

## Statistical Inferences Made Easy with Excel

Amos Darrisaw, MA Assistant Professor Mathematics Georgia State University Perimeter College, Decatur <u>adarrisaw@gsu.edu</u> (404)408-5842

#### Amos R. Darrisaw Assistant Professor Mathematics GSU Perimeter College

- When I am not working on my classes or serving at my local church I enjoy:
  - Coffee
  - Jogging
  - Sudoku
  - Family
  - Football (Dallas Cowboys)
  - Not necessarily in that order



|   |   | 8 |   | 6 |   |   |   | 1 |   |
|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   |   |   | 8 | 2 | 5 | 6 |
|   |   |   | 1 |   |   |   |   |   |   |
|   |   |   |   | 9 |   | 4 | 6 |   | 3 |
|   |   |   | 9 |   | 7 |   | 5 |   |   |
|   | 4 |   | 7 | 5 |   | 2 |   |   |   |
|   |   |   |   |   |   |   | 8 |   |   |
|   | 7 | 1 | 3 | 4 |   |   |   |   |   |
| 0 |   | 5 |   |   |   | 9 |   | 3 |   |









This presentation will demonstrate how I use Excel to facilitate my students' understanding of

statistical inferences.

That is, with minimal inputs, my students can:

- (A) Calculate Probability Measures: for sampling distributions,
- (B) Calculate Confidence Intervals for Population Means and Population Proportions,
- (C) Calculate the P-Value for an Hypothesis test. Hence, easier Statistical Inference.



• This presentation will demonstrate how I use Excel to facilitate my students' understanding of statistical inferences. • That is, with minimal inputs, my students can:

# •Calculate Probability Measures: for Sampling Distributions,



This Spreadsheet Simplifies Analyses as follows:

- (1) Provides an immediate display of the Empirical Rule: Given Mean and SD
- (2) Calculates Probability for Sampling Distribution for n>1
  (3) Calculates Probability for Population Normal, when n=1
  (4) Provides Standard Error
- (5) Probability between "a" and "b"
- (6)Probability to the left or right of "a"



• Calculate Confidence Intervals for Population Means and Population Proportions,

| μ  |   |                                       |  |  |
|----|---|---------------------------------------|--|--|
|    |   |                                       |  |  |
|    |   |                                       |  |  |
|    |   |                                       |  |  |
| 1  |   |                                       |  |  |
| 2  |   |                                       |  |  |
| 3  |   |                                       |  |  |
| 4  |   |                                       |  |  |
| 5  |   |                                       |  |  |
| 6  |   |                                       |  |  |
| 7  |   |                                       |  |  |
| 8  |   | 00 0 0 <del>0</del> 0 0 0 0           |  |  |
| 9  |   | • • • • • • • • • • • • • • • • • • • |  |  |
| 10 |   |                                       |  |  |
| 11 |   | 0 0 0 0 0 0 0                         |  |  |
| 12 | ۰ |                                       |  |  |
| 13 |   | • •• • • • • •                        |  |  |
| 14 | • | • • • • • • • •                       |  |  |
| 15 |   | 000 0 0 0 0                           |  |  |
| 16 |   | o o o o                               |  |  |
| 17 |   | • • • • • • • • •                     |  |  |
| 18 |   | • • • • • • •                         |  |  |
| 19 |   | o o <u>o o o o o</u> o                |  |  |
| 20 |   | · · · · · · · ·                       |  |  |

This Spreadsheet Simplifies Analyses as follows:

- (1)Only Three Inputs needed,
- (2)Gives the Confidence Interval for the three commonly requested cases,

