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Abstract: Prior research demonstrates that mortality rates increase during eco-
nomic booms and decrease during economic busts, but little is known about the
role of environmental risks as a potential mechanism for this relationship. We in-
vestigate the contribution of air pollution to the procyclicality of deaths by combin-
ing county-level data on overall, cause-specific, and age-specific mortality rates with
county-level measures of ambient concentrations of three types of pollutants and
the unemployment rate. After controlling for demographic variables and state-by-year
fixed effects, we find a significant positive correlation between pollution concentrations
and mortality rates. Controlling for carbon monoxide, particulate matter, and ozone
attenuates the relationship between overall mortality and the unemployment rate by
17%. The findings are robust to the use of state- rather than county-level data and to
a variety of alternative specifications, although the attenuation of the unemployment-
mortality relationship after controlling for pollution is insubstantial when including
county-specific linear trends.
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HEALTH IS CONVENTIONALLY believed to deteriorate during macroeconomic
downturns. However, substantial research conducted over the last decade suggests that
physical health instead improves when the economy temporarily weakens. In particu-
lar, there is strong evidence of a procyclical variation in mortality, but the mechanisms
for this relationship are poorly understood. Early studies on this topic emphasized the
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role of individual behaviors, which may become healthier during slack economic
periods because of increases in available time and reductions in income; however, re-
cent analyses provide more mixed evidence on whether this occurs. There is also a
strong but limited role for changes in driving behavior and traffic fatalities, but other
environmental risk factors have not been studied.

Air pollution, which increases when the economy strengthens and so may be a
source of procyclical fluctuations in mortality, has not been investigated in this con-
text, probably because the data required to do so are difficult to analyze. This study
provides a first step toward filling this gap by examining the extent to which control-
ling for pollution attenuates the estimated coefficient on unemployment rates (the
proxy of macroeconomic conditions) in models that are otherwise similar to those
used in previous related analyses. Specifically, using county-level data for 1982–2009,
we incorporate information on ambient concentrations of three air pollutants—car-
bon monoxide (CO), particulate matter less than 10 microns in diameter (PM10),
and ozone (O3)—into models that examine total, cause-specific, and age-specific mor-
tality, while also controlling for county fixed effects and unemployment rates, state-
specific year effects, and supplementary location-specific demographic characteristics.

We substantiate prior findings that mortality is procyclical over the period stud-
ied: a one percentage point increase in unemployment is associated with a 0.35%
decrease in the total mortality rate. However, after controlling for pollution, the es-
timated effect declines to 0.28%; this difference is statistically significant at the 10%
level. All three pollutant concentrations exhibit a procyclical variation. CO is estimated
to strongly increase mortality, and the inclusion of CO attenuates the estimated macro-
economic effect.1 However, the high collinearity of the three pollution measures pre-
vents us from making confident claims regarding differential effects between the pol-
lutants. A one standard deviation increase in the CO concentration is associated with
a 1.6% increase in the death rate, after controlling for county and year effects, demo-
graphic characteristics, and PM10 and O3 levels (but not unemployment rates), and
its inclusion in the full model attenuates the estimated unemployment coefficient by
around 15%. This attenuation is insubstantial in models that include linear trends,
though we argue that the inclusion of these trends may be a misspecification and that
controlling for state-by-year effects is preferable.

The results for specific causes and ages of death provide suggestive evidence that
environmental risks, like pollution, provide a mechanism for at least some of the
procyclical fluctuation in mortality. In particular, previous research suggests that pol-
lution has a significant effect on deaths from respiratory and cardiovascular disease,

1. The effect from CO only is consistent with results from Currie and Neidell (2005),
Schlenker and Walker (2011), and Arceo, Rema, and Paulina (forthcoming).
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and this is what we also find.2 In our estimates, a one standard deviation increase in
the CO concentration is associated with a 3.0% rise in the respiratory mortality rate,
and the inclusion of the pollution concentrations in our main model eliminates much
of the correlation between respiratory fatalities and unemployment rates. Conversely,
suicides are countercyclical and unaffected by pollution. The results for age-specific
mortality are also revealing. Deaths are estimated to be procyclical for all age groups
except those younger than 20, but only significantly so for > 84-year-olds. However,
CO concentrations are associated with increased mortality for all groups. As a result,
the procyclicality of fatalities is attenuated for these age groups—with a particularly
strong but imprecisely measured reduction for the very old. We also measure the cy-
clicality of pollution itself, and we find that both PM10 and CO are significantly pro-
cyclical. A one percentage point increase in the unemployment rate is correlated with
a 0.06 standard deviation drop in PM10 concentrations and a 0.04 standard devia-
tion decrease in CO concentrations.

While these results are generally robust to alternate specifications, including run-
ning the analysis at the state-year level rather than the county-year level, several im-
portant caveats should be noted. As mentioned, it is difficult to identify differential
effects between the three pollutants, and the attenuation of the unemployment coef-
ficient after controlling for pollution is sensitive to the inclusion of linear trends. As
described below, there are also concerns about bidirectional causality and migration
bias that we cannot fully address using the available data. Future research should ad-
dress these issues and consider extensions like controlling for more pollutants and
elements beyond mean pollution levels (e.g., covariates for peak levels of pollutants),
as well as possible instrumental variables such as the use of thermal inversions that
temporarily raise pollution levels (Hicks, Marsh, and Oliva 2015).

1. BACKGROUND

Following Ruhm (2000), many studies examine the relationship between macroeco-
nomic conditions and health by analyzing data for multiple locations and points in
time. Panel data techniques can be used to control for many potential confounding
factors. In particular, location-specific determinants of health that remain constant
over time are easily accounted for, as are factors that vary over time in a uniform
manner across locations. Death rates are useful to study because mortality repre-
sents the most severe negative health outcome and is objective and well measured
and because diagnosis generally does not depend on access to the medical system (in
contrast to many morbidities). Prior research provides strong evidence of a procy-

2. For instance, Clancy et al. (2002) identifies an association between particulate matter
concentrations and respiratory and cardiovascular deaths, and Peters et al. (2004) links traffic
pollution exposure to heart attacks.
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clical fluctuation in total mortality and several specific causes of death, using dispa-
rate samples and time periods. A one percentage point increase in the unemployment
rate (the most common macroeconomic proxy) is typically associated with a 0.3%–
0.5% reduction in overall mortality, corresponding to an elasticity of –.02 to –.05,
with significantly larger elasticity estimates sometimes obtained.3

In explaining why health improves during economic downturns, researchers have
emphasized the role of changes in lifestyles, hypothesizing that increased availability
of nonmarket “leisure” time makes it less costly for individuals to undertake health-
producing activities such as exercise and cooking meals at home, while lower in-
comes are associated with reductions in unhealthy lifestyles like smoking and drink-
ing. The data provide some support for these mechanisms. There is strong evidence
that alcohol sales are procyclical, and several studies (Ruhm 1995; Freeman 1999;
Cotti and Tefft 2011) find that alcohol-involved vehicle mortality declines in such
periods. Cardiovascular fatalities, which are strongly influenced by lifestyles, are also
procyclical (Ruhm 2000; Neumayer 2004; Miller et al. 2009).

