1 Modulation by a complex sinusoid . 55
8.3 Double Side Band Amplitude Modulation . 55

8.3.1 DSBAM transmission . 55
8.3.2 DSBAM reception . 56
8.3.3 Practical matters . 57

8.4 Baseband representations of bandlimited signals . 58

9 Sampling and Periodicity 59
9.1 Sampling time-domain signals . 59

9.1.1 A Warm-Up Question . 59
9.1.2 Sampling: from ECE2026 to ECE3084 . 59
9.1.3 A mathematical model for sampling . 60
9.1.4 Practical reconstruction from samples . 63

9.2 Deriving the DTFT and IDTFT from the CTFT and ICTFT 65
9.3 Fourier series reimagined as frequency-domain sampling . 66

9.3.1 A quick “sanity check” . 68
9.4 The grand beauty of the duality of sampling and periodicity 68

10 Laplace Transforms 71
10.1 Introducing the Laplace transform . 71

10.1.1 Beyond Fourier . 71
10.1.2 Examples . 72

10.2 Key properties of the Laplace transform . 73
10.2.1 Linearity . 73
10.2.2 Taking derivatives . 74
10.2.3 Integration . 74
10.2.4 Time delays . 75

10.3 The initial and final value theorems . 76
10.3.1 Examples . 76

10.4 Laplace and differential equations . 77
10.4.1 Partial fraction expansions . 77

10.5 Transfer functions . 82
10.5.1 Input-output systems . 82
10.5.2 Stability . 86
10.5.3 Examples . 88
10.5.4 Asymptotic behavior . 89

11 Laplace Transforms (Residue Method) 91
11.1 Residue method for distinct roots . 91

11.1.1 An example with distinct real and imaginary roots . 92
11.1.2 An example with complex roots . 92

11.2 Residue method with repeated roots . 93
11.2.1 An example with only a repeated root . 94
11.2.2 An example with a repeated root and a distinct root 94

11.3 PFEs of Improper Fractions . 95

6 CONTENTS

12 Frequency Responses of Second-order Systems 97
12.1 Second-order lowpass filter . 98
12.2 Second-order highpass filter . 99
12.3 Second-order bandpass filter . 100
12.4 Second-order Butterworth filters . 102

13 Connecting the s and z Planes 103
13.1 Rise of the z-transforms . 103
13.2 Converting a continuous-time filter to a discrete-time approximation 104

13.2.1 Example: converting a Butterworth filter . 105

14 Step Responses of Second-order Systems 107
14.1 Second-order lowpass filter . 107

14.1.1 Overdamped lowpass response . 107
14.1.2 Critically damped lowpass response . 108
14.1.3 Underdamped lowpass response . 108

14.2 Second-order highpass filter . 109
14.2.1 Overdamped highpass response . 110
14.2.2 Critically damped highpass response . 110
14.2.3 Underdamped highpass response . 110

14.3 Second-order bandpass filter . 111
14.3.1 Overdamped bandpass response . 111
14.3.2 Critically damped bandpass rponse . 111
14.3.3 Underdamped bandpass response . 112

14.4 A few observations . 112

15 Circuit Analysis via Laplace Transforms 113
15.1 Laplace-domain circuit models . 113

15.1.1 Resistors . 113
15.1.2 Capacitors . 113
15.1.3 Inductors . 114

15.2 Coil Guns . 114

16 Control Systems 117
16.1 The trouble with open loop control . 117
16.2 The general setup for feedback control . 120
16.3 P control . 120
16.4 PI control . 121
16.5 PD control . 122

16.5.1 PD control of a system with two real poles . 123
16.5.2 “D” stands for—Danger??? . 123

16.6 Tracking inputs that are not step functions . 123
16.6.1 Tracking sinusoids . 123
16.6.2 Tracking ramps . 124

16.7 PID control of a resonant system . 124
16.7.1 Example . 126

CONTENTS 7

16.8 PID control in the real world . 126

17 Energy and Power 127
17.1 Parseval’s theorem . 127

17.1.1 Generalizations for inner products . 128
17.2 Power supply design example—guitar amplifiers . 128

17.2.1 Hungry, hungry amplifiers . 128
17.2.2 Mighty, mighty Bassman . 128

8 CONTENTS

Change Log

This document is a rough pre-alpha draft; please do not redistribute. It will undergo constant revision.

• August 22, 2016: Change log rebooted.

i

ii CHANGE LOG

Preface

Dozens, if not hundreds, of electrical engineering textbooks have been written with phrase “Signals and
Systems” or “Systems and Signals” in the title. Occasionally their titles will also contain the words “Circuits”
or “Transforms,” and recent years, it has become fashionable to add “with MATLAB” somewhere on the
cover. These texts are commonly used for junior-level classes, although there are now many examples of
departments teaching this material at the sophomore level.

We believe this junior-level text, which focuses heavily on continuous-time signals and systems, is unique
in that it is intended to follow sophomore-level courses on discrete-time signals and systems and linear
electrical circuits.

0.1 The DSP First Legacy

Although courses sophomore-level courses on linear circuits are ubiquitous, sophomore-level courses on
discrete-time signals and systems are comparatively rare.

In the early 1990s, Georgia Tech professors Ron Schafer, Jim McClellan, and Tom Barnwell started to
explore using digital signal processing, instead of electric circuits, as an introduction to electrical engineering.
Schafer and McClellan joined with Rose-Hullman professor Mark Yoder to pen DSP First, which formed the
basis of a quarter-length course at Georgia Tech. The “signal processing” aspect was somewhat incidental; at
its core, the course was an introduction to signal and system concepts that happened to use DSP, particularly
discrete-time filtering, as a compelling application. The course began with continuous-time sinusoids, their
complex phasor representations, and Fourier series, but quickly sampled those sinusoids to explore frequency
response concepts the discrete-time context.

Although it may seem unusual at first glance, the discrete-time domain offers several pedagogical advan-
tages over the continuous-time domain. Sampling and aliasing are somewhat counterintuitive; even today,
well-known analog engineers occasionally make statements that betray a profound misunderstanding of the
Nyquist sampling theorem. Hence, we have found it useful to introduce sampling early in the curriculum.
Also, mathematical complications in continuous-time theory, such as the generalized function aspects of the
Dirac delta function, are avoided in a discrete-time context, which may make the discrete-time theory slightly
easier to explain at the sophomore level. However, the strongest advantage of the DSP First approach is that
allow students to readily put theory into practice using appropriate tools such as MATLAB. The continuous-
time theory is often more abstract, and appropriate lab exercises require specialized equipment; in contrast,
discrete-time signal processing can be done with a common personal computer. Hence, a formal lab section
with concrete audio and image processing examples in MATLAB was an integral part of the course.

Shortly after DSP First was published, the Board of Regents of the University System of Georgia forced a
quarter-to-semester conversion upon Georgia Tech. The DSP First authors found themselves with a text that

iii

iv PREFACE

covered only two-thirds of a semester. They decided to write additional chapters that covered continuous-
time system theory, largely covering concepts in the same order that they were covered in the discrete-time
portion of the course. Since students had already seen the concepts in the discrete-time domain, they were
able to cover the continuous-time concepts efficiently. Splitting the material into a discrete-time part followed
by a continuous-time part was opposite the order of many textbooks, in which the early chapters cover the
continuous-time domain and later chapters cover the discrete-time domain. It also contrasted with textbooks
that alternate domains, covering the continuous-time and discrete-time renditions of each concept in close
succession.

The resulting four-credit-hour semester course, ECE2025, spawned the textbook Signal Processing First
and became a signature course of Georgia Tech’s School of Electrical and Computer Engineering. In spite of
it being a four-credit-hour course, it felt incomplete. Although we covered discrete-time and continuous-time
convolution, and discrete-time and continuous-time frequency responses, there was not enough time in the
semester to cover Laplace transforms as the natural analogue1 to the previously covered z-transforms.

At the time, ECE2040: Circuit Analysis listed ECE2025 as a prerequisite. After being introduced to
sinusoids, complex exponential notation, and frequency concepts in ECE2025, students could tackle circuit
theory with a stronger conceptual background. Georgia Tech professors Russ Mersereau and Joel Jackson
emphasized this connection in their textbook Circuit Analysis: A Systems Approach, which could colloquially
be though of as “Circuit Analysis Second” as a follow-on to DSP First or Signal Processing First. They
placed a strong emphasis on the Laplace transform, rounding out an aspect of ECE2025 that felt incomplete.
Unfortunately, some of the faculty that traditionally taught ECE2040 never fully embraced this approach, and
continued teaching ECE2040 exactly the way they might have during the Nixon or Carter administrations.

0.2 Forward to the Past

In 2010, when the School of ECE at Georgia Tech undertook an evaluation and revision of its undergraduate
curriculum, many alumni suggested that ECE2025 should be left as it was. However, experience had shown
that many students had trouble keeping up with the pace of ECE2025. In particular, some students seemed
to get lost shortly after the transition to continuous-time. At that point, the labs, which explored deeper
applications in the discrete-time context, started to feel decoupled from the more abstract continuous-time
lecture material. Proposals arose to split the material in ECE2025 into two courses. Around the same time,
pressure mounted to decouple ECE2040 from ECE2025, formally returning ECE2040 to its default disco-era
state.

The result of these negotiations was that ECE2025 would be split into ECE2026: Introduction to Signal
Processing, which would now more closely resemble the original quarter-length course from the 1990s, and
ECE3084: Signals and Systems. The original discrete-time material from the first two-thirds of ECE2025
would remain in ECE2026 (with some material on the discrete Fourier transform added to ECE2026 to
round out the course, and the overall pace of delivery made less intense), and the continuous-time material
from the last third of ECE2025 would be moved to ECE3084. Hence, the way we cover that material, and
the order in which we cover it, is strongly influenced by Signal Processing First. We review Fourier series in
Chapter 6, even though Fourier series are still covered in ECE2026, since students find Fourier series to be
one of the most challenging topics in ECE2026, and Fourier series are a natural path for introducing Fourier
transforms in Chapter 7. ECE3084 then follows up where the original ECE2025 left off, with coverage of
Laplace transforms and feedback, with emphasis on the application of feedback in circuit design and control

1Pun vaguely intended.

0.3. PUTTING EDUCATIONAL EGGS IN MANY BASKETS – NOT JUST ONE v

systems, particularly proportional-integral-derivative (PID) control. Much emphasis is placed on the time-
domain and frequency-domain responses of second-order systems, since a thorough understanding of such
behavior is key to understanding higher-order systems. Links between ECE3084 and ECE2026 are made in
Chapter 9, where sampling, which is addressed in a simplified form in ECE2026 for cases of single sinusoids,
is revisited from the standpoint of Fourier theory, and Chapter 13, where the z-transforms that play a central
role in ECE2026 are shown to be just a special case of Laplace transforms with some convenient, customized
notation.

0.3 Putting Educational Eggs in Many Baskets – Not Just One

Occasionally, it seems like students promptly forget almost everything they learned in a class the moment
they turn in their final exam. We have found that students benefit from seeing the same topic explored from
different perspectives in different classes, particularly in different years. We hope that ECE3084 reinforces
concepts learned in ECE2026; in some cases, students manage to understand the “second time around”
concepts that they didn’t quite catch the “first time around.”

Another example of spreading material through multiple courses is our coverage of circuits. Although
we emphasize that signal and system theory is widely applicable, this text is unapologetically an electrical
engineering text, so electric circuits play a central role, instead of being relegated to a few example problems.
During the ECE2025 era, ECE2040 included the analysis of circuits using Laplace transforms. However, that
portion of ECE2040 sometimes felt rushed, with Laplace transforms described at a somewhat superficial
level. As part of the new curriculum, circuit containing capacitors and inductors with initial conditions are
addressed using particular and homogenous solution methods,2 and in ECE3084, they are revisited using
Laplace-domain circuit equivalents in Chapter 15.

0.4 For All Electrical Engineers

“Signals and Systems” courses are usually taught by – and textbooks usually written by – faculty working in
the areas of communications, control, and/or signal processing. However, such courses are usually required
of all electrical engineering majors, even those not interested in those particular areas. At Georgia Tech,
the staffing of ECE2026 is coordinated by the Digital Signal Processing Technical Interest Group (TIG),
and ECE3084 is coordinated by the Systems and Controls TIG. This is an incidental administrative artifice;
ECE2026 and ECE3084 represent parts one and two of a unified exposition on fundamental mathematical
techniques that apply to nearly every aspect of electrical engineering, including optics, electromagnetics, and
biophysics.

The “all” in the title also refers to the philosophy that such a required course should serve students with
a wide variety of abilities and different strengths and weaknesses. Although a heavy dose of mathematics
is unavoidable in such a course, we emphasize the development of intuition over the details of manipulating
equations. We also unrepentantly employ phrases along the lines of “for most functions of practical interest
in engineering applications” in preference to getting bogged down in discussions of Lebesque measurability
and Hilbert space theory that are best left for graduate courses. That said, we do not shy away from
addressing complicated theoretical issues when avoiding them could lead to misunderstandings and incorrect
conclusions, particularly when it comes to dealing with unilateral Laplace transforms at the origin and
impulse sources in electric circuits.

2This is the technique used in the MIT course 6.002: Circuits and Electronics.

vi PREFACE

0.5 Tough Choices

Should Fourier transforms be introduced before Laplace transforms, or Laplace transforms be introduced
before Fourier transforms? Some authors consider the Fourier transform to be a special case of the Laplace
transform. We prefer to present Fourier transforms first in ECE3084; in addition to better echoing the
structure of ECE2026, we like to motivate the Laplace transform in terms of overcoming some limitations
of the Fourier transform. Also, in many engineering applications, the unilateral Laplace transform is often
sufficient; introducing the Fourier transform as a special case of the Laplace transform requires detailed
discussion of the bilateral Laplace transform along with its “region of convergence” issues, which is time that
we believe is better spent on other topics.

Many engineers (not just the electrical sort) experience the Laplace transform in the context of systems
described by linear differential equations with constant coefficients, so the transforms are ratio of polynomials.
Textbooks that begin with Laplace transforms might give the impression that such “lumped’ systems are
the only ones that are important. However, there are many “systems,” particularly applications in spatial
domains, such as optical point-spread functions and antenna beam patterns, that cannot be described by
ratios-of-polynomials in the Laplace domain. Topics in optics and electromagnetics may be better suited to
the Fourier domain, so we introduce it first partly to as a hat tip to these areas that are often neglected in
junior-level “Signals and System” courses.

We also spent some time contemplating whether or not to cover random processes. This text is intended
to cover a single junior-level semester-long course, and the schedule already feels fairly tight. Ultimately,
proper coverage of random processes would necessitate dropping some other material, such as the chapter on
PID control, which we prefer to keep as an example of feedback, and because nearly every electrical engineer
will encounter PID control at some point, regardless of whether they’ve taken an elective class on control
systems. At Georgia Tech, random processes are covered in ECE4260: Random Signals and Applications,
a senior-level elective. The omission of random processes does constrain the way we cover cross-correlation
and matched filtering, since we cannot present the matched filter from the standpoint of maximizing signal-
to-noise ratios. Matched filtering is not part of most junior signals and systems courses, but like PID control,
it arises in so many applications that we chose to cover it as an application of convolution.

Chapter 1

What are Signals?

Let us begin by considering what we mean by the term “signals,” in the sense of a course with a name like
“signals and systems.”

Mathematically, we abstract signals as functions that map a domain to a range. In particular, we are
interested in domains that have some sort of ordered structure. Courses with titles like “signals and systems”
typically focus on situations where the domain represents time. But can also have spatial-domain signals, in
multiple dimensions, such as two-dimensional images and three-dimensional MRI scans. We may also have
“space-time” signals; you can can think of a movie as a 3-D signal, where there are two spatial dimensions and
one time dimension. Electromagnetic or acoustic waves propagating through space are often parameterized
as four-dimensional signals with three spatial dimensions and one time dimension.

Our mathematical abstractions will let us apply the same tools in both time and space. By force of habit,
we will usually use the term “continuous time,” and use a domain variable t, even when we are discussing
ideas that would apply to “continuous space” or any other continuous domain.

Conventional mathematical notation can sometimes be a bit ambiguous without context. For instance,
x(t) might mean a function evaluated at a particular value of t, or we might write x(t) to represent the entire
function, in which case one might write x or x(·) instead.

1.1 Convenient continuous-time signals

Here, we will consider some continuous-time versions of signals that you previously encountered in your
studies of discrete-time signals. We will discuss continuous time systems later.

1.1.1 Unit step functions

Recall the “unit step” function u[n] (Fig. 1.1, left), defined as

u[n] =

{
1 for n ≥ 0,
0 for n < 0.

(1.1)

In continuous-time, we have an obvious equivalent (Fig. 1.1, right):

u(t) =

{
1 for t > 0,
0 for t < 0.

(1.2)

1

2 CHAPTER 1. WHAT ARE SIGNALS?

-10 -5 0 5 10

0

0.5

1

-10 -5 0 5 10

0

0.5

1

Figure 1.1: Discrete-time unit step (left) and continuous-time unit step (right).

The definition of the unit step at zero could be subject to debate. Here, we prefer not to say what
u(0) – basically the ”vertical line” is in the right panel of Fig. 1.1 – at all. In general, we will go to great
pains to avoid situations where the exact value of u(0) matters. Engineering textbook authors who like to
precisely define u(0) seem to most commonly pick u(0) = 1, since that is the most obvious analogy with the
discrete-time version in (1.1), but one might also define it with u(0). Another common choice, justified by
some advanced but somewhat fussy mathematics, is to “split the difference” and let u(0) = 1/2. Again, we
will prefer to just not talk about what u(t) is at exactly 0 unless forced to. Any conclusions drawn from
analyses in which the value of u(t) at 0 is important should be viewed with a skeptical eye.

The use of the letter u, while a convenient shorthand for “unit,” can lead to confusion because some
authors, particularly ones working in the area of control theory, prefer to use u(t) to represent generic input
signals. Some authors prefer to use q(t), 1(t) or H(t) to present the unit step. The latter comes from
the continuous-time unit step sometimes being called the Heaviside step function, which is named after the
self-taught English electrical engineer, mathematician, and physicist Oliver Heaviside.

Unit step functions are helpful for representing “one-sided” functions that “turn on” at some time. For
instance, x(t) = cos(2πft)u(t) and x(t) = sin(2πft)u(t) are sinusoids that “turn on” at t = 0. The latter is
continuous; the former is not.

Recall that we can time-shift functions; for instance, the expression x(t − 3) shifts a function x(t)
three“time units” to the right (these time units could be seconds or nanoseconds or centuries; there’s usually
some assumed time unit that we don’t explicitly notate in the equations) and x(t+3) shifts a function three
“time units” to the left.

Unit steps are convenient for writing “boxcar” functions, like x(t) = u(t + 2) − u(t − 4), which is one
between t = −2 and t = 4 and zero outside of that. (Since x(t) is discontinuous at t = −2 and t = 4, we
would generally try to avoid explicitly defining x(−2) and x(4); any analysis relying on having exact values
of x(−2) and x(4) must be viewed with suspicion.) Some caution is needed; when writing an equivalent
boxcar in discrete time, if we want to include the n = 4 point, we need to write u[n+ 2]− u[n− 5], so there
is a slight difference between the analogous functions in discrete and continuous domains in terms of how
the formulas looks.

Boxcars let us easily define finite-length signals by multiplying them by some other signal. For example,
the function y(t) = exp(t)[u(t) − u(t − 1)] “chops” out a piece of an exponential in the interval 0 < t < 1
and is zero for t < 0 and t > 1. (At this point, we probably do not need to point out that we avoided saying
what the values at exactly t = 0 and t = 1 are).

1.1. CONVENIENT CONTINUOUS-TIME SIGNALS 3

1.1.2 Delta “functions”

Recall the “Kronecker” delta function from your studies of discrete-time signals:

δ[n] =

{
1 for n = 0,
0 for n 6= 0.

(1.3)

The Kronecker delta is an “impulse” in discrete-time. The continuous-time version of an impulse is called
a “Dirac” delta function. A hand-waving and almost criminally misleading definition might look something
like:

δ(t) =

{
infinity??? for t = 0,

0 for t 6= 0.
(1.4)

Keep the question marks after the word “infinity” in mind; staring into the center of the Dirac delta
function may induce madness. The trouble with the hand-waving definition is that the Dirac delta is not an
ordinary function like what you might have seen in a freshman calculus class, and any function it appears in
is not an ordinary function either. The Dirac delta is something called a generalized function, and generalized
functions are properly defined in terms of how they react to being integrated.1 If you integrate “over” a Dirac
delta, you get 1:

For t1 < t2:

∫ t2

t1

δ(t)dt =

{
1 if t1 < 0 < t2, i.e. 0 ∈ (t1, t2),
0 if t1 > 0 or t2 < 0, i.e., 0 6∈ [t1, t2].

(1.5)

This is jarring because changing an ordinary function at a single point does not change the value of
its integral; our Freshman calculus interpretation of the heuristic definition (1.4) would suggest that the
integral of δ(t) over the whole real line should be zero. A tremendous amount of arcane graduate-level
mathematical machinery has to happen under the hood for any of this to make sense. We will let the full-
time mathematicians worry about such details, and stick with a distilled version of the theory that is both
useful to and digestible by mere mortal engineers.

Notice that we have avoided precisely defining the “edge” cases where t1 = t0 or t2 = t0. This is related
to our reluctance to precisely define u(t) at t = 0.

Some more rigorous definitions of the Dirac delta function2 involve a limiting sequence of functions that
have unit area, and that get narrower and spikier, such as:

δ∆ =
u(t+ ∆/2)− u(t−∆/2)

∆
. (1.6)

We might then quasi-handwavily write δ(t) = lim∆→0 δ∆(t).
You can shift the Dirac delta to be wherever you want, just as can be done with any other signal. For

example, δ(t − 5) shifts the Dirac delta five units to the right, and δ(t − t0) is shifted t0 units, which is a
right-shift for t0 > 0 and left shift for t0 < 0.

When using a shifted Dirac delta, a simplification that often comes in handy, sometimes called the
sampling property, is to rewrite x(t)δ(t− t0) as x(t0)δ(t− t0); assuming x(t) is continuous at t0, this works
since once you multiply x(t) by δ(t− t0), it does not matter what x(t) was for any point besides t = t0. For

1At this point, we must admit that our characterization of signals earlier as functions that map some domain to some range
should be viewed as incomplete, now that we have introduced these bizarre “generalized functions.”

2To be precise, one should call it the “Dirac delta generalized function,” but nobody actually does that. Just make sure
that every time you see it you chant to yourself, “it’s not an ordinary function, and if I treat it like one without paying close
attention, I will get myself into trouble.”

4 CHAPTER 1. WHAT ARE SIGNALS?

instance, we could simplify t3δ(t + 2) as (−2)3δ(t + 2) = −8δ(t + 2). (A common mistake when doing this
simplification is to forget to include the δ part – δ(t+ 2) in this example – in the simplified version.)

Using that idea and the Dirac integral definition yields the sifting property, which evaluates a function
at a particular point by integration:∫ t2

t1

x(t)δ(t− t0)dt =

{
x(t0) if t0 ∈ (t1, t2),

0 if t0 6∈ [t1, t2],
(1.7)

where we once again hedge about cases where t1 = t0 or t2 = t0.
One often sees a one-line instantiation of this with t1 = −∞ and t2 =∞:∫ ∞

−∞
x(t)δ(t− t0)dt = x(t0). (1.8)

1.1.3 Calculus with Dirac deltas and unit steps

Notice that if we integrate over a Dirac delta from −∞ to t, we get a unit step:∫ t

−∞
δ(τ)dτ = u(t). (1.9)

The unit step u(t) is discontinuous at t = 0, so by the ordinary rules of freshman calculus, you cannot
take its derivative at t = 0. But in the quirky calculus of generalized functions, we can write

du(t)

dt
= δ(t), (1.10)

and it will make sense in terms of the fundamental theorem of calculus if we integrate both sides.
Example: Here, we shall differentiate a decaying exponential that turns on at t = 4, namely x(t) =

e−3(t−4)u(t− 4)
Using the rules for the derivative of products,

dx(t)

dt
= e−3(t−4)δ(t− 4)− 3e−3(t−4)u(t− 4). (1.11)

Using the sampling property, we can simpify the first term by plugging 4 in for t in e−3(t−4), yielding

dx(t)

dt
= δ(t− 4)− 3e−3(t−4)u(t− 4). (1.12)

Forgetting to include the δ(t− 4) term is a common error.

1.2 Shifting, flipping and scaling continuous-time signals in time

There are several common manipulations of continuous time signals that merit review. Time shifting, which
was mentioned previously, is perhaps the most common, where x(t − t0) is a shifted version of x(t). Don’t
forget that t0 > 0 is a shift to the right (negative sign), whereas t0 < 0 is a shift to the left (positive sign).
“Flipping” a signal in time simply refers to mirroring it about t = 0, where x(−t) is the flipped version of x(t).
Time scaling a signal refers to either stretching it or compressing it in time, where x(at) is a scaled version

1.3. UNDER THE HOOD: WHAT PROFESSORS DON’T WANT TO TALK ABOUT 5

of x(t). If |a| > 1, the signal is actually compressed instead of stretched, which can seem counter-intuitive.
Note that a = −1 corresponds to flipping a signal in time.

While each of these individual manipulations is generally straightforward, it can be confusing to apply
multiple ones such as shifting and flipping, or shifting and scaling. Looking at specific examples is useful,
several of which are shown in the following figure. Note that the star symbol on each plot corresponds to
the point of the original signal that was at t = 0.

In general, it is easier to think of a signal as first being scaled and then being shifted; that is, express a
scaled and shifted signal as x(a(t− t0)) rather than x(at− b). Then it is clear that the signal is first scaled
by a, followed by shifting the scaled signal x(at) by t0.

x(t)

x(t−2)

2

x(−t)

t

t

t

x(2(t−3))

x(−(t+3))

3

−3

t

t

x(0.5t)

t

Figure 1.2: Examples of time shifting, scaling, and flipping.

1.3 Under the hood: what professors don’t want to talk about

We spent a good portion of this chapter avoiding talking about what happens exactly at the discontinuity
of u(t), and what the integral of a Dirac delta is if one of the limits of the integral is located exactly on the
Dirac delta. This section will informally explore a few possibilities, mostly to establish that it is difficult
to develop a satisfying, consistent “answer.” Although not many textbooks venture into this territory,
particularly inquisitive students always seem to ask about it.

Let’s suppose that we decided to set u(0) = 1; many textbooks use this choice for u(t). To avoid
ambiguity, we will use the subscript geq, for greater than or equal to, to specify this choice of step function:

ugeq(t) =

{
1 for t ≥ 0,
0 for t < 0.

(1.13)

We would like our unit step function to be able to act as the antiderivative, aka, the indefinite integral,

6 CHAPTER 1. WHAT ARE SIGNALS?

of the Dirac delta. Trudging along symbolically, we might write∫ 0

−∞
δ(t)dt = ugeq(0)− ugeq(−∞) = 1− 0 = 1 (1.14)

and ∫ ∞
0

δ(t)dt = ugeq(∞)− ugeq(0) = 1− 1 = 0. (1.15)

This is profoundly unsettling. Our attempt to “derive” the dirac Delta function as a limiting function of
rectangles centered around the origin gives no hints as to why we should expect a delta function integrated
between −∞ and 0 to yield a different result than when integrated between 0 and ∞. We would need to
revise (1.5) to look like

For t1 < t2:

∫ t2

t1

δ(t)dt =

{
1 if t1 < 0 ≤ t2, i.e. 0 ∈ (t1, t2],
0 if t1 ≥ 0 or t2 < 0, i.e., 0 6∈ (t1, t2],

(1.16)

and it seems quite odd to have the interval in the if-then statement be open on the left and closed on the
right. Choosing a uleq(t) with uleq(0) = 0 would change the interval in (1.16) to read [t1, t2).

Let’s suppose that we “split the difference” and decide to set u(0) = 1/2. To avoid ambiguity, we will
use the subscript “half” and write

uhalf(t) =

 1 for t > 0,
1/2 for t = 0,
0 for t < 0.

(1.17)

This at least gives us a consistent answer to the question about what might happen when the location of
the Dirac delta function lands exactly at one of the limits of the integral:∫ 0

−∞
δ(t)dt = uhalf(0)− uhalf(−∞) = 1/2− 0 = 1/2 (1.18)

and ∫ ∞
0

δ(t)dt = uhalf(∞)− uhalf(0) = 1− 1/2 = 1/2. (1.19)

This somewhat fits our derivation of a Dirac delta as a limit of rectangles, since the set of limits −∞ to 0
and 0 to ∞ each cover half of a particular rectangle. But it seems awfully nitpicky to keep track of all of
these one-halves, and doing so is rarely helpful in practice. There are a few textbooks that use this nitpicky
definition.3

Hiding in the background is the question of whether the actual limits of the integral are included in
the range of values integrated over. When integrating “ordinary” functions, it doesn’t matter. But when
considering dirac Delta functions – which, once again, are not really functions in the usual sense – it can
matter. We could hope to avoid this situation, and only deal with issues that arise in typical engineering
practice. Unfortunately in our case, this issue arises rather dramatically in the context of unilateral Laplace
transforms, which play a vital role in the second half of this book. Many textbooks treat this issue in a
somewhat haphazard and inconsistent way, which can lead to great confusion.

3This business with the “1/2” at the transition might return to haunt us when we discuss Fourier series and Fourier
transforms, depending on the desired level of mathematical rigor.

1.3. UNDER THE HOOD: WHAT PROFESSORS DON’T WANT TO TALK ABOUT 7

Our “out” will be to augment the usual notation of limits in an integral to make it clear whether or not
the edge is included. For instance, we can write∫ ∞

0−
δ(t)dt = 1, (1.20)

where the superscript minus sign indicates that the integral extends to “just past” the lower limit and hence
include the Dirac delta. One might define, for a < b,∫ b

a−
x(t)dt ≡ lim

α→a−

∫ b

α

x(t)dt, (1.21)

where the superscript minus sign below the “lim” indicates that α approaches a from below.

8 CHAPTER 1. WHAT ARE SIGNALS?

Chapter 2

What are Systems?

In Chapter 1, we described signals as functions mapping from some domain, such as time or space, to some
range, such as air pressure, voltage, or light intensity.

We will abstract systems as mappings from one set of signals to another set of signals. One could think
of systems as functions, where the domain and range of these functions (systems) are themselves functions
(signals). Such mappings are often called “operators.”

We will generally refer to input signal as x(t) and output signals as y(t).1

Consider the ideal continuous-to-discrete sampler defined by y[n] = x(Tsn), where Ts is the sample
period. The sampler maps continuous signals to discrete-time signals:

(< → <)→ (Z→ <)

In the above representation, the left side denotes that the domain and range of the input are both the set
of real numbers, whereas on the right the domain is the set of integers (the time samples) and the range is
the set of real numbers (the values that can be assumed at each time point). For an actual analog-to-digital
converter, both the domain and range would be quantized, but here we assume that all digital signals are
only quantized in time (i.e., the domain).

The field of “digital signal processing” mostly focuses on systems that map discrete-time signals to
discrete-time signals:

(Z→ <)→ (Z→ <)

This text primarily focuses on systems that map continuous-time signals to continuous-time signals
(although discrete time will pop its head in the door from time to time):

(< → <)→ (< → <)

Complex-valued signals are sometimes useful too, particularly in communications and radar 8.4, but we
will mostly focus on real-valued signals. In particular, we will focus on single input–single output (SISO)

1Some authors use other conventions; for instance, control systems engineers often use u(t) to represent generic inputs; we
avoid that convention since it conflicts with our use of u(t) to represent a unit step function. All of the concepts we discuss
in the context of functions of time could also be applied to functions of space. Spatial coordinates are usually labeled x, y,
and z; the use of x to denote a function conflicts with that, so authors focusing on spatial domains, such as image processing,
often use f to represent functions of spatial coordinates, such in f(x, y). For additional excitement, some authors use different
conventions on different pages of the same book.

9

10 CHAPTER 2. WHAT ARE SYSTEMS?

systems, for which there is one input and one output, as opposed to the more general multiple input–multiple
output (MIMO) systems, for which there can be multiple inputs and outputs.

Caveat: Our current conceptualization of systems – which is what often comes to mind for engineers
who work in fields broadly defined as “signal and information processing” and “telecommunications” – is
incomplete. It leaves out the notion of “initial conditions” – i.e., that the system may be in some non-restive
state before we start poking at it with an input signal. In fact, one can put a great deal of effort into
studying the behavior of systems with no input at all once initial conditions are “put into the equation”
(both figuratively and literally). Such issues are of particular importance in control system engineering. We
will revisit this issue later in Chapter 11.

2.1 System properties

The concepts of linearity, time-invariance, and causality defined in the context of discrete-time systems
transfer naturally to continuous-time systems. The idea of time-invariance extends to other kinds of domains;
for instance, if the domain is spatial instead of temporal, one could use the the term “space-invariance.”
By force of habit, we will often use the term time-invariance when discussing properties that could more
generally be called “shift invariance.”

The concept of causality is most natural when the domain has some inherent “direction,” as in the case
of time.

It is good to develop intuition about whether a system is linear, time-invariant, and/or causal. This
section will present some “back of the brain” tricks that will serve you well much of the time.

Another important property of systems is stability, but we will hold off on that for now. We will address
stability in later chapters after we have built more mathematical scaffolding.

2.1.1 Linearity

A system is said to be linear if linear combinations of inputs result in the same linear combinations of outputs.
A system can readily be tested for linearity by considering scaled and summed inputs. Suppose that a SISO
system with input x1(t) results in the corresponding output y1(t), and input x2(t) results in the output y2(t).
The system is linear if the input x(t) = A1x1(t) + A2x2(t) results in the output y(t) = A1y1(t) + A2y2(t)
for all functions x1(t) and x2(t) and all scalars A1 and A2. It is often convenient to show that a system is
nonlinear by counterexample; that is, by showing at least one case for which the above is not true.

Intuitively, “messing” with the x’s often “breaks” linearity. Consider the following examples:

• Consider the system y(t) = [x(t)]p = xp(t) (this is a common notation for powers of functions). This
system is only linear if p = 1.

• The system y(t) = 3x(t) + 5 is not linear in the sense of a “linear system” because of the second term.
This is a little tricky, since the function y = 3x + 5 defines a straight line, and is “linear” in that
sense. Confusion arises from the term “linear” having different definitions in different contexts. The
transformation y(t) = 3x(t) + 5 can be called “affine.” For our purposes, the +5 would not present too
much of a problem; one could just leave it out, study the system using all the linear system techniques
we will develop, and then add the 5 back in later.

2.1. SYSTEM PROPERTIES 11

2.1.2 Time-invariance

A system is said to be time-invariant if a time-shifted input results in the output being time shifted by the
same amount. A system can readily be tested for time-invariance by considering an input and its time-shifted
version. Suppose that a SISO system with input x0(t) results in the corresponding output y0(t). The system
is time-invariant if the input x1(t) = x0(t − t0) results in the output y1(t) = y0(t − t0) for all inputs x0(t)
and all time shifts t0. It is often convenient to show that a system is not time-invariant by counterexample;
that is, by showing at least one case for which the above is not true.