(3)Provides Immediateaccess to theStandard Error (quitea busy Calculation)

| CONTIGENCE Interval_Proportion |        |        |        |  |  |
|--------------------------------|--------|--------|--------|--|--|
| Level of Confidence            | 90%    | 95%    | 99%    |  |  |
| Sample n=                      | 3894   | 3894   | 3894   |  |  |
| Χ                              | 2853   | 2853   | 2853   |  |  |
| P^=x/n                         | 0.7327 | 0.733  | 0.7327 |  |  |
| success: <b>n*P=</b>           | 2853   | 2853   | 2853   |  |  |
| Failure: <b>n*(1-P)=</b>       | 1041   | 1041   | 1041   |  |  |
| Z=                             | 1.6449 | 1.96   | 2.5758 |  |  |
| SE=SD_of_P^                    | 0.0071 | 0.0071 | 0.0071 |  |  |
| Confidence Interval: P^±Z*SE   |        |        |        |  |  |
| LB=                            | 0.721  | 0.719  | 0.714  |  |  |
| UB=                            | 0.744  | 0.747  | 0.751  |  |  |

#### **ONLY INPUT in Yellow**

Confidence Population Mean:  $\mu$ 

|                                                            |                       | 000/    | 050/    | 000/    |  |
|------------------------------------------------------------|-----------------------|---------|---------|---------|--|
| Level of Confidence                                        | 90%                   | 90%     | 95%     | 99%     |  |
| Sample n=                                                  | 80                    | 80      | 80      | 80      |  |
| $\overline{X}$                                             | 69.00                 | 69      | 69 69   |         |  |
| S                                                          | 4.00                  | 4       | 4       | 4       |  |
| (a) Requires Sample ≥ 30                                   | Yes                   | Yes     | Yes     | Yes     |  |
| (b) Population Distribution                                | NA                    | NA      | NA      | NA      |  |
| T <sub>c</sub> =                                           | 1.66437               | 1.66437 | 1.99045 | 2.63950 |  |
| $\frac{S}{\sqrt{n}}$ = Standard Error:SD_of $\overline{X}$ | 0.44721               | 0.44721 | 0.44721 | 0.44721 |  |
| $LB = \overline{X} - Tc * \frac{S}{\sqrt{n}}$              | <mark>68.2557</mark>  | 68.2557 | 68.1098 | 67.8196 |  |
| <b>UB</b> = $\overline{X} + Tc * \frac{S}{\sqrt{n}}$       | <mark>6</mark> 9.7443 | 69.7443 | 69.8902 | 70.1804 |  |
| Margin of Error                                            | 0.744                 | 0.744   | 0.890   | 1.180   |  |
| <b>Point Estimate:</b>                                     | 69                    | 69      | 69      | 69      |  |







Calculate the P-Value for Hypothesis test. Hence, easier Statistical Inference. This Spreadsheet Simplifies Analyses as follows:

(1) Calculates: T-Value
(2) Calculates: P-Value
(3)Provides Decision
Rule based on the
P-Value

| Hypothesis Test Mean (Right Tail)                                   |                  |            |  |  |  |
|---------------------------------------------------------------------|------------------|------------|--|--|--|
| Only Input in Yellow                                                |                  |            |  |  |  |
| $\overline{X} = X\_Bar$                                             | 18.5             |            |  |  |  |
| N=n                                                                 | 35               |            |  |  |  |
| لو (From Null Hypothesis)                                           | 20               |            |  |  |  |
| S                                                                   | 4.3              |            |  |  |  |
| $SE = \frac{S}{\sqrt{n}}$                                           | 0.726832659      |            |  |  |  |
| $T = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}}$                      | -2.0637          |            |  |  |  |
| $p$ - $Value = P(\overline{X} \ge x   \mu = uo) = T.DIST.RT(x,n-1)$ |                  |            |  |  |  |
| P-Value=                                                            | 0.9766           |            |  |  |  |
| ALPHA= α                                                            | 0.0500           |            |  |  |  |
| f P-Value < α (Reject Ho)                                           | Do not reject Ho | =Decision" |  |  |  |

### **Enjoy the Super Bowl Eagles vs Chiefs**



### Next Year the



# Enjoy your Day