Other behaviors may also become healthier when economic conditions weaken.
Ruhm (2005) finds that severe obesity, smoking, and physical inactivity decline, with
especially large reductions in multiple risk factors. Gruber and Frakes (2006) and Xu
(2013) provide further evidence of a procyclical variation in smoking. Ruhm (2000)
shows that the consumption of dietary fat falls while the intake of fruits and vege-
tables rises. Consistent with these patterns, evidence that higher time prices correlate
with increased obesity has been provided for adults and children (e.g., Courtemanche
2009).

However, changes in health behaviors are probably not the sole, or necessarily
the most important, mechanism for procyclical variations in mortality. Miller et al.
(2009) find that working-age adults are responsible for relatively little of the cyclical
variation in deaths, suggesting that behavioral responses to changes in labor market
conditions are unlikely to be a dominant factor. Some research also raises questions
about the strength or direction of the lifestyle changes related to obesity (Böckerman
et al. 2006; Charles and DiCicca 2008; Arkes 2009), physical activity (An and Liu
2012; Colman and Dave 2013), and alcohol use (Dávalos et al. 2011).

Other risk factors provide potential alternative explanations for why health may
improve during economic downturns. For example, traffic fatalities have been widely
studied, with substantial and robust evidence provided that a one-point increase
in unemployment reduces such deaths by 1%–3% (see Ruhm [2012] for citations).
While these studies explore the mechanisms behind the procyclicality of mortality,
no study attempts to quantify how much of the procyclicality can be explained by
one particular mechanism.

3. Ruhm (2012) provides a detailed discussion of this evidence.
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Another joint product of economic activity, air pollution, also presents health
risks, especially for infants or senior citizens who do not participate in the labor force.
A large economics literature examines the relationship between pollution exposure and
health, accounting for potential confounders (Graff Zivin and Neidell 2013). Several
studies link pollution to infant mortality. Currie and Neidell (2005) find that reduc-
tions in carbon monoxide in California over the 1990s saved approximately 1,000 in-
fant lives. Chay and Greenstone (2003) use data from the 1981–82 recession to show
that a 1% drop in total suspended particulates leads to a 0.35% reduction in infant
mortality; TSP reductions nationwide from 1980 to 1982 led to 2,500 fewer infant
deaths. Currie, Neidell, and Schmieder (2009), Greenstone and Hanna (2014), and
Knittel, Miller, and Sanders (forthcoming) also find significant effects of pollution on
infant deaths.

In addition to these economics papers, the epidemiological literature has linked
pollution to mortality. Pollution is an established contributor to cardiovascular (Peters
et al. 2004) and respiratory (Clancy et al. 2002) deaths. Mustafic et al. (2012) pro-
vides a meta-analysis linking both carbon monoxide and particulate matter to heart
attack incidence, and Wellenius et al. (2012) tie particulate matter to strokes. Al-
though pollution is correlated with mortality, it has not yet received attention in empi-
rical research examining the effects of macroeconomic fluctuations on mortality. This
analysis takes a first step toward rectifying this shortcoming.

2. RESEARCH DESIGN

We analyze the relationship between macroeconomic conditions, air pollution, and
mortality rates, using panel data methods that, following Ruhm (2000), have become
standard in this literature.4 Studies based on aggregate data usually estimate some
variant of:

Mjt = αj þ Xjtβ þ Ejtγþ λt þ ϵ jt; ð1Þ
where Mjt is a health outcome (the log of the mortality rate) in location j at time t, E
measures macroeconomic conditions, X is a vector of covariates, α is a location-
specific fixed effect, λ a general time effect, and ϵ is the regression error term. Fol-
lowing most previous research, the natural log (rather than level) of mortality rates is
used.

Unemployment rates are the most common primary proxy for macroeconomic
conditions, and the one focused upon here, although we also discuss results using
an alternative measure. The supplementary characteristics include controls for the

4. Although alternative estimation procedures have some desirable features, we use “stan-
dard” models to maximize the comparability of our results to those obtained in previous
research.
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age structure of the local population and the shares in specified education and race/
ethnicity subgroups as well as location-specific measures of temperature and precip-
itation. The analysis covers 1982–2009. Detailed pollution data are unavailable prior
to 1982, as is information on some of the covariates after 2009 (at the time of anal-
ysis). Our main analysis is at the county-year level; however, we also provide a cor-
responding state-level analysis in appendix B (apps. A–C available online).5 We re-
port robust standard errors that are clustered at the state level.

The year effects, λt in equation (1), hold constant determinants of death that
vary uniformly across locations over time (e.g., advances in widely used medical
technologies or behavioral norms); the county fixed effects, αj, account for differ-
ences across locations that are time invariant (such as persistent lifestyle disparities
between residents of counties in Nevada and Utah). We include state-by-year fixed
effects, allowing the year effects λt to vary across states. The impact of the macro-
economy is then identified from within-location variations relative to the changes in
other areas.6 Although unemployment rates are the proxy for macroeconomic condi-
tions, the mortality effects need not be restricted to individuals changing employment
status. For instance, increases in air pollution due to growth in economic output may
particularly affect the health of infants and senior citizens, who are not in the labor
force.

The primary econometric strategy is to first estimate equation (1), with γ̂ pro-
viding the overall macroeconomic effect, and then to run the augmented model:

Mjt = α0j þ Xjtβ
0 þ Ejtγ0 þ Ajtδ

0 þ λ0t þ ε0jt; ð2Þ
where Ajt is the ambient pollution level at location j and time t. In this specifica-
tion, γ̂0 shows the partial effect of macroeconomic conditions after controlling for
pollution levels, and the degree of attenuation, relative to γ̂ from equation (1), in-
dicates the extent to which pollution is a mediating factor in explaining the overall
macroeconomic effect. The direct impact of pollution, which is hypothesized to raise
mortality, is estimated as δ̂0 in equation (2).7 This is likely to provide a lower bound

5. Recent related research using county or MSA level data includes Charles and DeCicca
(2008) and An and Liu (2012).

6. The impact of national business cycles, which could differ from more localized fluctu-
ations, is absorbed by the time effects. Discussions of macroeconomic effects therefore refer
to changes within locations rather than at the national level.

7. This specification will not pick up nonlinearities in the relationship between mortality
and pollution. We are limited in how finely we can measure the shape of the dose-response
function because of the aggregated nature of our data; however, we explore the effects of
including quadratic terms of pollution in table 8.
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on the true effect to the extent that pollution is only partially controlled for or is mea-
sured with error. For this reason, equation (2) is also estimated with the simultaneous
inclusion of multiple pollution measures, while recognizing that multicollinearity may
limit our ability to interpret the coefficients obtained for the individual pollution var-
iables.8 We also estimate first-stage models, where pollution levels are the dependent
variables and unemployment rates the key regressors, to confirm our hypothesis of a
positive relationship between economic activity and pollution. Our estimates are for a
log-linear model (the dependent variable is the log of the mortality rate and the right-
hand-side variables are in levels) because this is consistent with most previous estimates
and is likely to be the most appropriate specification.9

We test the significance of the change in the coefficient on unemployment be-
tween equations (1) and (2) using two methods. First, we calculated Wald statistics
testing whether the unemployment coefficients differed in the models with and with-
out pollution controls (using the Stata suest command). Second, we use the z-test
statistic introduced by Gelbach (2016) to test the significance of this difference.10

Several potential issues with our estimation procedure deserve mention. First, in-
cluding an endogenous variable (pollution) that is in the causal pathway from un-
employment to mortality introduces a potential “bad control” bias (Angrist and Pischke
2009, 64–66). The issue here is that the coefficient estimated in the regression captures
both the causal effect and potential selection bias. The latter occurs if, holding eco-
nomic conditions constant, there are omitted determinants of mortality that are corre-

8. The correlation coefficient between our state-level measures of CO and PM10 is
0.582, between O3 and PM10 it is 0.293, and between CO and O3 it is 0.084.

