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ABSTRACT: Rain gauge data sparsity over Africa is known to impede the assessments of hydrometeorological risks and of
the skill of numerical weather prediction models. Satellite rainfall estimates (SREs) have been used as surrogate fields for a long
time and are continuously replaced by more advanced algorithms and new sensors. Using a unique daily rainfall dataset from 36
stations across equatorial East Africa for the period 2001–18, this study performs a multiscale evaluation of gauge-calibrated
SREs, namely, IMERG, TMPA, CHIRPS, and MSWEP (v2.2 and v2.8). Skills were assessed from daily to annual time scales,
for extreme daily precipitation, and for TMPA and IMERG near-real-time (NRT) products. Results show that 1) the SREs
reproduce the annual rainfall pattern and seasonal rainfall cycle well, despite exhibiting biases of up to 9%; 2) IMERG is the best
for shorter temporal scales while MSWEPv2.2 and CHIRPS perform best at the monthly and annual time steps, respectively;
3) the performance of all the SREs varies spatially, likely due to an inhomogeneous degree of gauge calibration, with the largest
variation seen in MSWEPv2.2; 4) all the SREs miss between 79% (IMERG-NRT) and 98% (CHIRPS) of daily extreme rainfall
events recorded by the rain gauges; 5) IMERG-NRT is the best regarding extreme event detection and accuracy; and 6) for
return values of extreme rainfall, IMERG, and MSWEPv2.2 have the least errors while CHIRPS and MSWEPv2.8 cannot be
recommended. The study also highlights improvements of IMERG over TMPA, the decline in performance of MSWEPv2.8
compared to MSWEPv2.2, and the potential of SREs for flood risk assessment over East Africa.

KEYWORDS: Complex terrain; Remote sensing; Satellite observations

1. Introduction

Most people throughout tropical Africa are highly impacted by
extreme weather events. For example, most of the 4.3 million
disaster-related internal displacements of people in 2020 in sub-
Saharan Africa were due to flooding (IDMC 2021). Unfortu-
nately, these extremes are increasing in frequency and intensity in
most parts of the world (Collins et al. 2019). Within tropical
Africa, Uganda, for instance, has recorded an increase in the num-
ber of hydrometeorological hazards with floods posing the biggest
risk to the population (World Bank 2020). Coupled with Ugan-
da’s rapidly rising population projected to be almost doubled to
about 70.5 million by 2040 (UBOS 2020), the increase in the

hydrometeorological hazards makes accurate and high-resolution
rainfall data very vital, particularly for trend and extreme precipi-
tation events analyses.

Unfortunately, in most African countries, data from rain
gauges (RGs), often considered as reference data, are spa-
tially and temporally sparse, temporally inconsistent, and in
some cases of low quality (Kizza et al. 2009; Maidment et al.
2013; Diem et al. 2014; Monsieurs et al. 2018). In fact, the sta-
tion network coverage across Africa has been shrinking over
the years (Washington et al. 2006; Asadullah et al. 2008;
Dinku 2019). Therefore, accurately analyzing and predicting
rainfall trends and variability over the study area is challeng-
ing. Satellite rainfall estimates (SREs) have filled the spatio-
temporal data gaps. In most cases, the SREs are derived from
radiances in the visible, infrared (IR), and microwave spectra
measured by satellites. Singularly or in combination, these
retrievals provide high-resolution rainfall estimates, with a
prime example being the Integrated Multisatellite Retrieval
for Global Precipitation Measurement (GPM) (IMERG)
V06B dataset (Huffman et al. 2020a). However, SREs are not
without shortcomings. Despite having a wide field of view and
high temporal availability, IR-based techniques rely on a
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cloud top temperature–precipitation relationship, which is
often unsuitable for nonconvective precipitation (Kidd and
Huffman 2011) or nonprecipitating cold cirrus shields (Young
et al. 2014). Microwave-based satellites, in turn, have been
found to struggle with retrieving rain from warm clouds
(Dinku et al. 2010b; Monsieurs et al. 2018; Maranan et al.
2020) and to overestimate rainfall in places where convective
rainfall dominates (Tian et al. 2009). However, passive micro-
wave (PMW)-based approaches are considered to be physi-
cally more direct than IR-based estimates (Kidd and Huffman
2011; Bitew and Gebremichael 2011). For example, over land,
the background microwave signal from Earth is scattered by
precipitation-sized hydrometeors, especially rainfall-inducing
ice crystals, leading to a decrease of the PMW brightness tem-
peratures (Kidd and Huffman 2011). Additionally, the skill
of SREs has been shown to be dependent on other factors.
For example, Dinku et al. (2010b), Diem et al. (2014) and
Monsieurs et al. (2018) noted that the SREs performed poorly
over complex topography, namely, the Ethiopian Highlands,
the Albertine and East African Rifts, and the Rwenzori
Mountains. The skill of SREs also likely depends on the rain-
fall formation processes (McCollum et al. 2000; Maranan et al.
2020) and gauge calibration (Awange et al. 2016). Therefore,
SREs should be meticulously validated in order to ascertain
their suitability for a given area.

Several validation studies have been conducted in and
around Uganda (e.g., Asadullah et al. 2008; Diem et al. 2014;
Ashouri et al. 2015; Maidment et al. 2017; Dinku et al. 2018;
Monsieurs et al. 2018; Camberlin et al. 2019). Most of these
studies found the Tropical Rainfall Measuring Mission (TRMM)
Multisatellite Precipitation Analysis (TMPA) (Huffman et al.
2007) and Climate Hazards Group Infrared Precipitation with
Stations version 2 (CHIRPS2) (Funk et al. 2015) to be among
the best performing products. For instance, using 31-yr-averaged
(1960–90) monthly rainfall data over Uganda, Asadullah et al.
(2008) showed that TMPA 3B42 had the least error in mean
annual rainfall and also captured the mean seasonal and cli-
matological spatial pattern of rainfall better than Climate Pre-
diction Center morphing technique (CMORPH) (Joyce et al.
2004), Tropical Applications of Meteorology using Satellite
and Ground-Based Observations (TAMSAT) (Maidment
et al. 2017), Rainfall Estimation Algorithm version 2 (RFE2)
(Love et al. 2004), and Precipitation Estimation from
Remotely Sensed Information Using Artificial Neural Net-
works (PERSIANN) (Ashouri et al. 2015). Using gridded
monthly RG data between 1960 and 2004, Kizza et al. (2012)
also showed that TMPA correlates to the observed monthly
rainfall variability at the coast of Lake Victoria better than
PERSIANN. Using 10 years (2001–10) of daily rainfall data,
Diem et al. (2014) showed that TMPA 3B42 outperformed
Africa Rainfall Climatology version 2 (ARC2) (Novella and
Thiaw 2013) and RFE2 over Western Uganda. Camberlin
et al. (2019) evaluated seven satellite products over central
Africa which included part of western Uganda and found that
TMPA performed best at daily time scale while at interannual
time scale, CHIRPS and TMPA performed best. CHIRPS has
been found to particularly perform well at longer time scales.
For example, Dinku et al. (2018) and Diem et al. (2019) both

showed CHIRPS performed better than ARC2 and TAM-
SAT at dekadal to seasonal time scales over eastern Africa
and western Uganda, respectively.

