Objective: To verify that two expressions are equivalent. That is, we want to verify that what we have is an identity.

- To do this, we generally pick the expression on one side of the given identity and manipulate that expression until we get the other side.
- In most cases, it is best to start with the more complex looking side and try to simply to match the less complex side.
- You must be very familiar with the fundamental trigonometric identities, especially the Pythagorean Identities. In some cases, a direct substitution using these fundamental identities will verify the identity you are trying to prove (Exercise 8 at the end of this document is one example).
- Some special approaches are useful for certain types of identities, which are provided below.

Identity Type	Verification	Approach
Type 1: Sometimes it is easier if we just rewrite everything in terms of sine and cosine to see if the expression simplifies.	Verify: $\cot x + 1 = \csc x (\cos x + \sin x)$ RHS $\rightarrow \csc x (\cos x + \sin x) = \frac{1}{\sin x} (\cos x + \sin x)$ $= \frac{\cos x}{\sin x} + \frac{\sin x}{\sin x}$ $= \cot x + 1$	 Start with more complex RHS. Rewrite csc <i>x</i> in terms of sine or cosine. Remember, csc <i>x</i> = 1/sin <i>x</i> Also note, cos <i>x</i>/sin <i>x</i> = cot <i>x</i> The RHS simplifies to original LHS.
Type 2: In some cases, the more complex side involves a fraction that can be split up. Then we rewrite everything in terms of sine and cosine.	Verify: $\frac{\tan t - \cot t}{\sin t \cos t} = \sec^2 t - \csc^2 t$ $LHS \rightarrow \frac{\tan t - \cot t}{\sin t \cos t} = \frac{\tan t}{\sin t \cos t} - \frac{\cot t}{\sin t \cos t}$ $= \tan t \cdot \frac{1}{\sin t \cos t} - \cot t \cdot \frac{1}{\sin t \cos t}$ $= \frac{\sin t}{\cos t} \cdot \frac{1}{\sin t \cos t} - \frac{\cos t}{\sin t} \cdot \frac{1}{\sin t \cos t}$ $= \frac{1}{\cos^2 t} - \frac{1}{\sin^2 t}$ $= \sec^2 t - \csc^2 t$	 Start with the more complex LHS. Rewrite the LHS as difference of two fractions. Split out tan <i>t</i> and cot <i>t</i> to make it easier to simplify. Notice in the first term, the sin <i>t</i> cancels out; and in the second term, cos <i>t</i> cancels out. The new terms are reciprocal identities The LHS simplifies to the original RHS.

Identity Type	Verification	Approach
Type 3: Using the property of conjugates is sometimes helpful. For an expression like $a + b$, the conjugate would be $a - b$. When you multiply conjugates, you often get a more useful expression, e.g., $(a + b)(a - b)$. Sometimes multiplying by the conjugate will simplify an expression and help in verifying the given identity.	Verify: $\frac{\cos x}{1-\sin x} = \frac{1+\sin x}{\cos x}$ RHS $\rightarrow \frac{1+\sin x}{\cos x} = \frac{1+\sin x}{\cos x} \left(\frac{1-\sin x}{1-\sin x}\right)$ $= \frac{1-\sin^2 x}{\cos x (1-\sin x)}$ $= \frac{\cos^2 x}{\cos x (1-\sin x)}$ $= \frac{\cos x \cos x}{\cos x (1-\sin x)}$ $= \frac{\cos x}{1-\sin x}$	 We could start with either side; but here we will start with the RHS. The conjugate of the numerator 1 + sin <i>x</i> is 1 - sin <i>x</i>. Multiply by 1 - sin x Multiply by 1 - sin x Remember, 1 - sin² x = cos² x Once we reduce the fraction, we get the LHS of the original identity.
<u>Type 4:</u> Combining fractions before using identities may be an appropriate strategy.	Verify: $\frac{1}{1-\sin\alpha} + \frac{1}{1+\sin\alpha} = 2 \sec^2 \alpha$ LHS $\rightarrow \frac{1}{1-\sin\alpha} + \frac{1}{1+\sin\alpha} = \frac{1}{1-\sin\alpha} \left(\frac{1+\sin\alpha}{1+\sin\alpha}\right) + \frac{1}{1+\sin\alpha} \left(\frac{1-\sin\alpha}{1-\sin\alpha}\right)$ $= \frac{(1+\sin\alpha) + (1-\sin\alpha)}{(1-\sin\alpha)(1+\sin\alpha)}$ $= \frac{2}{1-\sin^2\alpha}$ $= \frac{2}{\cos^2\alpha}$ $= 2 \sec^2 \alpha$	 Notice that the denominators of the fractions on the LHS are conjugates. So we will use the property of conjugates to combine the LHS fractions and simplify.

Verify the following trigonometric identities.

