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Melanocortins are implicated in the control of energy intake/
expenditure. Centrally administered melanotan II (MTII), a
synthetic melanocortin 3/4-receptor agonist, decreases adi-
posity beyond that accountable by food intake decreases.
Melanocortin-4 receptor (MC4-R) mRNA is expressed on sym-
pathetic nervous system (SNS) outflow neurons to white ad-
ipose tissue (WAT) in Siberian hamsters, suggesting a role in
lipid mobilization. Therefore, we tested whether third ven-
tricular injections of MTII increased sympathetic drive to
WAT and interscapular brown adipose tissue (IBAT) using
norepinephrine turnover (NETO) as a measure of sympathetic
drive. We also tested for MTII-induced changes in lipolysis-
related WAT gene expression (!3-adrenoceptors, hormone
sensitive lipase) and IBAT thermogenesis (!3-adrenoceptor,
uncoupling protein-1). Finally, we tested whether third ven-
tricularly injected MTII, a highly selective MC4-R agonist (cy-
clo[!-Ala-His-D-Phe-Arg-Trp-Glu]NH2) increased or agouti-

related protein decreased IBAT temperature in hamsters
implanted with sc IBAT temperature transponders. Centrally
administered MTII provoked differential sympathetic drives
to WAT and IBAT (increased inguinal WAT, dorsosubcutane-
ous WAT and IBAT NETO, but not epididymal WAT and ret-
roperitoneal WAT NETO). MTII also increased circulating
concentrations of the lipolytic products free fatty acids and
glycerol but not plasma catecholamines, suggesting lipid mo-
bilization via WAT SNS innervation and not via adrenal med-
ullary catecholamines. WAT or IBAT gene expression was
largely unaffected by acute MTII treatment, but IBAT tem-
perature was increased by MTII and the MC4-R agonist and
decreased by agouti-related protein. Collectively, this is the
first demonstration of central melanocortin agonist stimula-
tion of WAT lipolysis through the SNS and confirms melano-
cortin-induced changes in BAT thermogenesis. (Endocrinol-
ogy 148: 5339–5347, 2007)

OBESITY IS LITERALLY and figuratively a growing
problem internationally, reaching even nonheavily

industrialized nations (1, 2). Obesity is associated with sev-
eral secondary health risks including increased incidence of
type 2 diabetes, some cancers, and stroke (for review see Refs.
3–5). The severity of these secondary health consequences of
obesity are substantially reduced through decreases in lipid
stores, especially viscerally located white adipose tissue
(WAT) (e.g. Refs. 6, 7). In rodents and humans, the mobili-
zation of lipid from the major WAT depots is not uniform in
response to energetically demanding conditions (for review
see Refs. 8–11). The exact mechanism underlying differential
lipolysis across WAT depots is not precisely known but likely
involves divergent sympathetic nervous system (SNS) out-
flow circuits from brain to fat (12, 13).

It is clear that the sympathetic nervous system is the pri-
mary initiator of lipolysis in rodents (for review see Refs. 9,

10) as well as humans (for review see Ref. 14). The evidence
for the involvement of the SNS in WAT lipid mobilization
through its principal postganglionic neurotransmitter, nor-
epinephrine (NE) includes neuroanatomical tract tracing of
the postganglionic sympathetic innervation of WAT (12) as
well as the central origins of the SNS outflow to WAT, as
identified using a viral transneuronal retrograde tract tracer,
the pseudorabies virus (PRV) (13, 15–18). Neurochemically,
conditions promoting lipid mobilization such as short pho-
toperiod exposure in Siberian hamsters (19, 20) or fasting or
cold exposure in laboratory rats (21–24) all increase WAT NE
turnover (NETO) (12, 25, 26), a measure of sympathetic drive
(27). Finally, surgical or selective chemical destruction of the
SNS innervation of WAT at the level of the fat pad blocks
lipid mobilization under a variety of lipid-promoting stimuli
[e.g. fasting (12, 28, 29), estradiol treatment of ovariectomized
animals (30), short-day exposure of Siberian hamsters
(31, 32)].

NETO measures in WAT are not uniform across the fat
pads and typically correspond to proportional decreases in
WAT mass, an integrative measure of lipid mobilization
[(12); cf., Ref. 33]. Thus, the notion of Cannon (34) that at times
of emergency, a general SNS discharge is triggered preparing
animals for fight or flight and provoking an all-or-nothing
sympathetic response is not true for WAT nor does it hold
across other tissues (for review see Ref. 35). Therefore, the
trafficking of sympathetic outflow between tissues or among
the same tissue type in different locations, such as with WAT,
is one of the great mysteries of regulatory biology. A number
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of possible neuroanatomical answers to this mystery exists,
however. We previously have shown that the postganglionic
sympathetic innervation of different WAT pads is relatively
separate (12) and could easily account for fat pad-specific
differences in NETO and thereby differential rates of lipid
mobilization. Alternatively, or in addition to this peripheral
viscerotopic separation of sympathetic nerves, viscerotopy
could occur centrally at rostral aspects of the neuroaxis as
suggested recently using two viral tract tracers (13). Finally,
the balance between the number and/or affinity of "- and
!2-adrenoceptors possessed by white adipocytes that, when
activated, trigger lipolysis and antilipolysis, respectively (for
review see Refs. 36, 37), could also be an important factor in
the differential mobilization of lipid from WAT. Regardless,
these neuroanatomical scenarios are complicated by the fact
that the neurochemical phenotypes of the neurons compris-
ing the sympathetic circuits to WAT are largely unknown.
We have, however, previously shown the involvement of
several neuropeptides, neurotransmitters, or their synthetic
enzymes as part of the SNS outflow to WAT (38). In addition,
and perhaps more importantly, we recently identified high
colocalizations of melanocortin-4 receptor (MC4-R) mRNA
on SNS outflow neurons to WAT, the latter labeled via the
PRV (18).