9. In a log-linear specification, pollution changes are assumed to have common propor-
tional rather than absolute effects on mortality (i.e., a 1% pollution increase is assumed to
increase mortality by given percentage, whatever its initial level). By contrast, if mortality
were specified in levels, an increase in pollution from 100 to 101 units would have the same
effect as an increase from one to two units, which seems unlikely. In table 8 we investigate
the robustness of our results to these and other alternate specifications.

10. The primary purpose of the Gelbach (2016) study is a critique of the use of sequen-
tially adding control variables to a regression. While this does not apply to our analysis, the
estimator that he provides (along with the Stata command b1x2) is an appropriate test. In-
tuitively, this approach runs the “base” regression (without pollution), then the “full” regres-
sion (with pollution), then provides a consistent estimate of the covariance matrix for the
difference in the coefficient vector of the variables that are in both regressions (including un-
employment). It is based on a Hausman test from a simple identity linking the base- and full-
regression coefficients: β̂1

base = β̂1
full þ ðX0

1X1Þ–1X0
1X2β̂2, where X1 are the controls in both

regressions and X2 are the controls in just the full specification. Derivation of the covariance
matrix is provided in Gelbach (2016), appendix B.
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lated with pollution levels, which are in turn linked to unemployment rates.11 For in-
stance, with cross-sectional data, it is easy to imagine how such confounding factors
might be correlated with emissions. Though it cannot be measured, the selection bias
is likely to be insubstantial given our use of panel data. We use extensive controls, in-
cluding county fixed effects and state-by-year fixed effects, that capture variations in the
pollution-specific treatment effects due to time-invariant location differences and all
time-specific interstate variations.

There is also potential for bidirectional causality. Reduced economic activity,
proxied by the unemployment rate, almost certainly decreases emissions. However,
there is also some evidence that pollution negatively affects labor productivity (Graff
Zivin and Neidell 2012) and work hours (Hanna and Oliva 2015). Pollution im-
pacts on unemployment rates have not, to our knowledge, been examined but are pos-
sible. Our prior is that these effects are small and dominated by the effect of econ-
omic activity on pollution, particularly after including the extensive set of covariates.

Finally, our estimates could be vulnerable to migration bias. Migration could af-
fect the estimates in three ways. First, migrants tend to move from areas of higher
to lower unemployment rates, and healthy individuals are more likely to migrate
than are those in poor health (Halliday 2007). This will introduce a countercyclical
bias in the estimated average mortality effect. Second, these effects may vary with age.
While such age variations have not been extensively studied, Halliday and Kimmitt
(2008) offer tentative evidence that among older (≥ 60-year-old) men, but not women,
migration is concentrated among both the top and bottom (versus the middle) of the
health distribution. Since health shocks are most likely to cause death among those
already in precarious health, it is possible that the estimated procyclicality of mortality
among the elderly could be overstated.12 Third, migration that is unaccounted for

11. To show this, adopting Angrist and Piscke’s (2009, 64–66) notation: let yi be the mor-
tality rate, ci be a binary indicator for unemployment rate (e.g., ci = 1 represents low unem-
ployment/good economy), and wi be pollution. Unemployment then directly affects mortality
and pollution according to yi = ciy1i þ ð1 – ciÞy0i and wi = ciw1i þ ð1 – ciÞw0i, where y1i(w1i) is
the mortality rate (pollution level) in locality i with low unemployment and yoi(w0i) are corre-
sponding values with high unemployment rates. When regressing mortality on both unemploy-
ment and pollution, the unemployment coefficient measures: E½y1ijw1i = w� – E½y0ijw1i = w� =
E½y1i – yoijw1i = w� þ fE½y0ijw1i = w� – E½y0ijw0i = w�g. E½y1i – yoijw1i = w� is the causal effect
of unemployment on mortality. E½y0ijw1i = w� – E½y0ijw0i = w�, if nonzero, indicates selection
bias. This selection bias cannot be definitively signed, without a fuller understanding of why
the effects of pollution might differ in low- versus high-performing economies.

12. However, Halliday and Kimmitt (2008) also provide evidence of substantial attrition
bias among unhealthy seniors and suggest that, for this reason, the finding of high migration
rates among the unhealthy may be overstated or even incorrect.
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in population estimates will lead to a bias, which may be positive or negative, in the
denominator of the mortality rate models. Migration to economically robust regions
will lead to a particularly large understatement of population in these areas and an
overestimate of the procyclicality of mortality. To mitigate this issue, the data on
population estimates, described below, are the most accurate available and take partic-
ular account of noncensus year population flows. In addition, we note that even if
unaccounted-for migration patterns bias the estimates on the responsiveness of mor-
tality rates to economic conditions, they will not affect the attenuation in these result-
ing from adding pollution controls to the model, unless unaccounted-for migration flows
are independently correlated with emissions changes after controlling for observables.

3. DATA

Four primary data sources are used for this investigation: pollution levels from the
Environmental Protection Agency’s Air Quality System (AQS) database, unemploy-
ment rates from US Department of Labor’s Local Area Unemployment Statistics
(LAUS) database, mortality rates from the Centers for Disease Control and Preven-
tion’s Compressed Mortality Files (CMF), and population estimates from the Sur-
veillance Epidemiology and End Results (SEER) program of the National Cancer
Institute. We also used additional sources, described below, to obtain data on state
demographic and weather characteristics.

The AQS database (http://www.epa.gov/air/data/) contains air pollution con-
centration data from monitors in the 50 United States and the District of Colum-
bia. Measures are available for a large number of pollutants, but the three that we
focus on are carbon monoxide (CO), particulate matter less than 10 microns in
diameter (PM10), and ozone (O3).

13 Each are among the six “criteria pollutants”
designated by the Clean Air Act and are thus widely accepted as having negative
health effects. CO, PM10, and O3 were chosen from among the criteria pollutants
because of the large number of monitors in the AQS and because they have been
linked with health problems and mortality in previous research.14 For instance, Currie

13. CO is a by-product of combustion, and the majority of CO emissions come from mobile
sources (cars and trucks). PM10 is a mixture of small particles and liquid droplets. It includes
primary particles emitted directly from sources like construction sites or unpaved roads, and
secondary particles formed by reactions in the atmosphere of chemicals emitted from power
plants, industry, and automobiles. O3 is not directly emitted but is created by chemical reactions
between emissions of nitrogen oxides (NOX) and volatile organic compounds (VOCs). Major
sources of NOX and VOC include emissions from industrial facilities, electric utilities, and
motor vehicle exhaust. See http://www.epa.gov/air/urbanair/.