Intuitively, time-invariance is often “broken” by one of two things:

1. Seeing a t outside of the argument of x(·). For instance, the systems y(t) = tx(t) and y(t) = x(t) + t
are not time-invariant.

2. “Messing” with the t in the argument x(·). For instance:

• The system y(t) = x(−t) is linear, but not time-invariant; shifting the input into the future shifts
the output into the past and vice-versa.

• The time-compressing system y(t) = x(3t) is not time-invariant.

• The time-expanding system y(t) = x(t/3) is not time-invariant.

• The system y(t) = x(t2) is not time invariant.

The only “safe” thing to do with the arguments of x, in terms of maintaining time-invariance, is
to add or subtract constants from a well-behaved, not-messed-with t variable. For instance, y(t) =
x(t+ 3) + x(t− 4.8) is time-invariant.

Not having a t variable in the argument of x at all is also problematic in terms of time-invariance. For
instance, the system y(t) = x(3), is not time-invariant.

2.1.3 Causality

A system is causal if, for all t, the output y(t) is not a function of x(τ) for any τ > t. In other words, causal
systems cannot look into the future. They might or might not look at the present, and they might or might
not look into the past.

For time-invariant systems, causality, or the lack thereof, is usually pretty easy to determine – one can
look at the arguments of the x instances, and check to see whether there are positive constants added to t in
those arguments. Such instances look into the future and break causality. Sometimes this kind of reasoning
helps in considering the causality of non-time-invariant systems as well. Consider these examples:

1. The system y(t) = t
√
x(t− 4) is not linear or time-invariant, but it is causal; it obviously does not

look into the future.

2. The system y(t) = x(t + 4) is linear and time invariant, but it is not causal because it does look into
the future.

One can cook up unusual cases in which a bit more thinking is required to evaluate causality, although
these are admittedly more mathematical curiosities that practical systems. Consider the following:

12 CHAPTER 2. WHAT ARE SYSTEMS?

1. The discrete-time system y[n] = x[−n2]. This is clearly linear but not time-invariant. To gain insight
into causality, or lack thereof, try a few values of n: y[3] = x[−9]
y[2] = x[−4]
y[1] = x[−1]
y[0] = x[0]
y[−1] = x[−1]
y[−2] = x[−4]
y[−3] = x[−9]

The system is always looking into the present or the past. So, although having n2 by itself without
the minus sign would force the system have to look into the future, having the minus sign in front of
the n2 facilitates causality.

2. Now consider the system y[n] = x[−n3]. We see that y[3] = x[−27], but y[−3] = x[−(−27)] = x[27],
which looks into the future. Hence, this system is not causal.

3. What about the continuous-time equivalents of the above? The logic we used on y[n] = x[−n3] quickly
shows that y(t) = x(−t3) is noncausal as well: y(−3) = x(27).

4. Our final example in this sequence is tricky. Consider y(t) = x(−t2). We might be tempted to
believe that we could just change the brackets in our above “trial runs” for the discrete-time example
y[n] = x[−n2] into parentheses and conclude that y(t) = x(−t2) was causal – but we would be wrong!
The region t ∈ (0, 1) crashes the causality party – it’s a weird zone2 we did not encounter in the
discrete-time case, in which t2 is smaller than t. For instance, y(−1/2) = x(−1/4), which looks into
the future.

2.1.4 Examples of systems and their properties

1. Systems defined by derivatives and integrals of the input inherit their linearity and time-
invariance from the properties of taking derivatives and integrals of sums from your calculus class. But
you can also see the linearity “directly” by contemplating one of the definitions of a derivative:

dx(t)

dt
= lim
ε→0+

x(t)− x(t− ε)
ε

,

where the + superscript indicates that ε approaches 0 “from above.” There is nothing “messing with”
the xs, there are no ts outside of the arguments of x, and nothing is “messing with” the ts inside the
arguments of x.

You can think of applying the same ideas to the terms in the Riemann sum definition of the integral.
(Professional mathematicians would want to put a dozen caveats here; in particular, expressions with
Dirac deltas do strange things that require special treatment, but we will not worry about most of
these details.)

So, we have convinced ourselves that

y(t) =
dx(t)

dt

2This issue was pointed out to Aaron Lanterman by an ECE2025 student a few years back.

2.2. CONCLUDING THOUGHTS 13

is linear, and by the “left derivative” definition from Freshman calculus definition shown above, it is
also causal. However, calculus books also define a “right derivative” as

dx(t)

dt
= lim
ε→0+

x(t+ ε)− x(t)

ε

which looks like it would not be causal, because the x(t+ ε) term looks into the future.

As will usually be the case when we run into sticky technical details, we will apply a bit of handwaving.
If the left and right derivatives are the same, the function is differentiable, and we might as well pick
the left one when talking about causality. We have to be a little careful since we have introduced the
Dirac delta as a derivative of a unit step function. That relationship is more amenable to the “left
derivative” definition. So we will consider derivatives (and higher-order derivatives) to be causal.

2. The “slicer” y(t) = x(t)x?(t−Ts), where the ? represents complex conjugation and Ts > 0 is a sample
period, is sometimes used in modems. It is causal (since Ts ≥ 0) and time-invariant, but it is nonlinear
because of the multiplication.

3. The transmitter of many communication schemes falling under the umbrella of amplitude modu-
lation can be modeled as y(t) = [A + x(t)] cos(ωct). The cos(ωc) is called the carrier and ωc is the
carrier frequency. It is not linear in general, but it is in the special case of A = 0 (which, incidentally,
is referred to as “suppressed carrier”). It’s not time-invariant in general because of the t appearing
outside the x argument, but it can be made time-invariant in the trivializing special case ω = 0.

Real AM broadcast transmitters use an A that is greater than the maximum amplitude of x(t). This
is theoretically inefficient from an information-theoretic viewpoint, but it allows the design of AM
receivers to be simple and inexpensive. We will look at amplitude modulation in Section sec:DSBAM
as an application of Fourier transform properties.

4. The nihilistic system y(t) = 0 is trivially linear, time-invariant, and causal. It doesn’t depend on the
future, but it doesn’t depend on the present or the past either. The slightly less nihilistic but still not
terribly interesting system y(t) = 3 would be trivially time-invariant and causal, but it is not linear.

2.2 Concluding thoughts

2.2.1 Linearity and time-invariance as approximations

Few physical systems are truly linear. In designing “linear amplifier” circuits, transistors are operated
within a region in which its voltage and current relationships may be approximated as linear, and circuits
are described as a linear system (the “a.c. small signal” model) with a systematic bias (the “d.c. operating
point”).

Few physical systems are truly time-invariant. The properties of resistors and transistors–particularly
the latter–change with temperature, and electronic equipment generally heats up gradually after it has been
turned on. Circuit designers must sometimes go to great length to compensate for these effects. We often
resort to saying that a system is time-invariant over the time scales of interest while realizing that behavior
may change over long time scales.

When resistors are supplied so much power that they start to smell bad, they can quickly become nonlinear
and then highly time-variant as they explode.

14 CHAPTER 2. WHAT ARE SYSTEMS?

2.2.2 Contemplations on causality

The term anticausal applies to systems that do not look into the past. They might or might not look at the
present, and they might or might not look into the future. The texts focuses on causality since it is usually
the more relevant concept.

Obviously, “real-time systems” – for instance, the effects processors a guitarist is using on stage – have to
be causal, but it is also reasonable to talk about noncausal systems in cases where there is a set of prerecorded
data that can be processed “offline” (like applying some effects processing to a track that has been recorded
in Garageband). Nowadays, that will usually be some kind of digital recording, but one you could imagine
an old-school analog recording on magnetic tape with a playback head set in to look into the “future.”

This chapter has considered time-domain examples. Everything we have discussed also applies to one-
dimensional spatial-domain systems, and although “causality” and “anticausality” can still be defined if you
swap in a spatial variable for the time variable (for instance, one could define the “future” is as being to the
right and the “past” as being to the left), “causality” is both a less important property and a rarer property
of spatial systems. Additionally, once we start considering two-dimensional and three-dimensional domains,
we lose a sense of directionality, so people who study image processing do not use the term “causal” very
often.

2.2.3 How these properties play out in practice in a typical “signals and sys-
tems” course

Professors like to make students suffer through a few homework and/or quiz problems where they have to
circle “yes” or “no” as to whether a system is linear, time-invariance, and/or causal. After that, they usually
spend the rest of the semester lecturing almost exclusively about linear, time-invariant (LTI) systems. This
is because (a) LTI systems are amenable to a rich set of convenient mathematical techniques; (b) enough
real, practical systems can be modeled as LTI systems that we can take advantage of (a); and (c) nonlinear
systems can be incredibly difficult to analyze.

Chapter 3

Why are LTI Systems so Important?

This chapter explores the question: why are LTI systems so interesting?
This chapter is about the “big” ideas. It is basically a 30,000 feet view of the the first half of this text

(which sets the stage for the second).
This chapter will not contain many concrete examples. Our goal here is to paint a self-contained synopsis

of the some of the main themes of this subject, and to do that, we will need to hold a big brush.

3.1 Review of convolution for discrete-time signals

In 2026, we looked at the idea of an impulse response to a system, h[n], which is the special output you get
when you input a delta function x[n] = δ[n].

The beauty of time-invariance is that if we know the response of the system to a delta at the origin, we
know the response of a δ at any point. Putting x[n] = δ[n − n0] into a time-invariant system gives you an
output of y[n] = h[n− n0].

The beauty of linearity is that if we know the response of a system to a “unit weighted” delta, i.e., a
weight of 1, you know the response of the output to deltas of any weight. Putting x[n] = αδ[n] into a a
linear system gives you an output of y[n] = αh[n].

The last two beautiful observations tell us that if we put x[n] = αδ[n − n0] into an LTI system, we get
an output of y[n] = αh[n− n0] out.

We invoked one more property of linearity – superposition – to note that if we write the input as a sum
of weighted, shifted delta functions:

x[n] =
∑
k

x[k]δ[n− k], (3.1)

we can express the output as a sum of weighted, shifted impulse responses:

y[n] =
∑
k

x[k]h[n− k]. (3.2)

We gave this the somewhat convoluted name of convolution, notated like y[n] = x[n]∗h[n]. That common
notation is a bit misleading, since it makes you think that you evaluate f [·] at n and evaluate h[·] at n, find
two scalars, and then do something with those scalars. But convolution is an operation on entire functions;
a clearer notation might be y[n] = (f ∗ h)[n].

15

16 CHAPTER 3. WHY ARE LTI SYSTEMS SO IMPORTANT?

We saw that convolution was commutative (we can flip the order of the arguments to a convolution) and
associative (we can rearrange parentheses in a set of convolutions). This let us rearrange the order of LTI
systems.

3.2 Convolution for continuous-time signals

Once we accept the delightfulness of those devious Dirac delta functions, everything we have just said applies
to continuous-time systems. We can imagine sacking the system with an infinitely quick, infinitely strong
hammer called δ(t), seeing what pops out, and calling it h(t).

Putting x(t) = δ(t− t0) into a time-invariant system gives you y(t) = h(t− t0) out.

Putting x(t) = αδ(t) into an linear system gives you y(t) = αh(t) out.

Putting x(t) = αδ(t− t0) into an linear system gives you y(t) = αh(t− t0) out. (We build this slowly try
to emphasize specifically where the linearity aspect and the time-invariance aspect come to play).

The next part might look a little weird. We (as engineers; mathematicians might want to state a few
more conditions here) can write an input as a sum of weighted, shifted Dirac delta functions,

x(t) =

∫ ∞
−∞

x(τ)δ(t− τ)dτ, (3.3)

and use superposition to write the output as a sum of weighted, shifted impulse responses,

y(t) =

∫ ∞
−∞

f(τ)h(t− τ)dτ. (3.4)

Do not be alarmed by the appearance of the integral signs. Remember that integrals are “just sums.”
(We put “just sums” in air quotes, because under the surface, there are some mathematicians paddling like
mad to make that work, especially when Dirac deltas are involved. Take a moment to appreciate their hard
work). Summation signs let us sum over countably infinite sets, and integrals let us sum over uncountably
infinite sets. Yes, there are different kinds of infinities. Countably infinite sets can be put in a one-to-one
correspondence with the integers; for instance, the set of rational numbers is countable. The set of real
numbers is not countable; it is a “bigger” kind of infinity.

We will use the same convolution notation for continuous domains as we used for discrete domains:
y(t) = x(t) ∗ h(t) or y(t) = (x ∗ h)(t). Continuous-time convolution is commutative and associative as well,
so we can rearrange the order of continuous-time LTI systems just as we could discrete-time LTI systems.

The mechanics of working out specific convolutions, particularly in continuous time, tend to be pretty
messy and involve a lot of bookkeeping. We will save such unpleasantries for Chapter 4.

3.3 Review of frequency response of discrete-time systems

A particularly elegant aspect of LTI systems is the way they respond to sinusoids.

In 2026, we looked at how discrete-time LTI systems responded to sinusoids. A particularly convenient
sinusoid is the complex sinusoid manifest by Euler’s formula:

exp(jω̂n) = cos(ω̂n) + j sin(ω̂n). (3.5)

3.4. FREQUENCY RESPONSE OF CONTINUOUS-TIME SYSTEMS 17

The complex1 exponential is algebraically convenient, but when you see it, you should imagine wavy
lines, just like you do when you see cos(·) or sin(·).

In 2026, we put x[n] = exp(jω̂n) into a system; using convolution, found that the output was:

y[n] =
∑
k

h[k]f [n− k] =
∑
k

h[k]ejω̂(n−k) =
∑
k

h[k]ejω̂ne−jω̂k = ejω̂n
∑
k

h[k]e−jω̂k︸ ︷︷ ︸
≡H(ejω̂)

. (3.6)

We called H(ejω̂) the frequency response. In general, H(ejω̂) is complex-valued, and most naturally inter-
preted in polar form with a magnitude and a phase. If we feed a discrete-time LTI system a complex sinusoid,
it chews it up and spits out the same complex sinusoid multiplied by a complex constant—essentially, the
complex sinusoid’s magnitude and phase may be changed, but the frequency stays the same.

The ej in H(·) is a notational convention that provided a nice link to z-transforms, but we should note
that some books just use H(ω̂), and some books leave out the ˆ for discrete-time frequencies (which can
lead to much confusion), or use another notation like Ω.

By the scaling property of linearity (note that the scale factor can be complex), inputting a more general
complex sinusoid, like x[n] = Aejφejω̂n, yields an output of

y[n] = Aejφejω̂nH(ejω̂) = A|H(ejω̂)| exp(j[φ+ ∠{H(ejω̂)}])ejω̂n. (3.7)

In 2026, we also found the output arising from a real sinusoidal input via Euler’s formula and linearity.
An input of

x[n] = A cos(ω̂n+ φ) =
A

2
ejφejω̂n +

A

2
e−jφe−jω̂n. (3.8)

produces the output

y[n] =
A

2
ejφejω̂nH(ejω̂) +

A

2
e−jφe−jω̂nH(ej(−ω̂)) (3.9)

=
A

2
ejφejω̂nH(ejω̂) +

A

2
e−jφe−jω̂nH∗(ejω̂) (3.10)

=
A

2
|H(ejω̂)| exp(j[φ+ ∠{H(ejω̂)}])ejω̂n +

A

2
|H(ejω̂)| exp(j[φ+ ∠{H(e−jω̂)}])e−jω̂n (3.11)

= |H(ejω̂)| cos(ω̂n+ φ+ ∠{H(ejω̂)}). (3.12)

This was one of the “big ideas” from ECE2026: SINUSOID IN → SINUSOID OUT (for LTI systems).
The magnitude of the frequency response, evaluated at the input frequency, multiplies the input amplitude,
and the phase of the frequency response, evaluated at the input frequency, is added to the phase. The
frequency stays the same.

That was just a review of ECE2026 material; now we make the transition to ECE3084.

3.4 Frequency response of continuous-time systems

You should be able to guess what comes next.

1Are complex numbers profound expressions of the nature of the universe, or just a convenient bookkeeping trick? You
decide.

18 CHAPTER 3. WHY ARE LTI SYSTEMS SO IMPORTANT?

Let us put x(t) = exp(jωt) into a continuous-time LTI system. The resulting output is

y(t) =

∫ ∞
−∞

h(τ)f(t−τ)dτ =

∫ ∞
−∞

h(τ)ejω(t−τ)dτ =

∫ ∞
−∞

h(τ)ejωte−jωτdτ = ejωt
∫ ∞
−∞

h(τ)e−jωτdτ︸ ︷︷ ︸
≡H(jω)

. (3.13)

You should not be surprised to discover that H(jω) is referred to as the frequency response of the system.
Including the j in the argument of H(·) is a notational convention. It helps differentiate continuous-time

frequency responses form discrete-time frequency responses (assuming you are using the ej in the argument
of discrete-time frequency responses). Just as the ej notation created an elegant link with z-transforms, we
will see that the jω creates makes an elegant link with the Laplace transforms introduced in Chapter 11.

Taking the real part of a complex signal is a LTI operation, and we can reorder LTI operations. So if we
take the real part of that input and that output, we find that an input of

x(t) = A cos(ωt+ φ) (3.14)

produces
y(t) = A|H(jω)| cos(ωt+ φ+ ∠{H(jω)}). (3.15)

The steps needed to get from (3.14) to (3.15) are analogous to those used to get from (3.8) to (3.12).
Different domain, same deal: we have SINUSOID IN → SINUSOID OUT (for LTI systems). If you

remember nothing else from ECE3084, remember that!

3.5 Connection to Fourier transforms

The mathematical operations that we applied to find frequency responses can be applied to general signals,
not just impulses responses:

X(ejω̂) =
∑
n

x[n]e−jω̂n, (3.16)

X(jω) =

∫ ∞
−∞

x(t)e−jωtdt. (3.17)

We previously used k and τ as dummy variables to avoid being confused with other time variables; we
do not need to worry about such confusion here, so it is acceptable to change them to n and t.

Equation 3.16 is called the discrete-time Fourier transform (DTFT); (3.17) is the continuous-time Fourier
transform (CTFT). The latter is considered the mother of all Fourier transforms, so when someone just says
“Fourier transform” without any additional qualifiers, they usually mean the continuous-time version.

You should never let anyone tell you about their transform without also asking for the inverse transform:

x[n] =
1

2π

∫ π

−π
X(ejω̂)ejω̂ndω, (3.18)

x(t) =
1

2π

∫ ∞
−∞

X(jω)ejωtdω. (3.19)

These inverse transforms look quite similar to the forward transforms; the main difference is the sign
of the exponent. For now, you can take these on faith; in the next few chapters, we will show show you

3.6. FINISHING THE PICTURE 19

why the continuous-time pair works. The limits of the inverse DTFT integral arise from the periodicity of
discrete-time frequencies—any interval of 2π will do. The DTFT pair is one of the main topics of ECE4270,
the senior-level DSP class; you may also have seen it touched on in ECE2026. We mention it here for context;
it will not be a player in ECE3084, which will focus on the continuous-time Fourier pair.

The 1/(2π) constants in the inverse transforms are awkward, but they are needed to get math to work
out.

3.6 Finishing the picture

If you have been paying close attention, you will notice that although our discussion of frequency responses
paralleled our discussion of impulse responses, we did not quite finish the frequency response discussion.

We talked about a scaled and shifted impulse giving us a scaled and shifted impulse response. We talked
about a scaled and shifted (i.e. the phase) sinusoid giving us a scaled and shifted sinusoid.

We ended the discussion of impulse responses by talking about inputs that were sums of impulses—
perhaps uncountably infinite sums, in the case of continuous-time systems. So to complete the story of
frequency response, we need to talk about inputs that are sums of sinusoids. Take a look at (3.19), the inverse
Fourier transform—that is exactly what it is! It is a “sum” (possibly uncountably infinite sum) of weighted
sinusoids with different frequencies ω, where the weights are given by X(jω). So by the superposition
property, the output is

y(t) =
1

2π

∫ ∞
−∞

H(jω)X(jω)ejωtdω. (3.20)

So, in the first few chapters of this book, you have already come across one of the most celebrated prop-
erties of Fourier transforms: convolution in the time domain corresponds to multiplication in the frequency
domain. This is usually presented as a convenience: “convolution is in the time domain is hard, but it is
much simpler to do the frequency domain, so this property can make your life easier.” But the subtext is
deeper than that; this property is just a manifestation of the fundamental concept of “SINUSOID IN →
SINUSOID OUT” (for LTI systems).

We could make the same observations about the inverse DTFT, but we will leave that for specialized
treatises on “digital signal processing.”

3.7 A few observations

Before starting the next chapter, ponder the following points:

• Our discussion in this chapter assumed that the sums and integrals defining frequency responses and
Fourier transform existed, i.e., they did not blow up to infinity or do something else antisocial like be
entirely undefined. In the later chapters, we will look at Laplace transforms, which allow us to analyze
signals for which the Fourier transform would be undefined; they can be viewed as a way of taming
ornery functions. This is of particular value to control systems engineers, since much of control theory
is concerned with taming ornery systems. (Similarly, the z-transform can be seen as a way of taming
ornery discrete-time functions for which the DTFT would be undefined).

• There many different ways to represent functions as sums of some fundamental building blocks. Fourier
representations use sinusoids, but there are also creatures called Chebyshev polynomials, Walsh and

20 CHAPTER 3. WHY ARE LTI SYSTEMS SO IMPORTANT?

Harr functions, wavelets, and so on. Sinusoids are particularly important because they are “eigen-
functions” of LTI systems (analogous with the eigenvectors you learn about in linear algebra; the
frequency response is analogous to the eigenvalues), giving us their celebrated “sinusoid in → sinusoid
out” property. This is why you hear about Fourier transforms more often than, for instance, Hadamard
transforms.

• Provocatively speaking, linearity is the more “important” property, relative to time-invariance. Al-
though the frequency response notion requires time-invariance, the impulse response idea can still be
used even if the system is not time-invariant as long as its linear, except you now need a big set of
impulse responses for different times instead of just one global impulse response. The superposition
trick still applies; people will sometimes use the term “time-varying convolution” (although that is a
rather awkward and likely misleading name) for something like this:

y(t) =

∫ ∞
−∞

x(τ)h(t, τ)dτ,

where h(t, τ) is represents the response to an impulse δ(t− τ).

Chapter 4

More on Continuous-Time
Convolution

s

We begin by recalling the definition of an impulse response. If the input to a system is an impulse; i.e.,
x(t) = δ(t), then we call the corresponding output the impulse response and denote it as y(t) = h(t). We can
define an impulse response for systems that are neither linear nor time-invariant, but this concept is most
useful for LTI systems. The remainder of this chapter assumes that all systems are LTI.

4.1 The convolution integral

We first considered continuous time convolution in the previous chapter and will revisit it here. Remember,
by definition if x(t) = δ(t) (i.e., an impulse), then the output is h(t), the impulse response. Now suppose the
input is a scaled and delayed impulse,

x(t) = Aδ(t− t0), (4.1)

where the scaling factor is A and the time delay is t0. We know from linearity and time-invariance that the
output is a scaled and delayed version of the impulse response,

y(t) = Ah(t− t0). (4.2)

But what we really want to investigate is the output for a completely arbitrary input, a completely general
function x(t) = f(t). Let’s start to build up this function from impulses by first considering multiplying
f(t) by a time-shifted impulse; that is, let x(t) = f(t)δ(t − τ). By the sampling property we have x(t) =
f(τ)δ(t− τ). By linearity and time invariance, the output of the system is y(t) = f(τ)h(t− τ).

We can now construct our input signal from an integral over τ of these weighted impulses by noticing
that the sifting property allows us to exactly construct f(t) in this manner:

x(t) =

∫ +∞

−∞
f(τ)δ(t− τ)dτ = f(t). (4.3)

21

22 CHAPTER 4. MORE ON CONTINUOUS-TIME CONVOLUTION

Since integration is a linear operation, the output can be determined by applying exactly the same integral
in τ :

y(t) =

∫ +∞

−∞
f(τ)h(t− τ)dτ. (4.4)

This is the convolution integral and is possibly the most important equation of this course.
Here we have expressed it in terms of an arbitrary input x(t) = f(t), but it is usually expressed in terms

of simply x(t),

y(t) =

∫ +∞

−∞
x(τ)h(t− τ)dτ. (4.5)

The convolution operator is usually taken to be the asterisk and the above equation is thus written,

y(t) = x(t) ∗ h(t). (4.6)

Looking more closely inside the convolution integral, we see that the second function is h(t − τ), but it is
a function of τ , not t, since τ is the variable of integration; t is whatever time we want to consider. By
focusing on τ , we can write h(t− τ) = h(−(τ − t)). By writing it this way, it is now clear that with respect
to τ , h(t − τ) is flipped (as a result of the initial negative sign) and then shifted by t, either to the left (for
negative t) or the right (for positive t).

4.2 Properties of convolution

The following properties of convolution are very helpful for solving problems.

1. Commutativity

Commutativity states that
x(t) ∗ h(t) = h(t) ∗ x(t). (4.7)

It can readily be proved by making the change of variable λ = t− τ in the convolution integral:

x(t) ∗ h(t) =

∫ +∞

−∞
x(τ)h(t− τ)dτ

=

∫ −∞
+∞

x(t− λ)h(λ)(−dλ)

=

∫ +∞

−∞
h(λ)x(t− λ)dλ

= h(t) ∗ x(t). (4.8)

Commutativity is a very useful property because it lets us choose which function to flip and shift.

2. Associativity

Convolution is associative in that

[x(t) ∗ y(t)] ∗ z(t) = x(t) ∗ [y(t) ∗ z(t)]. (4.9)

It can be proved by writing out both of the double integrals (one on each side of the equation) and
making appropriate changes in variables until they are of the same form.

4.3. CONVOLUTION EXAMPLES 23

3. Distributivity

Convolution is distributive with respect to addition:

x(t) ∗ [y(t) + z(t)] = x(t) ∗ y(t) + x(t) ∗ z(t). (4.10)

It is easily proved by distributing the sum of functions inside the convolution integral.

4. Time shift

The time shift property of convolution states that if the inputs are shifted, the output is shifted by the
sum of the input shifts. If y(t) = x(t) ∗ h(t), then

x(t− t1) ∗ h(t− t2) = y(t− t1 − t2). (4.11)

5. Differentiation

The differentiation property states that if either of the inputs are differentiated, the output is also
differentiated. If y(t) = x(t) ∗ h(t), then

dx(t)

dt
∗ h(t) = x(t) ∗ dh(t)

dt
=
dy(t)

dt
. (4.12)

6. Convolution with an Impulse

As a consequence of the sifting property of the delta function, any function convolved with an impulse
is itself:

x(t) ∗ δ(t) =

∫ +∞

−∞
x(τ)δ(t− τ)dτ = x(t). (4.13)

When combined with the time shift property, it is clear that a shifted impulse is a delay operator:

x(t) ∗ δ(t− t0) = x(t− t0). (4.14)

4.3 Convolution examples

The following examples range from very simple ones that can be done by inspection to a rather complicated
convolution that is facilitated by a series of graphs (a.k.a. graphical convolution).

For each example, we are computing y(t) = h(t) ∗ x(t).

1. x(t) = u(t) and h(t) = δ(t− 5)

By inspection, note that the delayed impulse simply shifts the step function, resulting in

y(t) = u(t) ∗ δ(t− 5) = u(t− 5). (4.15)

2. x(t) = u(t) and h(t) = [δ(t+ 1)− δ(t− 1)]

Convolve with each delta function separately and then combine:

y(t) = u(t+ 1)− u(t− 1). (4.16)

24 CHAPTER 4. MORE ON CONTINUOUS-TIME CONVOLUTION

3. x(t) = u(t) and h(t) = u(t)

For this problem it doesn’t matter which function we flip and shift since x(t) = h(t). The convolution
integral becomes:

y(t) =

∫ +∞

−∞
u(τ)u(t− τ)dτ. (4.17)

The first step function can be handled by noting that all it does is change the lower limit of integration
to zero:

y(t) =

∫ +∞

0

u(t− τ)dτ. (4.18)

The remaining step function is one for τ < t and is zero for τ > t. Thus the integral is zero for t < 0
and is the following for t > 0:

y(t) =

∫ t

0

1dτ = τ
∣∣τ=t

τ=0
= t. (4.19)

Rather than stating the result in terms of two separate ranges of t, it can be conveniently written as

y(t) = u(t) ∗ u(t) = tu(t). (4.20)

So the convolution of two steps is a ramp.

4. x(t) = u(t− 3) and h(t) = exp(−2t)u(t)

This problem can also be handled by writing out the convolution integral, but now there is the choice
of which function to flip and shift. Either choice will yield the correct answer; here we choose to flip
and shift h(t):

y(t) =

∫ +∞

−∞
u(τ − 3) exp(−2(t− τ))u(t− τ)dτ. (4.21)

Both step functions can be handled similarly to the previous example by noting that the first one
changes the lower limit of integration to three and the second one changes the upper limit of integration
to t.

y(t) =

∫ t

3

exp(−2(t− τ))dτ. (4.22)

Now the term exp(−2t) can be brought out of the integral since it is not a function of τ , and the
integral can be readily completed:

y(t) = exp(−2t)

∫ t

3

exp(2τ)dτ

= exp(−2t)
1

2
exp(2τ)

∣∣τ=t

τ=3

=
1

2
exp(−2t)[exp(2t)− exp(6)]

=
1

2
[1− exp(−2(t− 3))] (4.23)

Recalling that y(t) = 0 for t < 3, we can express y(t) as,

y(t) =
1

2
[1− exp(−2(t− 3))]u(t− 3). (4.24)

See Figure 4.1 for a plot of y(t).

4.3. CONVOLUTION EXAMPLES 25

−1 0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

Figure 4.1: Convolution result y(t) for Example 4.

5. x(t) = 2(t− 1)[u(t− 1)− u(t− 2)] and h(t) = [u(t)− u(t− 2)]

This problem can best be handled by what we refer to as graphical convolution. We first plot x(t)
and h(t) vs. t as shown in the top plot of Figure 4.2. Here we choose to flip and shift x(t) in the
convolution integral. Recalling that we can write x(t − τ) as x(−(τ − t)), it is clear that x(t − τ) is
flipped with respect to τ and then shifted by t. The second plot in the figure shows x(t− τ) and h(τ)
for a value of t < 0. We can see that x(t− τ) is non-zero from τ = t− 2 to τ = t− 1, and that in this
range we have x(t− τ) = t− τ − 1 (we just substituted t− τ for t in the expression for x(t)).

Now we must perform the convolution integral for various values of t. It is convenient to think of the
point t as a “handle” that is being used to slide x(t − τ) to various places on the τ axis. The limits
of the convolution integral are the range of overlap for the two functions; it is usually much easier to
visualize this range graphically than to figure out where shifted and flipped step functions are non-zero.
For example, if t < 1, there is no overlap at all and the convolution integral is zero; we have called
that “Region 1” in the figure and y1(t) = 0.

If we continue to slide t to the right along the τ axis, the two functions begin to overlap when t−1 = 0,
or t = 1. This region of partial overlap is Region 2 in the figure, and you can see that the functions
overlap only between τ = 0 and τ = t− 1; these values of τ become the range of integration. We have,

y2(t) =

∫ t−1

0

2(t− τ − 1)dτ

= 2(tτ − 0.5τ2 − τ)
∣∣τ=t−1

τ=0

= 2t(t− 1)− (t− 1)2 − 2(t− 1)

= 2t2 − 2t− t2 + 2t− 1− 2t+ 2

= t2 − 2t+ 1

= (t− 1)2. (4.25)

This result is valid for 1 ≤ t < 2, which is the extent of Region 2.

26 CHAPTER 4. MORE ON CONTINUOUS-TIME CONVOLUTION

x(t)

t

τ

h(t)

t

2

2 1 2 1

1

t t −1 t − 2 2 1

τ

t t − 1 t − 2 2 1

τ

t t − 1 t − 2 2 1

τ

t t − 1 t − 2 2 1

τ

t t − 1 t − 2 2 1

h(τ) x(t − τ) Region 1

t < 1

Region 2

1 ≤ t < 2

Region 3

2 ≤ t < 3

Region 4

3 ≤ t < 4

Region 5

t ≥ 4

Figure 4.2: Graphical convolution steps for Example 5.

4.3. CONVOLUTION EXAMPLES 27

For 2 ≤ t < 3 (Region 3), x(t− τ) completely overlaps with h(τ), and the limits of integration are from
t− 2 to t− 1:

y3(t) =

∫ t−1

t−2

2(t− τ − 1)dτ

= 2(tτ − 0.5τ2 − τ)
∣∣τ=t−1

τ=t−2

= 2t(t− 1)− (t− 1)2 − 2(t− 1)− 2t(t− 2) + (t− 2)2 + 2(t− 2)

= 2t2 − 2t− t2 + 2t− 1− 2t+ 2− 2t2 + 4t+ t2 − 4t+ 4 + 2t− 4

= 1 (4.26)

Despite the somewhat messy integral, the answer is very simple. It can actually be seen by inspection
that the integral is simply the area of the triangle, which is just 1. So we really didn’t even have to
integrate.

For 3 ≤ t < 4 (Region 4), x(t− τ) only partially overlaps with h(τ) as it continues to slide to the right,
and the limits of integration are from t− 2 to 2:

y4(t) =

∫ 2

t−2

2(t− τ − 1)dτ

= 2(tτ − 0.5τ2 − τ)
∣∣τ=2

τ=t−2

= 4t− 4− 4− 2t(t− 2) + (t− 2)2 + 2(t− 2)

= 4t− 8− 2t2 + 4t+ t2 − 4t+ 4 + 2t− 4

= −t2 + 6t− 8

= −(t− 3)2 + 1 (4.27)

The last region is for t > 4, where x(t− τ) no longer has any overlap with h(τ). Thus, y5(t) = 0.

To summarize, we have:

y(t) =



0 t < 1 Region 1

(t− 1)2 1 ≤ t < 2 Region 2

1 2 ≤ t < 3 Region 3

−(t− 3)2 + 1 3 ≤ t < 4 Region 4

0 4 ≤ t Region 5

(4.28)

We can perform a reasonableness check by testing for continuity between each region. In Region 2,
y2(1) = 0 and y2(2) = 1, so it is clearly continuous with Regions 1 and 3. Similarly, for Region 4 we
can see that y4(3) = 1 and y4(4) = 0, so it is continuous with Regions 3 and 5. The following figure is
a plot of y(t) for all regions, again showing continuity. It is possible to have discontinuous convolution
results, but only when one or both of the input signals contains delta functions.

28 CHAPTER 4. MORE ON CONTINUOUS-TIME CONVOLUTION

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

Figure 4.3: Convolution result y(t) for Example 5.