The melanocortin system has been implicated in the con-
trol of lipid mobilization. Specifically, intraventricular (icv)
administration of melanotan II (MTII) a synthetic version of
the natural agonist of the MC3/4-Rs, !MSH, triggers de-
creases in body fat of laboratory rats (39) that cannot be
accounted for by the well-established MTII-induced inhibi-
tion of food intake (e.g. Refs. 40, 41). That is, rats receiving
MTII that are pair fed to MTII-treated ad libitum-fed control
rats have an exaggerated body fat loss, implicating both lipid
mobilization and increases in thermogenesis that could be
stimulated by the melanocortins (39). Although there is ev-
idence for the involvement of both MC4-R and MC3-R in the
effects of melanocortins on energy balance (42, 43), the vast
preponderance of the data suggest MC4-R is considered to be
the primary receptor involved in these responses. The study
by Raposinho et al. (39), demonstrating the food intake-in-
dependent decreases in body fat by MTII, did not address the
underlying mechanism responsible for these decreases; how-
ever, it seems likely that, given our finding of MC4-Rs on
sympathetic outflow neurons to WAT (18) and brown adi-
pose tissue (BAT) (Song, C. K., C. H. Vaughan, E. Keen-
Rhinehart, D. Richard, R. B. Harris, and T. J. Bartness, manu-
script in preparation, and Refs. 44, 45), it might be via the SNS
innervation of these tissues. Thus, MC4-R activation may
increase the sympathetic drive to WAT to trigger lipolysis via
NE stimulation of "3-adrenoceptors thought to be involved
principally in lipolysis in rodents (37, 46). In addition, MC4-R
activation may increase the sympathetic drive to BAT to
trigger thermogenesis via NE stimulation of "3-adrenocep-
tors thought to be principally involved in this response (for
review see Ref. 46). This, in turn, may result in increases in
the activity of uncoupling protein (UCP)-1 (47–49), the mi-
tochondrial membrane protein responsible for heat produc-
tion in this tissue (for review see Ref. 50).

Therefore, the purpose of the present study was to test
whether third ventricular injections of MTII increased sym-

pathetic drive to the major WAT pads and interscapular BAT
(IBAT), the predominant BAT pad (for review see Ref. 51),
using NETO as a neurochemical measure of sympathetic
drive. In addition, we measured quantitative changes in gene
expression for several factors involved in lipolysis ["3-adre-
noceptor ("3-ARs), hormone-sensitive lipase (HSL)] and
BAT thermogenesis ("3-AR, UCP-1). Finally, we tested
whether melanocortin receptor agonism via third ventricu-
larly injected MTII, a MC3/4-R agonist, or a cyclic analog of
!-MSH, cyclo("-Ala-His-d-Phe-Arg-Trp-Glu)-NH2, which is
a highly selective agonist for the MC4-R (52), would increase
IBAT temperature in vivo in awake hamsters with temper-
ature transponders implanted under the IBAT pad as well as
whether agouti-related protein (AgRP), a MC3/4-R inverse
agonist, would conversely decrease IBAT temperature.

Materials and Methods
Animals

One hundred thirty-six male Siberian hamsters (Phodopus sungorus),
3–4 mo old, were obtained from our breeding colony. The hamsters were
single housed in plastic cages (23 ! 26 ! 30 cm) and maintained under
a long-day photoperiod (16-h light, 8-h dark, lights on at 0300 h) at 22 "
1 C. Food (Purina Rodent Chow no. 5001, St. Louis, MO) and tap water
were available ad libitum throughout the experiment. Body mass was
monitored for 2 wk, at which time the hamsters were submitted to icv
cannula implantation. Body mass was monitored for 2 wk after cannula
implantation and at which time they were divided into three groups
matched for body mass and percent body mass change. Housing and all
procedures were approved by the Georgia State University Institutional
Animals Care and Use Committee and were in accordance with the
Public Health Service and U.S. Department of Agriculture guidelines.

Intraventricular cannula implantation

Cannulae were stereotaxically implanted into the third ventricle as
described previously (53). Briefly, the animals were anesthetized with
isoflurane, and the fur at the top of the head was removed to exposure
the area to be incised. After exposure of the skull, a hole was trephined
at the intersection of bregma and the midsaggital sinus and the guide
cannula (26-gauge stainless steel; Plastics One, Roanoke, VA) was po-
sitioned using the following stereotaxic coordinates: level skull, anterior-
lateral from bregma, 0 mm; medial-lateral from midsaggital sinus, 0 mm;
and dorsal-ventral, #5.5 mm from the top of the skull, which targeted
placement just above the third ventricle. The guide cannula was secured
to the skull with 3/16-mm jeweler’s screws, cyanoacrylate glue, and
dental acrylic. A removable obturator (Plastics One) sealed the opening
in the guide cannula throughout the experiment, except when it was
removed for the injections and adaptation to simulate the experimental
injection procedures.