14. We also attempted to examine PM2.5 (particles smaller than 2.5 microns in diame-
ter) but were unable to do so because of the small amount of monitoring (no more than 40
monitors annually) prior to 1999.
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and Neidell (2005) and Currie et al. (2009) find that infant mortality is positively and
significantly related to CO exposure, while Chay and Greenstone (2003) find a corre-
spondingly significant effect for particulate matter.15

Data on CO concentrations were available from a total of 1,470 monitors from
1980 to 2010; there were 4,144 monitors for PM10 between 1982 and 2010, and
2,799 O3 monitors from 1980 to 2010. For each monitor year, the AQS pro-
vides summaries of air pollution measurements, including arithmetic and geometric
means, percentiles, and days above specified limit values.16 A challenge of using
the AQS is that it provides an unbalanced panel, since pollution monitors change
over time. For instance, the median CO monitor was only active for 7 years, and data
for just 65 CO monitors (4.4%) were available all 31 years. Similarly, the median
PM10 monitor was in the data for 6 years, and fewer than 1.2% were available in all
29 years.

Because each county’s monitors are changing over time, considerable effort and
experimentation were required to come up with meaningful location-specific pollu-
tion measures.17 If we only included counties that had a pollution monitor located
within them, the analysis would be restricted to just 279 counties. Instead, we take
advantage of the known location of each monitor (latitude and longitude) and use
all monitors close to a county, not just those inside it. Specifically, we follow Currie
and Neidell (2005) by calculating a weighted average of pollution readings from all
monitors within 20 miles of the county’s population centroid, weighting by the in-
verse of the monitor’s distance from the centroid.18 This substantially increases the
analysis sample to 8,876 observations for 542 counties.19 Our pollution measures cer-
tainly contain errors because we are attempting to identify average levels for the county

15. Chay and Greenstone examine total suspended particulates (TSPs), an older EPA
designation that has been replaced by PM10 and PM2.5.

16. We use only monitors reporting CO or O3 concentrations at an hourly duration, and
PM10 concentrations for a 24-hour duration. These are the most commonly used durations
for the respective pollutants.

17. Currie and Neidell (2005) use data just from California monitors, and their results
are unaffected by whether they use the subsample of monitors in the panel for the entire
period or the entire unbalanced panel (see their n. 7).

18. County population centroids are calculated by the US Census Bureau, based on the
2000 Census.

19. By contrast, adopting this method at the state level would substantially reduce the
number of observations, since many monitored states do not have a monitor within 20 miles
of the state population centroid. County-level regressions that include only counties con-
taining pollution monitors yield unemployment coefficients that are almost twice as high as
those using the larger sample of counties or the state-level regressions.

676 Journal of the Association of Environmental and Resource Economists September 2016



using monitors for a limited set of locations.20 We discuss alternative measures in
appendix B, when describing our state-level analysis.

The LAUS data (http://www.bls.gov/lau/lauov.htm) came from a federal-state
cooperative effort in which monthly estimates of total employment and unemploy-
ment are prepared for approximately 7,300 areas, including census regions and divi-
sions, states, metropolitan statistical areas, counties, and some cities. Concepts and
definitions underlying the LAUS data come from the Current Population Survey
(CPS), the household survey that provides the official measure of the labor force for
the nation. Our main specifications use annual average county unemployment rates
as the key proxy for macroeconomic conditions. A consistent county-level unemploy-
ment rate data series is available beginning in 1990. We supplemented this by pur-
chasing county-level unemployment data for earlier years from the Bureau of Labor
Statistics (BLS). However, the BLS warns that these data are not fully comparable
and cautions against their use in this way. This is one reason why we will also report
(in app. B) the results of a full state-level analysis, since consistent state unemploy-
ment rates are available throughout the entire analysis period.

The CMF (http://www.cdc.gov/nchs/data_access/cmf.htm) include county- and
state-level mortality and population counts. Data prior to 1988 are publicly available;
those from 1989 to 2009 were obtained through a special agreement with the CDC.
The CMF include a record for every death of a US resident, with source data con-
densed by retaining information on the state and county of residence, year (rather
than exact date) of death, race and sex, Hispanic origin (after 1998), age group (16
categories), underlying cause of death (ICD codes and CDC recodes). The number
of records is reduced in the CMF by aggregating those with identical values for all
variables and adding a count variable indicating the number of such records. The file
also contains census-based population estimates; however, instead of using these, we
obtained population information from the SEER program (http://www.seer.cancer
.gov/data), because these are designed to be more reliable than census estimates.21

20. Chay and Greenstone (2003, 419–20) address the issue of whether the monitors may
be strategically placed by authorities to mislead about true environmental conditions. They
note that the Code of Federal Regulations, which describes criteria that determine the siting
of monitors, specifically forbids this type of strategic siting and that the EPA can enforce this
by overseeing and authorizing localities’ monitor siting plans. However, given the frequency of
entrance and exit of monitors in our panel, it remains possible that these regulations are not
fully enforced.

21. The SEER data are designed to provide more accurate population estimates than
standard census projections for the intercensal years and provide additional adjustments for
population shifts in 2005, resulting from Hurricanes Katrina and Rita. Differences between
the SEER and CMF population estimates are miniscule prior to 2000 but, for some states,
become reasonably large (up to 3%) after 2003.
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Using the CMF mortality and SEER population data, we constructed dependent
variables for the natural logs of annual total mortality rates; annual mortality rates
for eight age groups—infants, 1–19, 20–44, 45–54, 55–64, 65–74, 75–84, and
≥85-year-olds; and mortality rates due to 11 specific causes—respiratory, cardiovas-
cular, acute myocardial infarction (heart attack), ischemic heart disease, cerebrovas-
cular disease (stroke), cancer, accidents (total, vehicular, and nonvehicle), suicide,
and homicide. These outcomes were chosen for consistency with the previous litera-
ture, to test rigorously for differences across age categories (since pollution affects
groups with low or no participation in the labor force), and to distinguish between
sources of death expected to be strongly influenced by pollution levels (e.g., respira-
tory diseases) versus those anticipated to be unrelated to them (e.g., suicides). From
the SEER population data, we also constructed regression controls for the share of
the county population who were female, black, other nonwhite, and aged <1, 1–19,
45–54, 55–64, 65–74, 75–84 and ≥85 years old.

Although our main estimates use counties as the unit of observation, there are
several reasons why a state-year level analysis has advantages. First, we are interested
in examining the extent to which pollution provides a mechanism explaining the
procyclical variation in mortality found in many previous studies, most of which were
conducted at the state level. Second, while there are potentially significant within-
state disparities in pollution and unemployment rates, there is also likely to be more
error in the measurement of both mortality and unemployment rates at smaller geo-
graphic units.22 Smaller counties will also sometimes have zero deaths for some causes
or age groups in some years.23 Third, as mentioned, issues of data comparability
across time also become more pronounced when using county data—for instance, a
consistent unemployment rate series is only available beginning in 1990. Fourth, we
can control for additional characteristics for which we are able to obtain data at the
state but not the county level, as described below. (However, we cannot include state-
year effects in these models.) Finally, there is a question about the level of geographic
aggregation at which the macroeconomic effects actually occur. In this regard, Lindo’s
(2015, 83) analysis is particularly instructive: he concludes that “more disaggregated
analyses—particularly county-level analyses—routinely [produce] estimates that are
smaller in magnitude.” For all of these reasons, we provide a full replication of results
at the state level (see app. B) as well as a summary of findings obtained when using

22. The greater measurement error in county than state unemployment rates is well
known (see, e.g., Ganong and Liebman 2013). Errors in classifying the county of residence
at death have been less studied, but Pierce and Denison (2006) provide evidence of substan-
tial misrecording of counties using mortality data from Texas.