4.4 Some final comments

Although it may not be not self-evident, developing convolution intuition is useful. Since almost everything
of engineering interest can be approximated in some way as an LTI system, having a sense of what types of
inputs result in what types of outputs is an important part of overall engineering intuition and experience.
This intuition is best developed by graphical convolution, either performed manually (as in Example 5
above), or by using appropriate software (e.g., the continuous convolution GUI). Here are a few items that
you should observe as you work through specific problems:

• When convolving simple shapes, convolution tends to make signals smoother (recall Example 3 where
convolving two steps produced a ramp). That isn’t always true when convolving really complicated
signals, but we won’t be doing those manually.

• When convolving two signals of finite length, the length of the output is the sum of the lengths of the
inputs.

• When convolving two signals that don’t start at t = 0, the output starts at the sum of the start times
of the two input signals (actually this is true whether or not they start at t = 0).

• Choose carefully which signal to flip and shift. It is usually easier to flip and shift the “simpler”
signal (perhaps the one that isn’t shifted to start with, or the one with the simpler mathematical
representation). Unfortunately it isn’t always obvious which one is “simpler”. Note that in Example
5, we picked the “wrong” signal to flip and shift; the integrals would have been slightly easier had we
flipped and shifted the rectangular pulse instead of the triangular one, but the final answer would be
the same.

• Convolving two rectangular pulses will yield either a triangular pulse if they are of the same length or
a trapezoidal pulse if they are of different lengths. This type of convolution is best done graphically
without doing any integration (i.e, find the region boundaries, calculate the output at the transition
points from the overlapped area, and connect the dots).

Chapter 5

Cross-Correlation and Matched
Filtering

As we saw in the last chapter, when two signals are convolved, one of them is flipped and then slides across
the other signal as per the convolution integral:

x(t) ∗ h(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ. (5.1)

A very similar and closely related operation, called “cross-correlation,” consists of simply sliding one signal
by the other without flipping it first. We will denote cross-correlation by the “?′′ symbol,

s(t) ? f(t) =

∫ ∞
−∞

s(τ − t)f(τ)dτ. (5.2)

An alternative notation uses the capital letter R with subscripts; i.e.,

Rsf (t) = s(t) ? f(t). (5.3)

As an aid to keep track of which signal is which, the “slider” comes first and is named s(t), and the “fixed”
signal comes second and is named f(t).

Autocorrelation is the cross-correlation of a signal with itself,

Rss(t) = s(t) ? s(t). (5.4)

Autocorrelation can be visualized as sliding a signal by itself.

29

30 CHAPTER 5. CROSS-CORRELATION AND MATCHED FILTERING

5.1 Cross-correlation properties

Cross-correlation is related to convolution as follows:

s(t) ? f(t) =

∫ ∞
−∞

f(τ)s(τ − t)dτ (5.5)

=

∫ ∞
−∞

f(τ)s(−(t− τ))dτ (5.6)

= f(t) ∗ s(−t) (5.7)

= s(−t) ∗ f(t). (5.8)

In words, cross-correlation is the convolution of the two signals after time-reversing the one that slides, s(t).

Cross-correlation is not commutative, which is clear from its relation to convolution.

s(t) ? f(t) = s(−t) ∗ f(t) 6= s(t) ∗ f(−t). (5.9)

Since s(t) ∗ f(−t) = f(t) ? s(t), cross-correlation is not commutative.

However, if s(t) is even (that is, s(t) = s(−t)), then cross-correlation is commutative, which follows
directly from its relation to convolution.

The cross-correlation integral is often seen written in a different form, which we derive here by a change
of variable from τ to λ = τ − t:

s(t) ? f(t) =

∫ ∞
−∞

s(τ − t)f(τ)dτ (5.10)

=

∫ ∞
−∞

s(λ)f(λ+ t)dλ (5.11)

=

∫ ∞
−∞

s(τ)f(τ + t)dτ. (5.12)

This form, which is commonly found in textbooks, suggests another way to think about cross-correlation. In
the original way, we visualized it as fixing f(t) and sliding s(t) from left to right. In this second representation,
we are fixing s(t) and sliding f(t) from right to left. They are equivalent, but the original way is more similar
to graphical convolution.

The autocorrelation is always even,

Rss(t) = s(t) ? s(t) (5.13)

= s(−t) ∗ s(t) (5.14)

= s(t) ∗ s(−t) (5.15)

= Rss(−t). (5.16)

The autocorrelation always achieves its maximum value at t = 0,

Rss(0) =

∫ ∞
−∞

[s(t)]2dt. (5.17)

5.2. CROSS-CORRELATION EXAMPLES 31

Figure 5.1: Correlation classifier.

Although cross-correlation is not commutative, Rsf (t) is related to Rfs(t):

Rfs(t) = f(t) ? s(t) =

∫ ∞
−∞

f(τ − t)s(τ)dτ (5.18)

=

∫ ∞
−∞

f(λ)s(λ+ t)dλ (5.19)

=

∫ ∞
−∞

f(τ)s(τ + t)dτ (5.20)

= Rsf (−t). (5.21)

Reversing the order of the functions when cross-correlating time-reverses the result.

5.2 Cross-correlation examples

The following examples range from quite easy to rather complicated.
For each example, we are computing Rsf (t) = s(t) ? f(t).

1. s(t) = δ(t)− δ(t− 1) and f(t) = u(t)

Work this one as s(−t) ∗ f(t).

s(−t) = δ(t)− δ(t+ 1) (5.22)

s(−t) ∗ f(t) = [δ(t)− δ(t+ 1)] ∗ u(t) (5.23)

= u(t)− u(t+ 1) (5.24)

= −[u(t+ 1)− u(t)]. (5.25)

This problem could also be worked graphically by sliding s(t) = δ(t)− δ(t− 1) by u(t).

5.3 Matched filter implementation

One of the primary applications of cross-correlation is matched filtering. A matched filter is an LTI system
that implements cross-correlation where the signal s(t) is a known template signal and f(t) is the input to
the filter. Since an LTI system is completely described by its impulse response h(t), an LTI system that
implements cross-correlation must have h(t) = s(−t). The output is:

y(t) = h(t) ∗ f(t) = s(−t) ∗ f(t) = s(t) ? f(t). (5.26)

The correlator classifier computation described in (5.43) has the form of a multiplier, followed by an
integrator (Figure 5.1). There is an alternative way of implementing this operation that consists of running
the data through an LTI filter, and then sampling the output of the filter at a particular time. Let us
reconsider that inner product operation: ∫ ∞

−∞
x(t)s∗k(t)dt. (5.27)

32 CHAPTER 5. CROSS-CORRELATION AND MATCHED FILTERING

Define an LTI filter with the impulse response hk(t) = s∗k(−t). Notice that hk(t) is a conjugated and
time-reversed version of the template; this is the impulse response of the “matched filter.” If we feed this
filter the data, the output is

y(t) =

∫ ∞
−∞

x(τ)hk(t− τ)dτ. (5.28)

Notice that the output of the filter at time 0 is equivalent to the inner product of (5.27):

y(0) =

∫ ∞
−∞

x(τ)hk(0− τ)dτ =

∫ ∞
−∞

x(τ)hk(−τ)dτ =

∫ ∞
−∞

x(τ)s∗k(τ)dτ. (5.29)

5.4 Delay estimation

This matched filter viewpoint of Section 5.3 is particularly handy if we are looking for a time-shifted version
of the template and we don’t know the amount of the shift. Quite often, we may have a single “template,”
and the amount of the time shift (usually a delay) is what we are interested in learning. In many radar and
sonar applications, we transmit a pulse and wait for it to bounce off of an object and return. The time delay
is proportional to the range to the object. The radar and sonar signals are often “bandpass” signals with a
high-frequency carrier, and hence well represented by complex baseband representations. This is the main
reason we made sure the exposition in Section 5.7 worked for complex signals, and not just real signals.

Instead of considering a set of templates s1(t), s2(t), etc., suppose the data is described by x(t) =
s(t − ∆) + n(t), where ∆ is some unknown delay. We can imagine running an infinite set of correlation
detectors, with each detector corresponding to a particular ∆. Fortunately, we do not actually need to build
an infinite number of multipliers and an infinite number of integrators. If we neglect noise, the output of
the matched filter in this scenario is

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ =

∫ ∞
−∞

s(τ −∆)h(t− τ)dτ (5.30)

=

∫ ∞
−∞

s(τ −∆)s∗(−(t− τ))dτ =

∫ ∞
−∞

s(τ −∆)s∗(τ − t)dτ. (5.31)

This is a good time to introduce the Schwarz inequality, which, in this context, says∣∣∣∣∫ ∞
−∞

f(t)g∗(t)dt

∣∣∣∣2 ≤ [∫ ∞
−∞
|f(t)|2dt

] [∫ ∞
−∞
|g(t)|2dt

]
(5.32)

with equality if and only if f(t) = αg(t), for some α. If we correspond f(t) with s(τ − ∆) and g(t) with
s(τ − t), we see that ∣∣∣∣∫ ∞

−∞
s(τ −∆)s∗(τ − t)dτ

∣∣∣∣2 (5.33)

is going to be largest when s(τ −∆) = s∗(τ − t), i.e. when t = ∆. This gives us a procedure for finding the
time-shift: filter the data with a conjugated, reverse copy of transmitted waveform, and find the t for which
the energy at the output power of the filter is the largest.

The output of the matched filter for ∆ = 0 has a special name; it is called the autocorrelation of the
signal: ∫ ∞

−∞
s(τ)s∗(τ − t)dτ. (5.34)

5.5. CAUSAL CONCERNS 33

Figure 5.2: Example of a linear FM sweep.

Figure 5.3: Autocorrelation function of the linear FM sweep in Figure 5.2.

If we substitute τ̃ = τ − t, giving τ = τ̃ + t, we can rewrite the autocorrelation of s(t) as∫ ∞
−∞

s(τ̃ + t)s∗(τ̃)dτ̃ , (5.35)

which is how you will see it defined in most textbooks. The autocorrelation of a waveform is basically that
waveform convolved with a time-reversed version of itself. We can also define a more general cross-correlation
between two functions: ∫ ∞

−∞
x(τ̃ + t)s∗(τ̃)dτ̃ , (5.36)

In a simple radar ranging system, if the data contains a single “target,” the output of the matched filter
(not including noise) is the autocorrelation function of the transmitted waveform, time-shifted to where the
target is located in time.

The autocorrelation is an important tool in waveform design for range estimation, since it characterizes
many aspects of system performance. The curvature of the peak of the autocorrelation is related to how
accurately we can estimate the time shift, and hence range, under noisy conditions. If multiple targets are
present, targets that are close in range may blur together and look like a single target. The broadness of
the peak of the autocorrelation is indicative of the resolution of the system, which addresses how well we
can discriminate between close targets. The sidelobes of the autocorrelation function provide a sense of how
a target with weak reflectivity may “hide” in the sidelobe of a target with stronger reflectivity. This brief
paragraph is intended to only provide a small taste of such issues; thorough definitions of these properties
and related explorations are best found in dedicated texts on remote sensing.

Matched filtering also allows radar designers to pull off a slick trick called pulse compression. To obtain
good range resolution, we might intuitively want our waveforms to be short in duration. But transmitters
are usually limited in terms of output power, which leads us to want to use long waveforms to put lots of
energy on the target to be able to combat noise. If we can find a waveform with a lengthy time extent, but
whose autocorrelation has a narrow mainlobe, match filtering essentially compresses the energy over that
long time extent into a narrow pulse in the matched filter output, so we can enjoy both good resolution and
good signal-to-noise ratio. For instance, a linear FM waveform (Figure 5.2) has an autocorrelation function
that looks somewhat sinc-like (Figure 5.3), although it is by no means a “pure” sinc.

5.5 Causal concerns

In most applications, s(t) will be non-zero for some time range 0 ≤ t ≤ L, for some length L, and be zero
outside of that range. This means that the matched filter h(t) = s(−t), as defined in the sections above, will
be non-causal and hence be unable to be implemented in real-time systems. In practice, this is not cause
for much concern. We can implement a causal matched filter hc(t) = s∗(−(t− L)) = s∗(L− t), in which we
simply shift our original matched filter h(t) to the right by enough time that the resulting hc(t) is causal.
All of our previous results apply, except that the outputs are now delayed by L.

34 CHAPTER 5. CROSS-CORRELATION AND MATCHED FILTERING

5.6 A caveat

The “derivations” of correlation classifiers and matched filter structures given above were somewhat heuristic,
since they were intended to be digestible by readers lacking experience with probability theory and random
processes. These structures are usually derived via a more detailed analysis that includes rigorously modeling
the noise, in which one can make precise statements about the signal-to-noise ratio.

5.7 Under the hood: squared-error metrics and correlation pro-
cessing

Suppose we measured a waveform that had the form of a signal corrupted by additive noise

x(t) = sk(t) + n(t), (5.37)

where s1, s2, etc. represent different kinds of signals, which we call templates, that we are trying to dis-
criminate between. We are not going to say much about the noise; properly treating it requires a thorough
discussion of probability and random processes, which is beyond the scope of this text.

One reasonable approach might be to measure the “error” between each template and the actual measured
data, and pick the template that yields the lowest error. The squared error is commonly employed:∫ ∞

−∞
|x(t)− sk(t)|2dt =

∫ ∞
−∞

[x(t)− sk(t)][x(t)− sk(t)]∗dt (5.38)

=

∫ ∞
−∞
|x(t)− sk(t)][x∗(t)− s∗k(t)]dt (5.39)

=

∫ ∞
−∞

x(t)x∗(t)− sk(t)x∗(t)− s∗k(t)x(t)− sk(t)s∗k(t)dt (5.40)

=

∫ ∞
−∞
|x(t)|2 − sk(t)x∗(t)− s∗k(t)x(t)− |sk(t)|2dt. (5.41)

The squared error is mathematically convenient. It is particularly appropriate if the noise n(t) is Gaussian,
but you do not need to know anything about Gaussian probability distributions – or probability in general
– to understand what follows.

For convenience, suppose the signal templates are all normalized to have the same energy, i.e.
∫∞
−∞ |sk(t)|2dt

is the same for every k. Also, note that the
∫∞
−∞ |x(t)|2 term does not depend upon k. So in trying to min-

imize the error with respect to k, we can drop the first and last terms in (5.41). The middle two terms
consist of something added to its complex conjugate, so our minimization problem reduces to finding the k
that minimizes

2<e
{
−
∫ ∞
−∞

x(t)s∗k(t)

}
, (5.42)

or equivalently, finding the k that maximizes

<e
{∫ ∞
−∞

x(t)s∗k(t)

}
dt. (5.43)

We dropped the 2 in front since it does not change the result of the maximization. This procedure is referred
to as a correlation classification; it may be the most common form of basic “template matching” used in

5.7. UNDER THE HOOD: SQUARED-ERROR METRICS AND CORRELATION PROCESSING 35

pattern recognition. Essentially, we want to take the inner product1 of the data with each template, and
find the template that produces the “best” match.2

1A more mathematically thorough treatment would demonstrate that this inner product is an aspect of the “projection” of
the data onto the template.

2We put “best” in quotes since other kinds of error functions could be used that might have a different idea of what “best”
means.

36 CHAPTER 5. CROSS-CORRELATION AND MATCHED FILTERING

Chapter 6

Review of Fourier Series

Before we present Fourier transforms in general, we will review Fourier series, since they provide an intuitive
springboard from which we can later study Fourier transform, which extend the idea of Fourier series to
signals that are not periodic.

6.1 Fourier synthesis sum and analysis integral

Recall that a continuous-time signal x(t) with fundamental period T0 can be written (assuming some technical
conditions that hold for most signals of interest in engineering) as a sum of weighted complex sinusoids:

x(t) =

∞∑
k=−∞

ak exp

(
j

2π

T0
kt

)
=

∞∑
k=−∞

ak exp (jω0kt) (6.1)

where the second form arises from writing the fundamental frequency in radians as ω0 = 2π/T0. The ω0

is slightly compact, but the form with 2π/T0 often makes potential cancelations in various computations
more obvious. In either form, this summation is referred to as the Fourier synthesis sum since we are
synthesizing a periodic signal from a sum of sinusoids.

If x(t) consisted of sums or products of a few sinusoids, one can often find the ak directly by expanding
such terms using Euler’s formulas. In more difficult cases, we are forced to invoke the Fourier analysis
integral:

ak =
1

T0

∫
T0

x(t) exp

(
−j 2π

T0
kt

)
dt =

1

T0

∫
T0

x(t) exp (−jω0kt) dt (6.2)

The subscript T0 indicates that the integral can be taken over any interval of length T0. Common choices
include −T0/2 to T0/2 and 0 to T0, but something like −T0/4 to 3T0/4 is also feasible. Depending on how
x(t) is defined, some choices of integration interval may be more or less convenient than others. One must
be careful to not forget to include the 1/T0 constant in front. If you work a problem and find a T0 in your
answer for ak, it sometimes means that you forgot the 1/T0.

Recall that if you only need the “D.C.” or “average” value a0, it is often convenient to plug 0 in for k
right at the beginning, since that greatly simplifies the integration:

a0 =
1

T0

∫
T0

x(t) exp

(
−j 2π

T0
0t

)
dt =

1

T0

∫
T0

x(t)dt

37

38 CHAPTER 6. REVIEW OF FOURIER SERIES

Also, recall that if x(t) is real, the Fourier series coefficients satisfy the conjugate symmetry a−k =
a?k. Using that fact, along with the inverse Euler’s formula for a cosine, we can write the Fourier series
representation of a real x(t) in terms of cosines:

x(t) = a0 +

∞∑
k=1

2ak cos

(
2π

T0
kt+ ∠{ak}

)
. (6.3)

6.2 System response to a periodic signal

In a previous chapter, after viewing the idea of frequency response for discrete-time systems, we introduced
the idea of frequency response for continuous-time systems. If the input to an LTI system with frequency
response H(jω) is exp(jω0kt), then the output is H(jω0k) exp(jω0kt). If we can write an input as a Fourier
series with Fourier coefficients ak, we can just multiply each coefficient by the frequency response of the
system evaluated at the appropriate frequency:

y(t) =

∞∑
k=−∞

H(jω0k)ak exp (jω0kt) =

∞∑
k=−∞

bk exp (jω0kt) , (6.4)

where bk = H(jω0k)ak, and one could replace ω0 with 2π/T0 if desired.
If the input x(t) is real, we can write the output as a sum of cosines:

y(t) = H(j0)a0 +

∞∑
k=1

|H(jω0k)|2ak cos (ω0kt+ ∠{ak}+ ∠{H(jω0k)}) (6.5)

= b0 +

∞∑
k=1

2|bk| cos (ω0kt+ ∠{bk}) (6.6)

6.3 Properties of Fourier series

There are a number of properties of Fourier series that are useful for obtaining Fourier coefficients without
integration. Start by assuming that the Fourier series coefficients for a signal x(t) are ak and those of a
second signal w(t) are bk, and that both x(t) and w(t) have the same fundamental period T0.

1. Linearity

If y(t) = Ax(t) +Bw(t), then it also has a period of T0 and its Fourier coefficients are ck = Aak +Bbk.
Linearity is readily proven by simple substitution and the proof is not shown here.

2. Scaling and Offset

Let y(t) = Ax(t) + C. This is a special case of linearity for which the second signal is a simple D.C.
offset; its Fourier coefficients are zero for k 6= 0, and b0 = C. The scale factor affects all of the Fourier
coefficients whereas the offset affects only the k = 0 (D.C.) term. Thus,

ck = Aak for k 6= 0

c0 = Aa0 + C. (6.7)

6.4. FOURIER SERIES OF A SYMMETRIC “SQUARE WAVE” 39

3. Time Shift

If y(t) = x(t− td), then it also has a period of T0 and its Fourier coefficients are ck = ak exp(−jkω0td).
Note that b0 = a0 since k = 0.

The proof is as follows:

ck =
1

T0

∫ T0

0

x(t− td) exp(−jkω0t)dt

=
1

T0

∫ td+T0

td

x(τ) exp(−jkω0(τ + td))dτ [substitute τ = t− td]

=
1

T0

∫ T0

0

x(τ) exp(−jkω0(τ + td))dτ [can integrate over any period]

= exp(−jkω0td)
1

T0

∫ T0

0

x(τ) exp(−jkω0τ)dτ

= ak exp(−jkω0td). (6.8)

4. Time Reversal (Flip)

If x(t) is real and y(t) = x(−t) (i.e., it is flipped in time), then its Fourier coefficients are ck = a?k. The
proof is as follows:

ck =
1

T0

∫ T0

0

x(−t) exp(−jkω0t)dt

=
1

T0

∫ −T0

0

x(τ) exp(jkω0τ)(−dτ) [substitute τ = −t]

=
1

T0

∫ T0

0

x(τ) exp(jkω0τ)dτ

= a?k. (6.9)

6.4 Fourier series of a symmetric “square wave”

Consider a periodic function with fundamental period T0 that is defined over one period as

x(t) =

{
1 for T0/4 ≤ t < T0/4
0 otherwise

for −T0/2 ≤ t < T0/2 (6.10)

40 CHAPTER 6. REVIEW OF FOURIER SERIES

We can find the Fourier series coefficients via:

ak =
1

T0

∫ T0/4

−T0/4

exp

(
−j 2π

T0
kt

)
dt (6.11)

=
1

T0

1

−j 2π
T0
k

exp

(
−j 2π

T0
kt

)∣∣∣∣∣
t=T0/4

t=−T0/4

(6.12)

=
1

j2πk

[
exp

(
j
π

2
k
)
− exp

(
−j π

2
k
)]

(6.13)

=
1

πk
sin
(π

2
k
)

(6.14)

Since k is an integer, sin(πk/2) can only take on three values:

sin
(π

2
k
)

=

 0 for even k
1 for k = . . . ,−7,−3, 1, 5, 9, . . .
−1 for k = . . . ,−9,−5,−1, 3, 7, . . .

(6.15)

This implies that the even harmonics are missing, which is what gives the square wave its hollow, clarinet-
like tone.

The k = 0 case of (6.14) is problematic since both the numerator and denominator are zero. Applying
L’Hopitals rule1 by taking the derivative of the numerator and the derivative of the denominator yields

a0 = lim
k→0

1

πk
sin
(π

2
k
)

=
limk→0

π
2 cos

(
π
2 k
)

limk→0 π
=

1

2
. (6.16)

Taking a limit as k → 0 is a bit unsettling since k is “supposed” to be an integer. We take solace in
noticing that we get the same answer in we use the D.C. trick:

a0 =
1

T0

∫ T0/4

−T0/4

1dt =
T0/2

T0
=

1

2
,

which makes sense when you look at the waveform.

6.4.1 Lowpass filtering the square wave

Suppose we ran the symmetric square wave of Sec. 6.4 through a “brickwall” lowpass filter with a cutoff
frequency ωc:

H(jω) =

{
1 for |ω| ≤ ωc
0 otherwise

(6.17)

One can quibble over whether the ≤ should be a strict inequality; we will avoid coming up with situations
where it would matter. In any case, Section 7.6.2 will illustrate that it is impossible to construct such a
“brickwall” filter in real life anyway; it is just a convenient approximation.

1Calculus professors are fond of coming up with examples that look safe but violate various conditions of L’Hopitals rule,
which leads to incorrect results when carelessly applied. When reading this text, you can take it on faith that such conditions
are satisfied and L’Hopitals rule is perfectly safe.

6.5. WHAT MAKES FOURIER SERIES TICK? 41

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
k = −9 through 9

Figure 6.1: A low-pass filtered square wave with terms up through k = ±9.

We found that the Fourier coefficients of this square wave were

ak =
1

πk
sin
(π

2
k
)
. (6.18)

Suppose the filter has a cutoff of ωc = 4ω0. Since the square wave has no even harmonics, we don’t have
to worry about the cutoff falling right on a harmonic. (Again, this is rarely an issue in practice).

Only the D.C. term and the first and third harmonics survive going through the filter. Note that
a1 = 1/π and a3 = −1/(3π). Since x(t) is real, the Fourier series coefficients have conjugate symmetry,
which is particularly simple in this case since a1 and a3 are real. Hence, the output can be written as

y(t) =
1

2
+

2

π
cos(ω0t)−

2

3π
cos(3ω0t).

Note you could rewrite the last term as + 2
3π cos(3ω0t+ π).

You will see things like this in lab when you look at square waves on the oscilloscope; besides limitations
of the bandwidth of your signal generator and the bandwidth of your scope, various bits of stray capacitance
in your cable connections act like a lowpass filter.

Figure 5.1 illustrates a square wave with T0 = 1 (ω0 = 2π) that has been filtered with a cutoff frequency
of ωc = 10ω0. This filter retains six frequency components, corresponding to D.C. and the odd harmonics
(k = 0, k = ±1, k = ±3, k = ±5, k = ±7, and k = ±9). Although this signal is recognizable as a
square wave, you can see obvious overshoot and undershoot at each edge; this is referred to as the “Gibbs
phenomenon” and is always evident whenever any discontinuous signal is lowpass filtered.

6.5 What makes Fourier series tick?

Section (3.4) noted that complex sinusoids of the form exp(jωt) (from which we can easily build real sines
and cosines) are special because they are “eigenfunctions” of LTI systems; if you put one into a system, the
magnitude and phase of the sinusoid may change, but the frequency stays the same. The frequency response
of the system plays the role of an “eigenvalue.”

42 CHAPTER 6. REVIEW OF FOURIER SERIES

Sinusoids whose frequencies are all multiples of some fundamental frequency have another interesting
property called orthogonality. This extends the notion of vectors in physics being at a “90 degree angle”
to functions defined over some period. Two different functions are orthogonal if they produce zero when
integrated “against” each other; roughly speaking, this can be thought of as projecting one vector onto
another. One quirk of dealing with complex numbers is that one of the functions, when put into the integral,
needs to be complex conjugated.

To explore orthogonality, let us first compute this integral:

1

T0

∫ T0/2

−T0/2

exp

(
j

2π

T0
kt

)
dt =

1

T0

1

j 2π
T0
k

exp

(
j

2π

T0
kt

)∣∣∣∣t=T0/2

t=−T0/2

(6.19)

=
1

j2πk
[exp(jπk)− exp(−jπk)] (6.20)

=
1

πk
sin(πk) (6.21)

This equals 0 for k 6= 0. The k = 0 case is a bit trickier; taking the derivative of the denominator and
numerator of (6.21) to apply L’Hopitals rule yields:

lim
k→0

1

πk
sin(πk) =

limk→0 π cos(πk)

limk→0 π
= 1 (6.22)

If we plug k = 0 into (6.19) right at the beginning, we get the same answer, since we wind up integrating
the constant 1 over a length of T0. Our results shouldn’t seem too surprising; remember that complex
exponentials are really sinusoids, and if you integrate any sinusoid over a period, the upper hump cancels
the lower hump. Another important observation is that we could have chosen any interval of length T0 to
integrate over in (6.21).

That integral in (6.21) comes in handy when checking for orthogonality:

1

T0

∫
T0

exp

(
j

2π

T0
kt

)
exp

(
−j 2π

T0
`t

)
dt =

1

T0

∫
T0

exp

(
j

2π

T0
[k − `]t

)
dt (6.23)

= δ[k − `] (6.24)

Now that we have developed this notion of orthogonality, we can try plugging a Fourier series into a
Fourier analysis integral to see if everything checks out:

1

T0

∫
T0

[∞∑
k=−∞

ak exp

(
j

2π

T0
kt

)]
exp

(
−j 2π

T0
`t

)
dt (6.25)

=

∞∑
k=−∞

ak

[
1

T0

∫
T0

exp

(
j

2π

T0
`t

)
exp

(
−j 2π

T0
kt

)
dt

]
(6.26)

=

∞∑
k=−∞

akδ[`− k] = a` (6.27)

This shows that the Fourier analysis integral does what it is supposed to—it knows how to extract Fourier
series coefficients.

6.6. UNDER THE HOOD 43

6.6 Under the hood

The Gibbs phenomenon which arises in the case of discontinuous functions should make us look upon the
equals sign in (6.1) with skepticism.

When we write equations like

x(t) =

∞∑
k=−∞

ak exp (jω0kt) ,

with infinite summations, we really mean something like

x(t) = lim
N→∞

N∑
k=−N

ak exp (jω0kt) .

But what does that really mean? For continuous x(t), it is not too mysterious. But for the general case
of Fourier series representations of discontinuous x(t), it means something like

lim
N→∞

∫
T

∣∣∣∣∣x(t)−
N∑

k=−N

ak exp (jω0kt)

∣∣∣∣∣
2

dt = 0

For a particular value of t, you can think of that absolute square as measuring the error at that point
t. As you increase the number of the terms in the Fourier series summation, the summation gets “closer”
to x(t), but it does so in a particular way that involves the average error over a period going to zero. The
Gibbs peaks do not mess that up since although they never go away, they get narrower and narrower.

The upshot of all this is that sometimes there is some fine print hiding under our equal signs. That
is about all we will have to say about that level of gorey mathematical detail; digging into such details is
typically at the heart of graduate classes with names like “measure theory” and “functional analysis.”

44 CHAPTER 6. REVIEW OF FOURIER SERIES

Chapter 7

Fourier Transforms

7.1 Motivation

Take another look at the Fourier analysis integral and Fourier series summation:

ak =
1

T0

∫ T0/2

−T0/2

x(t) exp

(
−j 2π

T0
kt

)
dt,

x(t) =

∞∑
k=−∞

ak exp

(
j

2π

T0
kt

)
.

We have always thought of x(t) as being a periodic signal with periodic T0. But Fourier series are
also useful for describing finite-length signals; for instance, in communication theory, signals in the class of
functions x : [0, T0] → C are often of interest. From this viewpoint, we are not really worried what the
Fourier series for x(t) is outside of that interval of interest. Interestingly, [0, T0] is an uncountably infinite
set, but we claim that x(t) can be described by a countably infinite set of coefficients. We get away with
this since practical functions of interest in engineering satisfy various arcane rules that x(t) must obey for
the Fourier series representation to work. (Mathematicians can cook up perverse functions that do not obey
these rules; we will leave that to them.)

Consider functions in an equivalent class x : [−T0/2, T0/2] → C. We will explore what happens as
T0 → ∞, i.e, the period grows to infinity, and make some appropriate modifications to the above formulas.
Some of these modifications seem will seem unmotivated; they are unlikely to be things you might think of
until you try to make this heuristic derivation work, get close to the end, and then realize that you need
some some tweaks.

Notice that as the period becomes longer, the spacing between adjacent frequencies in the complex
exponential (e.g. between k and k + 1) become smaller. This leads us to suspect that we could treat the
summation as a Riemann sum and ultimately replace it with an integral. This intuitive approach might
provide insight into how someone might come up with the concept of Fourier transforms. A more rigorous
approach would involve a more modern approach to calculus called Lebesgue integration, but you will not
need to worry about that unless you dig more into the theory in graduate school.

45

46 CHAPTER 7. FOURIER TRANSFORMS

To prepare for this journey, multiply the Fourier analysis integral by T0:

T0ak =

∫ T0/2

−T0/2

x(t) exp

(
−j 2π

T0
kt

)
dt.

Also, dress up the the Fourier series by putting 2π/T0 at the end of the equation and T0/(2π) split up near
the beginning (so that we are not actually changing the equation):

x(t) =
1

2π

∞∑
k=−∞

T0ak exp

(
j

2π

T0
kt

)
2π

T0
.

Now wave your hands vigorously while letting ω = limT0→∞ 2πk/T0, dω = limT0→∞ 2π/T0, and X(jω) =
limT0→∞ T0ak.

After the dust settles, we are left with the classic Fourier transform pair:

X(jω) =

∫ ∞
−∞

x(t) exp (−jωt) dt,

x(t) =
1

2π

∫ ∞
−∞

X(jω) exp (jωt) dω.

What you just experienced was not anything like a rigorous proof; we hope it was fun anyway.

7.2 A key observation

Notice that the inverse Fourier transform basically rewrites a function as a sum of complex exponentials; the
ideas underlying our previous discussion about inputting a Fourier series into an LTI system apply here as
well. If a signal with Fourier transform X(jω) is input to a system with a frequency response of H(jω), the
output of the system is

y(t) =
1

2π

∫ ∞
−∞

H(jω)X(jω) exp (jωt) dω. (7.1)

Noticing that (7.1) looks like an inverse Fourier transform, we see one of the most celebrated properties of
Fourier transforms: convolution in the time domain, e.g. y(t) = h(t) ∗ x(t), corresponds to multiplication in
the frequency domain, e.g. Y (jω) = H(ω)X(ω). Note that if you had not already heard about convolution
being commutative, you would immediately realize that it has to be since multiplication is commutative.
Also, notice that this property holds for functions in general; H(ω) does not really need to be a frequency
response of some system and X(ω) does not really need to be the Fourier transform of an input. We will
squeeze gallons of juice out of this property. In particular, for LTI systems in a cascade configuration, we can
swap the order of the systems, and we can also theoretically replace a cascade of two systems with frequency
responses H1(jω) and H2(jω) with a single system with frequency response H(jω) = H1(jω)H2(jω).

7.3. YOUR FIRST FOURIER TRANSFORM: DECAYING EXPONENTIAL 47

7.3 Your first Fourier transform: decaying exponential

Let us find the Fourier transform of x(t) = exp(−at)u(t) for a > 0.

X(jω) =

∫ ∞
−∞

exp(−at)u(t) exp(−jωt)dt =

∫ ∞
0

exp(−at) exp(−jωt)dt (7.2)

=

∫ ∞
0

exp(−[a+ jω]t)dt =
1

−(a+ jω)
exp(−[a+ jω]t)

∣∣∣∣∞
0

(7.3)

=
1

a+ jω
. (7.4)

Note that a > 0 ensures that exp[(−a + jω)t] is a decaying exponential; we need that so that the
upper limit goes to zero.1 There are many examples of physical systems that have the impulse response
h(t) = C exp(−at)u(t); for instance, it characterizes response of an RC circuit with the capacitor going to
ground, the resistor going to an input voltage, and the output voltage measured between the capacitor and
the resistor. The frequency response of this system is the Fourier transform we just computed, times a
constant.

Sometimes we can use the following trick to easily compute the magnitude of a frequency response:

|H(jω)|2 = H(jω)H?(jω) =

(
1

a+ jω

)(
1

a− jω

)
=

1

a2 + ω2
, (7.5)

|H(jω)| =
√

1

a2 + ω2
. (7.6)

This is a “single-pole” lowpass filter; we will talk about what we mean by “pole” in later chapters. The
“DC gain” is H(j0) = 1/a. One particularly useful description of such a system is the frequency at which
the power of the input signal is cut by half relative to the power at DC; for the moment, let us call it ωc:

1

2
|H(j0)|2 = |H(ωc)|2, (7.7)

1

2
· 1

a2
=

1

a2 + ω2
c

. (7.8)

By inspection, the half-power cutoff is ωc = a.
The phase of the frequency response is

H(jω) = − arctan(ωc/a). (7.9)

7.3.1 Frequency response example

Suppose a continuous-time LTI system has the impulse response h(t) = exp(−0.1t)u(t), and it is fed an
input signal x(t) = 7 cos(

√
3(0.1)t+ π/5).