Intraventricular injection protocol

All hamsters were adapted to the microinjection procedure for 3 d
before the actual experimental procedure. Each animal was lightly re-
strained by hand, and the cannula obturator was removed and put back,
simulating the handling associated with the injection procedure.

On the day of the experiments, the hamsters were transferred from
the vivarium to a testing room at 0600 h, and food was removed from
the hamster’s pouches and their cages. After removing the obturator, an
inner cannula (33-gauge stainless steel; Plastics One) that was custom fit
to extend 6.0 mm below the top of the skull (0.5 mm beyond the tip of
the guide cannula) was inserted and connected at the other end to a 1-#l
microsyringe via polyethylene tubing. All injections were equivolemic
(0.4 #l) and given between 0800 and 1000 h. Sterile saline (vehicle) or 0.5
or 5 nmol MTII [doses determined from its inhibitory effect on food
intake in this species when given icv (54, 55)] was injected while the
animals were lightly restrained by hand during the 30-sec injection
period. The injection needle remained in place approximately 30 sec
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before withdrawal to minimize efflux up the cannula tract. Hamsters
were then placed back into their respective cages.

Cannula verification

At the end of the experiment, 0.4 #l of India ink was injected to
confirm placement of the cannula in the third ventricle. The brains were
removed and postfixed in 10% paraformaldehyde for a minimum of 1
wk. Each brain was sliced at 20 #m on a freezing stage sliding microtome
for cannula site verification. Cannulae were considered to be located in
the third ventricle if the dye was visible in any part of this ventricle. Only
the data from animals with confirmed third ventricle cannula place-
ments were included in the analysis.

NETO and tissue preparation

NETO was measured using the !-methyl-p-tyrosine (AMPT) method
(56). AMPT is a competitive inhibitor of tyrosine hydroxylase, the rate-
limiting enzyme in catecholamines biosynthesis. After AMPT adminis-
tration, the endogenous tissue levels of NE decline at a rate proportional
to the initial NE concentrations (56). AMPT methyl ester hydrochloride
(Sigma Aldrich, St. Louis, MO) was prepared by first adding an aliquot
of glacial acetic acid (1 #l/mg AMPT) and then diluting to the final
concentration with 0.15 m NaCl. At the beginning of the experiment, half
of these animals were untreated and killed at 0 h to obtain baseline tissue
NE content, whereas the other half was injected ip with AMPT (250 mg
AMPT per kilogram; 25 mg/ml) between 0800 and 1000 h. A supple-
mental dose of AMPT (125 mg/kg body mass, at a concentration of 12.5
mg/ml) was administered to these animals 2 h after the initial injection
to assure the maintenance of tyrosine hydroxylase inhibition. Thirty
minutes after the first injection of AMPT, each animal received an icv
injection of saline or MTII (0.5 or 5 nmol). The doses of MTII was chosen
based on third ventricular injections of this melanocortin receptor ag-
onist that inhibit food intake in this species (54, 55) and are higher than
the usual doses of MTII used in laboratory rats and mice with some
exception (e.g. Ref. 57). The animals were then killed 4 h after the initial
AMPT injection by decapitation (i.e. 3.5 h after icv MTII or saline).
Inguinal WAT (IWAT), retroperitoneal WAT (RWAT), epididymal WAT
(EWAT), dorsosubcutaneous WAT (DWAT), and IBAT were rapidly
removed, weighed, frozen in liquid nitrogen, and stored at #80 C until
assayed for catecholamine content to determine NETO.

The NE tissue content was measured using reverse-phase HPLC with
electrochemical detection, following our modification (12) of the method
of Mefford (58). Briefly, tissue was thawed and homogenized in a so-
lution containing dihydroxybenzylamine (DHBA; internal standard) in
0.2 m perchloric acid with 1 mg/ml ascorbic acid. The amount of tissue
processed and DHBA added were varied to obtain NE values within the
range of the standards ($250 mg of WAT was used with 50 ng of DHBA
added; $50 mg of IBAT was used with 100 ng of DHBA added). After
centrifugation for 15 min (7500 ! g at 5 C), catecholamines were ex-
tracted from the homogenate with alumina and were eluted into the
perchloric acid/ascorbic acid. The catecholamines were assayed using
an ESA Biosciences (Chelmsford, MA) HPLC system with electrochem-
ical detection (Coulochem II). The mobile phase was Cat-A-Phase II, and
the column was a HR-80 reverse phase column. NETO was calculated
in IWAT, EWAT, RWAT, DWAT and IBAT by subtracting the NE
content (ng NE per tissue) from the 0-h group from the 4-h group
according to the method of Brodie et al. (10). The log of NE content was
plotted vs. time and the least-square straight line provided the fractional
turnover rate, k (Fig. 1). Specifically and briefly, calculations were made
according to the following formula: k % (lg[NE]0 # lg[NE]4/(0.434 ! 4)
and K % k[NE]0, where k is the constant rate of NE efflux (also known
as fractional turnover rate), [NE]0 is the initial NE concentration, [NE]4
is the final NE concentration, and K % NETO. Representative values
from a separate set of animals (n % 6 per time point) killed at 0, 2, and
4 h to demonstrate linearity of NE disappearance and associated turn-
over measures is exemplified for RWAT (Fig. 1). Similar linearity was
found for all WAT pads (data not shown), except EWAT, which was
nonlinear, as we have seen previously (12, 59), likely due to its very low
baseline sympathetic drive.