23. We replace these zero values with one so that we can take the natural log. An
alternative would be to estimate negative binomial regression models, which can deal with
zero death counts (Miller et al. 2009), or to drop these observations.
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county-level mortality and pollution data but measuring macroeconomic conditions
at the state level.

As mentioned, we included a number of additional location-specific characteristics
in our state models. State-year level education shares were obtained from the Cur-
rent Population Survey (CPS) March Annual Demographic Survey for the share of
the population (25 and older) who were high school graduates (without college), had
attended but not graduated from college, and who were college graduates (with high
school dropouts the reference group). Since weather can affect mortality directly and
the relationship between pollution and mortality (Schwartz 1994; Samet et al. 1998),
we control for average temperature and precipitation using data from the National Cen-
ters for Environmental Information at the National Oceanic and Atmospheric Admin-
istration.24 Since the relationship between temperature and mortality is nonlinear, we
include a set of indicator variables for 10-degree-Fahrenheit temperature bins, follow-
ing Deschênes and Greenstone (2011). We also control for the state-year level Gini
coefficient, the proportion of the state’s state representatives that are Democrat, and
the urbanization rate in the state.25

Table 1 presents summary statistics separately for in-sample and out-of-sample
counties. The former have lower unemployment and mortality rates but similar ob-
servable demographic characteristics.26 PM10 concentrations are measured in micro-
grams per cubic meter (μg/m3), and CO and O3 concentrations in parts per million

24. Available at http://www.ncdc.noaa.gov/. These data are not available for Hawaii and
so we omit them from our analysis. We also estimated and obtained robust results from
models that controlled for heating and cooling degree days and the Palmer drought severity
index, with data available in all states except Hawaii, Alaska, and Washington, DC. Our state-
level measures of weather are calculated by the National Centers for Environmental Informa-
tion (formerly the National Climatic Data Center), who provide data at the state level, and for
some US cities and climate divisions, but not all counties. Rather than redefine county-level
measures using, for instance, monitor data, we allow the state-by-year fixed effects to account
for weather in our county-level regressions. Likewise, the education variables from the CPS are
calculated at the state, not county, level, so rather than interpolating from census years we
omit them. Because of the relative insignificance of education and weather variables in the
state-level mortality regressions, we do not think these exclusions are important.

25. The state-level urbanization rate is calculated in census years only; we linearly interpo-
late the values for other years. Gini coefficients are available at http://www.shsu.edu/eco
_mwf/inequality.html; the political data are from Klarner (2003) and updates are available at
http://www.indstate.edu/polisci/klarnerpolitics.htm. The District of Columbia does not have
a State House, so its political measure is based on its US House delegate (always Democrat).
Unicameral Nebraska’s political measure is based on the party of its governor.

26. The in-sample counties include counties from all states except Alaska, Hawaii, and
Wyoming and represent 57% of the total US population. The large number of counties, and
the fact that nearly half of the US population lives in counties without a pollution monitor
within 20 miles, highlights the noise in the state-level pollution measure.
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Table 1. Selected Variable Means for In-Sample and Out-of-Sample Counties

In Sample Out of Sample

Mean
Standard
Error Mean

Standard
Error

County unemployment rate (%) 5.489 .027 6.754 .013
Mortality rates (per 1,000):

Total 8.196 .023 10.301 .010
Respiratory {466–96}, [J20–J47,
U04] .570 .003 .727 .001

Cardiovascular {390–448}, [I00–I78] 3.253 .012 4.332 .005
Acute myocardial infarction {410},
[I21–22] .727 .004 1.195 .003

Ischemic heart disease {410–14},
[I20–I25] 1.316 .009 1.813 .004

Cerebrovascular disease {430–38},
[I60–I69] .544 .002 .757 .001

Cancer (140–208}, [C00–C97] 1.922 .005 2.257 .003
Accident {E800–E869, E880–E929},
[V01–X59, Y85–Y86] .353 .001 .551 .001

Vehicle accident {E810–E825},
[V02–V89] .158 .001 .29 .001

Nonvehicle accident {E800–E807,
E826–E949}, [V90–X59,
Y85–Y86] .199 .001 .291 .001

Suicide {E950–E959}, [X60–X84,
Y87.0] .121 .001 .171 .000

Homicide {E960–E978}, [X85–Y09,
Y87.1, Y35, Y89.0] .072 .001 .112 .000

< 1 year old 8.314 .061 12.21 .040
1–19 years old .381 .003 .623 .002
20–44 years old 1.438 .006 1.721 .003
45–54 years old 4.303 .015 4.879 .008
55–64 years old 10.446 .030 11.257 .014
65–74 years old 24.852 .056 25.514 .024
75–84 years old 58.500 .094 59.168 .046
≥ 85 years old 154.63 .245 156.607 .138

State population shares:
< 1 year old .014 .000 .014 .000
1–19 years old .271 .000 .277 .000
20–44 years old .381 .000 .336 .000
45–54 years old .125 .000 .121 .000
55–64 years old .090 .000 .102 .000
65–74 years old .066 .000 .082 .000



(ppm). Figure 1 presents scatter plots of each of the three pollution levels versus the
overall mortality rate and does not provide evidence of a strong relationship between
the two; this is not surprising since potentially important confounding factors have
not been controlled for. Appendix figures A1–A3 show state-specific annual average
ambient concentrations for each of the three pollutants. PM10 and CO trend down-
ward over time in most states, while O3 is relatively flat, but with substantial year-
by-year deviations from trends for all three pollutants.

4. RESULTS

4.1. Macroeconomic Conditions and Pollution

We begin the econometric analysis by testing whether ambient pollution rises during
economic booms and falls during downturns, a necessary first stage for this to pro-
vide a mechanism for the procyclical fluctuation in death rates. In addition to provid-
ing supporting evidence for our main question about mortality over the business
cycle, the relationship between emissions and business cycles is interesting in and of
itself. Surprisingly, we found few other papers directly investigating this issue.27

Table 2 presents regression results where the dependent variables are standardized
pollution measures (with mean zero and standard deviation one) for PM10 (cols. 1
and 2), CO (cols. 3 and 4), and O3 (cols. 5 and 6). All regressions are weighted by

27. Heutel (2012) documents the procyclicality of carbon dioxide (CO2) emissions at the
quarterly level. Using ARIMA regressions, he estimates the elasticity between US GDP and
CO2 emissions levels to be between 0.5 and 0.9. Smith and Wolloh (2012) find that aggre-
gate water quality in the United States is positively correlated with the national unemploy-
ment rate.

