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ABSTRACT

This talk will give an introduction to magic squares and magic
cubes including some history and highlight some methods for
constructing them. We will also show that it is a topic that
contains exciting problems for both fun and research at both the
undergraduate and more advanced levels.



Introduction

The popular conception of mathematics is captured in the
following definition of the subject:

Miss Susan: What is algebra exactly; is it those three
cornered things?

Phoebe: It is x minus y equals z plus y and things
like that. And all the time you are saying
they are equal, you feel in your heart, why
should they be?

—J. M. Barrie, Quality Street.

One possible way to improve the general perception of the
subject is the popularization of recreational mathematics.



What is Recreational Mathematics?

Laymen are not usually interested in the technical aspects of
mathematics, but rather in those topics in the study of which it
matters little whether one is a professional mathematician or not.
These topics are usually recreational in nature and can convert
people into mathematicians without them being aware of the fact.
They also perform an important task of divulgation, and the
opening of the mathematical universe to the general public.
However, the role that such topics should play in the instructional
curriculum remains an open problem.

Many classical recreational Mathematics topics can be found in
[1, 2, 7, 8, 10, 18], the 18th century text by Falkener [6], the
writings of Martin Gardner [12, 13, 14, 15] – the most influential
recreational mathematician of our generation, the classic text [16],
or my book Uko [28], to mention but a few.



Magic squares

According to an ancient Chinese legend, when the great Emperor
Yu (2200 BC) was standing by the yellow river, a divine tortoise
appeared and on its back the following array of numbers – called
the lo-shu– appeared.

4 9 2

3 5 7

8 1 6

This is one of the very first examples of a magic square. If you add
the numbers in any row, column or diagonal, you will get the same
sum.

Magic squares, together with magic cubes and magic tesseracts
(their four dimensional counterparts) have for many centuries been
– and continue to be – sources of mathematical recreations and
challenges for large numbers of enthusiasts consisting mostly of
‘non mathematicians’.



The magic constant

A magic square of order p is a p × p square array with
non-repeated entries from the set {1, 2, . . . , p2} such that all rows,
columns and diagonals have the same sum. The sum of the
elements in the entire array is

1 + 2 + · · ·+ p2 = p2(p2 + 1)/2.

Since these numbers are divided into p rows each of which has the
same sum, that sum (the magic constant) must be p(p2 + 1)/2.

The columns and diagonals will also have the same sum.
A magic square is often considered as identical to the other seven
magic squares which can be obtained from it by performing
rotations and/or reflections. For simplicity, we will not make this
identification in this paper, so we will regard two magic squares as
identical only if they are identical in the matrix sense.



From China, the magic square found its way to India and to Japan
and later to Europe.

The following magic square of order 4 – which dates from ancient
times – is from India:

7 12 1 14

2 13 8 11

16 3 10 5

9 6 15 4



The following is a famous 1514 engraving titled ‘The melancholia’,
due to Albrecht Dürer.

If you look closely at the top-right corner, you will see that it
contains the following magic square.



Can you spot where the magic square below is hidden in this
engraving?

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

Albrecht Dürer’s magic square

Observe that the two middle cells of the last row correspond to the
year (1514) of the engraving.

In Villa Albani (Rome) there is an elaborate architectural dec-
oration consisting of a magic square with 81 cells, dating from 1766.



Benjamin Franklin’s magic square

Another famous magic square is the one below, is one of those
discovered by the great American ttatesman and scientist
Benjamin Franklin:

52 61 4 13 20 29 36 45
14 3 62 51 46 35 30 19
53 60 5 12 21 28 37 44
11 6 59 54 43 38 27 22
55 58 7 10 23 26 39 42
9 8 57 56 41 40 25 24
50 63 2 15 18 31 34 47
16 1 64 49 48 33 32 17

(Rhetorical) Question: Why would Benjamin Franklin use his spare
time – of which he had little! – to create elaborate magic squares?