Plasma hormones and metabolites

Because of the likelihood that AMPT administration would alter
several physiological systems that might impact concentrations of hor-
mones and circulating metabolic fuels, we conducted a parallel exper-
iment to the NETO experiment in which everything was done exactly
the same except there was no AMPT administration. Instead, trunk
blood was collected after decapitation from hamsters injected at time 0
with the saline vehicle or 0.5 or 5 nmol MTII at 1 or 3.5 h after injection.
The blood was centrifuged for 20 min (3000 ! g at 5 C). Plasma was
removed and stored at #80 C until assayed. We measured plasma
glucose (Ascesion Elite blood glucose strips; Bayer Corp., Mishawaka,
IN), free fatty acids (NEFA C kit; Wako Chemicals, Richmond, VA), and
glycerol, the latter based on the Wieland method (48) adapted to flu-
orometric analysis in microplates according to the method of Laurell and
Tibbling (60). Plasma leptin was measured with a commercial kit (mouse
leptin ELISA kit; Linco Research Inc., St. Charles, MO). Plasma epi-
nephrine and NE were measured using a commercial kit (plasma cat-
echolamine analysis kit; ESA Biosciences, Inc., Chelmsford, MA) by
HPLC (see above).

IBAT temperature

Another set of hamsters (n % 27) was used for IBAT temperature tests.
Hamsters were anesthetized with isoflurane, and a temperature tran-
sponder [Implantable Programable Temperature Transponder 300
(IPTT-300); BioMedic Data Systems, Seaford, DE] was implanted under
the IBAT pads such that temperature from both pads could be measured.
The transponder was secured to the surrounding muscle. Hamsters also
received a third ventricular cannula as above. After a 2-wk postsurgical
recovery period, the animals were adapted to the handling procedure for
the icv injections once each day for 3 d as above. In addition, the
temperature sensing wand also was used (see below) to adapt the an-
imals to several low beeping sounds produced by the recording appa-
ratus (DAS 5002 Notebook System; BioMedic Data Systems) when ac-
quiring the temperature.

On the test day, food was removed from the pouches of the hamsters
and from their cages at 0600 h, but water was present. Two hours later,
the temperature of IBAT was measured to determine the beginning
baseline. The hamsters were then immediately injected with the saline
vehicle or 0.5 or 5.0 nmol MTII (0.4 #l) into the third ventricle as above.
Injections were made using a counterbalanced schedule to control for
order effects of the injection, such that each animal received all three

RWAT log[NE] Content vs Time

Time (h)
0 hr 2 hr 4 hr

]EN[ gol
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k=0.11 h
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FIG. 1. Log[NE content] (log[NE]) vs. time for the RWAT pad. The
slope (b) was determined by the least squares method and the con-
stant rate of NE efflux, i.e. fractional turnover is k % b/0.434. NETO
rate is estimated by multiplying the constant rate (k) by NE concen-
tration at time 0. NETO time is the reciprocal of k, and half-life is
NETO time multiplied by 0.693 (91).
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injections; 10 d occurred between tests to minimize carryover effects.
IBAT temperature was assessed at 30, 60, 90, 120, and 180 min by passing
the temperature sensing wand 10–20 mm above the back of the animal
in its cage. At the end of that series of injections, an additional 10-d
washout period occurred before injection of saline or the specific MC4-R
agonist cyclo("-Ala-His-d-Phe-Arg-Trp-Glu)-NH2 (Phoenix Pharma-
ceuticals, Burlingame, CA), referred hereafter as the MC4-agonist, at 0.5,
2.5, or 5.0 nmol in a counterbalanced order (doses chosen as mole
equivalents to MTII doses for ease of comparison). IBAT temperature
was measured as above. Finally, after a 10-d washout period, the ham-
sters were injected with saline or AgRP [AgRP (83–132); Phoenix Phar-
maceuticals] at 0.5, 2.5, or 5.0 nmol AgRP and IBAT temperature mea-
sured as above to test for decreases in IBAT temperature, given its
opposing effect on melanocortin receptors (doses chosen on the ability
of AgRP to stimulate food intake and hoarding in Siberian hamsters)
(53). At the conclusion of the experiment, each hamster was injected
peripherally with 0.8 mg/kg of the pan "-adrenoceptor agonist, iso-
proterenol, and IBAT temperature recorded for 60 min as a positive
control to assess transponder function.