In Sample Out of Sample

Mean
Standard
Error Mean

Standard
Error

75–84 years old .040 .000 .051 .000
≥ 85 years old .013 .000 .018 .000
Female .511 .000 .506 .000
Black .111 .001 .088 .001
Other nonwhite .037 .000 .025 .000

Note.—Summary statistics are over the county-year observations, from 1982 to 2009. The left half
of the table includes those 8,876 observations for which we have PM10, CO, and O3 concentrations and
data on all control variables. The right half includes all of the other observations. ICD-9 codes for specific
causes of death categories applying from 1982 to 1998 are shown in braces; corresponding ICD-10 codes,
used from 1999 on are displayed in brackets.

Table 1 (Continued)
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the county’s population and include county fixed effects and state-by-year fixed effects
(not reported). Columns 2, 4, and 6 also control for the county-year level population
shares in the specified age, gender, and race/ethnicity categories.

As hypothesized, there is a negative relationship between the unemployment rate
and all three pollution measures. A one percentage point increase in joblessness is
associated with about a 0.06 standard deviation decrease in the ambient PM10
concentration and about 0.04 standard deviations reduction in ambient CO concen-
trations. The relationship between O3 and unemployment is of similar magnitude
but not quite statistically significant. Controlling for the demographic covariates in-
creases the size and significance of these correlations. These estimates verify our ex-
pectation that pollution is procyclical.

In appendix tables A1 and A2, we present results of an extensive sensitivity
analysis that compares specifications varying according to the level of the observa-
tions (state or county), the inclusion of trends and fixed effects, and the level of
clustering standard errors.28 Each reported coefficient in appendix table A1 is from
a separate regression where the dependent variable is the specified pollution measure
and the reported coefficient is the coefficient on the unemployment rate. In each
specification there is a significant correlation between unemployment and at least
one of the pollutants, though which pollutant enters significantly depends on the

Table 2. Relationship between Pollution and Unemployment Rates

County Pollution Level

Regressor

PM 10 CO O3

(1) (2) (3) (4) (5) (6)

County unemployment
rate (%) –.0153 –.0568* –.00711 –.0398* –.00168 –.0319

(.0388) (.0289) (.0278) (.0215) (.0290) (.0258)
Demographic controls No Yes No Yes No Yes
R-squared .885 .895 .905 .925 .934 .937

Note.—Standard errors clustered at the state are in parentheses (n = 8,876). Dependent variable
is the ambient pollution measure (PM10 or CO), standardized (mean zero, standard deviation one). State-
by-year fixed effects are included but not reported. Even-numbered columns also include controls for the
share of county residents who are female, black, other nonwhite, and seven age groups (<1, 1–19, 45–54,
55–64, 65–75, 75–84, and ≥85 years old). Regressions are weighted by the county population.

* p < .10.
** p < .05.
*** p < .01.

28. Columns 7 and 8 of appendix table A1 present results from regressions run at the
county level but with the unemployment rate measured at the state level, as suggested by
Lindo (2015).
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specification. Because of the high collinearity between the pollutants, we should in-
terpret with caution any differences between the effects of the three pollutants. In
the specifications with linear trends, the correlation between pollution and unem-
ployment is the weakest, and in column 8 there is a significant positive correlation
between ozone and unemployment. We suspect that this arises from a misspecifi-
cation when including linear trends. This claim is bolstered by recent findings in the
literature examining the effect of minimum wage laws on employment (Neumark,
Salas, and Wascher 2014; Sabia 2014), suggesting that including linear time trends in
these models eliminates potentially valid sources of identifying variation. Last, there is
little difference between the magnitudes of the state-clustered and the county-clustered
standard errors. For these reasons, we choose for our main results throughout the
rest of the paper to present the county-level regressions with state-by-year fixed ef-
fects, rather than state-specific or county-specific linear trends, and errors clustered at
the state level (col. 6).29

Most coefficients on the demographic variables are statistically insignificant (app.
table A3). The percentage of the population that is nonwhite is not significantly
related to pollution after controlling for unemployment. Higher population shares in
younger age brackets (below 20 years old) and middle-aged age brackets (45–64 years
old), relative to the excluded bracket (20–44 years old), are correlated with higher
PM10 and CO pollution. A higher female population share is negatively correlated
with all three pollutants but only significantly so for CO. The age population shares
are economically significant, when comparing their magnitudes to those of the unem-
ployment rate. For instance, a one percentage point increase in the 1–19 years old
age share is correlated with a 0.223 standard deviation increase in CO concentra-
tions, compared to the 0.04 standard deviation increase correlated with a one per-
centage point increase in the unemployment rate.30

4.2. Total Mortality

We next turn to the main question of whether pollution provides a possible mech-
anism for the procyclical variation in mortality. Table 3 summarizes the results of
models where the dependent variable is the natural logarithm of the overall death

29. State-by-year fixed effects are more flexible than state-specific linear trends. Including
both state-by-year fixed effects and county-specific linear trends yields results that are gener-
ally unstable and inconsistent because of limited degrees of freedom (there are 542 counties,
so 542 county fixed effect variables plus 542 county-specific linear trend, and 48 states and
28 years, implying 1,344 state-by-year fixed effects, in a total sample of 8,876 county-year
observations). We also included both linear and quadratic trends, and the results were gene-
rally comparable to including just linear trends.

30. More demographic and control variables are available at the state-year level, which
we can control for in our state-year level analysis that does not include state-by-year fixed
effects (see sec. 4.5 and app. B).
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rate. All specifications control for demographic variables and county fixed effects
and state-by-year effects, as well as the county unemployment rate—our proxy for
macroeconomic conditions. The basic model, in column 1, verifies earlier findings
by Ruhm (2000) and others showing that unemployment rates are negatively corre-
lated with mortality, although the coefficient is not statistically significant.31 Specif-
ically, a one percentage point increase in the unemployment rate is associated with
a 0.35% decrease in the total mortality rate. This is smaller than the 0.5% predicted
reduction obtained by Ruhm (2000) but consistent with Stevens et al.’s (2011) find-
ing that the estimated procyclicality of mortality is somewhat attenuated when ad-
ding post-1991 observations to the model.32 Among the demographic coefficients,

31. When the standard errors are clustered at the county level, this coefficient is signifi-
cant at the 10% level (see appendix table A2).

32. Using data from 1978–2006 and a specification similar to that in column 1, they
obtain an unemployment coefficient of –.0019. See Ruhm (2015) for a detailed analysis
confirming that the procyclical variation in mortality has weakened in recent years.

Table 3. Econometric Estimates of the Determinants of Total Mortality

Regressor (1) (2) (3) (4) (5)

County unemployment
rate (%) –.00346 –.00316 –.00285 –.00349 –.00286

(.00330) (.00317) (.00301) (.00328) (.00306)
PM10 .00544*** .00285*

(.00108) (.00157)
CO .0156*** .0160***

(.00436) (.00526)
O3 –.000771 –.00594*

(.00223) (.00228)
F-statistic from Wald test 4.51 2.63 .17 3.76
(P-value) (.0337) (.1052) (.6845) (.0524)
Z-statistic from Gelbach test 2.09 1.59 .36 1.90
(P-value) (.037) (.112) (.717) (.057)
R-squared .988 .988 .988 .988 .988

Note.—The dependent variable is the natural log of the total mortality rate (n = 8,876). State-by-
year fixed effects are included but not reported. All models also include controls for the share of county
residents who are female, black, other nonwhite, and seven age groups (<1, 1–19, 45–54, 55–64, 65–75,
75–84, and ≥85 years old). Regressions are weighted by the county population. Standard errors, clustered
at the state level, are reported in parentheses. The F-statistic and Z-statistic refer to tests on whether the
unemployment coefficients in models 2 through 5 differ significantly from that in model 1. The Z-statistic
uses the procedure described in Gelbach (2016).