IMERG and the Multi-Source Weighted-Ensemble Precipi-
tation (MSWEP) (Beck et al. 2019) are relatively new and
only few validation studies have been done in the region for
these datasets. The transition from TMPA to its successor
IMERG has led to improvements in rainfall monitoring (Dez-
fuli et al. 2017a,b). Dezfuli et al. (2017a) validated IMERG
and TMPA over West and East Africa for the respective rainy
seasons of 2015. They showed that IMERG was closer to the
mean of the RGs and better represents extreme events in
both regions owing to its higher temporal resolution. How-
ever, in a follow-up study, Dezfuli et al. (2017b) showed that
the gain/loss in performance of IMERG over TMPA are spa-
tially heterogenous based on the patterns of statistical metrics,
e.g., the Heidke skill score (HSS). The few studies evaluating
MSWEPv2.2 have so far shown promising results (Satgé et al.
2019; Beck et al. 2019). With respect to the Kling–Gupta effi-
ciency (KGE), Satgé et al. (2019) showed that MSWEPv2.2
performed best among 23 rainfall products over West Africa
based on 3 years (2000–03) of daily rainfall data. Over con-
tiguous United States, Beck et al. (2019) showed that
MSWEPv2.2 had the best median KGE compared to four
other rainfall products, namely, MSWEPv1, CMORPH, Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF)
interim reanalysis (ERA-Interim) (Dee et al. 2011), and Mod-
ern-Era Retrospective Analysis for Research and Application,
version 2 (MERRA-2) (Reichle et al. 2017).

The aim of the study is to assess the skill of IMERG, TMPA,
CHIRPS, and MSWEP for Uganda and bordering parts of
Kenya, Tanzania, Rwanda, and South Sudan at seasonal,
monthly, and daily time scales. Based on the earlier studies, we
conclude that the performance of SREs is variable among prod-
ucts depending on the region and/or spatiotemporal scales.
Most of the studies used monthly data, were not Uganda-wide,
used few stations and, aside from Monsieurs et al. (2018), did
not consider extremes rainfall events. We use a unique network
of daily, quality-controlled RG data from 2001 to 2018 for vali-
dation. A large number of station data were not ingested into
the Global Telecommunication System (GTS) and therefore
not used to calibrate the SREs, thus they can serve as indepen-
dent references. CHIRPS and TMPA were chosen because
they are recommended for extreme event applications (Le Coz
and van de Giesen 2020) and perform satisfactorily over the
study area. As mentioned earlier, IMERG has been found to
be superior to TMPA and belongs to the most recent precipita-
tion products alongside with MSWEP. An additional motiva-
tion to include both TMPA and IMERG is to investigate the
improvements gained with IMERG over TMPA. At the time of
writing this manuscript, MSWEP transitioned from v2.2 into
v2.8, which allowed a direct evaluation of the impact of version
changes. We also include the near-real-time (NRT) products of
IMERG and TMPA since they cater for application requiring
short latency data, e.g., floods assessment.

The rest of paper is structured as follows: section 2 gives a
description of the study area, as well as the SREs and RG
datasets. The methods used are explained in section 3. The
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results are presented and explained in section 4. Finally, in
section 5, the major conclusions are summarized and put in
perspective of other studies.

2. Study area and datasets description

a. Study area

The study focuses on Uganda and the surrounding areas
(Fig. 1). The topography is heterogeneous with elevation
ranging from 375 to 5109 m above mean sea level at Lake
Turkana in the northeast and the peak of Mt. Rwenzori in the
west, respectively. It is also composed of a number of large

inland lakes, mountains, parts of the Great East African Rift
Valley, and rivers. Most parts of the region exhibit two dis-
tinct rainfall seasons [March–May (MAM) and September–
November (SON)], locally referred to as the “long rain
season” and “short rain season” with peaks in April and
October, respectively (Nicholson 2017; Seregina et al. 2019).
Over western Uganda, a transitional region between the east-
ern and western equatorial Africa, the MAM and SON sea-
sons form the short and long rains, respectively (Diem et al.
2019). The northern part of the study area exhibits a unimodal
rainfall peak in May–August (Phillips and McIntyre 2000;
Seregina et al. 2019). As discussed in Nicholson (2017), the
climate of the region is controlled by three classes of factors;

FIG. 1. The study area with location and names of the rain gauge stations used in the study shown with blue circles.
Data from stations with black cross in the center are not transmitted to the Global Telecommunication System
(GTS). The major lakes, rivers, and mountains, viz., Rwenzori in the west and Elgon in the east, are also indicated.
The color shading shows the elevation from Global Land One-km Base Elevation Project (GLOBE; Hastings et al.
1999). The map inset highlights the location of Uganda within Africa (red box).
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regional forcing features (e.g., Walker circulation, El
Niño–Southern Oscillation, Indian Ocean dipole, and Mad-
den–Julian oscillation), regional circulation features (e.g.,
tropical easterly jet, low-level westerlies, and monsoons), and
local geographic factors (e.g., Lake Victoria, East African
highlands). These factors inevitably lead to variability in rain-
fall and coupled with the heterogenous topography present a
challenge to satellite rainfall retrievals (e.g., Monsieurs et al.
2018; Le Coz and van de Giesen 2020).

b. Datasets

1) SATELLITE PRODUCTS

We included eight satellite datasets in this validation study
(Table 1). The temporal resolutions of the datasets vary from
30 min to daily, while the spatial resolutions vary from 0.18 to
0.258 latitude–longitude grid boxes. They are described in the
following in more detail.

TMPA V07 (Huffman et al. 2007; Huffman and Bolvin
2018) is a multisatellite precipitation product with latencies of
about 8 h and about 2 months for the “real time” and “final”
runs, respectively. TMPA consists of PMW precipitation
estimates, IR precipitation estimates, and the Global Precipi-
tation Climatology Project (GPCP) monthly precipitation
(Huffman et al. 1997). First, PMW estimates are calculated
using the Goddard Profiling (GPROF) algorithm (Kummerow
et al. 1996, 2001). Then all available PMW estimates are com-
bined and completed with MW-calibrated IR data in case of

existing gaps. Finally, monthly multisatellite (MS) accumula-
tions are combined with Global Precipitation Climatology
Centre (GPCC) monthly gauge analysis to create a satelli-
te–gauge (SG) monthly product (TMPA 3B43). A SG/MS
ratio is then calculated for each 0.258 and used to calibrate
each 3-hourly field of the month, producing the final 3-hourly
product (TMPA 3B42).

IMERG V06B (Huffman et al. 2020a) is a MS precipitation
product with latencies of about 4 h, 14 h, and 3.5 months for
the Early, Late, and Final runs, respectively. IMERG builds
on the TRMM legacy and uses similar data inputs as TMPA,
with the GPM core observatory replacing the TRMM coun-
terpart. The PMW estimates are calculated using a more
recent version of the GPROF algorithm. A seasonal GPCP
calibration is applied to the PMW estimates to yield 30-min
0.18 3 0.18 fields. These fields are then spatiotemporally
morphed to fill the gaps for areas without PMW overpasses.
This step results in the MS, half-hourly IMERG Early (Huff-
man et al. 2020b) and IMERG Late products (IMERG-E and
IMERG-L henceforth). IMERG-E contains only forward
morphing while IMERG-L has both forward and backward
morphing. Monthly satellite-gauge estimates are created by
summing the half-hourly estimates for the month and calibrat-
ing with GPCP monthly precipitation analysis. Finally, gauge
calibration of the half-hourly estimates is exercised in a simi-
lar fashion to TMPA to create the Final version of IMERG
(IMERG-F hereinafter; Huffman et al. 2020c).

TABLE 1. Summary of datasets used in the study. The period and regridded resolution used in this study is given in parentheses in
the “temporal coverage” and “native spatial resolution” columns, respectively.