1. $\cos x + \sin x \tan x = \sec x$

2.
$$\frac{\csc x - \sin x}{\sin x \csc x} = \csc x - \sin x$$

3.
$$\frac{1}{\tan\beta} + \tan\beta = \frac{\sec^2\beta}{\tan\beta}$$

4.
$$\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} = 2 \sec\theta$$

5.
$$\sec y + \tan y = \frac{\cos y}{1 - \sin y}$$

6.
$$\frac{\cos^2 x - \sin^2 x}{1 - \tan^2 x} = \cos^2 x$$

7.
$$\frac{\sin x}{\cos x + 1} + \frac{\cos x - 1}{\sin x} = 0$$

8.
$$\frac{\sin^2\theta + \cos^2\theta + \cot^2\theta}{1 + \tan^2\theta} = \cot^2\theta$$

Solutions to Exercises

1. LHS
$$\rightarrow \cos x + \sin x \tan x = \cos x + \sin x \left(\frac{\sin x}{\cos x}\right)$$

2. LHS $\rightarrow \frac{\csc x - \sin x}{\sin x \csc x} = \frac{1}{\sin x \csc x} (\csc x - \sin x)$
 $= \cos x + \frac{\sin^2 x}{\cos x}$
 $= \frac{\cos^2 x}{\cos x} + \frac{\sin^2 x}{\cos x}$
 $= \frac{\cos^2 x + \sin^2 x}{\cos x}$
 $= \frac{1}{\sin x} - \frac{1}{\csc x}$
 $= \frac{1}{\sin x} - \frac{1}{\csc x}$
 $= \csc x - \sin x$
 $= \frac{1}{\cos x}$
 $= \sec x$
3. LHS $\rightarrow \frac{1}{\tan \beta} + \tan \beta$ $= \frac{1}{\tan \beta} + \frac{\tan^2 \beta}{\tan \beta}$
 $= \frac{1 + \tan^2 \beta}{\tan \beta}$
 $= \frac{\sec^2 \beta}{\tan \beta}$
4. LHS $\rightarrow \frac{1 + \sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta} = \frac{1 + \sin \theta}{\cos \theta} (\frac{1 + \sin \theta}{1 + \sin \theta}) + \frac{\cos \theta}{1 + \sin \theta} (\frac{\cos \theta}{1 + \sin \theta})$
 $= \frac{1 + 2\sin^2 \beta}{\tan \beta}$
 $= \frac{\sec^2 \beta}{\tan \beta}$
 $= \frac{2 + 2\sin \theta + \sin^2 \theta}{\tan \theta}$
 $= \frac{2 + 2\sin \theta}{\cos \theta (1 + \sin \theta)}$
 $= \frac{2 + 2\sin \theta}{\cos \theta (1 + \sin \theta)}$
 $= \frac{2 + 2\sin \theta}{\cos \theta (1 + \sin \theta)}$
 $= \frac{2 + 2\sin \theta}{\cos \theta (1 + \sin \theta)}$
 $= \frac{2 + 2\sin \theta}{\cos \theta (1 + \sin \theta)}$

5. RHS
$$\rightarrow \frac{\cos y}{1-\sin y} = \frac{\cos y}{1-\sin y} \left(\frac{1+\sin y}{1+\sin y}\right)$$

 $= \frac{\cos y(1+\sin y)}{1-\sin^2 y}$
 $= \frac{\cos y(1+\sin y)}{\cos^2 y}$
 $= \frac{\cos y(1+\sin y)}{\cos^2 y}$
 $= \frac{1+\sin y}{\cos y}$
 $= \frac{1}{\cos y} + \frac{\sin y}{\cos y}$
 $= \sec y + \tan y$
6. LHS $\rightarrow \frac{\cos^2 x - \sin^2 x}{1-\tan^2 x} = \frac{\cos^2 x - \sin^2 x}{1-\frac{\sin^2 x}{\cos^2 x}}$
 $= \frac{\cos^2 x - \sin^2 x}{\cos^2 x}$
 $= \frac{1}{\cos^2 x} + \frac{\sin y}{\cos^2 x}$
 $= \sec y + \tan y$

7. LHS
$$\rightarrow \frac{\sin x}{\cos x + 1} + \frac{\cos x - 1}{\sin x} = \frac{\sin x}{\cos x + 1} \left(\frac{\sin x}{\sin x} \right) + \frac{\cos x - 1}{\sin x} \left(\frac{\cos x + 1}{\cos x + 1} \right)$$

$$= \frac{\sin^2 x}{\sin x (\cos x + 1)} + \frac{\cos^2 x - 1}{\sin x (\cos x + 1)}$$

$$= \frac{\sin^2 x + \cos^2 x - 1}{\sin x (\cos x + 1)}$$

$$= \frac{1 - 1}{\sin x (\cos x + 1)}$$

$$= \frac{0}{\sin x (\cos x + 1)}$$

$$= 0$$
8. LHS $\rightarrow \frac{\sin^2 \theta + \cos^2 \theta + \cot^2 \theta}{1 + \tan^2 \theta} = \frac{1 + \cot^2 \theta}{1 + \tan^2 \theta}$

$$= \frac{1 + \cot^2 \theta}{1 + \tan^2 \theta}$$

$$= \frac{1 + \cot^2 \theta}{1 + \tan^2 \theta}$$