The magnitude of the frequency response of the system, evaluated at the input frequency, is

|H(j
√

3(0.1))| =
√

1

(0.1)2 + [
√

3(0.1)]2
=

√
1

(0.1)2[1 + 3]
= 5. (7.10)

1In later chapters, we will look at a relative of the Fourier transform called the Laplace transforms, which can be used to
analyze the a ≥ 0 case.

48 CHAPTER 7. FOURIER TRANSFORMS

And the corresponding phase is

H(j
√

3(0.1)) = − arctan[
√

3(0.1)/0.1] = − arctan[
√

3] = −π/3. (7.11)

Notice we set up the numbers so that they invoke a 30-60-90 triangle; real life is rarely so convenient.
To find the output, the amplitude of the input wave is multiplied by the magnitude of the frequency

response, and the phase of the input wave is added to the phase of the frequency response:

y(t) = 5× 7 cos(
√

3(0.1)t+ π/5− π/3) = 35 cos(
√

3(0.1)t− 2π/15). (7.12)

7.4 Your first Fourier transform property: time shift

In practice, computing a Fourier transform by explicitly evaluating the Fourier transform integral is a last
resort. For most functions of interest in typical engineering applications, someone will have already worked
out a basic Fourier transform pair that is pretty close to what you need. If you can find a transform that
close to what you need in a table somewhere, you can often apply a some Fourier transform properties to
massage the Fourier transform pair you found into the Fourier transform pair you need. These properties
are generally stated along the lines of “if X(jω) is the Fourier transform of x(t), then...”

We will only bother to prove a few of them here; we will state many without proof. Once you see a
few proofs, you will be able to do the others, since they all follow a similar patterns. Suppose X(jω) is the
Fourier transform of x(t). Then the Fourier transform of the shifted function y(t) = x(t− t0) is

Y (jω) =

∫ ∞
−∞

x(t− t0) exp (−jωt) dt (7.13)

=

∫ ∞
−∞

x(τ) exp (−jω[τ + t0]) dτ =

∫ ∞
−∞

x(τ) exp (−jωτ) exp (−jωt0) dτ (7.14)

= exp (−jωt0)

∫ ∞
−∞

x(τ) exp (−jωτ) dτ = exp (−jωt0)X(jω). (7.15)

In the first step above, we made the substitution τ = t− t0; we have t = τ + t0 and dt = dτ . We see that a
shift in the time domain corresponds to multiplication by a complex sinusoid in the frequency domain.

Many proof involving transforms follow this approach: you plug something into one of the transform
integrals (forward or inverse), you might or might not do a change of variables, and then you rearrange the
resulting expression so that an integral recognizable as a transform jumps out at you.

7.5 Your second Fourier transform: delta functions

The Fourier transform of x(t) = δ(t− t0) is

X(jω) =

∫ ∞
−∞

δ(t− t0) exp(−jωt)dt = exp(−jωt0). (7.16)

The special case of x(t) = δ(t) yields X(jω) = 1. This is amazing—somehow an uncountably infinite sum
of a uncountably infinite number of sinusoids, at every possible frequency, each with equal amplitude, adds
up to give you a delta function! Most textbooks just state this fact and move on. Meditate upon this for a

7.6. RECTANGULAR BOXCAR FUNCTIONS 49

second. First of all, notice that X(jω) = X(−jω) for this x(t) = δ(t) case; looking at the inverse Fourier
transform, this tells you that δ(t) can be written as a sum of cosines. Each one of these cosines is 1 at t = 0,
but then they all “wave” differently outside of t = 0. Somehow all of the cosines cancel each other out for
t 6= 0, but they all add up at t = 0 to create something infinite at that point.

7.5.1 Sanity check

Let us pause to make sure that (7.16) is consistent with the shifting property we derived in Sec. 7.4.
Recall that x(t) ∗ δ(t− t0) = x(t− t0); convolving a function with a Dirac delta function just shifts that

function.
The convolution property of Fourier transforms tells us that the Fourier transform of x(t)∗δ(t−t0) = x(t−

t0) will be the Fourier transform of x(t) times the Fourier transform of δ(t− t0), namely X(jω) exp(−jωt0).
This is consistent with the shifting property we derived earlier.

7.6 Rectangular boxcar functions

7.6.1 Fourier transform of a symmetric rectangular boxcar

Consider a pulse of unit height of length L, centered at the origin, x(t) = u(t+L/2)−u(t−L/2). Its Fourier
transform is

X(jω) =

∫ L/2

−L/2
exp (−jωt) dt =

1

−jω
exp (−jωt)

∣∣∣∣t=L/2
t=−L/2

(7.17)

=
1

jω

[
exp

(
j
L

2
ω

)
− exp

(
−j L

2
ω

)]
=

2

2jω

[
exp

(
j
L

2
ω

)
− exp

(
−j L

2
ω

)]
(7.18)

=
2

ω
sin

(
L

2
ω

)
. (7.19)

Concerning the indeterminate ω = 0 case, L’Hopital’s rule says

X(j0) = lim
ω→0

2

ω
sin

(
L

2
ω

)
= 2

limω→0
L
2 cos

(
L
2 ω
)

limω→0 1
= L.

Remember the trick for finding X(j0) without much work:

X(j0) =

∫ ∞
−∞

x(t) exp (−j0t) dt =

∫ ∞
−∞

x(t)dt.

Applying this to the boxcar results in something consistent with what we found from L’Hopital rule:

x(t) =

∫ L/2

−L/2
1dt = L.

The zero crossings of X(jω) occur when Lω/2 = kπ, i.e. ω = 2πk/L, where k is a nonzero integer.
This kind of sin(something)/something expression is called a “sinc” function. Many textbooks and

computer programs (such as MATLAB) use the notation sinc(·); unfortunately, different books and programs

50 CHAPTER 7. FOURIER TRANSFORMS

use different definitions of sinc. To avoid confusion, we will explicitly “spell out” what we mean when writing
equations.

In your previous studies, you may have looked at the frequency response of a discrete-time running sum;
it looks similar to our sinc function here, but instead of having the form sin(something)/something, it had the
form sin(something)/sin(something); this gives the discrete-time version a repeating structure. Sometimes
this discrete-time response is called a “sind” function – you will also hear it referred to as an “aliased sinc”
or “digital sinc” (although both of those terms are perhaps misleading).

The boxcar is an easily created signal – for instance, in an electrical circuit context, one might just flip a
voltage or current on and then back off using a mechanical or electronic switch of some kind. Later, we will
see how boxcars also provide a convenient “window” for defining limited-time versions of more complicated
functions.

Recall that the first Fourier transform we looked at was the transform of a decaying exponential (Sec. 7.3).
We used it as an example of a frequency response of a system, since continuous-time systems with decaying
exponential impulse responses are ubiquitous. This “boxcar” function is a different story; you would be
hard pressed to find a real-world system with a boxcar impulse response “in the wild,” although professors
like to put them on homework problems regardless of how unrealistic they might be. (This contrasts with
discrete-time systems, in which the equivalent boxcar is easy to construct with a tiny microprocessor with
sufficient memory.)

7.6.2 Inverse Fourier transform of single symmetric boxcar

We now explore the other direction. Consider an X(jω) which is 1 between −ωc and ωc and 0 elsewhere.
(We will try to avoid situations where we might be worried about what X(jωc) at exactly ω = ±ωc). Do not
forget to divide by 2π; that is a quite common error! Here we go:

x(t) =
1

2π

∫ ωc

−ωc

exp (jωt) dω =
1

j2πt
exp (jωt)

∣∣∣∣ω=ωc

ω=−ωc

(7.20)

=
1

2jπt
[exp (jωct)− exp (−jωct)] =

1

πt
sin (ωct) . (7.21)

We see that the inverse transform of a rectangular window in frequency is a sinc function in time. By
now, you should be quite familiar with applying L’Hopital’s rule to find that x(0) = ωc/π. We could also
apply this general trick for easily finding x(0) from a Fourier transform X(jω):

x(0) =
1

2π

∫ ∞
−∞

X(jω) exp(j0t)dω =
1

2π

∫ ∞
−∞

X(jω)dω. (7.22)

The zero crossings of x(t) occur when wct = kπ, i.e. t = πk/ωc, where k is a nonzero integer.
Although boxcars do not describe the impulse response of many realistic systems, they do describe the

frequency response of many almost-realistic systems, or at least hoped-for systems. The “almost” and
“hoped-for” hedges come from observing the corresponding sinc impulse response h(t); it is not causal, and
actually has infinite time extent in both directions! So, a perfect “brickwall” filter H(jω) is not something
you can actually build. But you can try to get close, and we can often get close enough that we will invoke
the brickwall filter as a convenient approximation.

7.6.3 Observations about our boxcar examples

Three observations before we move on:

7.7. FOURIER TRANSFORMS OF DELTAS AND SINUSOIDS 51

1. We have seen that a boxcar in time transforms into a sinc function in frequency, and the sinc function
in time transforms into a boxcar in frequency. That kind of near-symmetry shows up frequently, both
in terms of transform pairs and in transform properties. This should not be surprising, since the forms
of the forward and inverse Fourier transforms are so similar. We say “near-symmetry” since the dual
forms usually have variations in signs and the presence (or not) of 2π somewhere.

2. We made a slight notational change in the way we defined our boxcars. Although the math of the
transforms we took is basically the same, the time and frequency domain have different interpretations
in practice. We think of pulses of having a length L and filters having a cutoff frequency ωc. The
difference in parameterization also made a difference in the look-and-feel of the transforms beyond sign
flips and factors of 2π.

3. We took the transforms of pulses, which gave us the sinc functions. Suppose we had done it the
other way around; imagine someone gave us a sinc function, but we did not know anything about its
transform. If we plug a sinc function into the forward or inverse transform formulas, we get something
horribly complicated that would be quite challenging to attack using the usual tricks of Freshman
calculus. This is another common pattern—transforming function A into function B using the FT
formulas may be easy, but brute-force transforming B into A using the FT formulas may be difficult
or impossible, so having a table of such pairs – where you computed whatever the easiest one was, and
then can just look in the table when you need to go the other direction – is quite helpful.

7.7 Fourier transforms of deltas and sinusoids

Remember that the Fourier transform of x(t) = δ(t− t0) is

X(jω) =

∫ ∞
−∞

δ(t− t0) exp(−jωt)dt = exp(−jωt0).

The inverse Fourier transform of X(jω) = δ(ω − ω0) is

x(t) =
1

2π

∫ ∞
−∞

δ(ω − ω0) exp(jωt)dω =
1

2π
exp(jω0t).

Because of the linearity of Fourier transforms, we can move the 2π and write this pair as

exp(jω0t)
F⇐⇒ 2πδ(ω − ω0),

which has the intriguing special case

1
F⇐⇒ 2πδ(ω),

Using (7.7), the inverse Euler’s formulas, and the linearity of Fourier transforms, we can readily find the
Fourier transform of cosines and sines:

cos(ω0t) =
1

2
[exp(jω0t) + exp(−jω0t)],

cos(ω0t)
F⇐⇒ πδ(ω − ω0) + πδ(ω + ω0).

52 CHAPTER 7. FOURIER TRANSFORMS

sin(ω0t) =
1

2j
[exp(jω0t)− exp(−jω0t)],

sin(ω0t)
F⇐⇒ π

j
δ(ω − ω0)− π

j
δ(ω + ω0) = −jπδ(ω − ω0) + jπδ(ω + ω0).

7.8 Fourier transform of periodic signals

We know we can represent periodic signals as a Fourier series:

x(t) =

∞∑
k=−∞

ak exp (jkω0t) . (7.23)

We can take the Fourier transform of this Fourier series by applying the transform of a complex sinusoid
derived earlier, as well as the linearity of Fourier transforms:

X(jω) =

∞∑
k=−∞

2πakδ (ω − kω0) . (7.24)

Chapter 8

Modulation

This chapter presents a simplified story of how AM radio works. This is a practical application that will
let us introduce a few new Fourier properties in a concrete context while also reviewing some of the Fourier
theory we already covered.

8.1 Fourier view of filtering

As a warm-up, recall the property that convolution in the time domain corresponds to multiplication in the
frequency domain:

x(t) ∗ h(t)
F⇐⇒ X(jω)H(jω). (8.1)

Recall that the cosine function x(t) = cos(ω0t) has the Fourier transform X(jω) = πδ(ω−ω0)+πδ(ω+ω0).
If we input this function into a system with the general impulse response h(t), applying the convolution
property easily yields the Fourier domain description of the output y(t):

Y (jω) = [πδ(ω − ω0) + πδ(ω + ω0)]H(jω) (8.2)

= H(jω0)πδ(ω − ω0) +H(−jω0)πδ(ω + ω0). (8.3)

In a previous chapter, we found that the inverse Fourier transform of δ(ω−ω0) is exp(jω0t)/(2π). Hence,
the inverse transform of (8.3) is

y(t) = H(jω0)
exp(jω0t)

2
+H(−jω0)

exp(−jω0t)

2
. (8.4)

If h(t) is real-valued, it turns out that its Fourier transform is conjugate symmetric, i.e. H(−jω) =
H∗(jω) (this should not be surprising since we have seen that Fourier series coefficients have the same
property). Hence, if h(t) is real-valued, we can simplify (8.4) as

y(t) = H(jω0)
exp(jω0t)

2
+H∗(jω0)

exp(−jω0t)

2
(8.5)

= H(jω0)
exp(jω0t)

2
+H∗(jω0)

exp(−jω0t)

2
(8.6)

= |H(jω0)| cos(ω0t+ ∠{H(jω0)}). (8.7)

53

54 CHAPTER 8. MODULATION

There is nothing new there; this is the classic “sinusoid in → sinusoid out” property of LTI systems from
Section 3.4 that we have hammered on repeatedly (as in Section 7.3.1), just redone using our new shiny
Fourier transform machinery. This section is only a consistency check.

8.1.1 Filtering by an ideal lowpass filter

Suppose we had an ideal “brickwall” lowpass filter with cutoff frequency ωco, defined by

H(jω) =

{
1 for ω ≤ ωco
0 for ω > ωco

. (8.8)

In an earlier chapter, we saw that the corresponding impulse response h(t) is a sinc function. (As usual,
we will try to avoid worrying about what happens exactly at ω = ωco; this is not a filter we can realistically
build anyway, so it is not a question that will arise in practice). The response to a pure sinusoid x(t) with
frequency ωo would simplify to

y(t) =

{
x(t) for ωco ≤ ωo

0 for ωco > ωo
. (8.9)

Again, this is not new; we are reviewing it because (a) it is always good to review and (b) we will use it
in Section 8.3.

8.2 Modulation property of Fourier transforms

We have often employed the property that convolution in the time domain corresponds to multiplication in
the frequency domain:

x(t) ∗ h(t)
F⇐⇒ X(jω)H(jω). (8.10)

This property has a “dual” property, which says that multiplication in the time domain corresponds to
convolution in the frequency domain, divided by 2π:

x(t)p(t)
F⇐⇒ 1

2π
X(jω) ∗ P (jω). (8.11)

The proof is like the other Fourier transform property proofs you have seen; we will not spell out the
details here.

This is the first time we have presented convolution in the frequency domain; it is defined analogous to
time-domain convolution:

X(jω) ∗ P (jω) =

∫ ∞
−∞

X(ξ)P (ω − ξ)dξ. (8.12)

We changed h to p since h usually corresponds to the impulse response of a filter, which is not usually
how we want to interpret what we are now calling p. (Also, be careful – that 2π is easy to forget!)

We approach this as engineers, not mathematicians; the context of these properties is that our real-world
implementations take place on the left hand sides of (8.10) and (8.11). We usually build filters that operate
in the time domain, and we build multiplication circuits that multiply in the time domain; the frequency-
domain interpretations of the systems we build are found on the right hand sides of (8.10) and (8.11).
A design procedure might begin on the frequency-domain side, but the ultimate implementation usually
happens on the time-domain side. (In systems using extensive digital signal processing, where algorithms
such as the FFT can be exploited, there may be times where the “implementation” takes place on the right
hand side, but this approach is fairly rare in purely analog computation systems.)

8.3. DOUBLE SIDE BAND AMPLITUDE MODULATION 55

ω
ωb −ωb

A

Figure 8.1: Conceptual Fourier transform of a “typical” real-valued bandlimited signal. The triangle is a
“placeholder.”

8.2.1 Modulation by a complex sinusoid

Suppose p(t) = exp(jω0t). In Section 7.7, we discovered that P (jω) = 2πδ(ω − ω0). Inserting this into our
modulation property tells us that

x(t) exp(jω0t)
F⇐⇒ 1

2π
X(jω) ∗ [2πδ(ω − ω0)] = X(j(ω − ω0)).

You can also readily prove this by just plugging X(j(ω−ω0)) into the inverse Fourier transform integral
and doing a Freshman-calculus-style change of variable.

We see that multiplication by a complex sinusoid in the domain corresponds to a shift in the frequency
domain. Communications engineers make tremendous use of this property to move signals around in the
frequency domain.

Although it resembles the shift-in-time property we derived in Section 7.4,

x(t− t0)
F⇐⇒ X(jω) exp(−jωt0),

you must be mindful of the differences (for instance, the difference of sign in the complex exponential).

8.3 Double Side Band Amplitude Modulation

Suppose we have a real-valued signal x(t) that is bandlimited: X(jω) = 0 for |ω| ≥ ωb, that we want
to transmit. We often draw such “generic” X(jω) as triangles, with the left side shaded to keep track of
conjugate frequency pairs, as shown in Figure 8.1. We do not expect the actual signal of interest to have
a Fourier transform that is actually a triangle; we know that would be the square of a sinc function, which
probably is never going to make the Billboard Top 100. It is just a shape traditionally used for bookkeeping
purposes.

We are already fudging a little bit; no signal can be strictly time-limited and strictly band-limited.
Because no one lives forever, the time constraint is always pressing. We will assume that our signals are
“close enough” to being bandlimited that our analysis is a reasonable approximation.

8.3.1 DSBAM transmission

Earlier, we saw that multiplying a signal by a complex sinusoid shifts that signal in the frequency domain.
Using this trick directly would require two channels of some kind, one to hold a “real” component and
another to hold an “imaginary” component. We will revisit this in a later chapter, but for now, we would

56 CHAPTER 8. MODULATION

ω

ωc −ωc

A/2

0

A/2

Figure 8.2: M(jω), the Fourier transform of the modulated signal m(t).

like to restrict ourselves to real-valued signals. Let us multiply x(t) by by cos(ωct), where ωc is the called
the carrier frequency, since we will think of the pure sinusoid cos(ωct) as “carrying” the signal x(t). Let us
denote the modulated signal as m(t) = x(t) cos(ωct). The Fourier transform pairs and properties reviewed
earlier give us:

M(jω) =
1

2π
X(jω) ∗ [πδ(ω − ωc) + πδ(ω + ωc)] (8.13)

=
1

2
X(ω − ωc) +

1

2
X(ω + ωc), (8.14)

as shown in Figure 8.2. The 1/2 might be vaguely interpreted as half of the energy in the spectrum of x(t)
landing on the “positive side” and the other half landing on the “negative side.”

Communication engineers move signals in the frequency domain for two reasons: (1) so different radio
stations, for instance, can broadcast over the same “airwaves” by choosing different carrier frequencies1 and
(2) we can encode our signal at a frequency for which radio waves have an easier time being generated
and propagating in practice. If you listen to Clark Howard on WSB AM 750, that means Clark has been
modulated to 750 kHz. His audio-frequency voice signal, if amplified and shoved out a realistically sized
antenna, would not get very far. (The Georgia Tech radio station WREK is at 91.1 MHz, but it uses
frequency modulation instead of AM. Information on FM radio is readily available from other sources.)

8.3.2 DSBAM reception

Upon receiving m(t), how might we get x(t) back? An initial thought might be to divide by cos(ωct). But
you would wind up dividing by zero, which is troublesome in theory and an absolute disaster in practice.
Even dividing by things “close to” zero is problematic, whether you are using analog circuitry, computers,
or magic spells.

The real first step of retrieving x(t) from m(t) is somewhat counterintuitive: the receiver multiplies by
cos(ωct) again! Let us denote this as r(t) = m(t) cos(ωct).

If we let M(jω) play the role of X(jω) on the right hand side of (8.14), we discover

R(jω) =
1

2
M(ω − ωc) +

1

2
M(ω + ωc) (8.15)

=
1

2

{[
1

2
X(j(ω − 2ωc) +

1

2
X(jω)

]
+

1

2

[
1

2
X(jω) +

1

2
X(j(ω + 2ωc))

]}
(8.16)

=
1

4
X(j(ω − 2ωc)) +

1

2
X(jω) +

1

4
X(j(ω + 2ωc)), (8.17)

1We put “airwaves” in air quotes because you do not really need air for radio waves to propagate.

8.3. DOUBLE SIDE BAND AMPLITUDE MODULATION 57

ω

2ωc −2ωc

A/4

0

A/4

A/2

ωb −ωb

Figure 8.3: R(jω), the Fourier transform of the mostly-demodulated signal r(t).

shown in Figure 8.3. Notice we have a copy of the original innocently sitting there at DC. All we have to do
is filter out the high-frequency copy at 2ωc. Now you see why we reviewed brickwall filters in Section 8.1.1;
we just need something that rejects frequencies above ωco, where ωb < ωco < (2ωc − ωb):

H(jω) =

{
2 for ω ≤ ωco
0 for ω > ωco

. (8.18)

The 2 cancels the 1/2 in the second term of (8.17), so we get X(jω) back exactly, and hence x(t). (Including
this “2” is somewhat pedantic; any real AM communication process will be subject to all sorts of global
scaling factors, including the listener’s volume control.)

We could have analyzed this process in the time domain. A trignometric identity gives us:

r(t) = x(t) cos2(ωct) =
x(t)

2
[1 + cos(2ωc)]. (8.19)

By now, you should be able to quickly see that this matches the formula for R(jω) we derived in 8.17. But
it is far more illuminating to perform the entire exploration in the frequency domain.

Notice for all of this to work, we need ωc > 2ωb, or else the modulated copies will overlap.

8.3.3 Practical matters

The FCC requires commercial AM radio stations to limit the effective bandwidth of their broadcasts so
they do not interfere with one another. These stations are are restricted to a 20 kHz broadcast bandwidth,
limiting their upper audio end to 10 kHz, which makes AM mediocre for music. Also, AM is typically more
hindered by interference than FM – the reasons for that, and an analysis of FM and how to demodulate FM
signals, are beyond the scope of this class. For reasons of bandwidth and susceptibility to interferences, AM
stations nowadays generally follow “talk radio” formats.

There is one additional quirk we should mention: our explanation above is not how real AM radio actually
works. The trouble with the scheme we just described is that it assumes that the sinusoids of the carriers in
the transmitter and the receiver are “phase locked,” which is quite difficult to obtain in practice since the
distance between the transmitter and the receiver is constantly changing. AM radio came into fruition a
century ago; it needed to be able to work with an extremely simple receiver, even so-called “crystal radios,”
so a more robust modulation and demodulation scheme was needed. The solution, essentially, is to transmit
the carrier along with the modulated signal. A simple demodulation process then consists of rectifying (i.e.
taking the absolute value) of the received signal and lowpass filtering it to smooth out the ripples.

58 CHAPTER 8. MODULATION

8.4 Baseband representations of bandlimited signals

In both analog and digital contexts, it can be difficult to design hardware that can handle high-frequency
signals. In an analog design, stray capacitances between cables, copper traces on a PCB, and even the layers
of an integrated circuit effectively form parasitic lowpass filters. As reviewed in Chapter 9, straightforward
representation of a continuous-time signal with discrete-time samples requires a sample rate that is greater
than twice the highest frequency of the underlying signal, which can place tremendous strain on analog-to-
digital converters and digital signal processing hardware. Faster ADC rates are generally only obtainable
with a sacrifice of bit depth, and a variety of factors give CMOS logic a practical maximum clock rate of
around 4 GHz.

[MORE TO COME]

Chapter 9

Sampling and Periodicity

9.1 Sampling time-domain signals

Quite early in ECE2026, we introduced the notion creating a discrete-time signal by sampling a continuous-
time signal, along with a convenient slight abuse of notation: x[n] = x(nTs), where Ts is the period between
samples. fs = 1/Ts is the sample rate.

We introduced the idea of the Nyquist rate of x(t), which is the twice the highest frequency component
in x(t). The Nyquist sampling theorem says that to be able to reconstruct x(t) from its samples x[n], you
need to sample at a rate greater than the Nyquist rate.

9.1.1 A Warm-Up Question

Consider a periodic square wave with fundamental frequency f0 (in Hertz). What is the Nyquist rate, if it
exists, for this signal? In other words, is there minimum sample rate such that if we sample at higher than
that sample rate, we can reconstruct x[n] from its samples? If so, what is it?1

This is kind of a trick question. The square wave is not bandlimited—its Fourier coefficients approach
zero as the harmonic number k increases, like O(1/k), but they never actually hit zero and stay there. So
there is no Nyquist rate for a square wave!

It is not just discontinuities like those in a square wave that cause problems. A triangle wave is continuous,
but its derivative has a discontinuity, and that causes problems. A triangle wave has coefficients that decreases
like O(1/k2) instead of O(1/k), so they tend towards zero much faster than the coefficients of a square wave,
but they still never exactly stay on zero.

9.1.2 Sampling: from ECE2026 to ECE3084

To keep the explanation relatively simple, Chapter 4 of Signal Processing First mostly addressed sampling
sinusoids. You solved problems in which we gave you an input frequency and a sample rate, and asked you
for the output frequency; we told you output frequency and the sample rate, and asked you what input
frequencies could have produced that output; and we gave you an input frequency and an output frequency,
and asked you what sample rates could have produced that output.

1Many years ago, one of your authors, Aaron Lanterman, put this question on a PhD written qualifying exam. At least a
third of the students taking it reflexively doubled the frequency f0 and erroneously claimed 2f0 to be the answer.

59

60 CHAPTER 9. SAMPLING AND PERIODICITY

We introduced the idea of a normalized discrete-time frequency of discrete-time sinusoids, ω̂ = ω/fs, or

less commonly, f̂ = f/fs.
Sampled data are ubiquitous, but the effects of sampling are often vexingly counterintuitive, so we believe

it is important to address sampling early in electrical engineering and computer engineering curricula. But
now that we have covered Fourier transforms, we can fill in some of the gaps (pun slightly intended) of the
sampling discussion in ECE2026:

• We are no longer restricted to talking about sampling countable sums of sinusoids; we can mathe-
matically describe the process of sampling any signal of practical interest in engineering, since we can
represent such signals as sums of sinusoids – uncountable sums, if needed – via an inverse Fourier
transform.

• We stated the Nyquist sampling theorem in ECE2026, but we did not fully prove it. Fourier transform
theory gives us the tool we need to prove it.

• Practical sample reconstruction systems usually “fill in the gaps” between samples using straight hor-
izontal lines (“sample and hold”), making the reconstruction look something like a Riemann sum
approximation to an integral. Usually some additional analog filtering smooths the resulting “stair-
case.” With Fourier theory, we can analyze that process more thoroughly (see Section 9.1.4), and also
give an exact, although impractical, formula for reconstructing a signal from its samples (see Section
9.1.3).

9.1.3 A mathematical model for sampling

Consider this unit impulse train, with the Dirac deltas spaced every Ts seconds (or whatever time unit):

p(t) =

∞∑
n=−∞

δ(t− nTs). (9.1)

We can approximate the sampling process as multiplying a signal x(t) by this impulse train p(t). The
weights of the impulses in the resulting impulse train xs(t) = x(t)p(t) are the samples:

xs(t) =

∞∑
n=−∞

x(nTs)δ(t− nTs). (9.2)

You can imagine that an ideal continuous-to-discrete converter consists of a multiplier computing xs(t)
followed by a “pull off the weights of the impulses” box that produces x[n] = x(nTs). Remember, this is
a conceptual model. If you buy an ADC (analog-to-digital converter) chip from Maxim or Analog Devices,
pop it open, and stick it under a microscope, you will not find any circuits in there that generate trains of
Dirac delta functions and you will not find any analog multipliers. This abstract model will let us analyze
sampling using Fourier theory.

Recall that we can represent periodic signals as a Fourier series summation (we are using f here instead
of x so it will not be confused with the x we want to use the represent the input to our ideal ADC):

f(t) =

∞∑
k=−∞

ak exp (jkω0t) . (9.3)

9.1. SAMPLING TIME-DOMAIN SIGNALS 61

In a previous lecture, we saw that we can take the Fourier transform of this Fourier series summation:

F (jω) =

∞∑
k=−∞

2πakδ (ω − kω0) . (9.4)

As we mentioned before, this can be a little confusing; the spectrum plots for Fourier series that we made
in ECE2026 (and that many others make when talking about Fourier series) did not have the 2π. That
constant is needed to get the forward and inverse Fourier transform formulas to work out.

We can easily compute the Fourier series coefficients of p(t):

ak =
1

Ts

∫ T0/2

−T0/2

δ(t) exp(−jkωst) =
1

Ts
. (9.5)

Hence, the Fourier transform of our pulse train p(t) is

P (jω) =

∞∑
k=−∞

2π

Ts
δ (ω − kωs) . (9.6)

Notice that the Fourier transform of an impulse train is another impulse train! There are other examples
of such functions – for instance, sinc functions and Gaussian functions2 – but in general, the transforms of
functions do not look anything like the original functions, so this is an interesting special case.

In particular, single impulses transform into constants, which are about as different from an impulse as
you can imagine. But our result on impulse trains is conceptually consistent. If you let Ts → ∞ in p(t),
notice that the deltas in P (jω) become smushed closer and closer together, so if you handwave and squint
a bit, you can imagine this forming a horizontal line.

Recall the modulation property from Chapter 8.2, which said that multiplication in the time domain
corresponds to convolution in the frequency domain divided by 2π. Hence, the Fourier transform of xs(t) is

Xs(t) =
1

2π

[
X(jω) ∗

∞∑
k=−∞

2π

Ts
δ (ω − kωs)

]
(9.7)

=
1

Ts

∞∑
k=−∞

X(j(ω − kωs)). (9.8)

We see that sampling in the time domain results in periodic replication in the frequency domain. This
should not be a surprise; in ECE2026, we discovered that discrete-time frequencies ω̂ had an ambiguity of
2π, so we limited frequency response plots of discrete-time filters to −π ≤ ω̂ ≤ π.

Like in the chapter on AM communication, we will draw a triangle representing a real-valued, “generic”
bandlimited signal X(jω), with X(jω) = 0 for ω ≥ ωb, that we want to sample. We shade the left half to
keep track of conjugate pairs. Again, we do not expect this Fourier transform to actually be a triangle; it is
just a bookkeeping convention.

As illustrated in Figure 9.1, if ωs ≥ 2ωb, the triangle copies do not overlap, so if we run xs(t) through a
brickwall lowpass filter with cutoff ωb ≤ ωc ≤ (ωs − ωb), we can keep the copy in the middle and eliminate
the remaining aliases. To get the math to work out so that the reconstruction exactly equals the input, we
can set the gain of the filter as Ts—but this is the sort of thing you only ever see in a textbook or on a
whiteboard, since realistic systems are subject to all sorts of gain factors.

2We have not discussed Gaussian functions, so do not worry if have not heard of them before. You might have seen them in
a class on probability.

62 CHAPTER 9. SAMPLING AND PERIODICITY

ω
ωb −ωb

A

0 ωs 2ωs −ωs −2ωs

.

Figure 9.1: An illustration of sampling without aliasing.

ω
ωb −ωb

A

0 ωs 2ωs −ωs −2ωs 3ωs 4ωs −3ωs −4ωs

.

Figure 9.2: An illustration of sampling with aliasing.

This analysis rounds out the Nyquist sampling theorem:

• It tells us why we need fs to be greater than the Nyquist rate in general; if it is not, the triangles
will overlap, and the overlapping parts will add together and we will not be able to unscramble them,
as illustrated in Figure 9.2. This is not a novel observation, per se; we saw the exact same issue
in ECE2026, we just drew arrows for spectral lines for particular frequency components and explored
aliasing that way, instead of contemplating the full continuum of frequency components we can consider
using Fourier theory.

• It tells us what the ideal reconstruction formula is. Consider the edge case of a triangle that is
as wide as possible without overlapping, i.e. ωco = ωb, ωs = 2ωb = 2ωco, so ωco = ωs/2. From
a Fourier transform pair we computed in a previous lecture, the brickwall filter with gain Ts and
ωco = ωs/2 = (2π/Ts)/2 = π/Ts has the impulse response

hr(t) =
Ts
πt

sin (ωcot) =
1
π
Ts
t

sin

(
π

Ts
t

)
.

Applying the reconstruction filter in the time-domain yields the reconstruction formula

xr(t) = hr(t) ∗ xs(t) (9.9)

=
sin
(
π
Ts
t
)

π
Ts
t
∗

[∞∑
n=−∞

x(nTs)δ(t− nTs)

]
(9.10)

=

∞∑
n=−∞

x(nTs)
sin
(
π
Ts

(t− nTs)
)

π
Ts

(t− nTs)
. (9.11)

This is called the sinc interpolation formula. Notice that the zero crossing of hr(t) are at integer
multiples of Ts, except for t = 0, where L’Hopital’s rule gives us hr(0) = 1. The formula tells us to

9.1. SAMPLING TIME-DOMAIN SIGNALS 63

reconstruct a signal by adding up sinc functions centered at the sample points with weights given by
the sample values. Notice that at an integer multiple of Ts, say t = mTs (here, we are using m to avoid
confusion with the n in the summation), only one sinc function contributes to fr(mTs) because the
other sinc functions are zero at that point. For spaces in between the sample points, the sinc functions
conspire to “fill in the blanks.”

Notice that this “ideal” reconstruction procedure cannot be implemented in practice because of the
infinite time extent and non-causality of the sinc function; however, it does provide a starting point
for deriving many sophisticated computer-based interpolation and multirate DSP techniques. We will
leave such matters for a senior and graduate level class in DSP.

We have seen that discrete-to-continuous converters cannot be built; some of the higher frequency copies
are bound to leak through whatever practical analog reconstruction filter we construct. But we can try to
get close.

There are also practical issues on the sampling side, not just the reconstruction side. Theoretically
speaking, none of the signals we encounter in practice are truly bandlimited, so there is always some aliasing
creeping into the original sampled signal, and in general, there is nothing we can do on the reconstruction
side to fix that. However, such aliased signals may be so tiny that they fall below the effective “noise floor”
(either electrical noise or limited bit resolution) of your system.

9.1.4 Practical reconstruction from samples

The preceding discussion about sampling, particularly reconstruction, was mostly of theoretical interest. It
was a story fabricated to prove the Nyquist sampling theorem. Besides the question about whether you can
or cannot3 build a perfect brickwall lowpass filter, no one would design a reconstruction system that actually
generated a weighted impulse train.