Dataset Full name
Native spatial
resolution

Temporal
resolution Latency

Temporal
coverage Reference

TMPA 3B42 v7 Tropical Rainfall
Measuring Mission
(TRMM) Multisatellite
Precipitation Analysis

0.258 3-hourly 2 months January
1998–present
(2001–18)

Huffman et al.
(2007); Huffman
and Bolvin
(2018)

TMPA-RT
3B42RT v7

Tropical Rainfall
Measuring Mission
(TRMM) Multisatellite
Precipitation Analysis

0.258 3-hourly 8 h March
2000–present
(2001–2018)

Huffman et al.
(2007); Huffman
and Bolvin
(2018)

IMERG Integrated Multisatellite
Retrieval for GPM
(Global Precipitation
Measurement)

0.18 (0.258) Half-hourly 3.5 months June 2000–present
(2001–18)

Huffman et al.
(2020b)

IMERG-E Integrated Multisatellite
Retrieval for GPM
(Global Precipitation
Measurement)

0.18 (0.258) Half-hourly 4 h June 2000–present
(2001–18)

Huffman et al.
(2020c)

CHIRPS Climate Hazard Infrared
Precipitation with
Stations

0.058/0.258 3-hourly 2 months January
1981–present
(2001–18)

Funk et al. (2015)

MSWEP v2.2 Multi-Source Weighted-
Ensemble Precipitation
V2.2

0.18 (0.258) 3-hourly Irregular January
1979–October
2017 (2001–16)

Beck et al. (2019)

MSWEPv2.8 Multi-Source Weighted-
Ensemble Precipitation
V2.8

0.18 (0.258) 3-hourly Irregular January 1979–
December 2020
(2001–18)

Beck et al. 2019
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CHIRPS v2 (CHIRPS hereinafter) is a quasi-global dataset
providing daily, pentadal, and monthly estimates (Funk et al.
2015). CHIRPS is based on a global monthly precipitation cli-
matology (CHPclim), thermal infrared (TIR) cold cloud dura-
tion (CCD), and daily and monthly RG data. TIR CCD data
created at a constant CCD temperature threshold of 235 K
are locally calibrated using TMPA 3B42 pentadal precipita-
tion. The pentadal estimates are then multiplied by their cor-
responding CHPclim estimate to produce Climate Hazard
Infrared Precipitation (CHIRP). CHIRP is merged with
gauge data to produce CHIRPS on pentadal and monthly
time steps. The pentadal CHIRPS is disaggregated into daily
CHIRPS precipitation using daily CCD data.

MSWEP is a global precipitation dataset available from
1979 to October 2017 (MSWEPv2.2, Beck et al. 2019) and
until December 2020 in a recent update (MSWEPv2.8; Beck
et al. 2021a). The dataset is created through weighted merging
of gauge-, satellite-, and reanalysis-based precipitation prod-
ucts. The merging weights are determined by assessing the
performance of the input datasets individually against quality-
controlled gauge precipitation. The weighted merging results
into a 3-hourly reference precipitation dataset which is then
calibrated using daily and monthly gauge precipitation to cre-
ate MSWEPv2.2. Although the algorithm did not change sub-
stantially, changes in the production of MSWEPv2.8 include a
reduction to two underlying datasets from the five used in
MSWEPv2.2 and a reduction in the amount of gauge data
used (Beck et al. 2021b).

2) RAIN GAUGE DATA

Besides quality issues, not nearly enough data are ingested
into the GTS in our study area. For this study, 24 of the 36 sta-
tions transmitted rainfall data to the GTS, and only 6 of these
24 stations had more than 50% of available daily data for the
study period (Fig. 2a). Benefitting from collaborations, the
Karlsruhe African Surface Station Database (KASS-D; Vogel
et al. 2018) has many observations not reported to the GTS.
Figure 2b shows the full station ensemble and its data avail-
ability in KASS-D within the study region. Hence, 12 non-
GTS stations are available for the present analysis and even
the GTS reporting stations have much more complete data in
KASS-D.

The quality control of the gauge dataset was carried out fol-
lowing two steps. First, the timestamp was checked using a
methodology similar to Beck et al. (2019) to ensure a consis-
tent treatment of the timestamp across all datasets. The data-
sets were then analyzed for suspicious outliers and zero
values using a combination of techniques, e.g., using the
“letter-value plot” method in the python package “seaborn”
and accumulation curves.

3. Methods

a. Point-to-pixel comparison

A point-to-pixel approach is performed by comparing point
gauge data to the closest satellite pixel value (e.g., Monsieurs
et al. 2018; Maranan et al. 2020). We recognize the

shortcomings of this approach given that gauges are highly
localized and may not be representative of a gridbox cover-
age. Engel et al. (2017) and Monsieurs et al. (2018) demon-
strate the shortcoming using grids with multiple RGs. We
have not carried out a similar analysis given our dataset has
no grid boxes with more than one RG. We instead retain the
IMERG native resolution (0.18) and compare it with the
remapped 0.258 resolution to assess changes in the per-
formance of SREs due to changes in resolution. While inter-
polation of irregular station data to the SRE grids is
recommended for satellite validation studies (Maidment et al.
2013), we did not use this approach due to the relatively low
density of rain gauges and the complex topography. All the
SREs are regridded to the 0.258 resolution of TMPA using a
first-order conservative remapping (Jones 1999) to allow for a
fair comparison of the SREs. Since gauge data are missing at
some stations for some days, we only used satellite data when
gauge data were available at a given station and day.

b. Validation metrics

This study employs some commonly used standard validation
approaches (e.g., Ebert 2007; Wilks 2011). First, quantile–
quantile (QQ) plots were used to compare the distribution of
rain rates. The ability of SREs to detect rainy days, defined
here as days with rainfall total of more than 0.2 mm, was
assessed based on the contingency table (Table 2) using
dichotomous metrics, namely, probability of detection (POD),
probability of false alarm (POFA), bias in detection (BID),
and Heidke skill score (HSS). For the analysis of extremes,
we applied a threshold (95th percentile of the subset of rainy
days in the RGs) to differentiate between an “extreme” and
“non-extreme” rainfall day. Thus, a hit occurs when both the
RG and SRE have a rainfall amount greater than the thresh-
old. The second group of metrics includes the Pearson’s corre-
lation coefficient (r), mean error (ME), percent bias (PB),
mean absolute error (MAE), and root-mean-square error
(RMSE) to assess the SREs’ accuracy for rain rates using the
subset of hits. Additionally, the Nash–Sutcliffe coefficient of
efficiency E (Nash and Sutcliffe 1970; Legates and McCabe
1999) was used to assess the skill against climatology. The
metrics are summarized in Table 3.

c. Spatiotemporal analysis

The validation was performed for individual stations to
fully use the available gauge data and for daily, pentadal, dek-
adal, monthly, and annual aggregations. To reduce random-
ness in some of the analyses, we reorganized the stations into
groups. We therefore used the nonhierarchical K-means clus-
tering algorithm (Pedregosa et al. 2011) to partition the sta-
tions into groups. This approach aims at placing the stations
in clusters such that the intracluster variance is minimized
(Hartigan and Wong 1979). As noted by Cattani et al. (2016),
K-means clustering is prone to subjectivity since the maxi-
mum number of clusters has to be determined a priori. We
used the “elbow” method (Thorndike 1953; Zhang et al.
2016) which is based on the intracluster sum of squared differ-
ences to determine the optimum number of clusters. For each
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FIG. 2. (a) Temporal availability of the gauge data used in the study with stations reporting to the GTS and (b) the full dataset as
obtained from KASS-D for the period 2000–18. The GTS stations subset, identifiable by their five-digit only WMO station number, has
only 24 stations compared to full list of stations obtained from KASS-D. The blue strips shading shows daily data availability.
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station, a 30-day running mean was applied over their respec-
tive Julian day of year–based climatology of rainfall. The
resulting time series were then normalized with the maximum
value of the 30-day running mean at the respective stations to
ensure that stations with similar seasonal cycles are grouped
together regardless of the amount of precipitation received.
For each cluster, the mean monthly rainfall of the satellite
products and RGs were computed by taking the average of
the stations in that cluster. Additionally, to investigate the
influence of gauge calibration, we subset the data into two
groups, namely, GTS (stations with the highest percentage of
data reported to the GTS) and non-GTS (stations whose data
is not reported to the GTS). To allow for a comparison of

stations subsets with different climatologies, we normalized
the error metrics (ME, MAE, and RMSE) with the standard
deviation of the concatenated RGs time series of the respec-
tive subsets.

d. Extreme rainfall events analysis

Since hydrometeorological hazards are largely a result of
extreme daily rainfall events, the ability of satellites to capture
these events is analyzed. We define an “extreme event” as
daily rainfall totals exceeding the 95th percentile on rainy
days in the RG dataset. The extreme events thresholds were
computed at individual stations and the corresponding values
for the SREs were obtained from the closest pixels. We also
analyzed SREs’ suitability in simulating the return values of
extreme event. Extreme value models are used to study the
behavior of the tail of a distribution (Bommier 2014),
enabling the simulation of extreme values and their return
periods. Similar to Engel et al. (2017), we use the peak-over-
threshold (POT) method to fit the generalized Pareto distri-
bution (GPD; Lemos et al. 2020) to the RG and SREs daily
rainfall. The GPD was fitted to the subsets of extreme events
(i.e., .95th percentile) in the RG and SREs datasets. The
extremes in the SREs were obtained in a similar way to the

TABLE 3. Summary of the validation metrics used; H, F, M, and R denote hits, false alarms, misses, and correct rejections,
respectively. The xi, yi, x, and y terms represent the rainfall totals at the gauge for a given time, SRE rainfall totals for a given time,
the mean rainfall totals at gauge, and the mean rainfall totals of SRE, respectively. The range and best possible score of each statistic
is added in the first column in square brackets and bold numbers, respectively.