Elaborate Magic Squares . . . Bordered Magic Squares
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Composite Magic Squares
71 64 69
66 68 70
67 72 65

8 1 6
3 5 7
4 9 2

53 46 51
48 50 52
49 54 47

26 19 24
21 23 25
22 27 20

44 37 42
39 41 43
40 45 38

62 55 60
57 59 61
58 63 56

35 28 33
30 32 34
31 36 29

80 73 78
75 77 79
76 81 74

17 10 15
12 14 16
13 18 11

8 1 6
3 5 7
4 9 2

107 100 105
102 104 106
103 108 101

62 55 60
57 59 61
58 63 56

125 118 123
120 122 124
121 126 119

71 64 69
66 68 70
67 72 65

116 109 114
111 113 115
112 117 110

17 10 15
12 14 16
13 18 11

98 91 96
93 95 97
94 99 92

89 82 87
84 86 88
85 90 83

26 19 24
21 23 25
22 27 20

143 136 141
138 140 142
139 144 137

44 37 42
39 41 43
40 45 38

134 127 132
129 131 133
130 135 128

53 46 51
48 50 52
49 54 47

80 73 78
75 77 79
76 81 74

35 28 33
30 32 34
31 36 29



The De La Loubère/Siamese method for making magic
squares

This method – learned by De La Loubère from the locals while he
was envoy of Louis XIV to Siam (Thailand) in the seventeenth
century – is as follows:

[1] Draw a square and divide it into a square array of an odd
number of cells. Place ‘1’ in the middle cell of the top row
and let ‘0’ occupy the top-right corner outside the square.

[2] Proceed diagonally upwards, filling the cells with successive
integers.

[3] When this takes you out of the square, shift across the square
from top to bottom, or from left to right, as the case may be.

[4] If this leads you to an occupied space, write the next number
immediately beneath the last cell filled.



A De La Loubère’s method example

9 2 0

8 1 6

3 5 7

4 9 2

8
3



The symmetry method for Magic squares of doubly even
order

This method generates magic squares whose orders are multiples of
four. To illustrate this method, make a 4-by-4 square array of cells
and highlight the 4-by-4 blocks of cells along their diagonals as
shown in the figure below.

∗ ∗
∗ ∗
∗ ∗

∗ ∗
In this array, each highlighted cell is symmetrical to another
highlighted cell, the complete list of symmetries being given in the
figure below.

a b

c d

d c

b a



Now, proceed downwards in your figure covering each row of cells
(from left to right) with successive integers. Whenever this takes
you into a highlighted cell, simply write the next number in the cell
symmetrical to it. This process leads to the4-by-4 magic square

16∗ 2 3 13∗
5 11∗ 10∗ 8

9 7∗ 6∗ 12

4∗ 14 15 1∗ .



Formulas for the Siamese method and the Symmetry
method

In the paper [29], I and Dr. Sinclair showed that the De La
Loubère/Siamese method for making a magic square of odd order
p can be condensed into the formula:

mij = 1 + {(2j + i − 2) Mod p}+ p{(j + i + (p − 3)/2) Mod p}

where the Mod p operator indicates the remainder when p divides
a given number andM = (mij) is the odd-order magic square matrix.

More information about this formula can be found in the
Wikipedia Article [33]:
https://nl.wikipedia.org/wiki/Siamese_methode and a
more detailed history of magic squares can be found in the
Wikipedia Article [34]:
https://en.wikipedia.org/wiki/Magic_square.

https://nl.wikipedia.org/wiki/Siamese_methode
https://en.wikipedia.org/wiki/Magic_square


The census of magic squares

It is known that there are only 8 magic squares of order three, all
of which are obtainable from reflections and/or rotations of the
basic magic square below.

4 9 2

3 5 7

8 1 6

It is also known that there are 7040 magic squares of order four
([11, Bernard Freńicle de Bessy, 1693] – done with manual hand
calculations!!).

In 1973 Richard Schroeppel used a computer program to obtain a
census figure of 2,202,441,792 magic squares of order five.

The census of magic squares of orders six and above are still open
problems.



The census of uniform step magic squares
A magic square (mij) is of the uniform step if it can be written in
the form:

mij = 1 + [(a1i + b1j + c1) mod n] + n[(a2i + b2j + c2) mod n]

Some values for the number κ(p) of uniform step magic squares of
order p:

p κ(p)

3 8

5 1,472

7 25,272

9 3,528

11 713,000

13 2,265,408

15 11,776

21 202,176

25 21,252,800

45 5,193,216

49 2,913,193,080

.



The reason why the κ(p) values smaller when p is a multiple of 3
is given in the following advanced combinatorics research result.

Theorem (Uko [27])

Let p =
∏N

i=1 q
ri
i be the prime factorization of the odd number p.