Real-time RT-PCR

IWAT, RWAT, EWAT, and IBAT pads (from animals treated with
saline or 0.5 or 5.0 nmol MTII) were dissected, flash frozen in liquid
nitrogen, and stored in #80 C until further processed to measure HSL,
"3-AR and UCP-1 gene expression. Total RNA was extracted using
RNEasy lipid tissue kit (QIAGEN, Valencia, CA) according to the man-
ufacturer’s protocol. The concentration and quality of the total RNA
were determined by UV spectrophotometry and electrophoretically on
a denaturing gel. Five micrograms of the extracted RNA were then used
for first-strand cDNA synthesis using Superscript III reverse transcrip-
tase (Invitrogen, Carlsbad, CA). Real-time PCR was performed on ABI
PRISM 7500 (Applied Biosystems, Foster City, CA) with the following
amplification conditions: 95 C for 10 min; 40 cycles of 95 C for 15 sec,
60 C for 1 min with SYBR green (SYBR Green ER qPCR SuperMix
Universal; Invitrogen) as the detector fluorophore. Immediately after
real-time PCR amplification, a melt curve analysis was performed to
ensure the specificity of the amplification. MTII-induced changes in gene
expression were analyzed by relative quantitation standardized to 18S
rRNA and calibrated against that of saline treated control animals.
Change in &Ct value values [i.e. differences in threshold cycles or for the
mRNA of interest and 18S rRNA] were determined for each sample and
relative mRNA expression compared as 1/difference in threshold cycles.

To obtain hamster specific primer sequences for each of the genes (Table
1), a portion of each hamster gene was cloned using degenerate primers
and hamster cDNA (61). The clones were sequenced and showed be-
tween 70 and 98% amino acid identity with their murine orthologs,
depending on the gene. The hamster sequence was then used to design
primers for real-time PCR.

Statistical analysis

The relative gene expression for "3-AR, UCP-1, and HSL mRNA was
compared between groups using one-way ANOVA. Similarly, NETO
and circulating concentrations of glucose, glycerol, free fatty acids, lep-
tin, epinephrine, and NE were statistically analyzed using a one-way
ANOVA (saline control vs. MTII). IBAT temperature was statistically
analyzed using a two-way repeated-measures ANOVA (drug ! time;
2 ! 6). Duncan’s new multiple-range tests (SigmaStat version 2.0; Systat
Software, San Jose, CA) were used as post hoc tests when appropriate.
Differences between the means for all tests were considered statistically
significant if P ' 0.05. Exact probabilities and test values were omitted
for simplicity and clarity of the presentation of the results.

Results
NETO

NETO is presented on a whole-organ basis to reflect the
overall sympathetic drive and physiological impact for each
tissue. Third ventricular injection of MTII increased NETO
differentially across the adipose tissue depots assayed here.
Specifically, only the highest MTII dose (5 nmol) significantly
increased NETO in the sc IWAT pad (P ' 0.05; Fig. 2),
whereas MTII produced significant dose-dependent in-
creases in NETO in another sc depot, DWAT (P ' 0.05; Fig.
2). NETO in RWAT and EWAT, both internally located WAT
pads (Siberian hamsters have no scrotum, so EWAT is lo-
cated in the peritoneal cavity) were not significantly in-
creased by MTII, although the increase in RWAT NETO
almost reached statistical significance (P ' 0.06; Fig. 2). Both
doses of MTII significantly increased IBAT NETO (P ' 0.05;
Fig. 2), approaching but not reaching a statistically signifi-
cant dose-dependent increase (P ' 0.06).

Circulating factors

Plasma glucose concentration only was significantly in-
creased 1 h after MTII injection at the highest dose (5 nmol;
P ' 0.05; Table 2). Both plasma glycerol and free fatty acid
concentrations were significantly increased at both MTII
doses and at both times (1 and 3.5 h after injection; Tables 2
and 3; P ' 0.05) but not dose dependently. Plasma epineph-
rine and NE concentrations were not significantly affected by
MTII at either dose or either time point (Tables 2 and 3).
Plasma leptin concentrations were not affected by MTII at
either dose or either time point as well (Tables 2 and 3).

IBAT temperature

Third ventricular MTII significantly increased IBAT tem-
perature at 60 min after injection through the end of the

IWAT EWAT RWAT DWAT IBAT

)dap taf( 
OTEN

0

10

20

30

40

Saline
MTII 0.5 nmol
MTII 5 nmol

* *
* #

*

*

FIG. 2. Mean " SEM NETO expressed as NE (nanogram per tissue per
hour) after third icv MTII or saline in IWAT, EWAT, RWAT, DWAT,
and IBAT. *, P ' 0.05 vs. saline; #, P ' 0.05 vs. 0.5 nmol MTII.

TABLE 1. Primers for real-time RT-PCR for UCP-1, HSL, "3-AR, and 18s rRNA

Forward primer (5(-3() Reverse primer (5(-3()

"3-AR GAGCCAGTGGTGGCGTGTAGG ACAGCAGCGATTGGAGT
UCP-1 GATCCAAGGTGAAGGCCAGG GGTGGTGTCTTTCGAACAGTTG
HSL CAACATGGCATCAACCACTG GCCTGGGATCAGAGGTGATG
18S rRNA ACGGAAGGGCACCACCAGGA CACCACCACCCACGGATTCG
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experiment (P ' 0.05; Fig. 3) for both MTII doses. The MTII-
induced peak increase in IBAT temperature ($2 C, compared
with saline control; Fig. 3) occurred at 5 nmol MTII, with a
smaller increase in IBAT temperature ($0.6 C) at the lower
MTII dose (0.5 nmol), and this occurred between 60 and 220
min after injection.