In practice, the typical approach is that each sample value, when converted from discrete to continuous
time, is held constant until the next sample.

Instead of using a sinc function as the impulse response of the reconstruction filter, imagine using a
reconstruction filter whose impulse response is a pulse of length Ts (see Figure 9.3):

h0(t) =

{
1 for 0 ≤ t < Ts
0 otherwise

. (9.12)

h0(t)

0

1

Ts

t

Figure 9.3: Impulse response of a zero order hold.

We are using a subscript 0 since this strategy is often called a “zero order hold.” Notice that this filter
is causal. It is also easy to implement because of the sampled nature of the input—a filter like this that

3You cannot.

64 CHAPTER 9. SAMPLING AND PERIODICITY

would operate on a more generic continuous-time signal would be quite challenging to construct. Here, all
the discrete-to-continuous converter needs to do is grab a value and hold it at periodic intervals; this easy
to construct using a capacitor and some sort of electronic switch, implemented, for instance, in CMOS. So
although it effectively acts like a continuous-time filter operating on a input train of Dirac delta functions, this
is not a typical continuous-time filter in the sense that the word “filter” is usually used. The reconstructed
signal (see Figure 9.4 for a typical example) is:

xr0(t) = h0(t) ∗ xs(t) (9.13)

= h0(t) ∗

[∞∑
n=−∞

x(nTs)δ(t− nTs)

]
(9.14)

=

∞∑
n=−∞

x(nTs)h0(t− nTs). (9.15)

xr0(t)

Ts

t

2Ts 3Ts
4Ts −Ts

−2Ts −4Ts −3Ts

.

x(−4Ts)

x(−3Ts)

x(−2Ts)

x(−Ts)

x(Ts)

x(0)

x(2Ts)

x(3Ts)

x(4Ts)

0

Figure 9.4: Example of reconstruction using a zero-order hold.

The frequency response of this zeroth-order hold filter is:

H0(jω) =
sin(ωTs/2)

ω/2
exp(−jωTs/2). (9.16)

The sinc part of (9.16) is the Fourier transform of a boxcar of length Ts centered at zero. The exponential
tacked on at the end corresponds to a Ts/2 time shift. Notice that the zeros of this frequency response are
at ω = k2π/Ts = kωs, where k is a nonzero integer. Hence, the zeros land at the centers of the aliased copies
of the sampled signal; although this is convenient, the frequency content elsewhere still bleeds through. We
usually still need an analog filter to help reduce these aliases; however, since the aliases start of at a smaller
amplitude, the requirements on our filter are less stringent in terms of getting reasonable but practical results.
A brickwall filter, if one could somehow magically exist, might still seem ideal in terms of eliminating the
aliased copies, but no matter what filter is used, notice that the spectral copy in the center that we do want
to keep will have been shaped a bit by the mainlobe of the sinc function in (9.16). This discussion suggests
that it can be helpful to oversample signals, i.e. sample at a rate faster than what the Nyquist sampling
theorem would demand. The resulting “stairsteps” are narrower, providing a better raw approximation of
the underlying signal. You can interpret this in the frequency domain by realizing that narrower pulses

9.2. DERIVING THE DTFT AND IDTFT FROM THE CTFT AND ICTFT 65

correspond to broader mainlobes. With significant oversampling, you can greatly relax requirements on your
reconstruction filter, and filters with gentler slopes are generally easier to design and cheaper to build.

Notice that the reconstructed signal is slightly delayed relative to the underlying signal that had been
sampled. This is usually not too troublesome, although delays can cause difficulties in control system design
(for instance, in a large factory where control signals must travel some relatively large distance) if they are
not compensated for.

9.2 Deriving the DTFT and IDTFT from the CTFT and ICTFT

Recall this model of the sampling process, presented Section 9.1.3:

xs(t) =

∞∑
n=−∞

x(nTs)δ(t− nTs) =

∞∑
n=−∞

x[n]δ(t− nTs), (9.17)

where x[n] = x(nTs) represents a sampled sequence.
We computed the Fourier transform of xs(t) in terms of X(jω), the Fourier transform of the underlying

sampled signal x(t):

Xs(jω) =
1

Ts

∞∑
k=−∞

X(j(ω − kωs)), (9.18)

where ωs = 2πxs = 2π/Ts.
But we could also take the Fourier transform of xs(t) more straightforwardly and express it in terms of

the discrete sequence x[n]:

Xs(jω) =

∞∑
n=−∞

x[n] exp(−jωnTs). (9.19)

Using the normalized frequency ω̂ = ω/xs = ωTs, we can rewrite this as something called the Discrete-
Time Fourier Transform (DTFT):

X(ejω̂) =
∞∑

n=−∞
x[n] exp(−jω̂n). (9.20)

By convention, X(ejω̂) is usually plotted with the horizontal axis ranging over −π ≤ ω̂ ≤ π. The DTFT
X(ejω̂) is just a frequency-scaled version of Xs(jω), and is periodic with period π, just as Xs(jω) was
periodic with period ωs.

The inverse continuous-time Fourier transform of Xs(jω) would be

xs(t) =
1

2π

∫ ∞
−∞

Xs(jω) exp(jωt)dω. (9.21)

Remember that xs(t) is a Dirac delta train. At t = nTs:

xs(nTs)δ(t− nTs) =
1

2π

∫ ∞
−∞

Xs(jω) exp(jωnTs)dω. (9.22)

66 CHAPTER 9. SAMPLING AND PERIODICITY

Making the substitutions ω = ω̂/Ts and dω = dω̂/Ts, we can write the right-hand side of (9.22) in terms
of the DTFT:

xs(nTs)δ(t− nTs) =
1

2π

∫ ∞
−∞

Xs(e
jω̂) exp(jω̂n)

dω̂

Ts
. (9.23)

Remember that sampling in the time domain resulted in replication in the frequency domain, divided by
Ts. If we just integrate over the central copy and multiply by Ts, that has the effect of applying the low-pass
reconstruction filter discussed in the Section 9.1.3 and hence undoing the “Diracification” of the sampling:

x[n] = x(nTs) = Ts

[
1

2π

∫ π

−π
Xs(e

jω̂) exp(jω̂n)
dω̂

Ts

]
(9.24)

=
1

2π

∫ π

−π
Xs(e

jω̂) exp(jω̂n)dω̂. (9.25)

This expression is called the Inverse Discrete-Time Fourier Transform (IDTFT). Its most noticeable
feature relative to its continuous-time counterpart is that the integral is of limited extent, because of the
periodic nature of the discrete-time Fourier transform. (Of course, any period of 2π will suffice for the
integration.)

There are more direct routes to deriving the DTFT and IDTFT pair. Our discussion here emphasizes the
view that the DTFT and IDTFT are just stylized special cases cases of the CTFT and ICTFT. Nearly every
CTFT property has some equivalent DTFT property. DTFT pairs and properties and their applications are
thoroughly covered in senior-level courses on “digital signal processing.” We wanted to paint a “big picture”
of how these various transforms relate. This text focuses on the continuous-time pairs; we will let other
textbooks fill in most of the blanks on the other variations.

9.3 Fourier series reimagined as frequency-domain sampling

We often use 0 as a generic subscript to indicate some constant time, like T0, or constant frequency, like ω0.
There will be several such constants floating around in this section, so instead of using 0 as a subscript, will
use letters to try to indicate what the various constants mean.

Section 7.6.1 showed that a rectangular window, symmetric around the origin, with unit height and
length L, had the Fourier transform

X(jω) =
2

ω
sin

(
L

2
ω

)
, (9.26)

where X(j0) = L is a special case.
In Section 6.4, we discovered that a unipolar square wave, symmetric around the origin, with unit height

and a 50% duty cycle, had the Fourier series coefficients

ak =
1

πk
sin
(π

2
k
)
, (9.27)

where a0 = 1
2 is a special case.

It is not a coincidence that (9.26) and (9.27) look so similar. This part of the lecture will show, in a fairly
generic way, how you could derive (9.27) directly from (9.26).

Let us define a new function, xp(t), which consists of x(t) repeated every Tp seconds, where the p
subscripts stand for “periodic.” To formally define xp(t), it will be convenient to use an unit impulse train,

9.3. FOURIER SERIES REIMAGINED AS FREQUENCY-DOMAIN SAMPLING 67

with the Dirac deltas spaced every Tp seconds (or whatever the time unit is) apart:

p(t) =

∞∑
n=−∞

δ(t− nTp). (9.28)

In Section 9.1.3, we modeled sampling in time by multiplying p(t) by x(t) (where we wrote Ts instead of
Tp). In this section, we convolve p(t) by x(t) to represent the periodic replication of x(t): xp(t) = x(t) ∗ p(t).

As usual, we now ask: what happens in the frequency domain?
Recollect that the Fourier transform of p(t) is another impulse train:

P (jω) =

∞∑
k=−∞

2π

Tp
δ (ω − kωp) , (9.29)

where ωp = 2π/Tp.
Using the property that convolution in time corresponds to multiplication in frequency (without the 2π

factor that shows up in the modulation property), we have

Xp(jω) = X(jω)P (jω) (9.30)

= X(jω)

[∞∑
k=−∞

2π

Tp
δ (ω − kωp)

]
(9.31)

=

∞∑
k=−∞

2π

Tp
X(jkωp)δ (ω − kωp) . (9.32)

That looks just like the expression we found for the Fourier transform of a periodic signal (7.8), if we set

ak =
X(jkωp)

Tp
=
X
(
jk 2π

Tp

)
Tp

. (9.33)

This is extremely convenient if we want to compute the Fourier series for a periodic signal, and we can find
the “core” of that signal – a single period the periodic waveform with a “zero extension” – in one of our
Fourier transform tables.

Let us go back to our square wave example. Suppose we did not have the ak formula for the square wave,
but we were able to find X(jω) for a single rectangular pulse in one of our Fourier transform tables. We will
assume that the length L of the pulse is not any longer than the repetition interval, i.e. L ≤ Tp, but will
otherwise let L be arbitrary for now. Applying (9.33) in this case yields

ak =
1

Tp
X

(
jk

2π

Tp

)
(9.34)

=
1

Tp

2

k 2π
Tp

sin

(
L

2
k

2π

Tp

)
(9.35)

=
1

kπ
sin

(
Lk

π

Tp

)
, (9.36)

and for the D.C. special case, we have a0 = X(j0)/Tp = L/Tp.

68 CHAPTER 9. SAMPLING AND PERIODICITY

For a 50% duty cycle, the length is half the period, so we set L = Tp/2 and find

ak =
1

kπ
sin

(
Tp
2
k
π

Tp

)
=

1

kπ
sin
(
k
π

2

)
,

along with the special case a0 = X(j0)/Tp = (Tp/2)/Tp = 1/2. This matches the result computed in Section
6.4.

Suppose we had a square wave with a 1/3 duty cycle – i.e. the wave is 1 only 1/3 of the time and 0 the
rest of the time, so L = Tp/3. The Fourier transform of the corresponding single pulse would be

ak =
1

kπ
sin

(
Tp
3
k
π

Tp

)
=

1

kπ
sin
(
k
π

3

)
, (9.37)

and for the D.C. special case, we have a0 = Tp/3, which matches what we would find if we applied L’Hopital’s
rule to (9.37).

Notice that for a 50% duty cycle, the even harmonics are missing. For a 1/3 duty cycle, every third
harmonic (3rd, 6th, 9th, etc.) is missing. This trend is consistent; a 25% duty cycle is missing the 4th, 8th,
etc. harmonics.

Practical take home message: If you already have the Fourier transform pair you need, using (9.33)
is a lot easier than computing the Fourier series “from scratch” using the analysis integral!

9.3.1 A quick “sanity check”

What if we “go for broke” and let L = Tp in (9.36), which effectively corresponds to the constant x(t) = 1
in time.4

Then we have

ak =
1

kπ
sin

(
Tpk

π

Tp

)
=

1

kπ
sin (kπ) ,

which is zero for k 6= 0. For k = 0, L’Hopitals rule gives us

a0 =
limk→0 π cos(kπ)

limk→0 π
= 1.

We could compactly write ak = δ[k]. Plugging that into our previously derived expression for the Fourier
transform of a periodic function gives us 2πδ(ω), which Section 7.7 showed is the Fourier transform of a
constant 1.

9.4 The grand beauty of the duality of sampling and periodicity

We first introduced Fourier series in ECE2026, in Chapter 3 of Signal Processing First; we then studied
sampling in detail in Chapter 4. These probably seemed like rather different topics. But now, using the
tools of Fourier transform theory, we see that the “Fourier series story” and the “sampling-in-time story” are
just two manifestations of the same underlying mathematical truth: sampling in one domain corresponds to
replication in the other domain.

4One might argue about the exact value of x(t) at multiples of Tp, but that is not important here.

9.4. THE GRAND BEAUTY OF THE DUALITY OF SAMPLING AND PERIODICITY 69

Every “systems and signals” text we are aware introduces Fourier series first, followed by Fourier trans-
forms. Fourier series may be a bit more intuitive than general Fourier transforms: you can “see” a waveform
being built up from its individual harmonics, and periodic signals can be perceived as having a musical
pitch with different harmonics contributing to its musical timbre. Most Fourier transform pairs are more
opaque—a decaying sinusoid will have a Fourier transform with a bell-shaped magnitude, but it is hard to
imagine how this dense continuum of sinusoids forms the underlying time-domain waveform. Hence, from an
educational viewpoint, it makes sense to cover Fourier series before covering Fourier transforms, and Fourier
transforms are usually motivated as a heuristic limiting case of Fourier series. However, this chapter has
shown that the typical pedagogical sequence is slightly misleading; Fourier series analysis can be thought of
as just a dressed-up special case of Fourier transform analysis.

In real-world applications, we usually build an apparatus that samples a time signal, and then study the
effect of this sampling in the frequency domain. The way sampling in the frequency domain manifests itself
usually has a more exotic flavor. Two scenarios are prevalent:

• When computing frequency responses and Fourier transforms via a traditional digital computer, we
are forced to compute such functions at a finite set of frequencies. This effectively limits the extent
of the time-domain signal we can study. Computational techniques tend to focus on the Fast Fourier
Transform, which is an efficient algorithm for computing the Discrete Fourier Transform5 (DFT). The
DFT plays an essential role in radio astronomy, medical imaging, and radar. It is covered in ECE2026
and ECE4270, but will not play a central role in ECE3084.

• In some situations, the waveform itself inherently replicates. This is obviously the case for time-domain
signals such as square waves, sawtooth waves, etc. that are easily generated with analog circuitry. But,
there are also cases where we have spatial signals that are periodic in space instead of time. This is one
of the most interesting aspects of X-ray crystallography; proteins are 3-D structures, but the concepts
this chapter developed in 1-D still apply. When proteins are crystallized, they form a periodic lattice.
The process of X-ray diffraction allows us to measure the Fourier transform of the crystal. A century
ago, the refracted radiation was recorded by a photographic plate, and these plates illustrated a pattern
of dots. These dots are samples of the Fourier transform of a signal protein. A tremendous challenge
arises in that we can measure the amplitude of the Fourier transform, but not the phase. This leads
to the topic of “phase retrieval,” which is beyond the scope of this text.

The example of X-ray crystallography brushes against an important aspect of Fourier transforms that is
often not emphasized in undergraduate-level courses and textbooks on “signals and systems.” Such courses
are taught by, and such texts are written by, professors who typically specialize in controls, communication,
or signal processing, and they typically focus on signals in time. Fourier theory is usually presented as a
technique for understanding and analyzing continuous-time signals and systems, particularly LTI systems.
But, if you study electromagnetics (particularly the field of antennas) or optics (for instance, Georgia Tech
has a class called ECE6501: Fourier Optics and Holography) at the senior or graduate level, you will find two
and three dimensional Fourier transforms playing a direct role. In fact, many systems in antennas and optics
can be approximated as Fourier transform operations. These systems are linear, but not spatially-invariant.
The distinction here cannot be overemphasized. It is not just that some optical systems can be analyzed
with Fourier transforms—some of them are Fourier transforms!

For now, we will leave such discussions to other courses.

5The name “Discrete Fourier Transform” is misleading and inconsistent with the most common names of some related
transforms, but it has a long history and we are stuck with it.

70 CHAPTER 9. SAMPLING AND PERIODICITY

Fourier theory is deep and broad, and its applications are endless. We have barely scratched the surface.
For further explorations, Georgia Tech as a graduate class called ECE6500: Fourier Techniques and Signal
Analysis, and even more rigorous treatments can be found in math departments.

Chapter 10

Laplace Transforms

This chapter, in its present form, was primarily written by Prof. Magnus Egerstedt, with some modifications
by Aaron Lanterman and Jennifer Michaels. It is highly preliminary. Be warned that some of the presentation
differs in style from that presented in class and the rest of this book. In particular, the method of PFE
solution presented here is somewhat more direct than the residue method presented in another chapter.
[Some work remains to update and fully integrate this discussion]

10.1 Introducing the Laplace transform

10.1.1 Beyond Fourier

If an LTI system is given by

ẏ = −ay + bx, (10.1)

where y is the output of the system and x the input, we saw earlier that, if y(0) = 0 and a > 0, the impulse
response was given by

h(t) = be−atu(t), (10.2)

and that the output could be obtained through the convolution

y(t) =

∫ ∞
−∞

h(t− τ)x(τ)dτ = h(t) ∗ x(t). (10.3)

Moreover, due to the awesome fact that convolution in time corresponds to multiplication in frequency, the
Fourier transform of the output is given by

Y (jω) = H(jω)X(jω). (10.4)

This is all very well, but what if y(0) 6= 0? Or even worse, what if a < 0? In this case, the uncontrolled
system (u = 0) actually “blows up” since

y(t) = e−aty(0)→∞ if y(0) 6= 0, a < 0. (10.5)

71

72 CHAPTER 10. LAPLACE TRANSFORMS

We clearly need to be able to understand this type of situation as well – both from an analysis and from a
design point-of-view – but the problem is that the Fourier transform of an increasing exponential does not
exist since ∫ ∞

−∞
e−ate−jωtdt =∞ if a < 0. (10.6)

What is at play here is that the Fourier transform can be thought of as a (normalized) projection of a
signal onto another, periodic, signal ejωt. But to be able to capture a richer class of signals, e.g., signals that
go off to infinity as t→∞, a different set of signals are needed. As such, another possible choice of signals
onto which we would like to project our signals, that still look and feel very much like the Fourier transform,
could be to use est, where s = σ+ jω ∈ C. This allows us to have exponentially decaying (σ < 0) or growing
(σ > 0) sinusoids, and if we simply replace jω with s in the Fourier transform of the signal x(t), we get

X(s) =

∫ ∞
−∞

x(t)e−stdt.

This is called the bilateral or two-sided Laplace transform. Another form of this transform, called the
unilateral or one-sided Laplace transform, is particularly elegant for studying causal systems subject to inputs
for t ≥ 0, and characterized by a set of initial conditions at t = 0. (Technically speaking, we will refer to
initial conditions for a time infinitesimally before t = 0, which we will denote as t = 0−.) The unilateral
Laplace transform is defined as

L[x(t)] = X(s) =

∫ ∞
0−

x(t)e−stdt. (10.7)

The superscript minus sign on the zero in the lower limit indicates that the t = 0 point needs to be included in
the interval.1 For “ordinary” functions, this distinction is not needed, but we may need it here of x(t) contains
a singularly such as Dirac delta function at t = 0. Normally, we try to avoid such seemingly nitpicky details,
and most textbooks treat the t = 0 rather cavalierly, but without some caution it can become painfully
easy to write down contradictory statements when employing one-sided Laplace transforms. Note that even
though the interpretation of the Laplace transform is not as intuitively direct as the Fourier transform,
its usefulness and strength is derived from its versatility as a tool for analyzing and describing systems,
particularly systems described by linear differential equations with constant coefficients.

The bilateral Laplace transform is rarely used by practicing engineers, and leads to complications with
dealing with “regions of convergence,” as discussed later, that do not crop up when using the unilateral
Laplace transform. Hence, we will focus almost entirely on employing the unilateral Laplace transform.
Unless we specifically say “bilateral,” all mentions of Laplace transform in this text refer to the unilateral
form of (10.7).

The system outputs y(t) we derive throughout this chapter should be thought of as only being valid for
y(t) for t ≥ 0; we remain agnostic as to what the output might have been before t = 0.

10.1.2 Examples

To get started, let’s consider a few examples of the Laplace transform:

x(t) = u(t) ⇒ X(s) = L[u(t)] =

∫ ∞
0−

e−stdt =
−1

s
e−st

∣∣∣∣t=∞
t=0−

=
1

s
(1− “e−s∞”). (10.8)

1Some books use the notation L− instead of L, and also introduce an alternate unilateral transform L+[x(t)] =
∫∞
0+ x(t)e−stdt

that explicitly excludes the t = 0 point. Although this is controversial, we believe that the L+ formulation offers little value
compared with L−, so we simply use L− throughout and leave out the subscript.

10.2. KEY PROPERTIES OF THE LAPLACE TRANSFORM 73

Note that the expression within the quotation marks is somewhat strange and the reason for this is that we
actually do not know exactly what this is, since, if s = σ + jω,

lim
t→∞

e−st = lim
t→∞

e−σt(cos(ωt) + j sin(ωt)), (10.9)

which is equal to zero only if σ > 0. (If σ < 0 it is in fact infinity and σ = 0 means that the limit does not
exist.) As such, we need to be a bit careful when taking the Laplace transforms and actually ensure that
the transform is indeed defined. For σ > 0 we thus have that L[u(t)] = 1/s and we will denote this by

L[u(t)] =
1

s
, Re(s) > 0. (10.10)

Note that most of the time it actually does not matter that s is restricted to its so-called region of convergence
for the existence of the transform and we will, in practice, almost always ignore this restriction. We are able
to get away with this since we are studying the unilateral Laplace transform.

Now, let’s consider the exponential x(t) = e−atu(t):

X(s) = L[e−atu(t)] =

∫ ∞
0−

e−ate−stdt =
1

a+ s
(1− “e−(s+a)∞”), (10.11)

where we again have to restrict s to have a real part that is greater than −a for the transform to exist, i.e.,

L[e−at] =
1

s+ a
, Re(s) > −a. (10.12)

10.2 Key properties of the Laplace transform

Just like the Fourier transform came with a collection of useful properties, the Laplace transform has its own
useful properties. We here discuss some of the key such properties.

10.2.1 Linearity

As the Laplace transform is obtained through and integral, which itself is a linear operation, linearity is
inherited by the transform, since

L[α1f1(t) + α2f2(t)] =

∫ ∞
0−

(α1f1(t) + α2f2(t))e−stdt

= α1

∫ ∞
0−

f1(t)e−stdt+ α2

∫ ∞
0−

f2(t)e−stdt = α1L[f1(t)] + α2L[f2(t)].

As an example, consider

x(t) = sin(ω0t)u(t) =
1

2j
(ejω0t − e−jω0t)u(t). (10.13)

From linearity and the transform of the exponential, it follows that

X(s) =
1

2j

(
1

s− jω0
− 1

s+ jω0

)
=

s+jω0−s+jω0

(s−jω0)(s+jω0)

2j
=

2jω0

2j(s2 − (jω0)2)
=

ω0

s2 + ω2
0

. (10.14)

In exactly the same manner, we can compute the Laplace transform of cos(ω0t), which is in fact given by

L[cos(ω0t)] =
s

s2 + ω2
0

. (10.15)

74 CHAPTER 10. LAPLACE TRANSFORMS

10.2.2 Taking derivatives

One of the main reasons Laplace transforms are so useful when studying systems is that they play particularly
well with differentiation operators. In other words, given that g(t) = x′(t), we would like to express G(s) in
terms of X(s). But,

G(s) = L[g(t)] =

∫ ∞
0−

x′(t)e−stdt, (10.16)

which, using integration by parts, becomes

G(s) = x(t)e−st
∣∣t=∞
t=0− −

∫ ∞
0−

x(t)(−s)e−stdt = 0− x(0−) + sX(s). (10.17)

So, to summarize, we have that
L[x′(t)] = sL[x(t)]− x(0−), (10.18)

where x(0) is the initial condition for x(·).
As an example, consider the differential equation

ẏ = −ay, y(0−) = 1. (10.19)

Taking the Laplace transform of both sides of this equation yields

sY (s)− y(0−) = −aY (s) ⇒ Y (s)(s+ a) = y(0−) ⇒ Y (s) =
1

s+ a
. (10.20)

But, we have already seen that

L[e−atu(t)] =
1

s+ a
, (10.21)

and, as such, we can conclude that
y(t) = e−atu(t). (10.22)

What we actually did was solve a differential equation using the fact that the Laplace transform works so
well with time differentiation.

As another example, consider

L[x′′(t)] = L
[
d

dt
x′(t)

]
= sL[x′(t)]− f ′(0−) = s2X(s)− sx(0−)− x′(0−). (10.23)

10.2.3 Integration

In exactly the same way as for differentiation, we have that

L
[∫ t

0

x(τ)dτ

]
=

1

s
X(s). (10.24)

As an example of this, let x(t) = tu(t), and we note that

tu(t) =

∫ t

0

dτ =

∫ t

0

u(τ)dτ. (10.25)

10.2. KEY PROPERTIES OF THE LAPLACE TRANSFORM 75

Hence

L[tu(t)] =
1

s
L[u(t)] =

1

s2
. (10.26)

What if x(t) = t2u(t)? Well, we can use this method again, since we know that∫ t

0

τdτ =

[
τ2

2

]t
τ=0

=
t2

2
u(t). (10.27)

As such,

L[t2u(t)] = 2L
[∫ t

0

τdτ

]
=

2

s
L[tu(t)] =

2

s3
. (10.28)

10.2.4 Time delays

Just as for the Fourier transform, time-delays translates into multiplication of the transform by a particular
exponential. What we would like to do is compute the Laplace transform of x(t − T). But, since we have
to worry about initial conditions when dealing with Laplace transforms, we need to specify x(t) not only
for t ≥ 0 but also for t ≥ −T . If we assume that x(t) = 0, ∀t ∈ [−T, 0), then we can directly compute the
Laplace transform

L[x(t− T)] =

∫ ∞
0

x(t− T)e−stdt =

∫ ∞
T

x(t− T)e−stdt = e−sT
∫ ∞

0

x(τ)e−sτdτ = e−sTX(s), (10.29)

which, as it turns out, looks just like the time-delay property for Fourier transforms expect that we have
replaced the imaginary jω with the complex s.

For example, let x(t) = u(t− 1) Then

L[x(t)] = e−sL[u(t)] =
e−s

s
. (10.30)

If instead we have a rectangular pulse x(t) = u(t)− u(t− 1), we have

L[x(t)] = L[u(t)− u(t− 1)] =
1− e−s

s
. (10.31)

As another example, consider the impulse train

x(t) =

∞∑
k=0

δ(t− k). (10.32)

First, we need to compute

L[δ(t)] =

∫ ∞
0

δ(t)e−stdt =
[
e−st

]∞
t=0

= 1, (10.33)

from which we have

L[x(t)] =

∞∑
k=0

1e−sk =

∞∑
k=0

(
e−s
)k

=
1

1− e−s
. (10.34)

76 CHAPTER 10. LAPLACE TRANSFORMS

10.3 The initial and final value theorems

Another key aspect of the Laplace transform of a signal x(t) is that it allows to be able to describe what will
happen to x(t) asymptotically, i.e., as t→∞. This is rather important, for example when one is designing
controllers that are supposed to track reference values. For example, if one where to build a cruise-controller
that makes a car drive at 60 mph then it would be useful to be able to show that the speed (after a while)
is indeed 60 mph and not 75 mph, which boils down to showing to what happens to the speed of the car as
t becomes large.

To start with, we recall that

L[f ′(t)] =

∫ ∞
0

f ′(t)e−stdt = sX(s)− x(0). (10.35)

But, we also know (from the fundamental theorem of calculus) that∫ ∞
0

f ′(t)dt = x(∞)− x(0), (10.36)

if x(∞) exists (and where we have to accept a slight abuse of notation.)
Moreover, as

lim
s→0

∫ ∞
0

f ′(t)e−stdt =

∫ ∞
0

f ′(t)dt (10.37)

we have that
lim
s→0

(
sX(s)− x(0)

)
= x(∞)− x(0), (10.38)

from which we conclude that if x(∞) exists, the final value theorem tells us that

lim
t→∞

x(t) = lim
s→0

sX(s). (10.39)

The final value theorem also has an initial-value counterpart (derived in a similar way), that states that

lim
t→0+

x(t) = lim
s→∞×1

sX(s). (10.40)

Note that s approaches infinity along the positive real axis (designated by ∞× 1).

10.3.1 Examples

Suppose that x(t) has the Laplace transform

X(s) =
−3s2 + 2

s3 + s2 + 3s+ s
. (10.41)

Then (assuming the limit exists),

lim
t→∞

x(t) = lim
s→0

sX(s) = lim
s→0

−3s3 + 2s

s3 + s2 + 3s+ 2
= 0. (10.42)

Similarly, x(t)’s value at time t = 0 is given by

lim
t→0+

x(t) = lim
s→∞

sX(s) = lim
s→∞

−3s3 + 2s

s3 + s2 + 3s+ 2
= −3. (10.43)

10.4. LAPLACE AND DIFFERENTIAL EQUATIONS 77

10.4 Laplace and differential equations

10.4.1 Partial fraction expansions

One of the main reasons to introduce the Laplace transform is that it works well together with systems that
are not initially at rest; i.e., it allows for a richer treatment of linear, ordinary differential equations. As an
example, consider

ẏ = −y + 1, y(0−) = 0. (10.44)

As L[u(t)] = 1/s, and we really do not care what happens before t = 0, we can replace the 1 by a u(t). As
such, we get

sY (s) = −Y (s) +
1

s
⇒ (s+ 1)Y (s) =

1

s
⇒ Y (s) =

1

s(s+ 1)
. (10.45)

Now, we just have to find the inverse Laplace transform to Y (s) and we have y(t). But, we can approach
this in a much easier way that computing any integrals, namely through Partial Fraction Expansions (PFE).

First-order systems

Continuing the example in the previous section, we have that

Y (s) =
1

s(s+ 1)
(10.46)

which we want to rewrite as

Y (s) =
A

s
+

B

s+ 1
, (10.47)

for some choice of A and B. But,

A

s
+

B

s+ 1
=
A(s+ 1) +Bs

s(s+ 1)
=
s(A+B) +A

s(s+ 1)
=

1

s(s+ 1)
. (10.48)

By identifying the coefficients above, we get

s1 : A+B = 0 ⇒ B = −A
s0 : A = 1

(10.49)

As such, we have

Y (s) =
1

s
− 1

s+ 1
⇒ y(t) = [1− e−t]u(t). (10.50)

This method is quite general and it allows us to solve differential equations in a straight-forward manner.
As another example, consider a serial RC circuit, driven by a fixed voltage v. Kirchoff’s Laws tell us that

the voltage over the resistor satisfies VR = Ri, where i is the current in the circuit. Moreover, the voltage
over the capacitor satisfies V̇c = i/C. If we let y(t) = Vc(t), then we have that

v = Ri+ y. (10.51)

But, i = CV̇c = Cẏ gives the differential equation v = RCẏ + y, or

ẏ +
1

RC
y =

v

RC
. (10.52)

78 CHAPTER 10. LAPLACE TRANSFORMS

Now, assume that y(0) = 0 and v = u(t). Taking the Laplace transform yields

sY (s) +
1

RC
Y (s) =

1

RCs
⇒ Y (s) =

1

RC

(
1

s(s+ 1
RC)

)
. (10.53)

The PFE becomes
1

s(s+ 1/RC)
=
A

s
+

B

s+ 1/RC
=
As+A/RC +Bs

s(s+ 1/RC)
. (10.54)

Lining up the coefficients gives
s0 : A/RC = 1 ⇒ A = RC
s1 : B = −A ⇒ B = −RC. (10.55)

As such,

y(t) = L−1

[
1

RC

(
RC

s
− RC

s+ 1/RC

)]
=

1

RC

(
RC −RCe−t/RC

)
u(t) = u(t)− e− 1

RC u(t). (10.56)

Note that in both of these examples, we only had one time-derivative (one dot over y), which means that
we have a so-called first-order system. The same method for solving differential equations can be extended
to higher-order systems as well.

Second-order systems

Let
ÿ + 2ẏ + y = 0, y(0−) = 1, ẏ(0−) = 2. (10.57)

Taking the Laplace transform of this, and recalling that

L[ẏ] = sY (s)− y(0−), L[ÿ] = s2Y (s)− sy(0−)− ẏ(0−), (10.58)

gives that

s2Y (s)− s− 2 + 2sY (s)− 2 + Y (s) = 0 ⇒ Y (s) =
s+ 4

s2 + 2s+ 1
=

s

(s+ 1)2
+

4

(s+ 1)2
. (10.59)

Now, we know that L[t] = 1/s2 and also, L[x(t)eat] = X(s− a), which tells us that

1

(s+ 1)2

L−1

=⇒ te−tu(t). (10.60)

But, what about s/(s+1)2? Recall that L[f ′] = sX(s)−x(0) so if x(t) = te−tu(t) (and, as such x(0) = 0),
we have that

sX(s) =
s

(s+ 1)2
→L−1

d

dt
(te−tu(t)) = [e−t − te−t]u(t) = [(1− t)e−t]u(t). (10.61)

Summarizing all of this gives that

Y (s) =
s

(s+ 1)2
+

4

(s+ 1)2
⇒ y(t) = [(1− t)e−t + 4te−t]u(t) = (1 + 3t)e−tu(t). (10.62)

10.4. LAPLACE AND DIFFERENTIAL EQUATIONS 79

The general case

Now, consider the general situation where we are given a Laplace transform X(s), given by

X(s) =
P (s)

Q(s)
, (10.63)

where P (s) and Q(s) are both polynomials in s. Moreover, assume that the degree of P = ams
m + . . .+ a0

is less than the degree of Q = sn + bn1
sn−1 + . . . + b0, i.e., that m < n, as well as the coefficient in front

of sn is 1 in Q(s). We will investigate how to do the PFE for this general situation. And, it turns out that
there are two different cases depending on the roots to Q(s).

Case 1: Distinct roots

We start by assuming that all of Q’s roots are different. Let the roots be α1, . . . , αn, in which case we can
write

X(s) =
P (s)

(s− α1)(s− α2) · · · (s− αn)
. (10.64)

If the roots are all indeed different, then there are (possibly complex) constants A1, . . . , An such that

P (s) =
A1

s− α1
+ . . .+

An
s− αn

. (10.65)

As an example, let

X(s) =
1

s2 + 2s− 3
. (10.66)

We note that the roots to Q(s) are given by

s2 + 2s− 3 = 0 ⇒ s = −1±
√

1 + 3 = −1± 2 = −3, 1. (10.67)

In other words,

X(s) =
1

(s− 1)(s+ 3)
=

A1

s− 1
+

A2

s+ 3
=
A1(s+ 3) +A2(s− 1)

(s− 1)(s+ 3)
. (10.68)

What we do now is, again, to identify the coefficients:

s0 : 3A1 −A1 = 1
s1 : A1 +A2 = 0 ⇒ A1 = −A2.