Statistic Formula Description

POD, [0, 1], 1
POD � H

H1M

Ability of the satellite to correctly identify rainy days

POFA, [0, 1], 0
POFA � F

H1F
Proportion of rainy days in the SREs that were not

observed in RGs

BID, [2∞, 1∞], 1
BID � H1F

H1M
Assesses whether the SRE overestimates or underestimates

rainy day frequency

HSS, [2∞, 1], 1
HSS � 2 HR2FM( )

H1M( ) M1R( )1 H1F( ) F1R( )
Assesses the skill of SREs products compared to random

chance

r, [21, 1], 1

r �
∑n
i

xi2x( )∑n
i

yi2y( )����������������∑n
i

xi2x( )2
√ ����������������∑n

i
yi2y( )2

√
Assesses the covariance of the gauge data with that of the

SRE

ME (mm), [2∞, 1∞], 0
ME � 1

n

∑n
i

yi2xi( ), Measures the bias and its direction (underestimation or
overestimation) by the SREs

PB (%), [2∞, 1∞], 0

PB � 100

1
n

∑n
i

yi2xi( )
x

Assesses the tendency of the SREs to underestimate or
overestimate rain rates relative to the mean of the RGs

MAE (mm), [0, 1∞], 0
MAE � 1

n

∑n
i

yi2xi( )
∣∣ ∣∣ Measures the bias of the SREs regardless of direction

RMSE (mm), [0, 1∞], 0
RMSE �

�������������������
1
n

∑n
i

yi2xi( )2
√

Measures the bias of the SREs but assigning more weight
to outliers

E, [2∞, 1], 1

E � 12

∑n
i

xi2yi( )2
∑n
i

xi2x( )2

Assesses the skill of SREs relative to climatology

TABLE 2. The 2 3 2 contingency table for comparing the
rainy days in gauge and satellite estimate. A day is considered as
rainy if 0.2 mm of rainfall or more is recorded. Note that for
when a threshold is set, a wet day occurs when an amount
greater than the set threshold was recorded.

Gauge $ 0.2 mm Gauge , 0.2 mm

Satellite $ 0.2 mm Hit (H) False alarm (F)
Satellite , 0.2 mm Miss (M) Correct rejection (R)
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FIG. 3. Mean annual rainfall totals for six satellite products (shaded) with mean annual rainfall totals of the RGs
annotated in the circles. The white contours are isohyets of mean annual rainfall, labeled in black. The dashed black
lines are country boundaries while the solid black lines demarcate inland lakes. The values on the top-left corners are
the mean annual rainfall and the standard deviation taken over the entire domain for the respective satellite product.
All the products are regridded to a 0.258 common grid.
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RGs extremes. To make the stations and all the rainfall
products comparable, we normalized the modeled return
values with the RG-modeled return values at the stations,
then averaged over all stations for each dataset. The nor-
malized return values of the RG data were taken as the
reference for evaluating the SREs. The performance of
SREs was considered “satisfactory” if the return value
modeled using the SRE fall within the standard deviation
of the RG’s return value.

4. Results

While we present all the eight SREs products on the same
figures and tables, the comparison between the early products
(IMERG-E and TMPA-RT) is discussed separately, as is the
comparison between the early and the respective final ver-
sions (IMERG-F and TMPA). Furthermore, a separate analy-
sis of the influence of different spatial resolutions on the skill
is conducted using IMERG-F at 0.258 and at its native resolu-
tion 0.18.

a. Annual rainfall

Based on RGs, the study area receives an annual average
of 1217 mm with high spatial variability. The wettest region is
the western part and shorelines of Lake Victoria (Fig. 3). The
Ugandan Ssese Islands are known to have more than 2000
mm yr21 (Flohn and Fraedrich 1966) with a short-term mea-
surement on the Tanzanian Nabuyongo Island in the middle
of the lake indicating the possibility of 3000 mm yr21 (Flohn
and Burkhardt 1985). No rainfall data over the lake are avail-
able in the study period, only Bukoba at the western shore
with 1924 mm yr21 indicates the wetness of this area. Other
wet regions are the Rwenzori and Elgon Mountains in west-
ern and eastern Uganda, respectively. While no station is
available in the Rwenzori mountain ranges for this study,
amounts of 2000–3000 mm yr21 are reported (Eggermont
et al. 2009). Buginyanya at Mt. Elgon at an elevation of 1845
m receives an annual total of 2278 mm. From Mt. Elgon, a
wetter region with annual totals of more than 1200 mm
stretches northwestward across the Lake Kyoga region in cen-
tral Uganda to northwestern Uganda west of the Albert Nile
(Fig. 3; Basalirwa 1995). The northeastern and southwestern
parts of the study area are located along the East African Rift
Valley, an area locally known as the “cattle corridor,” which

is generally associated with drier semiarid conditions. Here,
rain shadow effects are the likely causes of the low rainfall
totals in low-elevation areas (e.g., Diem et al. 2014).

The satellite products generally reproduce the spatial pat-
tern of annual rainfall, with CHIRPS showing the best perfor-
mance for most of the scores (Fig. 3 and Table 4). The
correlations between the RGs and satellites’ mean annual
rainfall totals are high, with CHIRPS and MSWEPv2.2 having
the highest correlation of 0.84, followed by MSWEPv2.8
(0.82), IMERG-F (0.78), and then TMPA (0.75, Table 4). All
the satellite products are skillful in depicting annual rainfall
totals with all of them having an E value greater than 0.5.
Although the patterns are relatively well reproduced, biases
do exist. For example, when averaged over all stations,
IMERG-F overestimate the annual rainfall by about 5%,
while TMPA, CHIRPS, MSWEPv2.2, and MSWEPv2.8 all
underestimate annual rainfall by about 5%, 1%, 8%, and 7%,
respectively.

Two salient features in Fig. 3 are worthy of mentioning; the
very high degree of wetness of the IMERG products over
Lake Victoria with values over 3600 mm yr21 (Figs. 3a,b), cor-
roborating the findings of Nicholson et al. (2021), and the
sharp horizontal discontinuity between the northern and
southern parts of the lake in TMPA products (Figs. 3d,e).
While IMERG remedies the discontinuity likely with an
improved land seas mask for the gauge calibration (see Fig.
S1 in the online supplemental material), the overestimation
with respect to RGs and the other SREs might be related to a
larger weight given to PMW retrievals in IMERG that are
known to overestimate rainfall in areas with deep convection
(Sungmin and Kirstetter 2018; Nicholson et al. 2021).
IMERG-E and TMPA-RT also show quite high correlation
values of 0.75 and 0.74, respectively, although the E value of
IMERG-E suggests a worse performance than climatology.
Additionally, IMERG-E overestimates annual rainfall by
28% (349 mm yr21), while on the other hand TMPA-RT
underestimates annual rainfall by 19% (214 mm yr21). The
large difference between IMERG-E and TMPA-RT is likely
due to a very significant difference in the algorithm between
IMERG and TMPA. These larger errors in the early products
compared to their respective final products underscore the
importance of gauge calibration. Based on the domain-aver-
aged annual rainfall of the SREs, MSWEPv2.8 retrieves the
least annual rainfall of 997 mm with a standard deviation of
310 mm. The mean annual rainfall is substantially less than
that retrieved by MSWEPv2.2 (1125 mm). Moreover, the r

TABLE 4. Scores for annual rainfall totals (2001–18, hence, total number of observations, N = 648) for all the satellite products,
except for MSWEPv2.2 (2001–16, hence, total number of observations, N = 576). The best performing final product for each metric is
given in bold font.