* p < .10.
** p < .05.
*** p < .01.
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age has the expected effect on mortality, with higher shares of senior citizens being
correlated with higher mortality rates. The coefficient on the “other” race category
(nonwhite and nonblack) is negative, and the coefficient on the black share is posi-
tive. Gender is insignificant (see app. table A4).

The reminder of table 3 adds controls for pollution to the basic model. Stan-
dardized PM10 concentrations are incorporated in column 2, CO concentrations in
column 3, O3 concentrations in column 4, and all three pollution measures simul-
taneously in column 5. PM10 and CO, each when only one pollutant is included,
are positively correlated with mortality and attenuate the predicted macroeconomic
effect. The point estimate on CO suggests that a one standard deviation increase in
CO predicts a 1.6% rise in the mortality rate. O3 when included alone is uncorre-
lated with mortality and does not affect the relationship between unemployment
and mortality. Controlling for all three pollutants together (col. 5), the CO coeffi-
cient is the only one that is positive and statistically significant at the 1% level, with
a one standard deviation increase still predicting a 1.6% rise in mortality. O3 has a
negative relationship with mortality that is just barely significant, and the relation-
ship between PM10 and mortality is positive but just half as big as in column 2.
Given this pattern, we primarily focus on the results for CO below, while control-
ling for all three types of pollution in our models.33 However, as mentioned earlier,
the results in appendix tables A1 and A2 demonstrate that we should interpret
with caution any difference in the predicted effects of the three pollutants.

Adding CO pollution to the model cuts the unemployment rate coefficient by
17%–18%, depending on whether the other two pollutants are included in the re-
gression. In the basic specification (col. 1), a one percentage point increase in un-
employment reduces predicted mortality by 0.35%; this falls to 0.29% when all three
pollution concentrations are controlled for (col. 5).34 Both test statistics and p-values
are presented in the respective columns in table 3. A Wald test shows that the dif-
ference between the two coefficients is significant at the 10% level when all three

33. Stronger results for CO than other pollutants are consistent with the findings of
other researchers. Currie and Neidell’s (2005) study of infant mortality also uncovers signifi-
cant effects of CO, but not PM10 or O3, concentrations. Beatty and Shimshack (2014)
investigate all three pollutants’ effects on childhood morbidity and find effects from CO but
not PM10. Arceo et al. (forthcoming) examines infant mortality in Mexico and obtains signifi-
cant effects from both PM10 and CO, but their estimated magnitudes of CO coefficients are
larger than those found in the United States.

34. Appendix table A4 also presents results for a model that controls for the pollution
measures but not the unemployment rate. When doing so, CO is positively correlated with
total mortality at the 1% level, while PM10 is insignificantly related to it and O3 is barely
negatively related (see col. 6 of table A4). Coefficients for the remaining right-hand-side
variables are also quite similar to those in our main specifications.
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pollutants are controlled for. The Gelbach (2016) z-statistic likewise indicates that
the inclusion of pollutants attenuates the unemployment coefficient at the 10% level.
Thus, our results should be interpreted as providing reasonably strong evidence that
pollution affects the relationship between business cycles and mortality.

Appendix table A2 repeats the same sensitivity analysis that was presented in
appendix table A1, though here it presents regression results of the relationship
between unemployment and mortality, with and without pollution controls (as in
table 3). In all specifications we observe the expected negative relationship between
unemployment and mortality, but its magnitude and significance varies across spec-
ifications. In our preferred specification (col. 6), this correlation is not quite signifi-
cant (although it is significant based on the standard errors clustered at the county
level), and in this respect our results presented in the main tables throughout the
paper are conservative. In the specifications that include linear trends, the attenuation
of the unemployment coefficient after including pollution controls is often insubstan-
tial. As described above, we argue that including linear trends, rather than state-by-
year fixed effects, is a misspecification. Nevertheless, we emphasize that our finding
that including pollution controls attenuates the relationship between unemployment
and mortality is sensitive to the inclusion of linear trends, rather than state-year fixed
effects.35

Attenuation bias may plague these estimates, especially because of the potential
for measurement error in the pollution variables.36 We conduct errors-in-variables
regressions, allowing for different levels of reliability in the pollution measures to
see how attenuation bias affects the pollution and unemployment coefficients.37 The
results are reported in appendix table A5. This test is limited in important ways.38

But the results suggest that measurement error may be causing a downward bias

35. See table 8 for a model that includes both linear and quadratic time trends.
36. Measurement error in the pollution variables is likely to be more severe at the state

than at the county level, while the opposite is likely to be true for measurement error in the
unemployment rate. See appendix B.

37. Errors-in-variables regression is a method for accounting for attenuation bias. For a
specified level of reliability in a set of independent variables, an errors-in-variables regression
will provide updated coefficient estimates for all independent variables. While it is known
that attenuation bias pushes the coefficients of the mismeasured variables to zero, errors-in-
variables regression gives information about the direction of bias of the other variables.

38. First, clustering of standard errors is only possible with bootstrapping. With boot-
strapping, population weighting is not allowed, and it is not possible to include the large
number of county and state-by-year fixed effects. So, we do not bootstrap and instead use
regressions with nonrobust standard errors. Second, the reliability ratios cannot be lower than
the R-squared values from regressions of the pollution measures on all other controls (0.89 for
PM10, 0.92 for CO, and 0.94 for ozone), so we are unable to test under low reliability ratios.
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(more negative) on our estimated unemployment coefficients,39 and therefore that
pollution may attenuate the unemployment coefficient by a larger amount than ap-
pears in our estimates. This implies that our reported results are conservative.

4.3. Age-Specific Mortality

Miller et al. (2009) find that procyclical variations in mortality are particularly pro-
nounced among the young and old—who are seldom directly involved in the labor
market. Changes in pollution levels could explain some of these patterns, since the
health of these groups might be especially vulnerable to environmental risks, and nega-
tive shocks might be relatively likely to result in death.40 We address this possibility in
table 4, which summarizes estimation results for the mortality rates of eight age groups:
<1, 1–19, 20–44, 45–54, 55–64, 65–74, 75–84, and >84-year-olds. For each age
group, table 4 presents the results of two specifications. Column a controls for county
unemployment rates, county and state-by-year effects, and demographic variables, but
not air pollution.41 Column b adds controls for the standardized pollution levels.