The MC4-R-specific agonist also significantly increased
IBAT temperature at 60, 120, and 220 min after injection for
all doses and all but the 2.5 nmol dose at 180 min (P ' 0.05;
Fig. 3). By contrast, AgRP significantly decreased IBAT
temperature at the two lowest doses (0.5 and 2.5 nmol) 60,
120, and 180 min after icv injection (P ' 0.05; Fig. 3),
whereas the highest dose (5 nmol) did not alter IBAT
temperature (Fig. 3).

Real-time RT-PCR

There were very few changes in gene expression with MTII
treatment, regardless of the dose of this agonist (Table 4). This
is not surprising because the treatment was acute (single icv
injection of MTII) and the animals were killed shortly thereafter
(3.5 h). There were, however, some statistically significant
changes. Specifically, EWAT "3-AR gene expression was sig-
nificantly decreased by both doses of MTII, compared with their
saline controls (P ' 0.05; Table 4). In addition, IBAT "3-AR gene
expression was significantly decreased but only by the high
dose of MTII (5.0 nmol; P ' 0.05; Table 4). There were no
significant changes in HSL gene expression in any WAT pad or
UCP-1 gene expression in IBAT (Table 4).

Discussion

The results of the present study show for the first time that
central melanocortin receptor agonism with MTII provokes
differential sympathetic drive of WAT and BAT, as measured
by NETO as well as confirming previous involvement of the
melanocortins in IBAT temperature. Because plasma free
fatty acids and glycerol concentrations were increased by
third ventricular injection of MTII vs. saline, indicating in-

creased lipolysis, and because circulating catecholamines
were not affected, indicating a lack of adrenal medulla stim-
ulation, these results suggest that central melanocortin re-
ceptor agonism triggers WAT lipolysis, perhaps via the stim-
ulation of MC4-R mRNAs located on sympathetic outflow
neurons ultimately innervating WAT (18), but because we
used MTII, a MC3- and MC4-R agonist, an effect based on
MC3-R agonism cannot be ruled out. In addition, the dose of
MTII, although generally high by laboratory rat and mouse
standards, is not for Siberian hamsters [at least in terms of its
ability to inhibit food intake; e.g. Refs. 54, 55, and 62)]. Be-
cause of the relative size of the MTII dose, there is the pos-
sibility, as there often is for centrally administered sub-
stances, of leakage into the periphery. Such leakage would
not explain the differential increases in WAT NETO across
the fat depots but could be consistent with the ability of
peripherally injected MTII to cause decreases in WAT mass
(63), although no measures or corollaries of lipolysis were
measured in that study. Moreover, peripherally adminis-
tered MTII likely has both peripheral and centrally mediated
effects, the latter possibly having its mechanism of action
through the melanocortin/SNS circuits to WAT (18).

Gene expression for factors involved in lipolysis (HSL, "3-
AR) and BAT thermogenesis (UCP-1, "3-AR) were generally
not changed, except for small but significant decreases in
EWAT "3-AR and IBAT "3-AR gene expression. The lack of
substantial changes in the expression of any of these genes likely
is due to the acute nature (single injection, 3.5 h test) of the MTII
treatment.

We did not find a decrease in WAT mass after MTII treat-
ment, an effect that can indicate lipid mobilization (data not
shown), which is not surprising giving the short duration of
MTII treatment. As noted above, the combination of increased
plasma glycerol and free fatty acid concentrations with no
change in epinephrine or NE plasma concentrations indicates
lipolysis via the SNS innervation of WAT. The possibility of
central MTII triggered increases in lipolytic hormones, such as

TABLE 2. Effect of third icv MTII on plasma glucose, glycerol, free fatty acids, epinephrine, NE, and leptin 1 h after MTII
administration

Saline 0.5 nmol MTII 5 nmol MTII

Glucose (mg/dl) 145.67 " 9.79 147.88 " 8.12 201.38 " 21.70a,b

Glycerol (#M) 215.08 " 48.77 386.78 " 26.31a 429.31 " 42.30a

Free fatty acids (mEq/liter) 0.92 " 0.15 1.57 " 0.12a 1.77 " 0.06a

Leptin (ng/ml) 6.90 " 0.89 9.19 " 1.21 5.54 " 0.65
NE (ng/ml) 15.30 " 2.26 20.37 " 2.65 17.97 " 2.35
Epinephrine (ng/ml) 10.19 " 2.11 10.18 " 2.36 9.28 " 1.59

a P ' 0.05 vs. saline.
b P ' 0.05 vs. 0.5 nmol MTII.