Statistic/product IMERG-F_0.108 IMERG-F_0.258 IMERG-E TMPA TMPA-RT CHIRPS MSWEPv2.2 MSWEPv2.8

r 0.77 0.78 0.75 0.75 0.74 0.84 0.84 0.82
E 0.57 0.59 20.36 0.52 0.23 0.70 0.65 0.63
ME (mm yr21) 57 57 349 260 2214 210 299 291
PB (%) 5 5 28 25 219 21 28 27
MAE (mm yr21) 208 200 402 218 300 171 169 193
RMSE (mm yr21) 294 287 520 309 392 243 264 272
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and E values show a decline in performance from MSWEPv2.
2 to MSWEPv2.8 (Table 4).

b. Monthly rainfall

Based on the elbow method (cf. section 2c), the optimum
number of clusters to be used in the K-means clustering was
found to be four. The names of the clusters given in Fig. 4

were assigned based on the relative location of the majority of
the stations forming the clusters [i.e., Northern (N-) cluster,
Central (C-) cluster, Southwestern (SW-) cluster, and Lake
Victoria Basin (LVB-) cluster]. The four clusters depict differ-
ent seasonal cycles (Figs. 4b–e). The N-cluster depicts a unim-
odal rainfall regime ranging from April to October with two
small peaks in May and August. These peaks are partly

FIG. 4. (a) Result of the K-means clustering. Black-, green-, purple- and orange-colored stations indicate the North-
ern cluster (N-cluster), Central cluster (C-cluster), Southwestern cluster (SW-cluster), and Lake Victoria Basin cluster
(LVB-cluster), respectively. Some stations may be relatively far from their cluster, e.g., the three SW-cluster stations
located at the shores of Lake Victoria. Manual investigation showed the seasonal cycles of these stations match the
SW cluster. (b)–(e) The mean seasonal cycles of rain gauges and satellite products in the four clusters for the period
2001–18 (IMERG-F_0.18, IMERG-F_0.258, IMERG-E, TMPA, TMPA-RT, CHIRPS, and MSWEPv2.8) and
2001–16 (MSWEPv2.2).

J OURNAL OF HYDROMETEOROLOGY VOLUME 23138

Brought to you by KARLSRUHE INSTITUTE F. TECHNOL. | Unauthenticated | Downloaded 02/08/22 09:27 AM UTC



associated with the migration of the tropical rain belt during
its meridional transitions (Seregina et al. 2019). The remain-
ing three clusters have bimodal rainfall regimes. In the C-clus-
ters the wet seasons run from March to June and August to
November, with peaks in April and October. In the SW- and
LVB-cluster, the first wet season occur from March to
May, peaking in April. The second rainy seasons are
September–November and October–December, for the SW-
and LVB-cluster, respectively. The high overestimation of
IMERG-E is clearly seen in all the clusters.

Generally, all the satellite products replicate the seasonal
cycle well (Figs. 4b–e, Fig. S2 in the supplemental material,
and Table 5). The agreement between the RGs and the

satellite products is evident from the high correlation values
of between 0.77 (TMPA) and 0.81 (MSWEPv2.2). All the sat-
ellite products perform better than the reference RG-based
climatology (i.e., E . 0; 0.58–0.65). Considering the final
products only, IMERG-F overestimates monthly rainfall by
about 4%, while MSWEPv2.2, MSWEPv2.8, TMPA, and
CHIRPS tend to underestimate rainfall by about 8%, 8%,
5%, and 1%, respectively. The results for this time scale also
point to a decline in performance of MSWEPv2.8 compared
to MSWEPv2.2. The NRT products also reproduce the sea-
sonality of rainfall in the study areas, but the errors are larger
compared to their respective final versions. IMERG-E
(TMPA-RT) overestimates (underestimates) monthly rainfall

TABLE 5. As in Table 4, but for monthly rainfall (N = 7776 for all SREs, except MSWEPv2.2 with N = 6912).

Statistic/product IMERG-F_0.108 IMERG-F_0.258 IMERG-E TMPA TMPA-RT CHIRPS MSWEPv2.2 MSWEPv2.8

r 0.79 0.80 0.74 0.77 0.72 0.79 0.81 0.79
E 0.63 0.64 0.24 0.58 0.45 0.62 0.65 0.62
ME (mm month21) 4.8 4.8 30.3 25.3 220.4 21.1 28.8 28.1
PB (%) 4 4 28 25 220 21 28 28
MAE (mm month21) 34.8 34.4 50.2 36.2 42.0 35.1 31.0 34.9
RMSE (mm month21) 49.2 48.6 70.1 52.0 59.6 49. 47.3 49.6

FIG. 5. QQ plots of daily gauge rain rates against daily satellite rain rates in the four clusters. The solid diagonal
line is the 1:1 line (ideal fit). Note that the scales are logarithmic and only hits are considered (days when both SRE
and RG. 0.2 mm).
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by about 28% (20%). Overall, MSWEPv2.2 outperforms all
the other products at this time scale.

c. Daily, pentadal, and dekadal rainfall

All the SREs, except MSWEPv2.2 slightly overestimate the
low rain rates whereas high rainfall rates are largely underes-
timated. This is evident from the QQ plots in Fig. 5.
MSWEPv2.8 visibly underestimates the higher rainfall rates
compared to MSWEP v2.2 but overestimates the low rain
rates. Although MSWEPv2.2 is below the diagonal for almost
all the percentiles, it has a better fit to the RG data. The distri-
bution in MSWEPv2.8 is likely strongly influenced by ERA5
(see Fig. S3 in the supplemental material), given that their
patterns are similar.

The ability of the final versions of the satellite products to
correctly capture a rainy day as reported in the gauges is gen-
erally good. This is illustrated by high POD values ranging
from 0.76 in TMPA to 0.97 in MSWEPv2.8 (Table 6). How-
ever, all the products are prone to false alarms and tend to
overestimate rainfall frequency (seen in Figs. 6b,c and Table
6). This corroborates results in Fig. 5, especially the overesti-
mation in occurrence frequency at the low rainfall rates. The
false alarms negatively influence the HSS, e.g., MSWEPv2.8
with the highest POFA has the lowest HSS, and the reverse is
true for TMPA. However, the skill of SREs in detecting rainy
days is better than random chance for all the products (HSS
. 0). The native resolution of IMERG (IMERG-F_0.18), as
expected, has a higher HSS of 0.47 compared to the regridded

0.258 version (IMERG-F_0.258) with a HSS of 0.43. This dif-
ference in skill is about 9% and may be attributed to the
reduction in POFA.

Considering daily rain rates, the r values suggest a low to
average agreement between the satellites and gauge data
(0.22 in CHIRPS to 0.43 in IMERG-F and MSWEPv2.2),
while the E values show the satellite products being compara-
ble to (IMERG-F, MSWEPv2.2 and MSWEPv2.8) or worse
than (TMPA and CHIRPS) climatology. All the products
underestimate the rainfall rates by 1.6 mm (IMERG-F) to 3.3
mm (MSWEPv2.8). The fact that the underestimation is
mostly in the higher rain rates is confirmed by the high RMSE
values (on the order of 12 mm day21) for all the products.
Overall, IMERG-F emerges as the best product at a daily
time scale followed by MSWEPv2.2 and TMPA, CHIRPS,
and then MSWEPv2.8.

