Objective: To use algebra and fundamental identities to simplify a trigonometric expression

- You need to memorize the fundamental trigonometric identities on page 532 in your textbook.
- You need to be able to recognize rearrangements of fundamental identities. In particular, you often see rearrangements of Pythagorean Identities. For example,

$$
\begin{aligned}
& \sin ^{2} x+\cos ^{2} x=1 \quad \Rightarrow \quad \sin ^{2} x=1-\cos ^{2} x \\
& \sin ^{2} x+\cos ^{2} x=1 \quad \Rightarrow \quad \cos ^{2} x=1-\sin ^{2} x
\end{aligned}
$$

- Simplifying trigonometric expressions often takes some trial and error, but the following strategies may be helpful.
- Use algebra and fundamental identities to simplify the expression.
- Sometimes, writing all functions in terms of sines and cosines may help.
- Sometimes, combining fractions by getting a common denominator may help.
- Sometimes, breaking one fraction into two fractions may help: $\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$
- Sometimes, factoring may help.

Strategy	Example		Approach
Rewriting in terms of sine and cosine		$\begin{aligned} \frac{\tan x}{\sec x} & =\frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x}} \\ & =\frac{\sin x}{\cos x} \cdot \frac{\cos x}{1} \\ & =\sin x \end{aligned}$	- $\tan x=\frac{\sin x}{\cos x}$ - $\sec x=\frac{1}{\cos x}$ - To divide by a fraction, multiply by the reciprocal of the denominator - Reduce the resulting product

Simplifying Trigonometric Expressions

Strategy	Example	Approach
Factoring	$\begin{aligned} \cos x-\cos x \sin ^{2} x & =\cos x\left(1-\sin ^{2} x\right) \\ & =\cos x \cdot \cos ^{2} x \\ & =\cos ^{3} x \end{aligned}$	- Factor out a common factor of $\cos x$ - Use the identity: $\cos ^{2} x=1-\sin ^{2} x$ - Use a property of exponents to multiply $\cos x$ and $\cos ^{2} x$
Getting a common denominator	$\begin{aligned} \sin x+\cos x \cot x & =\sin x+\cos x \cdot \frac{\cos x}{\sin x} \\ & =\frac{\sin ^{2} x}{\sin x}+\frac{\cos ^{2} x}{\sin x} \\ & =\frac{\sin ^{2} x+\cos ^{2} x}{\sin x} \\ & =\frac{1}{\sin x} \\ & =\csc x \end{aligned}$	- $\cot x=\frac{\cos x}{\sin x}$ - Get a common denominator of $\sin x$ and add the two fractions - $\sin ^{2} x+\cos ^{2} x=1$ - $\csc x=\frac{1}{\sin x}$
Splitting one fraction into two fractions	$\begin{aligned} \frac{\sec x-\cos x}{\sec x} & =\frac{\sec x}{\sec x}-\frac{\cos x}{\sec x} \\ & =1-\cos ^{2} x \\ & =\sin ^{2} x \end{aligned}$	- $\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$ - $\sec x$ divided by itself is 1 - $\sec x=\frac{1}{\cos x}$ so $\frac{\cos x}{\sec x}=\cos ^{2} x$ - $1-\cos ^{2} x=\sin ^{2} x$

Simplifying Trigonometric Expressions

Simplify the following expressions.

1) $\sin x \cot x$
2) $\frac{\sec x}{\csc x}$
3) $\frac{1-\sin ^{2} x}{\cos x}$
4) $\sin t-\sin t \cos ^{2} t$
5) $\cos x+\tan x \sin x$
6) $\sin ^{3} x+\sin x \cos ^{2} x$
7) $\frac{\csc x-\sin x}{\csc x}$
8) $\frac{\sin x}{\cos x}+\frac{\cos x}{1+\sin x}$

Simplifying Trigonometric Expressions

Solutions:

1) $\sin x \cot x=\sin x \cdot \frac{\cos x}{\sin x}=\cos x$
2) $\frac{\sec x}{\csc x}=\frac{\frac{1}{\cos x}}{\frac{1}{\sin x}}=\frac{1}{\cos x} \cdot \frac{\sin x}{1}=\frac{\sin x}{\cos x}=\tan x$
3) $\frac{1-\sin ^{2} x}{\cos x}=\frac{\cos ^{2} x}{\cos x}=\cos x$
4) $\sin t-\sin t \cos ^{2} t=\sin t \cdot\left(1-\cos ^{2} t\right)=\sin t \cdot \sin ^{2} t=\sin ^{3} t$
5) $\cos x+\tan x \sin x=\cos x+\frac{\sin x}{\cos x} \cdot \sin x=\frac{\cos ^{2} x+\sin ^{2} x}{\cos x}=\frac{1}{\cos x}=\sec x$
6) $\sin ^{3} x+\sin x \cos ^{2} x=\sin x \cdot\left(\sin ^{2} x+\cos ^{2} x\right)=\sin x$
7) $\frac{\csc x-\sin x}{\csc x}=\frac{\csc x}{\csc x}-\frac{\sin x}{\csc x}=1-\sin ^{2} x=\cos ^{2} x$
8) $\frac{\sin x}{\cos x}+\frac{\cos x}{1+\sin x}=\frac{\sin x \cdot(1+\sin x)+\cos x \cdot \cos x}{\cos x \cdot(1+\sin x)}=\frac{\sin x+\sin ^{2} x+\cos ^{2} x}{\cos x \cdot(1+\sin x)}=\frac{\sin x+1}{\cos x \cdot(1+\sin x)}=\frac{1}{\cos x}=\sec x$