(10.69)

Plugging A1 = −A2 into the first equation yields

A1 =
1

4
, A2 =

1

4
, (10.70)

i.e.,

X(s) =
1

4(s− 1)
− 1

4(s+ 3)
⇒ x(t) =

1

4
et − 1

4
e−3t. (10.71)

What about a slightly more involved example? Let

X(s) =
1

s3 + 2s2 + 5s
. (10.72)

80 CHAPTER 10. LAPLACE TRANSFORMS

Here one root is given by s = 0 and the remaining two roots are

s2 + 2s+ 5 = 0 ⇒ s = −1± 2j. (10.73)

As a consequence, we have

X(s) =
1

s(s+ 1− 2j)(s+ 1 + 2j)
=
A1

s
+

A2

s+ 1− 2j
+

A3

s+ 1 + 2j

=
A1(s2 + 2s+ 5) +A2(s2 + s(1 + 2j)) +A3(s2 + s(1− 2j))

s(s+ 1− 2j)(s+ 1 + 2j)
.

Again, identification of the coefficients yeilds:

s0 : 5A1 = 1 ⇒ A1 = 1
5

s1 : 2A1 + (1 + 2j)A2 + (1− 2j)A3 = 0
s2 : A1 +A1 +A3 = 0 ⇒ A2 = −A3 − 1

5 .
(10.74)

Plugging this into the s1-coefficient equation, we get

2

5
− (1 + 2j)A3 − (1 + 2j)

1

5
+ (1− 2j)A3 = 0 ⇒ A3 = −2 + j

20
, ⇒ A2 = −2− j

20
. (10.75)

Collecting up all of these terms gives

X(s) =
1

5

1

s
− 2− j

20

1

s− (−1 + 2j)
− 2 + j

20

1

s− (−2− 2j)
. (10.76)

Taking the inverse Laplace transform:

x(t) =
1

5
u(t)− 2− j

20
et(−1+2j)u(t)− 2 + j

20
et(−1−2j)u(t)

=
1

5
u(t)− 1

20
e−t

[
4

(
e2jt + e−2jt

2

)
+ 2

(
e2jt − e−2jt

2j

)]
u(t)

=
1

5
u(t)− 1

10
e−t [2 cos(2t) + sin(2t)]u(t), t ≥ 0 (10.77)

Case 2: Repeated roots

As before, let

X(s) =
P (s)

Q(s)
, (10.78)

but now we no longer assume that all of Q’s roots are distinct.
As an example, let

X(s) =
1

(s+ 1)(s+ 2)2
, ⇒ α1 = −1, α2 = −2, α3 = −2. (10.79)

In this case we have to approach the PFE differently. What we have is really

X(s) =
1

(s+ 1)(s+ 2)2
=

A1

s+ 1
+
A21 +A22s

(s+ 2)2
=
A1(s2 + 4s+ 4) +A21(s+ 1) +A22(s2 + s)

Q(s)
. (10.80)

10.4. LAPLACE AND DIFFERENTIAL EQUATIONS 81

Identifying the coefficients gives

s0 : 4A1 +A21 = 1 ⇒ A21 = −4A1 + 1
s1 : 4A1 +A21 +A22 = 0 ⇒ A22 = −1
s2 : A1 +A22 = 0 ⇒ A1 = 1 ⇒ A21 = −3.

(10.81)

As such,

X(s) =
1

s+ 1
− 3 + s

(s+ 2)2
. (10.82)

Now, recall that

1

s2

L−1

=⇒ tu(t)

1

(s+ b)2

L−1

=⇒ te−btu(t)

s

(s+ b)2

L−1

=⇒ d

dt

(
te−btu(t)

)
= [e−bt − bte−bt]u(t).

Summarizing this yields

x(t) = [e−t − 3te−2t + 2te−2t − e−2t]u(t) = [e−t − (t+ 1)e−2t]u(t), t ≥ 0. (10.83)

Returning to the general case, letX(s) = P (s)/Q(s), with deg(P) < deg(Q). LetQ(s) = (s−α1)k1 · · · (s−
αm)km . Then the PFE looks like

X(s) =
A1,1 +A1,2s+ . . .+A1,k1−1s

k1−1

(s− α1)k1
+ . . .+

Am,1 +Am,2s+ . . .+Am,km−1s
km−1

(s− αm)km
. (10.84)

The inverse transform of a term like

Ap,1 +Ap,2s+ . . .+Ap,kp−1s
kp−1

(s− αp)kp
(10.85)

82 CHAPTER 10. LAPLACE TRANSFORMS

can be derived as follows:

1

s

L−1

=⇒ u(t)

1

s2

L−1

=⇒ tu(t)

1

s3

L−1

=⇒ 1

2
t2u(t)

...
1

sk
L−1

=⇒ 1

(k − 1)!
tk−1u(t)

1

(s− α)k
L−1

=⇒ 1

(k − 1)!
tk−1eαtu(t)

s

(s− α)k
L−1

=⇒ d

dt

(
1

(k − 1)!
tk−1eαt

)
u(t)

s2

(s− α)k
L−1

=⇒ d2

dt2

(
1

(k − 1)!
tk−1eαt

)
u(t)

...

Although it is reassuring to know that we can solve pretty much any differential equation associated with
a LTI system (may require LOTS of work), we actually do not really want to (or need to) go through the
PFE unless absolutely necessary since it requires quite a bit of work. Instead, as we will see, what we do
want to do is take a few shortcuts that will allow us to not only analyze and characterize the behaviors of
input-output systems, but ultimately to control them in effective ways.

10.5 Transfer functions

We now know how to solve linear differential equations with constant coefficients using the Laplace transform
and PFE. But the real power behind this formalism derives from these tools’ ability to say things about the
behaviors of linear time-invariant systems. In particular, in terms of relating the input signals to the output
signals.

10.5.1 Input-output systems

Many LTI systems can be written as a linear differential equation with constant coefficients, such as

yn + an−1y
n−1 + . . .+ a1ẏ + a0 = b. (10.86)

Since the Laplace transform of the time-derivative of a general signal f(t) is

L
[
df

dt

]
= sF (s)− f(0−) (10.87)

we get, when we take the Laplace transform of the differential equation above, that

(sn + an−1s
n−1 + . . .+ a1s+ a0)Y (s) = Pinit(s) + bX(s), (10.88)

10.5. TRANSFER FUNCTIONS 83

where Pinit(s) is a polynomial of order n− 1 that involves the initial conditions. We effectively assume that
x(0−) = 0.

For example, if
ÿ + 2ẏ − y = 7x, ẏ(0−) = 1, y(0−) = 2, (10.89)

we get

s2Y (s)− 2s− 1 + 2sY (s)− 2− Y (s) = 7X(s) ⇒ (s2 + 2s− 1)Y (s) = 2s+ 3 + 7X(s), (10.90)

i.e., Pinit(s) = 2s+ 3 in this particular case.
Returning to the general case, we have that

Y (s) =
Pinit(s)

sn + an−1sn−1 + . . .+ a1s+ a0
+

b

sn + an−1sn−1 + . . .+ a1s+ a0
X(s). (10.91)

If we let
Q(s) = sn + an−1s

n−1 + . . .+ a1s+ a0, (10.92)

and let

H(s) =
b

sn + an−1sn−1 + . . .+ a1s+ a0
=

b

Q(s)
, (10.93)

be the transfer function of the system, we can further reduce this to

Y (s) =
Pinit(s)

Q(s)
+H(s)X(s). (10.94)

As a final observation, we note that when the system starts at rest (i.e., all the initial conditions are
zero), then we get that

Y (s) = H(s)X(s), (10.95)

which is known as the zero-state response, while x(t) = 0 gives

Y (s) =
Pinit(s)

Q(s)
, (10.96)

which is the zero-input response. And, it is worth noting that these two responses contribute linearly to the
total response, i.e., one can analyze their effect of the system independently of each other. Or, in other words,
the total response of a system is the way the system responds to the input if it starts at rest (zero-state) plus
the natural drift that is caused by the initial conditions in the absence of control inputs (zero-input). For
this reason, we will treat these two different responses independently and, as will be clear further on, we can
largely ignore the zero-input response since its contribution to the total response is always just a transient
and it will never significantly change anything about how the system behaves.

Modes

In light of the previous discussion, assume that we have a system that is initially at rest (all initial conditions
are zero). In that case, we can have

Y (s) = H(s)X(s), (10.97)

where H(s) tells us how the input affects the output. For this reason, H(s) is known as the transfer function
to the system since it transfers input signals to output signals.

84 CHAPTER 10. LAPLACE TRANSFORMS

As an example, let

H(s) =
1

1 + s
(10.98)

and let u(t) = u(t), y(0) = 0, then

Y (s) =
1

s(s+ 1)
, (10.99)

which in turn can be put through the PFE machinery to yield

Y (s) =
1

s
− 1

s+ 1
⇒ y(t) = [1− e−t]u(t), t ≥ 0. (10.100)

Now, instead, let us pick a different input signal, e.g., let

x(t) = e−2t ⇒ X(s) =
1

s+ 2
⇒ Y (s) =

1

(s+ 1)(s+ 2)
. (10.101)

Again, PFE tells us that

Y (s) =
1

s+ 1
− 2

s+ 2
⇒ y(t) = [e−t − e−2t]u(t), t ≥ 0. (10.102)

So, in both of these cases the term e−tu(t) is present in y(t). Where does this term come from? Well, it
comes from the system itself, i.e., it is somehow part of what the system does no matter what X(s) is. in
fact, for any input x(t), we have

Y (s) =
1

s+ 1
X(s) (10.103)

and the PFE will produce an additive component of 1/(s+ 1) (forget about repeated roots for now), which
translates to an additive components of e−tu(t) in y(t) for just about any input u(t). For this reason, we
say that e−tu(t) is a mode of the system!

There is, of course, nothing special about e−tu(t). For example, if

H(s) =
1

s
(10.104)

then for every input

Y (s) =
1

s
X(s) (10.105)

and hence 1/s will have an additive effect on the output (via PFE). As a consequence, y(t) will have u(t) as
a mode.

In general, let the transfer function be given by

H(s) =
P (s)

Q(s)
(10.106)

and assume that α is a root to Q(s), i.e., Q(α) = 0. For now, assume that α is a distinct root and that X(s)
also does not have α as a root. In that case, we can write

H(s) =
P (s)

(s− α)Q′(s)
⇒ Y (s) =

P (s)X(s)

Q′(s)
· 1

s− α
. (10.107)

10.5. TRANSFER FUNCTIONS 85

By PFE, we have that

Y (s) =
A

s− α
+ stuff (10.108)

i.e., that
y(t) = Aeαtu(t) + L−1[stuff]. (10.109)

As a consequence, eαtu(t) is a mode to the system.
If α is real, we have three distinctly different interpretations of what the system is doing:

1. α > 0: In this case, the mode is an increasing exponential and no matter what the other modes are,
this “bad” mode will dominate the behavior of the system and y → ±∞.

2. α = 0: In this case, the mode is 1, i.e., a constant.

3. α < 0: In this case, the mode is a decaying exponential and, as t → ∞, the mode will “disappear”,
i.e., it will be zero and not influence the system.

What about complex poles? Well, if α = σ + jω then we know that there is another root to Q(s) given
by its complex conjugate, i.e., by σ − jω. The output will thus be of the form

y(t) = [Aeσtejωt +Beσte−jωt]u(t) + more stuff = [eσt(C1 cos(ωt) + C2 sin(ωt))]u(t) + more stuff, (10.110)

for some real constants C1 and C2. Since we really only care about asymptotic behavior here, we consider

eσt sin(ωt)u(t) (10.111)

to be the mode of the pair of poles σ± jω. The actual output sinuoid would have a an amplitude and phase
associated with C1 and C2.

Again, three possibilities present themselves here:

1. σ > 0: In this case, the mode is an oscillation with exponentially increasing amplitude.

2. σ = 0: Pure oscillation.

3. σ < 0: Oscillation whose amplitude decays down to zero as t→∞.

So, just as in the real case, a positive real part corresponds to a “bad” mode, while a negative real part
makes the mode vanish for large enough t.

It turns out that this way of thinking about the modes works almost the same when the roots are non-
distinct (repeated). In fact, there are two different ways in which roots may be repeated. One is if the root
is repeated in Q(s) itself. The second is if the root gets repeated since it is a root of X(s). For example, if
H(s) = 1/s and x(t) = u(t), then

Y (s) =
1

s2
, (10.112)

i.e., s = 0 is a repeated root.
Regardless of where the repeated root comes from, as we have seen, the effect of the fact that the root is

repeated only translates into the mode being

p(t)eαtu(t), (10.113)

86 CHAPTER 10. LAPLACE TRANSFORMS

for some polynomial in t. And, no polynomial is strong enough to overcome an exponential, i.e., if the root
has negative real part, then the mode dies down while a positive real part makes it blow up. The only
potentially tricky part is when the root has zero real part, as was the case above. In this case, y(t) = tu(t),
i.e., it goes off to infinity.

Since the roots to Q(s) are so important, they have their own names, namely poles. And, as we will see,
these poles will entirely determine the stability properties of the system.

Zero-state and zero-input responses

In light of the mode discussion, we can now revisit the idea of a zero-state and zero-input response. Recall
that

total response = zero-state response + zero-input response, (10.114)

or, with math,

Y (s) =
Pinit(s)

Q(s)
+H(s)X(s). (10.115)

But, recall also that

H(s) =
P (s)

Q(s)
, (10.116)

i.e., the same modes that are contributed by the zero-state response are also contributed by the zero-input
response (since these modes are given by the roots to Q(s)). As a consequence, if the zero-state response
blows up, then so does the zero-input response. Also, if the zero-state response decays down to zero, then
so does the zero-input response.

The punchline from this is that, asymptotically, we can simply ignore the initial conditions and focus
exclusively on the zero-state response. This means that we will write

Y (s) = H(s)X(s), (10.117)

which is correct when the system starts at rest. And, even though it is not technically entirely correct when
the system does not start at rest, it is still all that we need in order to say things about how the system
behaves for large enough t.

The only thing that the initial conditions will in fact contribute with are transients. In other words, the
initial conditions may change what the system is doing for a while. But not as t→∞!

10.5.2 Stability

So far we have focused on the asymptotic properties of individual modes and on solutions to differential
equations. In fact, we have rather informally discussed the notions of asymptotic stability (y → 0, t→∞),
instability (y → ±∞) and critical stability (in-between the two). But, we are really not all that interested in
systems that only go to zero or infinity. Instead we need to relate this to the input and the key idea is that,
as long as the input is bounded, the output should be bounded as well. In fact, this is exactly the stability
property we are interested in and we state this as a formal definition:

Definition: An input-output system is BIBO (bounded-in, bounded-out) if a bounded input results in a bounded
output.

10.5. TRANSFER FUNCTIONS 87

Now, definitions are nice. But, they do not tell us what we really want to know, namely when a system
is BIBO. The key to unlocking this resides with the poles. In other words, let Y (s) = H(s)X(s), where the
transfer function is

H(s) =
P (s)

Q(s)
, (10.118)

and where α1, . . . , αn are the poles, i.e., Q(αi) = 0. Since the PFE analysis means that each such pole
contributes a mode to the total response of the system, we know that the modes are given by eαit (possibly
times a polynomial in t if the poles are repeated), which goes to zero if Re(αi) < 0 and blows up if Re(αi) > 0.
From this, it is also clear that if a mode blows up, the system is not BIBO. And, if all modes decay down to
zero the system is in fact BIBO. It turns out that this is indeed the condition for BIBO, and we state this
as a theorem:

Theorem: Let the poles to H(s) be given by α1, . . . , αn. The system is BIBO if and only if Re(αi) < 0, ∀i.

But wait a minute, what if Re(αi) = 0? The corresponding modes do not blow up – why is it that such
a system is not BIBO. Let’s investigate:

First, assume that

H(s) =
1

s
, (10.119)

i.e., it has the pole α = 0. Now, let x(t) = u(t), which means that

Y (s) =
1

s2
⇒ y(t) = tu(t)→∞. (10.120)

So, at least in this case, we know that a bounded input (a step) will drive the output off to infinity, i.e.,
the system is certainly not BIBO. (Note that we really do not care what the initial conditions are since the
asymptotic properties of the system do not depend on the initial conditions. So, for the purpose of stability
analysis, we only consider the zero-state response.)

But what if the poles lie on the imaginary axis? For example, let

H(s) =
1

s2 + 4
. (10.121)

Let’s try x(t) = u(t) and see what happens. We get

Y (s) =
1

s2 + 4
· 1

s
=

1

(s− 2j)(s+ 2j)s
=
A1

s
+

A2

s− 2j
+

A3

s+ 2j
. (10.122)

After some calculations, the PFE fields:

Y (s)
1

4
· 1

s
− 1

8
· 1

1− 2j
− 1

8
· 1

s+ 2j
, (10.123)

i.e.,

y(t) =

[
1

4
− 1

8
e2jt − 1

8
e−2jt

]
u(t) =

1

4
[1− cos(2t)]u(t), (10.124)

which does not go off to infinity. So, does this mean that we just disproved the theorem? No! BIBO means
that the output has to be bounded for all bounded inputs. So, let’s try another input. In fact, let

u(t) = sin(2t)u(t). (10.125)

88 CHAPTER 10. LAPLACE TRANSFORMS

This gives

Y (s) =
1

s2 + 4
· 2

s2 + 4
=

2

(s2 + 4)2
=

2

(s− 2j)2(s+ 2j)2
=
A11 +A12s

(s− 2j)2
+
A21 +A22s

(s+ 2j)2
. (10.126)

Let us not go through the hassle of actually computing the coefficients. Instead, let’s go directly for the
inverse Laplace transforms:

A11

(s− 2j)2

L−1

=⇒ A11te
2jtu(t)

A21

(s− 2j)2

L−1

=⇒ A21te
2jtu(t)

In fact, let’s not even bother with the A12 and A22 terms, since the contribution from the A11 and A21 terms
combine to a term on the form

t sin(2t+ φ)u(t), (10.127)

for some phase angle φ. And, this term grows unbounded as t → ∞. Hence the system is not BIBO after
all and we can safely trust the theorem.

Note: This rather interesting fact that if the mode is a pure sinusoid sin(ωt) then by hitting the system
with an input of the same frequency sin(ωt), the output grows unbounded. This is known as resonance!

10.5.3 Examples

Consider a serial RLC-circuit. The transfer function that connects the voltage over the capacitor Vout to the
input voltage Vin is given by

H(s) =
1

LCs2 +RCs+ 1
. (10.128)

The poles are given by

LCs2 +RCs+ 1 = 0

s = − R

2L
±
√

R2

4L2
− 1

LC
=
−RC ±

√
R2C2 − 4LC

2LC
.

Let us investigate the different parameter values associated with the circuit to see what its stability
properties are: If R2C2 − 4LC > 0 then both poles are negative and real, i.e., the system is BIBO. If
R2C2 − 4LC < 0 then the poles are

−RC ± j
√

4LC −R2C2

2LC
, (10.129)

i.e., the real part is negative for both poles and, as such, the system is still BIBO as long as R > 0. If we
remove the resistor, then all of a sudden the poles are purely imaginary and the system is resonant, with
resonance frequency √

4LC

2LC
=

1√
LC

. (10.130)

Now consider a mechanical system given by a mass M connected to an input force u, via a damper d
and spring k:

Mÿ = −dẏ − ky + u ⇒ H(s) =
1

Ms2 + ds+ k
. (10.131)

10.5. TRANSFER FUNCTIONS 89

The poles are given by

s =
−d±

√
d2 − 4Mk

2M
. (10.132)

Again, we need to untangle two different cases. If d2 − 4Mk > 0 then both poles are negative and real (a
so-called over-damped system), while, if d2 − 4Mk < 0 then the poles are

s =
−d± j

√
4Mk − d2

2M
, (10.133)

which has negative real part, i.e., the system oscillates with decaying amplitudes (under-damped system).
Again, if d = 0 we have the special case of a resonant system, with resonance frequency

√
k/M .

10.5.4 Asymptotic behavior

One of the key aspects of being able to establish BIBO is that we no longer have to add the disclaimer “as
long as the limit exists” when applying final value theorem. As long as the system is BIBO and the input is
bounded then we can indeed apply the FVT without having to feel nervous.

90 CHAPTER 10. LAPLACE TRANSFORMS

Chapter 11

Laplace Transforms (Residue Method)

[This material needs to be expanded upon and then folded into the main Laplace transform discussion.]

11.1 Residue method for distinct roots

Suppose we wanted to find the coefficients of this PFE:

Y (s) =
3

s2 + 7s+ 1
=

3

(s+ 2)(s+ 5)
=

c1
s+ 2

+
c2

s+ 5
. (11.1)

Instead of completely clearing the fractions, we could partially clear them by multiply both sides of (11.4)
by s+ 2, yielding a term of just c1 on the right hand side:

3

s+ 5
= c1 +

c2(s+ 2)

s+ 5
. (11.2)

Setting s = −2 eliminates the c2 term, and we are left with

c1 =
3

−2 + 5
=

3

3
= 1. (11.3)

Similarly, we could partially clear the fractions by multiplying both sides of (11.4) by s + 5, yielding a
term of just c2 on the right hand side:

3

s+ 2
=
c1(s+ 5)

s+ 2
+ c2. (11.4)

Setting s = −5 eliminates the c1 term, and we are left with

c2 =
3

−5 + 2
=

3

−3
= −1. (11.5)

This motivates an approach to finding PFE coefficients called the residue method. In general, for the
case of the PFE of a ratio of polynomials with N distinct roots in the denominator, the coefficients of an
expansion of the form

Y (s) =
B(s)

(s− p1)(s− p2) · · · (s− pN)
=

c1
s− p1

+
c2

s− p2
+ · · ·+ cN

s− pN
(11.6)

91

92 CHAPTER 11. LAPLACE TRANSFORMS (RESIDUE METHOD)

may be found with the formula
ci = [(s− pi)Y (s)]|s=pi . (11.7)

The residue method is particularly compelling when only one or a few of the coefficients of the PFE are of
interest, since the complete clear-the-fraction method essentially requires all of them to be found.

11.1.1 An example with distinct real and imaginary roots

Consider this PFE:

Y (s) =
4

s3 + 3s2 + 9s+ 27
=

4

(s2 + 9)(s+ 3)
=

4

(s− j3)(s+ j3)(s+ 3)
(11.8)

=
c1

s− j3
+

c2
s+ j3

+
c3

s+ 3
. (11.9)

Using the residue method, we find:

c3 =
4

s2 + 9

∣∣∣∣
s=−3

=
4

18
=

2

9
. (11.10)

c1 =
4

(s+ j3)(s+ 3)

∣∣∣∣
s=j3

=
4

j6(3 + j3)
=

4

−18 + j18
=

2

9(−1 + j)
. (11.11)

To write c1 in a more typical rectangular form, we can multiply the numerator and denominator by the
complex conjugate of (−1 + j):

c1 =
2

9(−1 + j)
× −1− j
−1− j

=
2(−1− j)
9(1 + 1)

=
−1− j

9
=

√
2

9
exp(−j3π/4). (11.12)

By conjugate symmetry,

c2 = c?1 =
−1 + j

9
=

√
2

9
exp(j3π/4) (11.13)

Plugging in these coefficients yields

Y (s) =
(
√

2/9) exp(−j3π/4)

s− j3
+

(
√

2/9) exp(j3π/4)

s+ j3
+

2/9

s+ 3
, (11.14)

which has the inverse Laplace transform

y(t) =

√
2

9
exp(−j3π/4) exp(j3t) +

√
2

9
exp(j3π/4) exp(−j3t) +

2

9
exp(−3t) (11.15)

=
2
√

2

9
cos

(
3t− 3π

4

)
+

2

9
exp(−3t), for t ≥ 0. (11.16)

11.1.2 An example with complex roots

Here, we will consider two approaches for inverting

Y (s) =
10

s2 + 4s+ 29
. (11.17)

11.2. RESIDUE METHOD WITH REPEATED ROOTS 93

First, we will try a brute-force PFE:

Y (s) =
10

(s+ 2− j5)(s+ 2 + j5)
=

c1
s+ 2− j5

+
c2

s+ 2 + j5
. (11.18)

The residue method yields

c1 =
10

s+ 2 + j5

∣∣∣∣
s=−2+j5

=
10

−2 + j5 + 2 + j5
=

10

j10
= −j. (11.19)

By conjugate symmetry, c2 = c?1 = j. Inserting the coefficients into (11.18) yields

Y (s) =
10

(s+ 2− j5)(s+ 2 + j5)
=

−j
s+ 2− j5

+
j

s+ 2 + j5
, (11.20)

which has the inverse

y(t) = −je(−2+j5)t + je(−2−j5)t = e−2t(−jej5t + je−j5t) = 2e−2t sin(5t), for t ≥ 0. (11.21)

Second, we can try avoiding the PFE computation by completing the square in the denominator:

Y (s) =
10

s2 + 4s+ 4 + 25
=

10

(s+ 2)2 + 52
= 2

5

(s+ 2)2 + 52
. (11.22)

From the table, y(t) = 2e−2t sin(5t) for t ≥ 0, which matches (11.21).

11.2 Residue method with repeated roots

Now consider a case where the denominator has both distinct roots and a repeated root. The distinct roots
can be accommodated as before, but additional terms are needed to handle the repeated root:

Y (s) =
B(s)

(s− p1)r(s− pr+1) · · · (s− pN)
=

c1
s− p1

+
c2

(s− p1)2
+ · · ·+ c1

(s− p1)r
+

cr+1

s− pr+1
· · ·+ cN

s− pN
.

(11.23)
The coefficients for the distinct terms still be found may be found with the using . The coefficient of
highest-order term can be found the same way:

cr = [(s− p1)rY (s)]|s=p1 . (11.24)

The repeated terms present additional complications. One approach, which might be called a “derivative
technique,” discovers c1, c2, ·, cr − 1 using the formula

cr−k =
1

k!

[
dk

dsk
{(s− p1)rY (s)}

]∣∣∣∣
s=p1

. (11.25)

For instance, a thrice-repeated root requires the computations

94 CHAPTER 11. LAPLACE TRANSFORMS (RESIDUE METHOD)

11.2.1 An example with only a repeated root

Consider the PFE

Y (s) =
s2 + 1

(s+ 3)3
=

c1
s+ 3

+ +
c2

(s+ 3)2
+

c3
(s+ 3)3

. (11.26)

The derivative technique yields

c3 = (s2 + 1)|s=−3 = 10, (11.27)

c2 =

[
d

ds
{s2 + 1}

]∣∣∣∣
s=−3

= 2s|s=−3 = −6, (11.28)

c1 =
1

2

[
d2

ds2
{2}
]∣∣∣∣
s=−3

= 1. (11.29)

Taking the inverse Laplace transform of

Y (s) =
s2 + 1

(s+ 3)3
=

1

s+ 3
+− 6

(s+ 3)2
+

10

(s+ 3)3
. (11.30)

results in
y(t) = e−3t − 6te−3t + 5t2e−3t for t ≥ 0. (11.31)

11.2.2 An example with a repeated root and a distinct root

Consider the PFE

Y (s) =
1

(s+ 2)2(s+ 1)
=

c1
s+ 2

+ +
c2

(s+ 2)2
+

c3
s+ 1

. (11.32)

The derivative technique yields

c3 =
1

(s+ 2)2

∣∣∣∣
s=−1

= 1, (11.33)

c2 =
1

s+ 1

∣∣∣∣
s=−2

= −1, (11.34)

c1 =

[
d

ds

{
1

s+ 1

}]∣∣∣∣
s=−2

=
−1

(s+ 1)2

∣∣∣∣
s=−2

= −1 (11.35)

The derivative technique can become cumbersome when the resulting expressions become more compli-
cated (as in (11.35)) instead of simpler (as in (11.29)) with each derivative operation, particularly if you need
to engage with the rule for taking the derivative of quotients. In such cases, an alternative approach is to
substitute in the known coefficients along with some convenient value for s to find the remaining coefficient.
Obviously, chosen s can not be one of the roots, otherwise one or more of the term will throw a “divide by
zero” exception.1 In the case of (11.35), let’s try substituting c3 = 1, c2 = −1, and s = 0 into (11.37):

Y (0) =
1

4
=
c1
2

+ +
c2
4

+
c3
1

=
c1
2
− 1

4
+ 1 (11.36)

c1 = 2

(
1

4
+

1

4
− 1

)
= −1 (11.37)

1We apologize to the reader. The author who wrote this sentence has recently been spending too much time programming.

11.3. PFES OF IMPROPER FRACTIONS 95

While s = 0 was convenient, there was nothing particularly magical about it; any s 6= −1,−2 would suffice
to generate an equation that could be solved for c1.

Taking the inverse Laplace transform of

Y (s) =
1

(s+ 2)2(s+ 1)
= − 1

s+ 2
− 1

(s+ 2)2
+

1

s+ 1
. (11.38)

results in
y(t) = −e−2t − te−3t + e−t = e−t − (t+ 1)e−2t for t ≥ 0. (11.39)

11.3 PFEs of Improper Fractions

In all of the PFE examples we have done so far, the degree of the denominator has exceeded the degree of
the numerator. If this is not the case, we must first use polynomial division to write the Laplace transform
as a sum of a quotient polynomial and a strictly proper ratio:

Y (s) =
B(s)

A(s)
= Q(s) +

R(s)

A(s)
. (11.40)

We can find the quotient Q(s) and remainder R(s) via polynomial long division. For example, suppose
we want to find the inverse Laplace transform of

Y (s) =
s3 + 6s2 + 12s+ 66

(s+ 4)(s2 + 9)
=
s3 + 6s2 + 12s+ 66

s3 + 4s2 + 9s+ 36
. (11.41)

Performing the long division

1

s3 + 4s2 + 9s+ 36
)

s3 + 6s2 + 12s+ 66
− s3 − 4s2 − 9s− 36

2s2 + 3s+ 30

(11.42)

yields Q(s) = 1 and R(s) = 2s2 + 3s+ 30, so we can write

Y (s) = 1 +
2s2 + 3s+ 30

s3 + 4s2 + 9s+ 36
= 1 +

2s2 + 3s+ 30

(s+ 4)(s2 + 9)
. (11.43)

The last expression in (11.43), with the factored denominator, is most convenient for proceeding with per-
forming the PFE of the R(s)/A(s) term:

Y (s) = 1 +
c1

s− 3j
+

c∗1
s+ 3j

+
c2

s+ 4
(11.44)

Using the residue method, we find

c1 =
2s2 + 3s+ 30

(s+ 4)(s+ 3j)

∣∣∣∣
s=3j

=
2(−9) + 3(3j) + 30

(3j + 4)(6j)
=

12 + 9j

6(−3 + 4j)
=

4 + 3j

−3− 4j
2(−3 + 4j)(−3− 4j) =

−12 + 9j − 16j + 12

2(9 + 16)
=
−25j

2(25)
=

1

2
j

(11.45)

96 CHAPTER 11. LAPLACE TRANSFORMS (RESIDUE METHOD)

and

c2 =
2s2 + 3s+ 30

s2 + 9

∣∣∣∣
s−4

=
32− 12 + 30

16 + 9
=

50

25
= 2 (11.46)

Inverting

Y (s) = 1− j/2

s− 3j
+

j/2

s+ 3j
+

2

s+ 4
(11.47)

yields
y(t) = δ(t) + cos(t− π/2) + 2e−4t = δ(t) + sin(t) + 2e−4t for t ≥ 0. (11.48)

Chapter 12

Frequency Responses of Second-order
Systems

There are two common ways of notating the denominators of system functions of second-order LTI systems:

D(s) = s2 + 2ζωns+ ω2
n = s2 +

ωn
Q
s+ ω2

n. (12.1)

In both notations, ωn represents the system’s undamped natural frequency. The first formula in (12.1)
specifies a damping ratio ζ. The second specifies a quality factor Q. They are trivially related by Q = 1/(2ζ)
and ζ = 1/(2Q). The damping ratio convention tends to be preferred by control systems engineers; they
are often worried about ζ being too low (equivalently, Q being too high). Filter designers tend to use the
quality factor1 convention; when designing a bandpass filter, they usually desire high Q (equivalently, low
ζ). Because ζ offers a bit of simplification in terms of typography, we primarily use it in our derivations, but
we will present the main results in terms of both conventions.

Using the quadratic formula, the poles of the system, i.e. the roots of D(n), are found to lie at

sp = ωn

(
−ζ ±

√
ζ2 − 1

)
= ωn

(
− 1

2Q
±
√

1

4Q2
− 1

)
. (12.2)

For ζ = 1 (or Q = 1/2), the square root term disappears, and both poles lie at ωn. For ζ > 1 (or
Q < 1/2), the term under the radical is positive, and both poles lie on the negative real axis. For ζ < 1 (or
Q > 1/2), the term in the under the radical is negative, and the poles appear as complex conjugate pair.

For ζ ≥ 1, i.e. Q ≤ 1/2, a second-order filter may be implemented as a cascade of two first-order filters
with half-power cutoff frequencies given by the ωco = −sp, where the poles sp are given by (12.2). However,
this is not the case for ζ < 1, i.e. Q > 1/2, since it does not make sense to talk about a first-order filter with
a complex cutoff; a specific second-order filter structure is needed.

1Designers of electronic musical instruments with second-order filters, such as the Oberheim SEM, the Yamaha CS-80, often
use terms like resonance, regeneration, or emphasis for Q. These names are often also applied to other feedback-related aspects
of other musical filters, such as a fourth-order filter structure initially popularized by Robert Moog; for such complicated
structures, these names may not map exactly to Q as we have defined it here.

97

98 CHAPTER 12. FREQUENCY RESPONSES OF SECOND-ORDER SYSTEMS

The next few sections will focus on frequency responses. To prepare, we substitute s = jω in (12.1) to
yield

D(jω) = (jω)2 + 2ζωn(jω) +ω2
n = −ω2 + j2ζωnω+ω2

n = (ω2
n−ω2) + j2ζωnω = (ω2

n−ω2) + j
ωn
Q
ω. (12.3)

The parenthesis in (12.3) are not really necessarily, but they suggest a convenient logical grouping. Taking
the squared magnitude of this yields

|D(jω)|2 = D(jω)D∗(jω) = [(ω2
n − ω2) + j2ζωnω][(ω2

n − ω2)− j2ζωnω] (12.4)

= (ω2
n − ω2)2 + 4ζ2ω2

nω
2 = (ω2

n − ω2)2 +
ω2
n

Q2
ω2 (12.5)

= ω4 + (4ζ2 − 2)ω2
nω

2 + ω4
n = ω4 +

(
1

Q2
− 2

)
ω2
nω

2 + ω4
n. (12.6)

The compact forms in (12.5) and the more spread out forms in (12.6) will both come in handy.
Without loss of generality, we can write the following canonical lowpass, bandpass, and highpass transfer

functions:

H2LP (s) =
ω2
n

D(s)
, H2BP (s) =

2ζωns

D(s)
=

(ωn/Q)s

D(s)
, H2HP (s) =

s2

D(s)
. (12.7)

The constants in the numerators of (12.7) have been chosen so that the filters have unity gain at “DC”
for the lowpass filter, the peak frequency (defined later) for the bandpass filter, and “infinite frequency” for
the highpass filter.