The performance of the satellite products significantly
varies across the stations (Fig. 6) for a variety of reasons. One
explanation is the varying weights applied in the gauge cali-
bration of the SREs. The comparison of two subsets of sta-
tions: 1) GTS (7 stations whose data is reported to the GTS
and have .49% availability of daily data, Fig. 2a), and 2)
non-GTS (stations which do not report to the GTS, hence,
were not used in the gauge calibration) confirmed this
assumption. The QQ plots (Fig. S4 in the supplemental
material) show that in all the SREs, the distribution of rain
rates for the non-GTS station differs more substantially from
that of the RGs compared to the GTS stations. On average,

TABLE 6. Summary of skill score on daily, pentadal, and dekadal time steps. We do not calculate the POD, POFA, BID, and HSS
for pentadal and dekadal accumulations as these metrics are less meaningful at these time scales compared to a daily time scale.
Similar to Tables 4 and 5, the bold number denotes the best scores among the final products.

Time
step

Satellite
product POD POFA BID HSS r E

ME
(mm day21) PB (%)

MAE
(mm day21)

RMSE
(mm day21)

Daily IMERG-F_0.18 0.88 0.40 1.47 0.47 0.41 20.04 21.6 216 7.6 12.4
IMERG-F_0.258 0.93 0.44 1.65 0.43 0.43 0.06 21.7 218 7.3 11.8
IMERG-E 0.94 0.45 1.72 0.40 0.41 20.05 20.1 21 8.0 12.5
TMPA 0.76 0.36 1.19 0.47 0.35 20.13 22.3 224 8.1 12.9
TMPA-RT 0.75 0.39 1.19 0.47 0.35 20.07 23.3 235 7.8 12.6
CHIRPS 0.77 0.41 1.33 0.41 0.22 20.14 23.1 233 8.2 13.0
MSWEPv2.2 0.88 0.40 1.47 0.47 0.43 0.02 22.6 227 7.0 12.0
MSWEPv2.8 0.97 0.50 1.97 0.29 0.37 0.07 23.3 235 7.0 11.8

Pentadal IMERG-F_0.18 0.58 0.25 0.6 1 14.1 20.6
IMERG-F_0.258 0.60 0.31 0.1 1 13.6 19.7
IMERG-E 0.56 0.04 5.2 23 16.2 23.3
TMPA 0.53 0.16 22.0 28 14.9 21.8
TMPA-RT 0.52 0.15 25.0 222 14.6 21.9
CHIRPS 0.50 0.19 21.4 26 14.8 21.3
MSWEPv2.2 0.60 0.29 22.4 211 12.8 20.0
MSWEPv2.8 0.58 0.31 22.8 212 13.3 19.3

Dekadal IMERG-F_0.18 0.68 0.42 1.2 3 19.6 27.8
IMERG-F_0.258 0.69 0.46 1.2 3 19.0 26.9
IMERG-E 0.64 0.13 10.4 26 24.0 34.0
TMPA 0.63 0.34 22.5 26 20.7 29.6
TMPA-RT 0.61 0.30 27.9 220 21.0 30.7
CHIRPS 0.63 0.38 21.1 23 20.4 28.9
MSWEPv2.2 0.69 0.45 23.6 29 17.8 27.0
MSWEPv2.8 0.67 0.45 23.5 29 18.8 27.1
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the performance of the SREs at the pixels closest to the GTS
stations is better than that at the pixels closest to the non-
GTS stations for all the metrics (Fig. 7). The standard devia-
tion (light red shading in Fig. 7), calculated from an ensemble
of 7-station combinations out of the 12 non-GTS stations,
demonstrates that for most combinations of non-GTS sta-
tions, the performance of the GTS stations is superior. It is
further argued here that the overall highest station-to-station

variability observed in most of the nondichotomous (i.e., r, E,
ME, MAE, and RMSE) metrics for MSWEPv2.2 is most
likely related to the strong weights of gauge observations in
this product at grid points close to the GTS stations.
MSWEPv2.2 showed the highest spatial variability for r, E,
MAE, and RMSE while IMERG-E showed the highest vari-
ability for ME (Figs. 6e–l). The disparities in performance at
the GTS stations and non-GTS stations were also largest in

FIG. 6. Boxplots showing the performance of the satellite products on a daily time scale across all the stations. Each circle represents a
station. The box is equivalent to the interquartile range (IQR) while orange horizontal line is the median (50th percentile). The lower and
upper whiskers are equal to Q1 2 1.5 3 IQR and Q3 1 1.5 3 IQR (0.35th and 99.65th percentiles), respectively. Circles beyond the
whiskers are outliers and constitute 0.7% of the data.
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MSWEPv2.2. For example, based on Fig. 7, there was a differ-
ence of 0.35, 0.5, and 0.21 for the r, E, and HSS, respectively,
in MSWEPv2.2 compared to, for example, 0.11, 0.15, and 0.08
in IMERG-F for the same metrics. MSWEPv2.8 is also sub-
stantially different from its predecessor, with smaller differ-
ences of 0.12, 0.17, and 0.06, respectively. The difference
between the two versions of MSWEP may partly be explained
by the reduction in gauges used in the newer version due to
stricter gauge inclusion criteria (Beck et al. 2021b).

The performance of the SREs in the different cluster varies
(Fig. 8). The POD is highest in MWSEPv2.8 (Fig. 8a), but the
skill is degraded by the high rate of false alarms (Fig. 8b). The
correlation coefficient (Fig. 8d) is best in IMERG products,
followed by the MSWEP products. However, as seen previ-
ously, the variability in performance is very large in
MSWEPv2.2. The C- and SW-clusters exhibit correlation val-
ues of about 0.32 while that of the LVB-cluster is substantially
higher at 0.65 (Fig. 8d). This superiority in skill at the LVB-

cluster is partly due to the fact that majority of stations in this
cluster are GTS stations. Products perform worst in SW-clus-
ter with the highest rate of false alarms and hence, lowest
HSS for all the products (Figs. 8b,c).

As expected, aggregating daily rainfall totals to longer time
scales improves the skill in all the SREs (Table 6 and Fig. 9),
since any errors due to time mismatches are reduced. The r
and E values of all the products improve considerably. For
example, the correlation value in CHIRPS increases from
0.22 to 0.50 moving from daily to pentadal accumulations
(Table 6). This is likely because CHIRPS is initially created
at pentadal time scale and then disaggregated into daily
data (Funk et al. 2015). Generally, the performance of the
satellite products converges with longer time scale. The
“Taylor score” (Taylor 2001), which combines the perfor-
mance with respect to correlation and standard deviation,
increases (i.e., improves) with increasing time scale (Fig. 9).
IMERG products overestimate both pentadal and dekadal

FIG. 7. Metrics showing the performance of seven stations with the highest percentage of data reported to the GTS vs performance of
station which never report their data to the GTS (non-GTS). The red curve is the ensemble mean of all the possible 7-station combinations
out of the 12 non-GTS stations and the light red shading is the standard deviation of the ensemble. The black line shows the performance
of all the stations. Note that the normalized version of ME, MAE, and RMSE are preferred here because the subsets of the stations being
compared exhibit different rainfall climatologies.
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rainfall while the other SREs underestimate rainfall at
these time scales. All the products underestimate the vari-
ability and amount of rainfall at a daily time scale (all
points below the RG standard deviation and the arrows
point toward the center, Fig. 9). IMERG-F performs best at
pentadal and dekadal time steps for most of the metrics,
followed by MSWEPv2.2 and MSWEPv2.8, CHIRPS, and
then TMPA.

d. Extremes and return periods

Due to variations in the rainfall climatology as seen in
sections 4a and 4b, extreme events are independently deter-
mined for individual stations. First, we considered the daily
rainfall totals above the 95th percentile of all rainy days at a
given station as “extreme.” The distribution of extreme events
differs significantly between the RGs and SREs for all the
SREs (Fig. 10). All the points are below the diagonal meaning
the SREs fail to capture extreme rain rates in all the clusters.
The deviation is largest in MSWEPv2.8 and CHIRPS while
IMERG-F and TMPA are the closest to the 1:1 line. IMERG-
E exhibits a better distribution than IMERG-F while TMPA-
RT is worse than TMPA. IMERG-F_0.18 performs better
than the IMERG-F_0.258 as expected since coarse graining
averages extremes out. Next, we checked the distribution of
extreme events in the SREs (the 95th percentile of the indi-
vidual SREs is taken as the thresholds) and the corresponding
values in the RGs (Fig. S5 in the supplemental material). In
this case, the points are above the diagonal for the weaker
extremes suggesting that the SREs overestimate these
extremes. However, at the stronger extremes, the plot moves
below the diagonal pointing toward a tendency of the SREs
to underestimate the stronger extremes. Similar results were
shown by Monsieurs et al. (2018).