TABLE 3. Effect of third icv MTII on plasma glucose, glycerol, free fatty acids, epinephrine, NE, and leptin 3.5 h after MTII
administration

Saline 0.5 nmol MTII 5 nmol MTII

Glucose (mg/dl) 158.00 " 10.28 130.70 " 5.52 131.00 " 5.58
Glycerol (#M) 149.06 " 16.88 281.29 " 27.13* 280.48 " 19.45*
Free fatty acids (mEq/liter) 0.66 " 0.09 1.70 " 0.08* 1.82 " 0.12*
Leptin (ng/ml) 6.34 " 1.07 5.42 " 0.79 4.79 " 0.69
NE (ng/ml) 14.87 " 2.23 12.28 " 1.66 16.59 " 2.89
Epinephrine (ng/ml) 7.07 " 0.86 8.48 " 1.19 9.27 " 1.61

*, P ' 0.05 vs. saline.
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glucagon (64–66), cannot be completely ruled out. There is also
the possibility that the central MTII reached the periphery be-
cause MTII can directly stimulate white adipocyte lipolysis in
vitro (67). This possiblity of leakage of MTII into the periphery
seems unlikely because it does not explain the increase in NETO
to some but not all WAT pads.

The most notable, although not surprising, finding of the
present study was the fat pad-specific nature of the increases in
NETO. MTII triggered increases NETO in IWAT and DWAT as
well as IBAT but not EWAT or RWAT, although there was a
suggestive increase in NETO for the latter. Fat pad-specific
effects of stimuli on lipolysis are typical, rather than the excep-
tion, as are fat pad-specific increases in lipid accretion (for
review see Ref. 11). That is, fat pad-specific responses are almost
invariably found if more than one fat pad is assayed. For ex-
ample, the in vitro lipolytic response to adrenoceptor stimula-
tion varies among adipocytes harvested from various fat pads

(e.g. Refs. 68 and 69), and disparate decreases in WAT pad mass
and/or fat cell size, indicative of increased lipid mobilization,
occur in response to several stimuli including fasting (e.g. Refs.
22 and 70) and short winter-like photoperiods in Siberian ham-
sters (20, 71–73). The differential decreases in WAT mass typ-
ically are associated with differential sympathetic drives, as
indicated by NETO (cf. Ref. 33). Thus, the greater the decreases
in WAT mass from short photoperiod-exposed Siberian ham-
sters, the greater the NETO (12). Evidence for nearly separate
populations of sympathetic outflow neurons to different WAT
pads has been demonstrated for postganglionic sympathetic
neurons in the sympathetic chain of Siberian hamsters (12) as
well as for preganglionic sympathetic neurons in the interme-
diolateral horn of the spinal cord and forebrain of laboratory
rats (13). Moreover, in terms of the latter, using two strains of
the transneuronal viral tract tracer PRV, separate sympathetic
innervations of sc WAT vs. visceral WAT have been shown (13).
These data fit nicely with the current results in which icv MTII
strongly stimulated sc (IWAT and DWAT) NETO but either
weakly stimulated (RWAT) or did not stimulate (EWAT) in-
ternal fat. The likely site(s) of action for the icv-delivered MTII
is unknown and could be anywhere periventricularly from the
hypothalamus to the spinal cord in which MC4-Rs are located
on sympathetic outflow neurons from brain to WAT (18).

The lack of a MTII-induced increase in EWAT NETO is sim-
ilar to our findings in which other lipid-promoting stimuli such
as glucoprivation [using 2-deoxy-d-glucose; (10)] and cold ex-
posure and/or fasting also do not increase EWAT NETO, but
all increase NETO to DWAT, IWAT, and RWAT (our unpub-
lished observations). We have hypothesized that lipid or
growth factors associated with the EWAT pad are protected
from the effects of most lipid-promoting stimuli to preserve
spermatogenesis because removal of EWAT severely inhibits
spermatogenesis in laboratory rats (74). Moreover, EWAT re-
moval in Syrian hamsters also blocks spermatogenesis, but
removal of other fat pads, some producing even larger lipid
deficits than EWAT removal, does not affect spermatogenesis
(Chu, Y., G. G. Huddleston, R. R. Bowers, A. N. Clancy, R. B.
Harris, and T. J. Bartness, manuscript in preparation).

Central MTII administration did not affect circulating con-
centrations of the largely adipocyte-derived cytokine, leptin.
The SNS innervation of WAT is one of the regulators of leptin
secretion; with conditions that increase WAT sympathetic drive
[e.g. cold exposure (25), fasting (26)], decrease WAT leptin syn-
thesis/release (e.g. Refs. 75–77), as does "3-AR stimulation (e.g.
Refs. 78–82). MTII treatment that increased sympathetic drive
(NETO) to IWAT and DWAT did not inhibit circulating leptin
concentrations at either time point after injection, a somewhat
surprising result, given the increased synthesis/release of lep-
tin by sc vs. visceral WAT (83, 84). The likely explanation for the
lack of inhibition was that MTII was given acutely, and chronic
treatment may be required for significant inhibition of leptin
synthesis/secretion.