Because the analyses of the lowpass and highpass filters are similar, we will present them first before
moving on to the bandpass filter.

12.1 Second-order lowpass filter

A second-order lowpass transfer function may be written as

H2LP (s) =
ω2
n

s2 + 2ζωns+ ω2
n

=
ω2
n

s2 + ωn

Q s+ ω2
n

. (12.8)

Just looking at (12.8), it is clear that HLP (j0) = 1 and HLP (jω)→ 0 as ω → 0.
The squared magnitude of the frequency response is

|H2LP (jω)|2 =
ω4
n

|D(jω)|2
. (12.9)

The magnitude response will exhibit a peak for certain values of ζ (or Q). To locate the peak, it is sufficient
to find a minimizer of 1/|H2LP (jω)|2. Since the numerator is a constant, we may set the derivative of the
denominator of (12.9) with respect to ω2 (symbolically treating ω2 as a variable) equal to zero, using the
form in (12.6), yielding

d

d(ω2)
{(ω2)2 + (4ζ2 − 2)ω2

nω
2 + ω4

n} = 0 (12.10)

2ω2 + (4ζ2 − 2)ω2
n = 0 (12.11)

ω2 = (1− 2ζ2)ω2
n. (12.12)

12.2. SECOND-ORDER HIGHPASS FILTER 99

So, if a peak exists, it appears at

ωLP,r = ωn
√

1− 2ζ2 = ωn

√
1− 1

2Q2
. (12.13)

Note that (12.13) does not make sense if the quantity under the radical is negative. If ζ ≥ 1/
√

2, i.e. Q ≤
1/
√

2, then the magnitude of the frequency response monotonically decreases with increasing ω. Otherwise,
it will manifest a single peak at ωLP,r. Notice that ωLP,r → ω0 from the left as ζ → 0, i.e. Q → ∞. As a
consistency check, notice that plugging ζ = Q = 1/

√
2 into (12.13) yields ωLP,r = 0.

The magnitude of the peak can readily be calculated by substituting ωLP,r into |H2LP (jω)|2.

|H2LP (jωLP,r)|2 =
ω4
n

(ω2
n − ω2

LP,r)
2 + (2ζωnωLP,r)2

(12.14)

=
ω4
n

ω4
n(1− (1− 2ζ2))2 + 4ζ2ω4

n(1− 2ζ2)
(12.15)

=
1

4ζ4 + 4ζ2 − 8ζ4
(12.16)

=
1

4ζ2(1− ζ2)
. (12.17)

The resulting magnitude is only a function of ζ (or Q):

|H2LP (jωLP,r)| =
1

2ζ
√

1− ζ2
=

Q√
1− 1

4Q2

. (12.18)

12.2 Second-order highpass filter

A second-order lowpass transfer function may be written as

H2HP (s) =
s2

s2 + 2ζωns+ ω2
n

=
s2

s2 + ωn

Q s+ ω2
n

. (12.19)

Just looking at (12.19), it is clear that HHP (j0) = 0 and HHP (jω)→ 1 as ω →∞.

The squared magnitude of the frequency response is

|H2LP (jω)|2 =
ω4

|D(jω)|2
. (12.20)

The magnitude response will exhibit a peak for certain values of ζ (or Q). As in the lowpass case, we can
find the peak of (12.20), if it exists, by finding the minimizer of

1

|H2LP (jω)|2
=
ω4 + (4ζ2 − 2)ω2

nω
2 + ω4

n

ω4
= 1 + (4ζ2 − 2)ω2

nω
−2 + ω4

nω
−4. (12.21)

100 CHAPTER 12. FREQUENCY RESPONSES OF SECOND-ORDER SYSTEMS

We used the form in (12.6). If we think of ω−2 as a variable, we can set the derivative of (12.21) with
respect to ω−2 equal to zero, yielding:

d

d(ω−2)
{1 + (4ζ2 − 2)ω2

nω
−2 + ω4

nω
−4} = 0 (12.22)

(4ζ2 − 2)ω2
n + 2ω4

nω
−2 = 0 (12.23)

2ω2
nω
−2 = 2− 4ζ2 (12.24)

ω−2 =
1− 2ζ2

ω2
n

(12.25)

ω2 =
ω2
n

1− 2ζ2
. (12.26)

So, if a peak exists, it appears at

ωHP,r = ωn
1√

1− 2ζ2
= ωn

1√
1− 1

2Q2

. (12.27)

Note that (12.27) does not make sense if the quantity under the radical is negative. If ζ ≥ 1/
√

2, i.e. Q ≤
1/
√

2, then the magnitude of the frequency response monotonically increases with increasing ω. Otherwise,
it will manifest a single peak at ωHP,r. Notice that ωHP,r → ωn from the right as ζ → 0, i.e. Q → ∞.
Intuitively speaking, if you plug ζ = Q = 1/

√
2, ωHP,r is at “infinity.” Comparing (12.27) with its lowpass

equivalent (12.13), we see that the multipliers of ωn possess an elegant reciprocal symmetry.
The magnitude of the peak can be calculated by substituting ωHP,r into |H2HP (jω)|2 as was done for

the lowpass filter to yield,

|H2HP (jωHP,r)| =
1

2ζ
√

1− ζ2
=

Q√
1− 1

4Q2

, (12.28)

which is exactly the same as for the lowpass filter.

12.3 Second-order bandpass filter

A second-order bandpass transfer function may be written as

H2BP (s) =
2ζωns

s2 + 2ζωns+ ω2
n

=
(ωn/Q)s

s2 + ωn

Q s+ ω2
n

. (12.29)

Looking at (12.29), it is clear that HBP (j0) = 0 and HBP (jω)→ 0 as ω →∞.
The squared magnitude of the frequency response is

|H2BP (jω)|2 =
4ζ2ω2

nω
2

|D(jω)|2
=

(ω2
n/Q

2)ω2

|D(jω)|2
. (12.30)

Using the compact denominator form of (12.5) and dividing the numerator and denominator by ω2ω
2
n leads

to some insight:

|H2BP (jω)|2 =
4ζ2ω2

nω
2

(ω2
n − ω2)2 + 4ζ2ω2

nω
2

=
4ζ2(

ωn

ω −
ω
ωn

)2

+ 4ζ2

. (12.31)

12.3. SECOND-ORDER BANDPASS FILTER 101

This form lets us find the peak value of the frequency response without needing to take a derivative.
Looking at (12.31), we see that there is a constant in the numerator, so to make (12.31) as large as possible,
it suffices to the denominator of (12.31) as small as possible. Both terms in the denominator are nonnegative,
and the second term is a constant, so making the first term equal to zero best we can hope for, which is
easily achieved by setting ω = ωn, yielding unity gain at that peak frequency.

Bandwidth: Unlike the highpass and lowpass responses we discussed earlier, the peak of the bandpass
response is fixed at ωn. The form used above is normalized so to have unity gain at the peak frequency.
So any magnitude below that peak will appear at two frequencies, one at a frequency above ωn and one at
a frequency below ωn. Let’s denote these as ωU and ωL, respectively. No matter what horizontal cut you
make through the magnitude response graph, it turns out that

ωn =
√
ωLωU . (12.32)

This can be seen through the following steps:(
ωn
ωL
− ωL
ωn

)
= −

(
ωn
ωU
− ωU
ωn

)
. (12.33)

ωn
ωL

+
ωn
ωU

=
ωU
ωn

+
ωL
ωn

. (12.34)

ω2
n

[
1

ωL
+

1

ωU

]
= ωU + ωL. (12.35)

ω2
n

[
ωL + ωU
ωLωU

]
= ωU + ωL. (12.36)

ω2
n = ωUωL. (12.37)

Inspired by Bode plots, (12.32) has a natural interpretation if we take the logarithm of both sides:

lnωn =
lnωL + lnωU

2
. (12.38)

The peak frequency is evenly spaced between matching upper and lower frequency points when viewed on
a log frequency scale. So ωn is the “center frequency” in this logarithmic sense; it is the geometric mean of ωL
and ωU . This nicely matches how humans perceive pitch, since we perceive audio frequencies logarithmically;
for instance, 110, 220, 440, and 880 Hz are all considered “A” notes.

We now consider a specific horizontal cut, the half-power cut. Let ωL,1/2 and ωU,1/2 denote the frequencies

where |H(jω) = 1/
√

2 = 0.707. If we define the bandwidth as BW = ωU,1/2 − ωL,1/2, then it turns out
that Q = ωn/BW . So for a fixed center frequency ωn, higher Q gives lower bandwidth and lower Q gives
higher bandwidth. But notice that Q is normalized by ωn. This makes Q a particularly useful control for
musicians. Because of the logarithmic way that humans perceive pitch, a fixed bandwidth centered around
high frequency will “sound” much tighter than the same bandwidth centered around a low frequency. By
providing musicians direct control of Q instead of BW , the actual bandwidth automatically adapts as the
musician changes ωn, so the effective bandwidth perceived by the listener seems to remain the same as ωn is
“swept.”

Variations: If a filter design specification calls for Q ≤ 1/2, the designer can just build a one-pole
lowpass filter and follow it with a one-pole highpass filter or vice-versa (sometimes there’s good practical
reasons for picking a particular order). However, most bandpass filter specifications of interest call for a high
Q value, which would require a specific second-order circuit structure.

102 CHAPTER 12. FREQUENCY RESPONSES OF SECOND-ORDER SYSTEMS

The form of the bandpass response used through this section was normalized to have unity gain at the
center frequency. Another common way to express it has a gain of Q at the center frequency, so increasing
Q increases the gain as well as narrowing the peak. Many circuit realizations found in textbooks use that
convention. Some circuit implementations, such as the state variable filter, provide both an output with gain
Q and a unity gain output.

12.4 Second-order Butterworth filters

The ζ = Q = 1/
√

2 cases, in which the poles are at 45 degree angles in the s-place, represent special cases of
a class of filters called “Butterworth,” in this case a second-order Butterworth. Butterworth filters have the
steepest possible cutoffs without having undesired peaks near the cutoff in the frequency response. These
undesired peaks are called “ripple.” In general for filter design, getting sharper cutoffs often can be done at
the expense of introducing ripple in the frequency response.

Chapter 13

Connecting the s and z Planes

13.1 Rise of the z-transforms

Recall our model of the sampling process explored in Section (9.1.3), in which we multiplied a continuous-time
signal with an impulse train:

xs(t) =

∞∑
n=0

x(nTs)δ(t− nTs). (13.1)

Here, we will repeat this analysis from the viewpoint of Laplace transforms. Since this text deals ex-
clusively with unilateral Laplace transforms, we let the lower limit of the summation be n = 0 instead of
n = −∞ as in the earlier chapter using Fourier transforms; we also restrict x(t) to be zero for t < 0.

Using our mild abuse of notation x[n] = x(nTs), the Laplace transform of (13.1) is

Xs(s) =

∫ ∞
0

∞∑
n=0

x[n]δ(t− nTs)e−stdt =

∞∑
n=0

x[n]

∫ ∞
0

δ(t− nTs)e−st (13.2)

=

∞∑
n=0

x[n]e−s(Tsn) =

∞∑
n=0

x[n](e−sTs)n. (13.3)

Notice that for any integer k,

Xs(s+ jkωs) = Xs

(
s+ jk

2π

Ts

)
=

∞∑
n=0

x[n] exp

(
−
[
s+ j

2π

Ts

]
Tsn

)
=

∞∑
n=0

x[n]e−s(Tsn)e−j2πn. (13.4)

Since n is an integer, the exp(−j2πn) factor in the last expression in (13.4) is 1. Hence, that expression
looks like the first expression in (13.3). Thus,

Xs(s+ jkωs) = Xs(s). (13.5)

Just as sampling in the time domain with a sampling rate Ts induced spectral replicas with spacing ωs in
the Fourier domain, such sampling induces replicas of horizontal strips of the s-plane with a vertical spacing
of ωs. This “aliasing” makes the Laplace transform a bit annoying to deal with in the case of sampled signals.

103

104 CHAPTER 13. CONNECTING THE S AND Z PLANES

It is convenient to make the substitution z = exp(sTs) in the last expression of (13.3), and reconsider the
Laplace transform as a function of this new variable z:

X(z) =

∞∑
n=0

x[n]z−n. (13.6)

This is our old friend, the unilateral z-transform of x[n], which you will recall from your earlier studies of
discrete-time systems.

The mapping z = exp(sTs) uniquely maps the horizontal strip of the s-plane consisting of −ωs/2 <
=m{s} < ωs/2 to the entire z-plane. The expression s = ln(z)/Ts allows us to more-or-less map every point
of the z-plane back to the horizontal strip of the s-plane.

Seeing the logarithm in the equation s = ln(z)/Ts may seem a bit strange, since it involves taking
logarithms of negative numbers, which your high school algebra teacher probably told you could not be
done, and taking logarithms of complex numbers in general, which your high school algebra teacher may
never have even thought about. However, most computational mathematics packages will happily return
a value of the natural logarithm for complex numbers, and it will come to pass that taking the natural
exponent of that natural logarithm will give you your original complex number back. Two quirks that lead
to the “more-or-less” qualifier in the previous paragraph:

• Since exp(a + jb) = exp(a + j[b + 2πk]) for real a and b and integer k, the inverse of the exponential
is not unique. By convention, ln(z) is presumed to return the “principal value” lying between −π and
π, so for our purposes, s = ln(z)/Ts maps points in the z-plane to the horizontal strip in the s-plane
surrounding the real axis.

• Technically speaking, there is no value a for which exp(a) = 0. Most computational mathematics
packages will return some representation of “−∞,” instead of producing some kind of error message,
when asked to compute ln(0). For the purposes of linear system analysis, that is not a bad way to
think about it.

The above discussion hammers home the point that there is nothing particularly magical about the z-
transform; it can be viewed as a special case of the Laplace transform with some convenient customized
notation.

13.2 Converting a continuous-time filter to a discrete-time ap-
proximation

Suppose we had an “analog” filter that we wanted to emulate using “digital signal processing.” We put those
terms in quotes since the real issue is the continuous-time nature of our “prototype” filter and the discrete-
time nature of its implementation; one could imagine implementing the discrete-time filter using analog
multipliers and clocked bucket-brigade devices instead of using a microprocessor with analog-to-digital and
digital-to-analog converters (although few engineers in their right mind would do so).

Suppose we have a continuous-time filter specified by a set of poles in the s-plane, generically labeled sp.
We could create an approximation of this by cascading a continuous-to-discrete converter, a discrete-time
LTI system, and a discrete-to-continuous converter, with the converters running at a sample rate Ts. There
are many approaches to crafting the discrete-time LTI system in the middle. An intuitive approach based
on our “derivation” of the z-transform would be to use the expression zp = exp(spTs) to map poles in the

13.2. CONVERTING A CONTINUOUS-TIME FILTER TO A DISCRETE-TIME APPROXIMATION105

s-plane to poles in the z-plane. This is sometimes referred to as the “matched z-transform method” or
the “pole-zero mapping” method. If the original system function H(s) has no zeros, this procedure also
corresponds to the “impulse invariance method.” These methods and others are thoroughly covered in texts
on digital signal processing. Here, we merely hope to give you a taste of this kinds of procedure.

Let us refer to the system function of the discrete-time LTI system with the mapped poles as Hpzm(z).
Recall that the frequency response of a discrete-time system can be found by evaluating its system function
at z = exp(jω̂), where the normalized frequency is ω̂ = ω/fs, just as the frequency response of a continuous-
time system can be found by evaluating its system function at s = jω. The effective frequency response of
the full cascade, which includes C-D and D-C converters surrounding the system Hpzm(z), is

Heff(jω) =

{
Hpzm(ejω/fs) for |w| < ωs/2
undefined otherwise

. (13.7)

Input frequencies of half the sample rate or above will result in aliasing, which will cause the cascade
to no longer act linearly, which in turn defenestrates the idea of a frequency response. Even for frequencies
below half the sample rate, the effective frequency response of the discrete-time implementation, Heff(jω),
is never going to exactly match that of the original system, H(s). If we are lucky, we might feel justified in
writing Heff(jω) ≈ H(jω) for |w| < ωs/2.

Another common technique for implementing approximations of continuous-time filters using discrete-
time filters is the bilinear transformation. We will leave a discussion of this technique to more specialized
references.

13.2.1 Example: converting a Butterworth filter

A lowpass Butterworth filter of order N (i.e. having N poles) with a “cutoff frequency” of ωc has the
magnitude-squared frequency response

|H(jω)|2 =
1

1 +
(
ω
ωc

)2N
. (13.8)

Butterworth filters of a given order exhibit the steepest possible cutoff that may be achieved without any
“ripples” in the magnitude of the frequency response (i.e., the magnitude of the frequency response is a
monotonic function). Higher orders exhibit steeper cutoffs.

For N = 2, we have the classic second-order lowpass filter we studied previously, with ωn = ωc and
ζ = 1/

√
2. The poles lie at

sp = − ωc√
2
± j ωc√

2
. (13.9)

One could implement such a filter using operations, capacitors, and resistors. Alternatively, we could
create an approximation using digital signal processing, for instance, using the pole-zero mapping method:

zp = exp(spTs) = exp

(
sp

2π

ωs

)
= exp

(
ωc

[
− 1√

2
± j 1√

2

]
2π

ωs

)
. (13.10)

Suppose we set the sample rate of our DSP-based implementation to be four times the desired cutoff

106 CHAPTER 13. CONNECTING THE S AND Z PLANES

frequency, leading to ωc = ωs/4 and

zp = exp

(
ωs
4

[
− 1√

2
± j 1√

2

]
2π

ωs

)
= exp

(
π

2
√

2
[−1± j]

)
(13.11)

= exp

(
− π

2
√

2

)
exp

(
±j π

2
√

2

)
= 0.3293e±j1.1107. (13.12)

The z-plane poles lie at ±63.64◦.
The discrete-time filter has the transfer function

Hpzm(z) =
1

(1− zp1z−1)(1− zp2z−1)
(13.13)

=
1

(1− 0.3293ej1.1107z−1)(1− 0.3293e−j1.1107z−1)
(13.14)

=
1

1− 0.2924z−1 + 0.1084z−2
, (13.15)

corresponding to the difference equation

y[n] = 0.2924y[n− 1]− 0.1084y[n− 2] + x[n]. (13.16)

Chapter 14

Step Responses of Second-order
Systems

14.1 Second-order lowpass filter

A second-order lowpass transfer function may be written as

H2LP (s) =
ω2
n

s2 + 2ζωns+ ω2
n

=
ω2
n

s2 + ωn

Q s+ ω2
n

. (14.1)

The poles are located at ωn(−ζ ±
√
ζ2 − 1).

14.1.1 Overdamped lowpass response

If ζ > 1, the poles p1, p2 are distinct and on the negative real axis. The partial fraction expansion of the
step response has the form

Y2LP (s) =
H2LP (s)

s
=
c0
s

+
c1

s− p1
+

c2
s− p2

. (14.2)

Using the residue method, the coefficient associated with the term containing the step is

c0 = Y2LP (s)s|s=0 =
ω2
n

s2 + 2ζωns+ ω2
n

|s=0 =
ω2

ω2
= 1. (14.3)

We could also quickly find c0 by using the idea of frequency response and computing H(jω) at ω = 0. The
resulting step response is

y2LP (t) = u(t) + c1e
p1tu(t) + c2e

p2tu(t). (14.4)

The term with the pole closest to the imaginary axis, which one might call the “slowest” term, tends to
dominate the behavior of the response.

107

108 CHAPTER 14. STEP RESPONSES OF SECOND-ORDER SYSTEMS

14.1.2 Critically damped lowpass response

If ζ = 1, a double pole is present at −ωn:

H2LP (s) =
ω2
n

s2 + ω2
n

=
ω2
n

(s+ ωn)2
. (14.5)

Y2LP (s) =
H2LP (s)

s
=
c0
s

+
c1

s+ ωn
+

c2
(s+ ωn)2

. (14.6)

As before, it is easy to determine that c1 = 1. Using the residue method to determine c1 and c2, we have

c2 = Y2LP (s)(s+ ωn)2|s=−ωn
=
ω2
n

s
|s=−ωn

= −ωn. (14.7)

c1 =
d

dt
[Y2LP (s)(s+ ωn)2]|s=−ωn

= −ω
2
n

s2
|s=−ωn

= −1. (14.8)

The resulting step response is

y2LP (t) = u(t)− exp(−ωnt)u(t)− ωnt exp(−ωnt)u(t) = [1− (1 + ωnt)e
−ωnt]u(t). (14.9)

This has a slower response compared with a first order system with its pole at the same location.

14.1.3 Underdamped lowpass response

If ζ < 1, then the poles constitute a complex conjugate pair. Defining the damped frequency ωd = ωn
√

1− ζ2,
the poles are at −ζωn ± jωd. We can rewrite the transfer function as

H2LP (s) =
ω2
n

(s+ ζωn)2 + ω2
d

. (14.10)

The output may be written as the partial fraction expansion

Y2LP (s) = H2LP (s) =
ω2
n

s[(s+ ζωn)2 + ω2
d]

=
c0
s

+
c1s+ c2

(s+ ζωn)2 + ω2
d

. (14.11)

As before, a quick analysis of the frequency response at DC reveals that c0 = 1. Plugging this into (14.11)
gives us

Y2LP (s) =
1

s
+

c1s+ c2
(s+ ζωn)2 + ω2

d

. (14.12)

Multiplying both sides of (14.14) by the denominator of the left hand side yields

ω2
n = [(s+ ζωn)2 + ω2

d] + c1s
2 + c2. (14.13)

Equating coefficients of terms with s2 yields 0 = 1 + c1, hence c1 = −1. Equating coefficients of terms with
s yields 0 = 2ζωn + c2, hence c2 = −2ζωn. Plugging the coefficients into (14.11) yields

Y2LP (s) =
1

s
− s+ 2ζωn

(s+ ζωn)2 + ω2
d

=
1

s
− (s+ ζωn) + ζωn

(s+ ζωn)2 + ω2
d

. (14.14)

14.2. SECOND-ORDER HIGHPASS FILTER 109

Cleverly rewriting of the numerator of the second term of (14.14) as (s + ζωn) + (ζωn/ωd)ωd puts Y2LP (s)
in a form amenable to the trigonometric functions in our Laplace transform tables:

y2LP (t) = u(t)− e−ζωnt cos(ωdt)u(t)− ζ ωn
ωd
e−ζωnt sin(ωdt)u(t) (14.15)

=

{
1− ωn

ωd
e−ζωnt

[
ωd
ωn

cos(ωdt)u(t) + ζ sin(ωdt)

]}
u(t) (14.16)

=

{
1− ωn

ωd
e−ζωnt

[√
1− ζ2 cos(ωdt)u(t) + ζ sin(ωdt)

]}
u(t). (14.17)

To write (14.17), we used the definition ωd = ωn
√

1− ζ2.
Leaving the step response in a form with a cosine and a sine of the same frequency might give the reader

the mistaken impression that the output has two sinusoids. We can rewrite it as a single sinusoidal term
using “phasor addition,” representing the cosine term using the phasor

√
1− ζ2 and the sine term using the

phasor −jζ. We want to these complex numbers together and convert the result polar form. Notice that
(
√

1− ζ2)2 + ζ2 = 1, so the resulting phasor has unit length, and the angle is φ = arctan(−ζ/
√

1− ζ2).
Hence, we can write (14.17) as

y2LP (t) =

[
1− ωn

ωd
e−ζωnt cos(ωdt+ φ)

]
u(t), where φ = arctan

(
− ζ√

1− ζ2

)
. (14.18)

We have generally recommended representing generic real sinusoids using the cosine function, as in
(14.18). Most textbook authors seem to prefer a representation in terms of the sine function. We can write

y2LP (t) =

[
1− ωn

ωd
e−ζωnt sin(ωdt+ φ+ π/2)

]
u(t) (14.19)

=

[
1− ωn

ωd
e−ζωnt sin(ωdt+ ϕ)

]
u(t), where ϕ = arctan

(√
1− ζ2

ζ

)
. (14.20)

To create (14.20), we defined ϕ = φ + π/2 and used the obscure trigonometric identity arctan(α) + π/2 =
− arctan(1/α) = arctan(−1/α).

14.2 Second-order highpass filter

A second-order highpass transfer function may be written as

H2HP (s) =
s2

s2 + 2ζωns+ ω2
n

=
s2

s2 + ωn

Q s+ ω2
n

. (14.21)

The Laplace transform of its step response is

Y2HP (s) =
H2HP (s)

s
=

s

s2 + 2ζωns+ ω2
n

. (14.22)

According to the final value theorem, the step response converges to

lim
t→∞

y2HP (t) = lim
s→0

sY2HP (s) = lim
s→0

s
H2HP (s)

s
= 0. (14.23)

110 CHAPTER 14. STEP RESPONSES OF SECOND-ORDER SYSTEMS

It’s also clear that (14.23) must hold because this highpass filter completely blocks DC.
The initial value theorem tells us that

y2HP (0) = lim
s→∞

sY2HP (s) = lim
s→∞

s
H2HP (s)

s
= 1. (14.24)

14.2.1 Overdamped highpass response

If ζ > 1, the system has two real poles, and the PFE of the step response has the form

Y2HP (s) =
s

s2 + 2ζωns+ ω2
n

=
c1

s− p1
+

c2
s− p2

, (14.25)

which has the inverse Laplace transform

y2HP (t) = c1e
p1tu(t) + c2e

p2tu(t). (14.26)

Since (14.39) is a sum of two decaying exponentials, clearly limt→∞ y(t) = 0, confirming (14.23).

14.2.2 Critically damped highpass response

If ζ = 1, the system has repeated poles, and the PFE of the step response has the form

Y2HP (s) =
s

(s+ ωn)2
=

c1
s+ ωn

+
c2

(s+ ωn)2
. (14.27)

The residue method readily obtains c2 = s|s=−ωn
= −ωn and c1 = 1, so

y(t) = e−ωntu(t)− ωnte−ωnt)u(t) (14.28)

Clearly limt→∞ y(t) = 0, which corroborates (14.23). The step response starts at y(0) = 1 and ends at
0, but it does not do so monotonically. It does not have “ripples” in the oscillatory sense, but it does
undershoot before returning to the steady state value of 0. Setting y(t) equal to zero for t > 0 yields
e−ωnt−ωnte−ωnt) = 0. Since e−ωnt > 0, there is no danger of dividing e−ωnt it out of the equation, yielding
1− ωnt = 0. Hence, we see there is a zero crossing at t = 1/ωn.

14.2.3 Underdamped highpass response

If ζ < 1, the system has complex poles. We can write

Y2HP (s) =
(s+ ζωn)− ζωn
(s+ ζωn)2 + ω2

d

(14.29)

to make it easier to see the application of the trigonometric functions in our Laplace transform tables:

y2HP (t) = e−ζωnt cos(ωdt)u(t)− ζ ωn
ωd
e−ζωnt sin(ωdt)u(t) (14.30)

= e−ζωnt

[
cos(ωdt)u(t) + ζ

ωn
ωd

sin(ωdt)

]
u(t) (14.31)

=
ωn
ωd
e−ζωnt sin(ωdt+ ϕ)u(t), (14.32)

where ϕ = arctan(
√

1− ζ2/ζ) as before.

14.3. SECOND-ORDER BANDPASS FILTER 111

14.3 Second-order bandpass filter

A second-order bandpass transfer function may be written as

H2BP (s) =
2ζωns

s2 + 2ζωns+ ω2
n

=
(ω2
n/Q)s

s2 + ωn

Q s+ ω2
n

. (14.33)

According to the final value theorem, the step response converges to

lim
t→∞

y2BP (t) = lim
s→0

sY2BP (s) = lim
s→0

s
H2BP (s)

s
= 0. (14.34)

It’s also clear that (14.33) must hold because this bandpass filter completely blocks DC.
The initial value theorem tells us that

y2BP (0) = lim
s→∞

sY2BP (s) = lim
s→∞

s
H2BP (s)

s
= 0. (14.35)

14.3.1 Overdamped bandpass response

If ζ > 1, the system has two real poles, and the PFE of the step response has the form

Y2BP (s) =
2ζωn

s2 + 2ζωns+ ω2
n

=
c1

s− p1
+

c2
s− p2

, (14.36)

which has the inverse Laplace transform

y2BP (t) = c1e
p1tu(t) + c2e

p2tu(t). (14.37)

Since (14.37) is a sum of two decaying exponentials, clearly limt→∞ y(t) = 0, confirming (14.34). Without
specifically computing c1 and c2, note that since (14.35) tells that y2BP (0) = 0, it must be the case that
c1 = −c2. The curve of y2BP (t) rises and then falls, with the “fast” pole (the one furthest from the origin,
associated with a positive PFE coefficient) controlling the rise time and the “slow” pole (the one closer to
the origin, associated with a negative PFE coefficient) controlling the fall time.

14.3.2 Critically damped bandpass rponse

If ζ = 1, there is a double real pole, and

Y2BP (s) =
2ωn

(s+ ωn)2
, (14.38)

which has the inverse Laplace transform

y2BP (t) = 2ωnte
−ωntu(t). (14.39)

As with the overdamped case, this curve rises from and then falls back to zero, with a peak at t = 1/ωn, which
can be found by taking setting the derivative of (14.39) for t > 0 equal to zero, yielding−ωnte−ωnt+e−ωnt = 0.
Since e−ωnt > 0, it is safe to divide it through, yielding −ωnt + 1 = 0. The peak value is y2BP (1/ωn) =
2e−1 ≈ 0.736).

112 CHAPTER 14. STEP RESPONSES OF SECOND-ORDER SYSTEMS

14.3.3 Underdamped bandpass response

If ζ < 1, there poles are complex, and the Laplace transform of the step response is

Y2BP (s) =
2ζωn

(s+ ζωn)2 + ω2
d

, (14.40)

which has the inverse transform of

y2BP (t) =
2ζωn
ωd

e−ζωnt sin(ωdt)u(t) (14.41)

=
2ζωn

ωn
√

1− ζ2
e−ζωnt sin(ωdt)u(t) (14.42)

=
2ζ√

1− ζ2
e−ζωnt sin(ωdt)u(t). (14.43)

14.4 A few observations

Meditate upon the following notes about these second-order responses:

• The step response has “ripples,” i.e. oscillates, if it is underdamped at all ζ < 1, but the lowpass and
highpass forms only have a resonant peak in the frequency domain if ζ < 1/

√
2.

• The resonant frequency ωr = ωn
√

1− 2ζ2 of the second order lowpass filter is always less than ωd =

ωn
√

1− ζ2, the frequency of oscillation in the time domain. For the high pass filter, ωr = ωn√
1−2ζ2

is

always greater than both ωn and ωd.

Chapter 15

Circuit Analysis via Laplace
Transforms

15.1 Laplace-domain circuit models

15.1.1 Resistors

vR(t) = RiR(t) (15.1)

VR(s) = RIR(s) = ZRI(s), (15.2)

where ZR = R, the impedance of a resistor, is admittedly not the most interesting impedance in the world.

15.1.2 Capacitors

The fundamental voltage-current relationship of a capacitor is usually first presented as:

iC(t) = C
d

dt
vC(t) (15.3)

Taking the Laplace transform of this equation yields

IC(s) = C[sVC(s)− vC(0−)] = CsVC(s)− CvC(0−) =
VC(s)

ZC(s)
− CvC(0−), (15.4)

where ZC(s) = 1/(Cs) is the impedance of a capacitor. This equation can be rearranged to yield an
expression for VC(s):

VC(s) =
IC(s)

Cs
+
vC(0−)

s
= ZC(s)IC(s) +

vC(0−)

s
. (15.5)

Another approach to deriving (15.5) is to divide the time domain expression (15.3) by C and then integrate
both sides:

1

C

∫ t

0−
iC(τ)dτ =

∫ t

0−

d

dτ
vC(τ)dτ = vC(t)− vC(0−), for t ≥ 0. (15.6)

113

114 CHAPTER 15. CIRCUIT ANALYSIS VIA LAPLACE TRANSFORMS

vC(t) =
1

C

∫ t

0−
iC(τ)dτ + vC(0−), for t ≥ 0. (15.7)

Taking the unilateral Laplace transform of (15.7) yields (15.5).
Kirchoff’s voltage law (KVL) says that voltages in series add, while Kirchoff’s current law (KCL) says

that currents in parallel add. Using KCL and (15.4), we can formulate a parallel-structure Laplace-domain
equivalent for capacitors consisting of a capacitive impedance and an impulsive current source with a weight
of CvC(0−). Using KVL and (15.5), we can formulate a series-structure equivalent consisting of a capacitive
impedance and a constant vC(0−) voltage source. Because of the minus sign in front of the CvC(0−) term in
, the current source in the parallel model has its arrow running opposite the direction of the current arrow
in the passive current convention of the capacitor.

15.1.3 Inductors

The fundamental voltage-current relationship of an inductor is usually first presented as:

vL(t) = L
d

dt
iL(t). (15.8)

Taking the Laplace transform of this equation yields

VL(s) = L[sIL(s)− iL(0−)] = LsIL(s)− LiL(0−) = ZL(s)IL(s)− LiL(0−), (15.9)

where ZL(s) = Ls is the impedance of a capacitor. This equation can be rearranged to yield an expression
for IL(s):

IL(s) =
VL(s)

Ls
+
iL(0−)

s
=
VL(s)

ZL(s)
+
iL(0−)

s
. (15.10)

Another approach to deriving (15.10) is to divide the time domain expression (15.8) by L and then
integrate both sides:

1

L

∫ t

0−
vL(τ)dτ =

∫ t

−0

d

dτ
iL(τ)dτ = iL(t)− iL(0−), for t ≥ 0. (15.11)

iL(t) =
1

L

∫ t

0−
vL(τ)dτ + iL(0−), for t ≥ 0. (15.12)

Taking the unilateral Laplace transform of (15.12) yields (15.10).
Using KVL and (15.9), we can formulate a series-structure Laplace-domain equivalent for inductors

consisting of an inductive impedance and an impulsive voltage source with a weight of LiL(0−). Using KCL
and (15.10), we can formulate a parallel-structure equivalent consisting of an inductive impedance and a
constant iL(0−) current source. Because of the minus sign in front of the LiL(0−) term in (15.9), the voltage
source in the series model has its + and − signs set opposite of the + and − signs in the passive voltage
convention of the inductor.