The performance of the SREs declines for extreme events
for all the satellite products at all stations in comparison to

when the full dataset is used (cf. Fig. 6). The ability of the sat-
ellites to detect extreme events decreases to a POD, 0.21 for
all final products (Table 7). The skill of the satellites is also
reduced (lower HSS values compared to Fig. 6 and Table 6)
due to the increased POFA in all the products. This is most
pronounced in CHIRPS (Figs. 11b,d and Table 7). The satel-
lites also underestimate the frequency of extreme rainfall
events (BID , 1). All the products greatly underestimate the
extreme rain rates (Fig. 11g) on the order of 26 mm day21

(53%) or more (Table 7). The skill is worse than climatology
for all the products (Fig. 11f and Table 7). The satellite esti-
mates are weakly (0.06–0.26) correlated with the RGs (Fig. 11e
and Table 7). Overall, for the final version of the products,
MSWEPv2.2 marginally emerges as the best product for
extreme events, followed by IMERG, TMPA, MSWEPv2.8,
and then CHIRPS. However, as seen previously, the perfor-
mance of MSWEPv2.2 is highly variable suggesting the influ-
ence of the applied gauge weighting. Comparing the final
products of IMERG and TMPA with their respective early
versions, IMERG-E is better than IMERG while TMPA-RT is
worse than TMPA for extreme events detection and accuracy.
Indeed, considering all the SREs, IMERG-E emerges best
overall for extreme events, having the best scores in all but
one metric evaluating rain rates, the best extreme-events
detection percentage (21%), and the lowest BID (Table 7).
This suggests that that IMERG-E is best suited for extreme
events analysis.

With regard to rare events, modeled with the POT
method, the performance of SREs is spatially variable and
the products generally underestimate the return values
(Fig. 12 and Fig. S6 in the supplemental material). Note that
the return values are dependent on length and quality of
available data (results not shown). Therefore, we con-
strained the analysis to the period covered by all products
(2001–18), except for MSWEPv2.2 (2001–16). Figure 12

FIG. 8. Statistics for the four clusters calculated by concatenating daily rainfall totals for all the stations in a cluster
for the period 2001–18 (IMERG-F_0.18, IMERG-F_0.258, IMERG-E, TMPA, TMPA-RT, CHIRPS, andMSWEPv2.8)
and 2001–16 (MSWEPv2.2). All the correlations are statistically significant at the 99% significance level.
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illustrates that SREs perform satisfactorily at some stations,
e.g., in Kitale (Fig. 12a) for MSWEPv2.2 and poorly in
other stations. Apart from nine stations in MSWEPv2.2, all
SREs underestimate the return values at all other stations
(see Fig. S6 in the supplemental material). The underesti-
mation is most pronounced in CHIRPS, MSWEPv2.8, and
TMPA-RT.

Since this study has a strong focus on comparison between
SREs, we converted the absolute return values at each station
to relative return value deviations in order to make the return
values comparable across the stations in different climates
and datasets. Considering the mean values, all the products
always underestimate the return values of extreme events
except MSWEPv2.2 which overestimates after about 40 years

FIG. 9. Taylor diagrams showing the correlation coefficient, standard deviation, centered RMSE (CRMSE), and the
Taylor score between gauge data and the satellite estimates on (a) daily, (b) pentadal, (c) dekadal, and (d) monthly
time scales. The red square marker on the horizontal axis is the reference (gauge) dataset, and therefore, the closer a
satellite product to the reference, the better it is. The length of arrows represents the bias magnitude while the direc-
tion the sign of the bias with arrows pointing toward (away from) the reference means underestimation (overestima-
tion). The bias shares the same coordinate system and scale as the CRMSE. The shading and blue contour indicate
the Taylor score [combines correlation coefficient and standard deviation, and ranges from 0 (worst) to 1 (best)].
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(Fig. 13). The underestimation and overestimation of the
return values at the shorter and longer periods, respectively,
coupled with a large standard deviation especially at long
return periods (Fig. 13h) does not allow for a conclusive state-
ment about the general usefulness of MSWEPv2.2 for the
analysis of extreme rainfall. The performance of IMERG is
greatly affected by the coarse graining, since the native resolu-
tion performs best among all products, but the coarse-grained
version is only better than TMPA-RT, MSWEPv2.8, and

CHIRPS. The Early product of IMERG also outperforms the
Final product.

5. Discussion and conclusions

We analyzed the performance of four satellite products
against daily RG data over the complex topography of
EEA at multiple spatiotemporal aggregations for the period

FIG. 10. QQ plots showing the distribution of extreme rainfall as recorded by the RGs and the corresponding values in the SREs.

TABLE 7. As in the section for daily accumulations in Table 5, but for daily extremes events (rainfall amount . 95th percentile in
rainy days subset of RGs). Note that the POD, POFA, BID, and HSS are computed based on the extreme threshold for the
individual stations (see Table S1 in the supplemental material), and this threshold is applied to the whole rainy-day (.0.2 mm)
subset. The rest of the metrics consider the extremes in the RGs and the corresponding SREs values. The numbers in bold and italics
font denote the best scores among the final versions and scores when an early product outperforms all products, respectively.

Satellite
product POD POFA BID HSS r E

ME
(mm day21) PB (%)

MAE
(mm day21)

RMSE
(mm day21)

IMERG-F_0.18 0.18 0.70 0.59 0.19 0.18 24.28 228.9 258 30.8 35.6
IMERG-F_0.258 0.15 0.68 0.43 0.18 0.19 24.28 229.8 261 30.9 35.5
IMERG-E 0.21 0.72 0.76 0.21 0.16 23.78 226.5 253 29.1 34.1
TMPA 0.14 0.75 0.56 0.15 0.14 25.07 232.4 262 34.0 38.6
TMPA-RT 0.10 0.72 0.37 0.13 0.14 25.50 235.3 268 36.0 40.4
CHIRPS 0.02 0.81 0.12 0.03 0.06 26.30 238.7 277 38.8 42.5
MSWEPv2.2 0.19 0.56 0.42 0.24 0.26 24.32 229.5 259 30.5 35.7
MSWEPv2.8 0.03 0.55 0.07 0.05 0.15 25.61 236.2 274 36.3 39.8
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2001–18 (except MSWEPv2.2, 2001–16). Additionally, we
compared the early versions of IMERG and TMPA, both
against each other and with their respective final versions.
The native resolution of IMERG was also validated to evalu-
ate how resolution affects the performance of satellite prod-
ucts. We included the two versions of MSWEP in order to
compare the change in performance of the latest version com-
pared to its predecessor. Since RG data were missing for
some periods, we used satellite data only at corresponding
time steps with available RG data. Two sets of metrics that

assess rainfall occurrence and accuracy of the rainfall totals
were used. The suitability of the products around extreme
events was also tested using the same metrics. Additionally,
using the POT method, we assessed if the SREs can be used
to simulate return values of rare events for specified return
periods. The main conclusions of this validation study are as
follows:

1) Generally, all the products reproduce the annual and sea-
sonal rainfall pattern, but the amounts are overestimated

FIG. 11. As in Fig. 7, but for extreme events. A hit occurs when both the RG and SRE record rainfall exceeding the 95th percentile of rain-
days subset of the RG data.
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in IMERG by about 5% and underestimated by TMPA,
CHIRPS, and MSWEP by 5%–8% (annually) and
1%–9% (monthly).