Then there exist κ(n) =
∏N

i=1 κ(q
ri
i ) uniform step magic squares of

order p, where κ(qrii ) = [τ(qrii )]
2 − λ(qrii ),

λ(qrii ) = (qrii −qri−1
i )2[2(q2ri−1

i +1)2/(qi+1)2+q3ri−1
i (qrii −3qri−1

i )]

and τ(qrii ) = (qrii − qri−1
i )(q2ri+1

i − 2q2rii − q2ri−1
i + 2)/(qi + 1) for

i = 1, . . . , N.



Euler’s method – Latin squares

An array of order p is called a LATIN SQUARE if each entry
(taken from the set Zp = {0, . . . , p − 1}) occurs once in each row
and once in each column.

A Latin square example0 1 2
2 0 1
1 2 0



A Latin square in which all diagonal sums coincide is called an
EULER SQUARE.
The example above does not satisfy this extra condition which was
(implicitly) used by Euler to make magic squares.



Euler squares and Orthogonality

Two Latin square arrays s A = (aij) and B = (bij) of order p are
said to be ORTHOGONAL if

{(akj , bkj) | k, j = 1, . . . , p} = Z 2
p

where Zp = {0, . . . , p − 1}.
This means that when you superimpose the elements of A and B ,
every pair of the numbers occurs once and only once.

Example of orthogonal Euler squares

A =

0 2 1
2 1 0
1 0 2

 B =

1 2 0
0 1 2
2 0 1


Orthogonal Latin sqaures are used extensively in the statistical
design of experiments (cf.[5, 19]).



Euler’s method [9]

Given a pair (A,B) of orthogonal Euler squares,

M = Ep + A+ pB

is a magic square, where Ep is the p × p matrix of ones.

Examples1 1 1
1 1 1
1 1 1

+

0 2 1
2 1 0
1 0 2

+ 3

1 2 0
0 1 2
2 0 1

 =

4 9 2
3 5 7
8 1 6


1 1 1
1 1 1
1 1 1

+

1 2 0
0 1 2
2 0 1

+ 3

0 2 1
2 1 0
1 0 2

 =

2 9 4
7 5 3
6 1 8





Magic squares from orthogonal generalized Euler squares

Given the magic squares aboves, we can recover the orthogonal pair
(A,B) of Euler squares used to generate them from the formulas:

aij = (mij − 1) (mod p)

bij = (mij − 1) (div p).

Every magic square M has a canonical expansion of this kind, with
A and B defined in this manner.

Research Question
Are the canonical components (A,B) of every given
magic square M = Ep+A+pB an orthogonal pair of Euler squares?

Answer:
No.



A counterexample


1 15 14 4
12 6 7 9
8 10 11 5
13 3 2 16

 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

+

0 2 1 3
3 1 2 0
3 1 2 0
0 2 1 3

+4


0 3 3 0
2 1 1 2
1 2 2 1
3 0 0 3


The orthogonal components of this p × p magic square (in the
case p = 4) are not Euler squares. However, they are generalized
Euler squares in the sense that their rows, columns and diagonals
have the same sum p(p − 1)/2, and each entry occurs p times in
each square.



Normal Magic squares

A magic square with a canonical expansion M = Ep + A+ pB is
said to be normal if is associated array M ′ = Ep + B + pA is also a
magic square.
An example1 1 1

1 1 1
1 1 1

+

0 2 1
2 1 0
1 0 2

+ 3

1 2 0
0 1 2
2 0 1

 =

4 9 2
3 5 7
8 1 6


1 1 1
1 1 1
1 1 1

+

1 2 0
0 1 2
2 0 1

+ 3

0 2 1
2 1 0
1 0 2

 =

2 9 4
7 5 3
6 1 8


Theorem (Uko [27])

The p × p magic square with a canonical expansion
M = Ep + A+ pB is normal if and only if (A,B) is a pair of
orthogonal generalized Euler squares.



Research Question

Are all magic squares normal?

Answer. No.

A counter-example.


16 3 10 5
1 12 7 14
8 13 2 11
9 6 15 4

 =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

+


3 2 1 0
0 3 2 1
3 0 1 0
0 1 2 3

+ 4


3 0 2 1
0 2 1 3
1 3 0 2
2 1 3 0


In this canonical expansion M = E + A+ 4B, the ortogonal
components arrays A and B are generalized quasi-Euler squares
(not generalized Euler squares) as defined in the following result.