15.2 Coil Guns

Coil guns use electromagnetism to accelerate metal bolts to high speeds. The bolt is placed within the coils
of an inductor, near one end. When a current is run through the coils, the bolt is pulled towards the center

15.2. COIL GUNS 115

Figure 15.1: Simplified coil gun circuit.

of the inductor. Precise timing is needed, since the current must be shut off just before the bolt passes
through the center of the coil so that it is allowed to leave the coil instead of being pulled back in.

Effective coil guns require large inductor currents. Batteries can store tremendous amounts of electric
charge, but they usually cannot provide those charges very quickly; there are practical limits to the amount
of current that a battery may provide. A common way to get around this limitation of batteries is to charge
a capacitor and use charge from the capacitor to power the coil.

Consider this simplified coil gun model shown in Figure 15.1. VB represents a battery1 used to charge the
capacitor C up to VB volts. Rc represents a current limiting resistor introduced to make sure the charging
doesn’t happen too fast (which might generate excessive heat), and Rp represents parasitic resistances in
the coil. Before t = 0, the coil is disconnected and the capacitor is charged. After t = 0, the charging circuit
has been disconnected and the capacitor provides current to the coil.

We will assume that i(0−) = i(0+) = 0, i.e., no energy is stored in the inductor at the beginning; this
implies that no voltage is dropping across the resistor at t = 0.

[MORE TO COME]

1In practice, the “battery” VB would likely be provided by a battery combined with some other circuitry to step up the raw
battery voltage.

116 CHAPTER 15. CIRCUIT ANALYSIS VIA LAPLACE TRANSFORMS

Chapter 16

Control Systems

16.1 The trouble with open loop control

Consider a system, which we will call the “plant,” with transfer function Gp(s), input x(t), and output
y(t). The output of the plant in the s-domain is Y (s) = X(s)Gp(s). We might ask what input X(s) would
generate some desired output Y (s). Mathematically, we could write

X(s) =
Y (s)

Gp(s)
. (16.1)

As we will see, the innocuous-looking equation (16.1) is fraught with peril.
Consider a plant with a single pole on the negative real axis:

Gp(s) =
k

s+ a
. (16.2)

If we wanted the output to exactly match a unit step, brute-force application of (16.1) would give

X(s) =
1

s · k
s+k

=
s+ a

sk
=

1

k
+

a

ks
. (16.3)

Taking the inverse Laplace transform of (16.3) yields

x(t) =
1

k
δ(t) +

a

k
u(t). (16.4)

We would need to “hit” the system with an impulse to get truly “instantaneous perfect tracking,” which is
not feasible. Hence, we must back off on our demands. A less stringent goal would be to require the output
of the plant to eventually be want we want, but not expect that it will get there right away. To seek the
simplest x(t) that might do this, we could consider dropping the problematic impulsive term in (16.4), which
corresponds to the constant term in (16.3). The input x(t) = (a/k)u(t) yields the Laplace-domain output

Y (s) = X(s)Gp(s) =
a

ks
· k

s+ a
=

a

s(s+ a)
=

1

s
− 1

s+ a
, (16.5)

117

118 CHAPTER 16. CONTROL SYSTEMS

with the corresponding time-domain output

y(t) = (1− e−at)u(t). (16.6)

As t→∞, the second term decays to zero, so we have achieved our goal of “perfect” steady-state tracking;
asymptotically, the output approaches a unity. Because “instantaneous” perfect tracking behavior is never
realistic, we will henceforth use the term “tracking” to refer to steady-state tracking performance without
modifiers such as “asymptotic.”

In the above example, we could think of the multiplication by a/k as a second system, called the controller,
with system function Gc(s) = a/k, that acts on the reference signal r(t) = u(t), to generate x(t), the
input to the plant. More generally, the output of such an open-loop control system is specified by Y (s) =
R(s)Gc(s)Gp(s).

What if we wanted to speed up or slow down the system response by changing the pole location, say
from s = −a to s = −α? We might try a controller with the form

Gc(s) =
B(s+ a)

s+ α
, (16.7)

which would cancel out the undesired pole at s = −a and insert the desired pole at s = −α.
For a unit step reference signal, r(t) = u(t), the output of the plant is

Y (s) = R(s)Gc(s)Gp(s) =
1

s
· B(s+ a)

s+ α
· k

s+ a
=

kB

s(s+ α)
. (16.8)

As expected, the zero at s = −a of Gc(s) cancels the pole s = −a of Gp(s).
The final value theorem can be applied to (16.8) to obtain the steady-state output,1

yss = lim
t→∞

y(t) = lim
s→0

sY (s) =
kB

s+ α

∣∣∣∣
s=0

=
kB

α
. (16.9)

To get yss = 1, we need B = α/k, so the controller becomes

Gc(s) =
α(s+ a)

k(s+ α)
. (16.10)

The plant output is now

y(t) = (1− e−αt)u(t). (16.11)

In practice, the “real” plant is rarely exactly characterized by the “model” plant Gp(s). For our example
of a plant with a single pole, the value of k, the overall gain of the plant, or a, the pole location, will probably
differ from that of the model. Suppose that the transfer function of the actual plant is

Gp(s) =
k + ∆k

s+ a+ ∆a
, (16.12)

1This is the traditional approach control theory texts use to find steady-state outputs. One could equivalently treat
Gc(s)Gp(s) as a filter and find its DC response, i.e. calculate Gc(j0)Gp(j0) = Gc(0)Gp(0). Notice that in applying the fi-
nal value theorem, the s from the theorem cancels the s in the denominator arising from the Laplace transform of a unit step,
so taking the limit as s→ 0 yields an expression equivalent to finding the DC response.

16.1. THE TROUBLE WITH OPEN LOOP CONTROL 119

where both the plant gain and its pole location are not exactly as expected. For a unit step reference input,
the output in the s-domain is now

Y (s) =
1

s
· a(s+ a)

k(s+ α)
· k + ∆k

s+ a+ ∆a
=
k + ∆k

k

α(s+ a)

s(s+ α)(s+ a+ ∆a)
. (16.13)

The zero in the controller no longer cancels out the pole in the plant. Also, the gain of the controller is no
longer the right value to achieve perfect tracking.

The first implication is that the steady state value of the output may no longer be unity. If we assume
that the overall system is stable, we can apply the final value theorem:

yss = lim
s→0

sY (s) =
k + ∆k

k

αa

α(a+ ∆a)
=
k + ∆k

k

a

(a+ ∆a)
. (16.14)

If ∆k = 0 and ∆a = 0, the plant matches the model and the system perfectly tracks a step. But if the plant
deviates from the model, it will not perfectly track, unless you have the extremely unlikely situation where
modeling errors in k and a cancel out; i.e., ∆k/k = −∆a/a).

The second implication is that the pole at s = a+∆a “leaks” through because it is not perfectly canceled
out. This can be seen by performing a partial fraction expansion on Y (s):

Y (s) =
k + ∆k

k

α(s+ a)

s(s+ α)(s+ a+ ∆a)
=
c1
s

+
c2

s+ α
+

c3
s+ a+ ∆a

. (16.15)

In the time domain, we have

y(t) = c1u(t) + c2e
−αtu(t) + c3e

−(a+∆a)tu(t). (16.16)

The third term is caused by the “bad” pole that has not been canceled out. If c3 is small and a + ∆a > 0
(pole is in the left half plane), then this may not be much of a problem. However, if the plant is unstable,
i.e., a+ ∆a < 0 (pole is in the right half plane), then it is a disaster!

Let’s consider a specific example:

Gp(s) =
10

s− 5
. (16.17)

This plant is unstable since it has a pole at s = 5, which is in the right half plane. Suppose we want the
pole to be at s = −2, which is in the left half plane. The required controller for our open-loop scheme is

Gc(s) =
2(s− 5)

10(s+ 2)
. (16.18)

The transfer function of the resulting open-loop system is

H(s) = Gc(s)Gp(s) =
2

s+ 2
. (16.19)

But now suppose that the transfer function of the “real” plant does not match that of the model, but is
instead

Gp(s) =
10

s− 5.1
. (16.20)

120 CHAPTER 16. CONTROL SYSTEMS

This is a small deviation, but it causes big problems! The transfer function of the open loop system now
becomes

H(s) = Gc(s)Gp(s) =
2(s− 5)

10(s+ 2)
· 10

s− 5.1
=

2(s− 5)

(s+ 2)(s− 5.1)
. (16.21)

This system is unstable because the zero in the controller does not cancel out the pole in the plant. The
response to a step function now becomes

y(t) = c1u(t) + c2e
−2tu(t) + c3e

5.1tu(t). (16.22)

Even if c3 is extremely small, the growing exponential term will still eventually dominate and the system
output will “blow up.”

Although open-loop control may be satisfactory for some applications, it generally cannot accommodate
small changes in the plant that as are likely to occur over time, and may even result in instability.

16.2 The general setup for feedback control

The closed-loop system function is

H(s) =
Gc(s)Gp(s)

1 +Gc(s)Gp(s)
. (16.23)

16.3 P control

Consider a plant with a single pole on the real axis:

Gp(s) =
k

s+ a
. (16.24)

A simple and intuitive approach might be to let the input to the plant be proportional to the error signal,
i.e., choose Gc(s) = Kp. The resulting closed-loop system function is

H(s) =

kKp

s+a

1 +
kKp

s+a

=
kKp

s+ a+ kKp
. (16.25)

Notice that feedback allowed us to move the pole from −a to −(a+ kKp). If a ≤ 0, then the plant itself
is unstable, and choosing Kp so that a+ kKp > 0 performs the amazing feat of stabilizing the system. We
might want to apply feedback control even if the plant was stable to begin with; moving the pole to the left in
the s-plane allows the closed-loop system to respond “faster” than the original open-loop system. Although
one might think that “faster” is always “better,” this might depend on the application. For instance, an
elevator that started or stopped too suddenly might frighten, or worse, even injure its passengers!

For a unit-step reference input, the output is Y (s) = H(s)/s, and the final value theorem yields the
yields the steady-state output

yss = lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s
H(s)

s
= H(s)|s=0 =

kKp

a+ kKp
, (16.26)

assuming a+ kKp > 0 so that H(s) is BIBO stable. One could also view H(s) as a filter and simplify find
the DC response H(j0) (again, assuming H(s) is BIBO stable). Although we would like yss to be 1 for a

16.4. PI CONTROL 121

unit-step reference input, and we see that yss approaches one as Kp is increased, we see that it never quite
“gets there.” Although one might be tempted to simply crank Kp until the tracking performance is “good
enough,” there are often practical physical limits – voltage swings or digital word lengths in a control system
implementation, motor speed, heating coil temperature, etc. – that prevent us from turning Kp as high as
we might like.

16.4 PI control

Consider a plant with one pole at the origin and another elsewhere along the real axis:

Gp(s) =
1

s(s+ a)
. (16.27)

Let us try simple proportional control, i.e., Gc(s) = Kp. The closed-loop system function is

H(s) =

Kp

s(s+a)

1 +
Kp

s(s+a)

=
Kp

s(s+ a) +Kp
=

Kp

s2 + sa+Kp
. (16.28)

If the reference input is a unit step, r(t) = u(t), the Laplace transform of the output is is given by

Y (s) =
Kp

s(s2 + sa+Kp)
. (16.29)

Assuming the poles of (16.28) are in the left half of the s-plane, so that H(s) is stable, the final value
theorem – or equivalently, the DC frequency response H(j0) – yields the steady-state output

yss = lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s
H(s)

s
= H(s)|s=0 =

Kp

Kp
= 1. (16.30)

So, unlike in the case explored in Section 16.3 where the plant had just a single pole on the real axis, the
same kind of system with the additional pole at the origin has zero tracking error.2 If the plant lacks a pole
at the origin, we might be inspired to try achieving zero tracking error by introducing a pole at the origin
in the controller:

Gc(s) = Kp +
Ki

s
=
Kps+Ki

s
. (16.31)

This is referred to as a Proportional-Integral (PI) controller.
The input to the plant, in the Laplace domain, is

X(s) = E(s)Gc(s) = KpE(s) +
Ki

s
E(s),

where E(s) specifies the error signal. Since division by s in the Laplace domain corresponds to integration
in the time domain, the input to the plant is

x(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ.

2Remember, statements about tracking implicit include a modifier such as “steady-state.”

122 CHAPTER 16. CONTROL SYSTEMS

Let us once again consider a plant with a single pole on the real axis, not at the origin:

Gp(s) =
k

s+ a
. (16.32)

Applying a PI controller yields the closed-loop system function

H(s) =

Kps+Ki

s · k
s+a

1 +
Kps+Ki

s · k
s+a

=
k(Kps+Ki)

s(s+ a) + k(Kps+Ki)
=

k(Kps+Ki)

s2 + (a+ kKp)s+ kKi
. (16.33)

Our usual application of the final value theorem, or equivalently, consideration of the DC frequency
response H(j0), shows that for a unit step input r(t) = u(t), the steady-state output is 1, i.e., we have
perfect tracking of a step function. Interpreting H(s) in the frequency domain, we see that it appears like a
combination of second-order lowpass and bandpass responses. This viewpoint makes it obvious that it would
not make sense to have a pure “I” controller with Kp = 0, since the bandpass response alone would output
0 at “DC.”

Assuming we “know” a, two approaches to choosing Kp and Ki might come to mind:

• A “safe” strategy – move the poles to where we want them: For instance, one might desire
H(s) to exhibit a particular natural frequency ωn and damping factor ζ. Matching the coefficients of
the polynomial in the denominator of (16.33) with our canonical polynomial s2 + 2ζωns+ω2

n, we have
the equations a+ kKp = 2ζωn and kKi = ω2

n, yielding the design equations

Kp =
2ζωn − a

k
, Ki =

ω2
n

k
. (16.34)

• A “risky” strategy – cancel one pole and insert another one: Theoretically, if the plant has
a single pole, this approach could yield H(s) with a single pole instead of two poles as in the “safe”
strategy. But... ETC. ETC. – [WE’LL FINISH THIS WRITEUP SOME OTHER DAY]

16.5 PD control

PD control employes a controller with the form Gc(s) = Kp +Kds. For general PD control, the input to the
plant is expressed in the s-domain as

X(s) = E(s)Gc(s) = E(s)(Kp +Kds). (16.35)

In the time domain, this corresponds to

x(t) = Kpe(t) +Kd
de(t)

dt
. (16.36)

In cases where the output y(t) represents a position, for instance, of a vehicle on a rail, ė(t) represents
error in velocity. One might roughly think of adjusting Kp and Kd as trading off how the controller prioritizes
errors in position and velocity, respectively. (Similarly, if y(t) represented a velocity – for instance, in a cruise
control system – ė(t) would represent an error in acceleration.)

16.6. TRACKING INPUTS THAT ARE NOT STEP FUNCTIONS 123

16.5.1 PD control of a system with two real poles

Consider a plant with one pole at the origin and another elsewhere along the real axis:

Gp(s) =
1

s(s+ a)
. (16.37)

Such systems are common. For instance, consider a wheeled vehicle in which y(t) represents position.
The equation governing the motion of the vehicle is mÿ = −µẏ + f(t), where x(t) is the applied force. The
resulting system function is

1/m

s(s+ d/m)
, (16.38)

which matches (16.37) with a = d/m and k = 1/m.
Notice the system (16.37) is not BIBO stable. This is not surprising; for instance, if we go into a grocery

store, grab a shopping cart, and start pushing it with a constant force, we will keep going until we break
assumptions of system linearity by encountering a wall or another (not probably quite irate) customer.

Trying Gc(s) = Kp +Kds yields the closed-loop system function

H(s) =
(Kp +Kds)

k
s(s+a)

1 + (Kp +Kds)
k

s(s+a)

=
k(Kp +Kds)

s(s+ a) + k(Kp +Kds)
=

k(Kp +Kds)

s2 + (a+ kKd)s+ kKp
. (16.39)

Its DC gain is H(j0) = Kp/Kp = 1, so it can perfectly track a step function. Equating the denominator
of (16.39) with our canonical denominator s2 + 2ζωns + ω2

n yields a + kKd = 2ζωn and kKp = ω2
n, giving

the following design equations for pole placement:

Kp =
ω2
n

k
, Kd =

2ζωn − a
k

. (16.40)

16.5.2 “D” stands for—Danger???

Taking derivatives can be dicey, whether the derivative operation is implemented, for instance, by an oper-
ational amplifier with capacitor in its local negative feedback path, or digitally via a micro controller. The
frequency response of the derivative operation is H(jω); this is not just a highpass filter—it is a license for
high frequencies to go wild. Noise – which we have generally ignored, but which is important to think about
in real-world applications – tends to be heavily amplified by a derivative operation. Hence, in practice, the
input to the “D” part of the PID controller is typically first passed through some kind of filter to reduce
the level of noise. (This is not an issue with the “I” part of the controller, since the integration operation
inherently tries to “average out” noise).

16.6 Tracking inputs that are not step functions

16.6.1 Tracking sinusoids

Suppose we wanted to track a sinusoidal reference signal r(t) = cos(ω0t)u(t). Its Laplace transform is

R(s) =
s

s2 + ω2
0

. (16.41)

124 CHAPTER 16. CONTROL SYSTEMS

Since the desired output oscillates eternally – the desired steady-state output, yss(t), is no longer a constant
as in our step-input examples – the final value theorem is of less use here. We could consider two approaches
to analyzing the tracking characteristics of a control system with closed-loop system function H(s):

• Applying partial fraction expansion to the output yields the general form

Y (s) = R(s)H(s) =
c

s− jω0
+

c∗

s+ jω0
+ other terms. (16.42)

Assuming the closed-loop system is BIBO stable, the inverse Laplace transforms of the “other terms”
asymptotically trend towards zero, so the steady-state output is

yss(t) = 2|c| cos(ω0 + ∠{c}).

• We could equivalently compute the frequency response of the closed-loop system, H(jω), plug the
reference frequency into that frequency response, and use the notion of “sinusoid in” leading to “sinusoid
out” to find

yss(t) = 2H(jω) cos(ω0 + ∠{H(jω)}).

16.6.2 Tracking ramps

Imagine we wanted to track a “unit ramp,” i.e., r(t) = tu(t), instead of a unit step. The Laplace-domain
representation of this ramp is R(s) = 1/s2. Applying partial fraction expansion to the output yields the
general form

Y (s) = R(s)H(s) =
c1
s

+
c2
s2

+ other terms. (16.43)

If the closed-loop system is BIBO stable, the inverse Laplace transforms of the “other terms” go to zero
over time, and the steady-state output is

yss(t) = c1u(t) + c2tu(t). (16.44)

We have perfect tracking of the reference ramp if c1 = 0 and c2 = 1. If c2 6= 0, then the absolute error
will grow with time. Having c2 = 1 but c1 6= 0 corresponds to a constant “bias” error.

16.7 PID control of a resonant system

Suppose the plant has the system function

Gp(s) =
k

s2 + ω2
0

. (16.45)

This system is not BIBO stable. It exhibits a resonance at ω0.
Suppose we would like to stabilize this system and make it perfectly track a stack a step; of course,

achieving the former is necessary before we can even think about doing the latter. Let us try the various
controllers in our toolbox, starting with the simplest:

16.7. PID CONTROL OF A RESONANT SYSTEM 125

• P control: With Gc(s) = Kp, the closed-loop system function is

H(s) =

kKp

s2+ω2
0

1 +
kKp

s2+ω2
0

=
kKp

s2 + ω2
0 + kKp

. (16.46)

We can forget about tracking with a P -controller, since it cannot even stabilize the system. All it does
it shift the resonance from ω0 to

√
ω2

0 + kKp.

• PI control: With Gc(s) = Kp +Ki/s, the closed-loop system function is

H(s) =

Kps+Ki

s · k
s2+ω2

0

1 +
Kps+Ki

s · k
s2+ω2

0

=
k(Kps+Ki)

s3 + (kKp + ω2
0)s+ kKi

. (16.47)

Here, we wind up three poles in the closed-loop system function. It turns out that the missing s2 term
in the denominator is problematic; it implies that there is a conjugate pair of poles on the imaginary
axis.3 So a PI controller cannot stabilize the system either.

• PD control: With Gc(s) = Kp +Kds, the closed-loop system function is

H(s) =
(Kds+Kp)

k
s2+ω2

0

1 + (Kds+Kp)
k

s2+ω2
0

=
k(Kds+Kp)

s2 + kKds+ kKp + ω2
0

. (16.48)

Now we are getting somewhere. Unlike in the case of PI control, we have two poles instead of three,
and these two poles can be controlled with the two “knobs” Kp and Kd, so we can stabilize the system.
If we wish the denominator to exhibit a certain natural frequency ωn and damping factor ζ, we can
again use our coefficient-matching trick, yielding 2ζω2

n = kKd and ω2
n = kKp + ω2

0 . This gives us the
design equations

Kp =
ω2
n − ω2

0

k
, Kd =

2ζωn
k

. (16.49)

Although our ability to relocate the poles allows us to stabilize the system, our task is not yet complete,
since this controller cannot perfectly track a step. The DC value of the frequency response of (16.48)
is

H(j0) =
kKp

kKp + ω2
0

. (16.50)

The observations made at the end of Section 16.3 apply here as well; although we might theoretically
want to to increase Kp to “swamp” ω2

0 and get H(j0) closer to 1, real-world considerations limit how
far we can push Kp.

• PID control: With Gc(s) = Kp +Ki/s+Kds, the closed-loop system function is

H(s) =

Kds
2+Kps+Ki

s · k
s2+ω2

0

1 +
Kds2+Kps+Ki

s · k
s2+ω2

0

=
k(Kps+Ki)

s3 + kKds2 + (kKp + ω2
0)s+ kKi

(16.51)

The three denominator coefficients can be set with the three “knobs” Kp, Ki, and Kd, allowing us to
place the three poles wherever we want. The PID controller also permits perfect tracking of a step
function, since tis DC gain is H(j0) = 1.

3This fact and others along these lines are covered thoroughly in most dedicated control theory textbooks; for our current
purposes, you can take this on faith.

126 CHAPTER 16. CONTROL SYSTEMS

16.7.1 Example

Consider the plant system function

Gp(s) =
1

s2 + 9
, (16.52)

which corresponds to (16.45) with k = 1 and ω0 = 3. Suppose we wanted to use PD control to place both
closed-loop system poles at s = −4; in this case, we would like the denominator of the closed-loop transfer
function to be (s + 4)2 = s2 + 8s + 16. Matching with the denominator of (16.48) yields Kd = 8 and
Kp = 16−9 = 7. Our satisfaction at our PD controller being able to relocate our poles is short-lived once we
consider how terrible it is at tracking a unit step function; from (16.50), H(j0) = 7/(7 + 9) = 7/15 ≈ 0.4375,
which is dreadfully less than 1.

To apply PID in search of better tracking, we need to make a decision about the third pole. For instance,
we might place it at s = −10, corresponding to a “fast” response, so that the double pole at s = −4 will
largely dominate the system response. We want the denominator of (16.51) to match (s + 10)(s + 4)2 =
s3 + 18s2 + 96s+ 160, which yields Kd = 18, Kp = 96−9 = 87, and Ki = 160. The controller has the system
function

Gc(s) = 87 +
160

s
+ 18s. (16.53)

We know from the analysis in Section 16.7 that the complete system perfectly tracks a step. If we are
interested in further details of the closed-loop system’s unit-step response, a partial fraction expansion yields

Y (s) =
H(s)

s
=

18s2 + 87s+ 160

s(s3 + 18s2 + 96s+ 160)
=

1

s
− 3.028

s+ 10
+

2.2028

s+ 4
− 4.167

(s+ 4)2
. (16.54)

Taking the inverse Laplace transform of Y(s) gives

y(t) = (1− 0.3028e−10t + 2.2028e−4t − 4.167te−4t)u(t). (16.55)

16.8 PID control in the real world

Scholarly textbooks and papers contain myriad strategies for adjusting the parameters of a PID controller.
Engineers who actually implement real PID control systems for a living, instead of just sitting behind a desk
thinking about them, typically follow a procedure along these lines:

1. Set Kp, Ki, and Kd to zero.

2. Crank Kp until you observe oscillations in the output, then back off a little.

3. Crank Ki until you observe oscillations in the output, then back off a little.

4. Tweak Kd to reduce overshoots. Kd is like spice in a recipe; a little goes a long away. Seasoning a PID
controller with a little bit of “D” sometimes will let you turn up Kp and Ki beyond what you might
otherwise get away with.

5. Go back to step (2) and continue twiddling until you achieve the performance you want or you get
bored and give up.

Chapter 17

Energy and Power

17.1 Parseval’s theorem

Parseval’s theorem, in the context of Fourier transforms, tells us that the energy in one domain is proportional
to the energy in the other domain: ∫ ∞

−∞
|x(t)|2dt =

1

2π

∫ ∞
−∞
|X(jω)|2dω. (17.1)

Some engineering texts neglect to mention that for the theorem to hold, x(t) and X(jω) must be “square
integrable,” i.e. the integrals on both sides of (17.1) must be finite. For instance, recall that the Fourier
transform of x(t) = cos(t) is X(jω) = πδ(t+ 1) + πδ(t− 1). The LHS of (17.1) for this example is infinity.
Unfortunately, the RHS teeters between sense and nonsense, ultimately tipping in the direction of nonsense,
since the “square of a Dirac delta” cannot be given a definition that is consisting with the properties one
might want such mathematical curiosity to have.1

There is a variation of Parseval’s theorem that applies to periodic functions. Nontrivial periodic functions
have infinite energy, so this version integrates over just one period:

1

T0

∫
T0

|x(t)|2dt =

∞∑
k=−∞

|ak|2, (17.2)

where we can take the integral over any period of length T0, and for the theorem to hold, both sides of (17.2)
must be finite. For instance, it would not make sense to apply Parseval’s theorem to an impulse train, since
the RHS would be infinite, which at least is mathematically defined, unlike the LHS, for which we must
throw up our hands at the prospect of taking the square of a Dirac delta function. Remember that although
Dirac delta “functions” are extremely useful, they contain subtle dangers.

A note on names: Picky mathematical historians may object that “Parseval’s theorem” originally
referred to the Fourier series version (17.2), and the more general Fourier transform version we started with
(17.1) would be more accurately called “Plancherel’s theorem.” But in science and engineering, we generally
just call them all “Parseval’s theorems.”

1Remember that δ(t) is not an ordinary function, and any expression containing it is not an ordinary function either; trying
to treat them as such can get you into all sorts of trouble.

127

128 CHAPTER 17. ENERGY AND POWER

17.1.1 Generalizations for inner products

There are generalizations of (17.1) and (17.2) that treat inner products. Inner products involve integrating
(or summing) one function multiplied by the complex conjugate of the other. We touched on the notion of
inner products when we discussed Fourier series, and found that a vital part of how Fourier series “work”
is that harmonic sinusoids are orthogonal, meaning that the inner products of harmonic sinusoids are zero
unless they have the same frequency.

These generalizations of Parseval’s theorem tell us that inner products in one domain are proportional
to inner products in the other domain.

For square-integrable (i.e. finite energy) functions f(t) and g(t),∫ ∞
−∞

f(t)g∗(t)dt =
1

2π

∫ ∞
−∞

F (jω)G∗(jω)dω. (17.3)

For periodic functions f(t) and g(t) with the same period T0, if ak and bk are the Fourier series coefficients
of the periodic functions, then

1

T0

∫
T0

f(t)g∗(t)dt =

∞∑
k=−∞

akb
∗
k (17.4)

if f(t) and g(t) are both square integrable over one period. (Mathematicians can conjure many examples of
periodic functions that are not square integrable, but practicing engineers rarely encounter such monstrosi-
ties.)

17.2 Power supply design example—guitar amplifiers

17.2.1 Hungry, hungry amplifiers

Before transistors were invented, vacuum tubes – called “valves” by our friends across the pond – dominated
the electronics scene. They would have gone the way of the dinosaur by now if it had not been for one highly
devoted target market: guitarists. When overdriven, tubes are said to distort in a much more musically
pleasing way than transistors.2 We should note that most amplifier designers in the 50s and 60s went to
great lengths to prevent their amplifiers from distorting, and considered it a badge of shame when they did,
even as rock musicians searched for different ways to get their amps to distort more.

The power supply is an important part of tube amp design; tubes are power-hungry, voltage craving
creatures. Some such circuits operate at voltage levels that can be lethal; even though you are currently just
reading these words, you should still feel a bit of fear. It is good practice.

17.2.2 Mighty, mighty Bassman

We will explore a highly simplified, approximated version of the power supply for the Fender Bassman 5F6-A,
which is a common ancestor of many modern tube amps. It turned out to be more popular with guitarists
than it was with bassists. Jim Marshall, whose amps are associated with acts like Led Zeppelin, AC/DC,
and Van Halen, got his start by making amps that were not much more than slightly tweaked versions of
the Fender Bassman.

2Cue endless internet flame wars over why.

17.2. POWER SUPPLY DESIGN EXAMPLE—GUITAR AMPLIFIERS 129

Figure 17.1: One day, there might be a figure here. There might even be a caption.

Figure 17.2: One day, there might be a caption and figure here too.

We will start our model with the 120 V AC RMS that comes out of the wall. This is run through a
center-tapped transformer that steps up the voltage (unlike the transformers in most power supplies people
deal with nowadays, which step the voltage down down). This is then run through a dual rectifier tube—
these tubes act like the solid state diodes you are used to, except they are much scarier. In our model, we
will say this setup provides a full-wave rectified sinusoidal wave that goes from 0 volts to 650

√
2 volts. The

wall current has a frequency of 60 Hz, so the rectified version has a frequency of 120 Hz, with half the period,
as shown in Figure 17.1.

We want to filter this rectified sinusoid such that only DC, i.e. the “zero” frequency, gets through. We
will never able able to do this perfectly and must make some compromises. The part of the signal that is
not constant is called “ripple,” and we can characterize it by both its average power and its peak-to-peak
swing. Parseval’s theorem will give us an easy way to characterize its average power. On a practical note,
there is usually a tradeoff between ripple reduction and circuit complexity (and hence size and cost), and
another tradeoff between ripple reduction and available DC out—you could always reduce what you do not
want if you are willing to lose what you do want!

The Bassman uses an LC lowpass filter consisting of a 10 H inductor in series with a 20 µF capacitor.
The output of the rectifier connects to one side to the inductor, one side of the capacitor goes to ground,
and the power supply output is at the junction of the inductor and the capacitor, as shown in Figure 17.2.

Power supply ripple can be a nightmare in audio amplifiers, since the ripple will work its way into every
audio processing stage. If you have a guitar amp that sounds like it is taking meditation classes, checking
the power supply capacitors is a good place to start debugging.

To derive the frequency response of the filter, recall that the impedance of a capacitor is 1/(jωC) and
the impedance of an inductor is jωL. Using the voltage divider rule, the frequency response is

H(jω) =
1/(jωC)

1/(jωC) + jωL
=

1

1 + jωL(jωC)
=

1

1− ω2LC
. (17.5)

A rectified cosine wave (where the original cosine wave has amplitude 1) has Fourier series coefficients
given by (we will not slog through the whole derivation here)

ak =
2

π(1− 4k2)
. (17.6)

Using linearity, the Fourier series coefficients of the waveform input are just (650
√

2)ak.
The Fourier series coefficients for the output of the filter are

bk = (650
√

2)akH(j240πk) = 650
√

2
2

π(1− 4k2)
· 1

1− (240πk)2LC
. (17.7)

What DC voltage will get from our supply, using these approximations? Well, H(j0) = 1, so the DC
output is 650

√
2b0 = 650

√
2× 2/π = 585 volts. That is a lot of volts! Put one hand behind your back before

poking around—and remember capacitors can store massive charges long after you have switched off the
amp.

130 CHAPTER 17. ENERGY AND POWER

The amplitude of the fundamental is

2(b1) = 2(650
√

2)

(
− 2

3π

)
(−0.0089) = 2(1.74) = 3.48 (17.8)

The amplitudes of the second and third harmonics are

2(b2) = (650
√

2)

(
− 2

15π

)
(−0.0022) = 2(0.0858) = 0.1716 (17.9)

and

2(b3) = (650
√

2)

(
− 2

35π

)
(−.0009) = 2(0.015) = 0.03. (17.10)

We have looked at the amplitudes of some individual harmonics. But what is the overall RMS value of
the ripple? One could perform an integral like this:

1

T0

∣∣∣∣∣∣
∫ T0

0

∑
k 6=0

bk exp(jk240πt)

∣∣∣∣∣∣
2

dt. (17.11)

where T0 = 1/120 seconds, and we have deliberately left the DC value out of the Fourier series sum. But
that would be a mess to compute directly? Instead, we can use Parseval’s theorem:∑

k 6=0

|bk|2. (17.12)

Let us add up the first three harmonics. We need to include both the positive and negative coefficients,
hence the multiplication by 2 in this expression:

2[(1.74)2 + (0.0858)2 + (0.015)2] = 2(3.0267 + 0.0074 + 0.0002) = 6.0686. (17.13)

The RMS value is
√

6.0686 = 2.4635. Note that the first harmonic by far the strongest contributor.
There is something a little strange about our LC filter that deserves comment. It overall acts as a

lowpass filter—clearly the frequency response drops to zero as the frequency becomes clearly large. But
it has a“bump” in the response at ωr = 1/

√
LC. An infinitely big bump, formed by the resonance of the

inductor with the capacitor. For our part values, the bump is at fr = 1/(2π
√
LC) = 11.25 Hz, which is

not anywhere near the 120 Hz we are worried about removing. Also, the real circuit is no where near this
high “quality”—the inductor, in particular, has significant parasitic resistance. So we do not need to worry
about 11.25 Hz spontaneously appearing in our amp from thermal noise hitting a resonance by coincidental
and getting out of control.

There are a few issues we did not include in our model:

• There is a third capacitor in the power supply, between the output of the rectifier tube and the LC
filter listed above, that provides some additional filtering.

• The power supply feeds an additional series of filtering stages, whose outputs power various stages of
the amplifier. The push-pull power amp, which by its symmetric design tends to cancel out AC ripple
from the power supply, is “closest” to the power supply. The initial preamplifier circuit the guitar sees
is “furthest” from the power supply, so its power rail has undergone substantial additional filtering.

17.2. POWER SUPPLY DESIGN EXAMPLE—GUITAR AMPLIFIERS 131

A few additional notes:

• Power supply inductors – often called “chokes” – relatively rare nowadays. Most power supplies use a
resistor in place of the inductor, forming a one-pole RC filter instead of a two-pole LC filter. A two-pole
filter provides a steeper cutoff, especially if you are willing to have a resonance near the cutoff. But
chokes are bulky, heavy, expensive, and chock full of non-idealities, which makes the resistor alternative
attractive.

• Earlier, we computed a DC output of 585 volts. But if you look on the Bassman schematic, you will
see a diagnostic value of 432 volts. Remember that we computed all the numbers above assuming that
there was no load on the power supply. The load of the rest of the circuit runs in parallel with the
filter capacitor, and cause the voltage at point that to drop. A more detailed analysis would include
this load impedance. Also, the non-ideal rectifier tubes, the resistance of the choke, and other factors
we have not modeled will result in some loss.