2) IMERG outperforms the other products on daily, penta-
dal, and dekadal time scales followed by MSWEPv2.2,
TMPA, and then CHIRPS. On monthly and annual time
scales, MSWEPv2.2 and CHIRPS, respectively, perform
best. MSWEPv2.8 performs worse than its predecessor,
MSWEPv2.2 for almost all the spatiotemporal aggrega-
tions and for extremes.

3) The performance of the satellites is greatly reduced for
southwestern part of Uganda, mainly due to the high false
alarm rate, which degrades the skill.

4) The performance of the all the SREs is spatially variable for
reasons mostly elusive to the user. However, MSWEPv2.2 is
a salient example where a high gauge weight is capable of
drastically improving the performance at grid points close to
the station, but the skill drops considerably in places away
from the RGs used in the calibration. Unless documented
thoroughly, this can lead to serious nontransparency of an
SRE’s skill for the end-user.

5) Except for IMERG-E, all the products miss more than
80% of the daily extreme events reported by the RGs and
severely underestimate extreme daily rainfall totals. The
fact that IMERG-E outperforms all the other products

demonstrates the potential of NRT products for opera-
tional applications such as floods assessment, which need
short latency products.

6) IMERG, IMERG-E, TMPA, and MSWEPv2.2 show clos-
est agreement with the RGs for return values analysis while
MSWEPv2.8, CHIRPS, and TMPA-RT should be avoided
for this purpose. This is not surprising given that the SREs
that are the least suitable for modeling extreme events
underestimate extreme rainfall events most severely.

Good agreement of the products with RGs on a seasonal
scale supports the findings in Camberlin et al. (2019), Diem
et al. (2014), and Asadullah et al. (2008) with similar perfor-
mance statistics and seasonal cycles which are largely con-
trolled by the periodic migration of the tropical rain belt
(Nicholson 2017; Seregina et al. 2019). Therefore, SREs cap-
ture the drivers of synoptic seasonal rainfall over the study
area well. The fact that all the products used in the present
study are gauge calibrated may have contributed to the good
performance (Awange et al. 2016; Dinku et al. 2018). Addi-
tionally, at longer temporal accumulations, any errors due to
time mismatches between the RG and SREs data are
reduced, which, in turn, improve the scores.

The superior skill of IMERG compared to the other SREs,
especially at lower temporal aggregations has been seen in

FIG. 12. Return values based on the POT method using RG and the SREs for four randomly select stations in the
study area. The gray shading is the confidence bounds (95% significance level) of the return values modeled using
RG data.
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other studies. For instance, Dezfuli et al. (2017a) showed that
IMERG was better than TMPA in West and East Africa. In
general, the good performance of IMERG can be explained
by better performance of PMW sensors (Kidd and Huffman
2011; Bitew and Gebremichael 2011) and improved spatio-
temporal resolution (Dezfuli et al. 2017b). However, IMERG
overestimates rainfall occurrence and intensity compared to
both the RGs and other SREs, especially over Lake Victoria.
This is attributed to the tendency of PMW sensor to overesti-
mate rainfall in convectively active regions (Sungmin and
Kirstetter 2018; Nicholson et al. 2021). The generally good
performance of MSWEPv2.2 agrees with those of Lakew et al.
(2020). However, MSWEPv2.8 has a weaker performance
compared to MSWEPv2.2. This may stem from 1) the assign-
ment of large weights to ERA5, which has a tendency to rain
too often at low rain rates, and 2) the reduction in the number
of RG data used in gauge calibration due to a more stringent
selection criterion (Beck et al. 2021b). The superior perfor-
mance of CHIRPS compared to the other SREs at larger tem-
poral accumulations corroborates the findings of Dinku et al.

(2018), Diem et al. (2019), and Camberlin et al. (2019) and
may be due to 1) use of the gauge–satellite climatology,
CHPclim which reduces mean biases, and 2) the fact that
gauge calibration is done at longer temporal resolutions (i.e.,
pentadal and monthly).

SREs are known to show variable performances depending
on different factors. Although other factors like the gauge cal-
ibration and topography (e.g., Diem et al. 2014; Monsieurs
et al. 2018) play a significant role in the variability of the per-
formance of SREs in the study area, we specifically found for
MSWEPv2.2 that the weight assigned to RGs relative to the
other data inputs during gauge calibration process had a sig-
nificant influence on how the product performed at a given
grid point. This result corroborates several studies (e.g.,
Awange et al. 2016; Camberlin et al. 2019) that also showed
that gauge calibration impacts the performance of SREs.

Major difficulties in capturing rainfall by SREs in the
domain of the SW-cluster have already been highlighted in
Diem et al. (2014) and Monsieurs et al. (2018). The complex
topography partly accounts for the performance. Many parts

FIG. 13. (a) Modeled relative return values of extreme events for all the satellite estimates and (b)–(h) individual satellite product rela-
tive return value plus the standard deviation across stations (shaded). For each dataset, the values are obtained by taking the mean across
all stations and time.
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of the region lie in a rain shadow which causes false alarms.
Additionally, compared to the other three clusters, the SW-
cluster is drier, hence, subcloud evaporation could be more
frequent in this region. Subcloud evaporation increases false
alarms, and this has been previously shown by Dinku et al.
(2010a) over the desert locust regions and Thiemig et al.
(2012) over the semiarid Juba–Shabelle region.

Similar to studies by Monsieurs et al. (2018) over western
Uganda and Thiemig et al. (2012) over African river basins,
the performance for all the SREs declines for extreme events
compared to the whole dataset. This may be partly due to the
fact that PMW sensors may miss the short-lived intense rain-
fall events given their infrequent overpasses. Additionally,
being gridded products, SREs contain spatial averages and
hence, extremes may be smoothed out, which is not the case
for the point measurements at RGs. The better detection rate
and reduced error in IMERG-E around extreme events com-
pared to the other SREs points to the fact that gauge calibra-
tion introduces some uncertainties in the final version of the
SREs (Bitew and Gebremichael 2011). For most SREs, the
calibration is initially done at a low temporal resolution, e.g.,
monthly for IMERG, before daily rainfall is rescaled accord-
ingly. This in itself may be problematic for daily extremes.
However, for the NRT product of TMPA, results showed
overall poorer scores compared to the final version. The
stronger underestimation of TMPA-RT was also found by
Monsieurs et al. (2018) and this was attributed to the lack of
monthly gauge calibration. Unsurprisingly, the SREs with
highest errors at the extreme events (CHIRPS, TMPA-RT,
and MSWEPv2.8) had the highest error compared to the RGs
when applied for modeling the return period of extreme
events.

Based on this study, care needs to be taken when using
the SREs for a given application as performances varied
substantially. This variation stems from various sources,
e.g., gauge calibration, algorithms, data inputs and region
considered. We are also aware that the performances could
also have been influenced by the availability and quality of
RG dataset. Also, given that the SREs ranking was different
for individual metrics, it is difficult to categorically say
which product is the best. The SREs showed great promise
at the longer temporal aggregations given the high scores in
most metrics. Challenges remain for shorter time scales,
especially over heterogeneous topography, and extreme
rainfall events. Despite these challenges, IMERG, TMPA,
and MSWEPv2.2 are the most suitable products among the
tested SREs for hydrometeorological disaster applications
as they provide the crucial information for a data-sparse
region like EEA. Validating the SREs with a denser gauge
network may highlight the apparent regional difference in
performance even further and also enable the quantification
of the influence of the RGs on the results, if any.
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