Theorem (Anatomy of the generic magic square – Uko [26])

Every magic square of order p can be written in the canonical form
M = Ep + A+ pB with the entries of the matrices A and B
generated from the equations

aij = (mij − 1) (mod p)

bij = (mij − 1) (div p).

The arrays A = (aij) and B = (bij) are orthogonal generalized
quasi-Euler squares in the sense that every element of the set Zp

occurs p times in each array, and they satisfy the row, column and
diagonal sum equations∑p

j=1 aij + prj =
∑p

j=1 aji + prp+j =
∑p

j=1 ajj + pr2p+1 =∑p
j=1 aj ,p+1−j + pr2p+2 =

∑p
j=1 bij − rj =

∑p
j=1 bji − rp+j =∑p

j=1 bjj − r2p+1 =
∑p

j=1 bj ,p+1−j − r2p+2 = p(p − 1)/2
for some integers r1, . . . , r2p+2.

Note: A magic square is normal if and only if its associated
coefficient (r1, r2, . . . , r2p+2) is the zero vector.



Non-standard magic squares

In the Literature (cf. [3, 17]), one occasionally encounters ‘magic
squares’ that lack some of the conditions of standard magic
squares. We refer to such arrays as non-standard magic squares.
An example is the array

101 203 2

3 102 201

202 1 103

which is magic in all aspects with the exception of the non
consecutiveness of its integer entries. This example was generated
from the following result.

Theorem (Uko [24])

If M = E + A+ pB is a p × p normal magic square, and if m and
n are positive integers such that m ≥ pn or n ≥ mp, then
M∗ = E +mA+ nB is a (possibly non-standard) magic square.



Magic cubes

A Magic Cube of order p is a p × p × p cubical array with
non-repeated entries from the set {1, 2, . . . , p3}, such that all
rows, columns, pillars and space diagonals have the same sum. It is
a natural extension of the concept of a magic square.
The sum of the elements in a magic cube of order p is
1 + 2 + · · ·+ p3 = p3(p3 + 1)/2. Since these numbers are divided
into p2 rows each of which has the same sum, that sum (the magic
constant) must be p(p3 + 1)/2. The columns, pillars and space
diagonals will also have the same sum.

The analogous p × p × p × p hypersquare arrays are called magic
tesseracts.



The following is an example of a magic cube:

M : : 1

20 6 16
18 19 5
4 17 21

M : : 2

15 25 2
1 14 27
26 3 13

M : : 3

7 11 24
23 9 10
12 22 8,

where M : : k
def
= {mijk : 1 ≤ i , j ≤ p}.

A magic cube is usually considered to be identical with the 47
magic cubes obtainable from it by performing rotations and/or
reflections.

It is known that there are 192 magic cubes of order 3. However,
the census of magic squares of orders four and above are still open
problems.



Some magic cube generation formulas

From Trenkler [22]:

mijk = 1 + [(i − j + k − 1) mod p] + p[(i − j − k) mod p]

+p2[(i + j + k − 2) mod p], i , j , k ∈ Np.

From Uko & Barron [32]:

mijk = 1 + [(i + j + k + 1) mod p] + p[(−i − j + k) mod p]

+p2[(i − j − k) mod p],

mijk = 1 + [(−2i + j − 2k + 1) mod p] + p[(i − j + k − 1) mod p]

+p2[(i − j − k) mod p],

mijk = 1 + [(i + j + k − 2) mod p] + p[(i − j − k) mod p]

+p2[(i − j + k − 1) mod p].



Meet the recreational math community on magic squares
and cubes

https://www.google.com/search?q=magic+squares&oq=

magic+squares&aqs=chrome..69i57j0l5.3919j0j8&

sourceid=chrome&ie=UTF-8

https://www.google.com/search?q=magic+squares&oq=magic+squares&aqs=chrome..69i57j0l5.3919j0j8&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=magic+squares&oq=magic+squares&aqs=chrome..69i57j0l5.3919j0j8&sourceid=chrome&ie=UTF-8
https://www.google.com/search?q=magic+squares&oq=magic+squares&aqs=chrome..69i57j0l5.3919j0j8&sourceid=chrome&ie=UTF-8
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