MTII treatment increased plasma glucose concentrations
only at the 1-h postinjection time for the highest dose of the
melanocortin receptor agonist. Typically, increases in sympa-
thetic drive to WAT and/or BAT are associated with decreases
in circulating glucose concentrations, an effect usually due to
increases in glucose uptake by these tissues (e.g. Ref. 85). Be-
cause the liver is sympathetically innervated (e.g. Refs. 13 and
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FIG. 3. Mean ) SEM difference in IBAT temperature (C) from saline
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D-Phe-Arg-Trp-Glu]NH2 (middle), and AgRP (83–132) (bottom) on
IBAT temperature. *, P ' 0.05 vs. saline.
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86) and because increases in sympathetic drive to the liver
increase glycogenolysis, thereby increasing liver glucose output
(e.g. Refs. 87 and 88), our central MTII injection likely stimulated
SNS outflow to the liver, although no one has demonstrated
MC4-Rs on these sympathetic circuit neurons to the liver. This
possible sympathetic nerve-mediated mechanism for MTII-
triggered increased plasma glucose concentrations is buttressed
by our finding that plasma concentrations of adrenal medullary
catecholamines were not increased.

Finally, the melanocortins, in addition to affecting energy
intake, also affect energy output [oxygen consumption (89, 90)].
Some of these changes likely are due to the stimulatory effects
of MC4-R stimulation on BAT thermogenesis. For example,
central !-MSH or MTII administration increases sympathetic
nerve activity to IBAT (47, 49), whereas central AgRP admin-
istration decreases sympathetic nerve activity to IBAT (49). In
parallel to these effects, central MTII increases IBAT tempera-
ture and AgRP decreases it (49). In the present experiment, we
found complementary results; third ventricular MTII, a MC3/
4-R agonist, significantly increased IBAT NETO and increased
IBAT temperature, whereas AgRP, the inverse agonist, de-
creased IBAT temperature. Moreover, this effect likely was me-
diated via stimulation of brain MC4-Rs because a similar albeit
a smaller effect was seen after icv injection of a highly specific
MC4-R agonist (cyclo["-Ala-His-d-Phe-Arg-Trp-Glu]NH2).
The central sites reached by our icv injections are not known;
however, we determined some likely possible periventricular
sites in a recent study in which there was a high (average $60%
or greater) coexpression of MC4-R mRNA with neurons that are
part of the sympathetic outflow from brain to IBAT as labeled
by PRV (Song, C. K., C. H. Vaughan, E. Keen-Rhinehart, D.
Richard, R. B. Harris, and T. J. Bartness, manuscript in prepa-
ration and Ref. 18) such as the hypothalamic paraventricular
nucleus, dorsomedial nucleus, lateral hypothalamus in the fore-
brain, periaqueductal gray in the midbrain, various brain stem
raphe (e.g. raphe pallidus) and reticular regions (e.g. lateral
reticular), the nucleus of the solitary tract, and the intermedio-
lateral horn of the spinal cord. While our double-labeling study
was in preparation, similar high levels of coexpression of the

MC4-R with sympathetic outflow to IBAT was found at com-
parable sites in murine brain (45). The ability of agonism of
MC4-Rs in these sites to stimulate IBAT thermogenesis remains
to be tested completely, but we have preliminary data that
suggest MTII injected in the hypothalamic paraventricular nu-
cleus and nucleus of the solitary tract of brainstem in Siberian
hamsters both significantly increase IBAT temperature (Song,
C. K., C. H. Vaughan, E. Keen-Rhinehart, D. Richard, R. B.
Harris, and T. J. Bartness, manuscript in preparation).

Collectively, the results of these experiments show for
the first time that central MTII stimulates the sympathetic
drive to WAT (as indicated by significant increases in
WAT NETO and the lack of increases in circulating cat-
echolamines) to increase lipid mobilization (as indicated
by increased circulating concentrations of free fatty acids
and glycerol). Moreover, the MTII-stimulated increased
sympathetic drive to WAT was not uniform with increases
in sc WAT NETO and lesser or no change in internal WAT
NETO. This latter finding adds to the evidence of differ-
ential sympathetic drives to peripheral tissues and more
specifically among WAT depots (e.g. Refs. 10 and 12).
Finally, the present data add to the accumulating evidence
for the role of the melanocortin receptors in BAT
thermogenesis.
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TABLE 4. Effects of icv MTII on real-time RT-PCR quantitative gene expression for factors affecting lipolysis (HSL, "3-AR) and
thermogenesis ("3-R, UCP-1)

IWAT EWAT RWAT IBAT

HSL
Saline 0.050 " 0.002 0.042 " 0.002 0.042 " 0.001
0.5
nM

0.053 " 0.001 0.039 " 0.001 0.040 " 0.001

5.0
nM

0.052 " 0.001 0.040 " 0.001 0.041 " 0.001

"3-AR
Saline 0.049 " 0.001 0.052 " 0.003 0.052 " 0.001 0.064 " 0.001
0.5
nM

0.047 " 0.001 0.046 " 0.002a 0.049 " 0.001 0.062 " 0.001

5.0
nM

0.046 " 0.001 0.045 " 0.001a 0.048 " 0.002 0.060 " 0.001a

UCP-1
Saline 0.041 " 0.001
0.5
nM

0.040 " 0.001

5.0
nM

0.040 " 0.001

a Compared with saline control (P ' 0.05).
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