In the basic model (col. a), unemployment is negatively correlated with the
mortality rates of all age groups except infants and 1–19-year-olds, although the rela-
tionship is significant only for the oldest age group. A one point increase in the un-
employment rate is predicted to reduce the mortality of >84-year-olds by 0.44%.
This compares to statistically insignificant decreases of 0.62%, 0.29%, 0.22%, 0.09%,
and 0.22% for 20–44, 45–54, 55–64, 65–74, and 75–84-year-olds and insignificant
increases of 0.28% and 0.46% for infants and 1–19-year-olds.

When adding controls for pollution concentrations (specification b), we see the
hypothesized attenuation of the macroeconomic coefficients for elderly: the unem-
ployment coefficient declines, in absolute value, by 23%, 12%, and 9% for 65–74,
75–84, and >84-year-olds. However, none of these changes are statistically signifi-
cant. The only statistically significant difference between unemployment coefficients
occurs for 20–44-year-olds. It is noteworthy that the large (though insignificant)
macroeconomic fluctuations in deaths of 1–19-year-olds are not substantially affected
by the inclusion of the pollution variables, which makes sense if these deaths occur
for reasons that are largely unrelated to environmental risks.42 As above, PM10 and

39. Compared to the least squares regressions, with a reliability ratio of 0.96 on all three
pollution measures, the unemployment coefficient drops by 11%, from –0.00286 to –0.00254.

40. Much of the prior literature on the health effects of pollution focuses on infant
mortality (Chay and Greenstone 2003; Dehejia and Llenas-Muney 2004; Currie and Neidell
2005; Currie et al. 2009; Greenstone and Hanna 2014; Knittel et al., forthcoming).

41. Observations are weighted by county population in the specified age category.
42. Consistent with this, accidents were the leading cause of death in 2010 for 1–4-, 5–14-,

and 15–24-year-olds—accounting for 32%, 31%, and 41% of mortality for these groups—but
were much less important for infants or senior citizens, where they were responsible for 5% and
2% of fatalities (Murphy and Kochanek 2012).
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O3, are with a few exceptions, not significantly related to the mortality rates of any of
the groups, whereas CO concentrations are predicted to significantly increase death
rates for all eight age categories.

4.4. Cause-Specific Mortality

The evidence that changes in air pollution explain a portion of the procyclical
fluctuation in mortality will be strengthened if the unemployment coefficients are
more sharply attenuated after controlling for emissions for fatalities that we expect
to be strongly related to pollution levels (such as those from respiratory diseases) than
for those where the relationship is anticipated to be weaker (like cancer deaths) or
nonexistent (like homicides).43 We examine this in table 5 by considering deaths from
respiratory, cardiovascular, and cerebrovascular diseases, from cancer, and from two
subcategories of cardiovascular disease—ischemic heart disease and acute myocardial
infarction (heart attacks).

Mortality rates are negatively correlated with unemployment rates for four of
the six causes of death in the basic model (col. a), without controlling for pollution,
although the association is not significant.44 Cardiovascular deaths are the most
procyclical—a one percentage point increase in the unemployment rate decreases
predicted cardiovascular deaths by 0.66%. The same rise in unemployment is esti-
mated to reduce mortality from respiratory disease, heart attacks, ischemic heart
disease, and stroke by 0.3%–0.4%. Cancer fatalities are unrelated to macroeconomic
conditions, as has been found previously (Ruhm 2000).

The pollution measures are added as controls in specification b. Based on the
literature, we hypothesize that pollution will increase respiratory deaths and possibly
cardiovascular deaths. PM10 and O3 usually do not have a significant effect, consis-
tent with the results for total mortality, except for a barely significant positive co-
efficient on PM10 for cardiovascular fatalities. Conversely, ambient CO levels are
significantly positively associated with respiratory, cardiovascular, and ischemic heart
disease deaths: a one standard deviation increase in CO concentrations predicts 3.0%,
0.9%, and 2.6% increases in mortality from these causes. The coefficient on CO is also
positive and significant for heart attack and stroke deaths. This is consistent with
earlier findings of a positive effect of pollution for these causes of death. The coeffi-
cient on CO for cancer deaths is barely significant and small.

43. Peters et al. (2004) uncover a positive correlation between exposure to pollutants
caused by traffic and heart attack. Mustafic et al.’s (2012) meta-analysis indicates that short-
term exposure to several pollutants, including PM10 and CO, is significantly associated with
heart attack risk. Clancy et al. (2002) demonstrate a correlation between particulate matter
concentrations and respiratory and cardiovascular deaths. Wellenius et al. (2012) link daily
levels of PM2.5 to strokes.

44. When errors are clustered at the county level, the coefficient for cardiovascular
deaths is significant.
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Controlling for pollution reduces the magnitude of the unemployment coeffi-
cient for respiratory deaths by about 40%, although the original effect was of small
magnitude and imprecisely estimated. A Wald test shows that this difference is sig-
nificant at the 5% level. It slightly attenuates the predicted effect on cardiovascular fa-
talities, but when focusing on ischemic heart disease, which is likely to be responsive

Table 5. Econometric Estimates of the Determinants of Mortality from Specific Diseases

Respiratory Cardiovascular Heart Attack

Regressor (a) (b) (a) (b) (a) (b)

County
unemployment
rate (%) –.00356 –.00205 –.00658 –.00612 –.00270 –.00242

(.00691) (.00669) (.00420) (.00385) (.00767) (.00738)
PM10 .00903 .00465* –.00449

(.00711) (.00264) (.00624)
CO .0304** .00922* .0181

(.0138) (.00520) (.0129)
O3 –.00641 –.00545 –.00588

(.0117) (.00476) (.0127)

Ischemic Heart
Disease Stroke Cancer

(a) (b) (a) (b) (a) (b)

County
unemployment
rate (%) .00446 .00492 –.00416 –.00337 .000730 .000930

(.0111) (.0111) (.00280) (.00289) (.00122) (.00122)
PM10 .000578 .000745 .000897

(.00945) (.00375) (.00149)
CO .0255* .00985* .00525**

(.0144) (.00506) (.00205)
O3 –.0182 .0111 –.00187

(.0120) (.00700) (.00272)

Note.—The dependent variables are natural logs of the specified cause-specific mortality rate (n = 8,876).
All models control for state-by-year fixed effects and county-year level demographic characteristics. Ob-
servations are weighted by the county population. Standard errors, clustered at the state level, are reported
in parentheses. For respiratory deaths, the unemployment coefficient is significantly different between
columns a and b. In all other columns, there is no statistically significant difference between the unem-
ployment coefficient in columns a and b.

* p < .10.
** p < .05.
*** p < .01.
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to short-term triggers and changes in risk factors,45 the magnitude of the coefficient
actually increases. The estimated unemployment effect declines by 19% for stroke
deaths and by 10% for heart attack fatalities. With the exception of respiratory deaths,
none of these changes are statistically significant.46

As a placebo test, table 6 presents information on deaths from external causes,
including motor vehicle and other accidents (separately), suicides, and homicides.
Mortality rates from motor vehicle accidents are procyclical, and the others are coun-
tercyclical, though none of the relationships is significant.47 We do not expect fatali-
ties from these causes to be strongly related to pollution levels, and they are not for
suicides, homicides, or motor vehicle deaths. The last finding is especially comforting
given the potential for variation in driving behavior to be a confounding omitted
variable.48 Surprisingly, PM10 pollution is positively correlated with nonvehicle acci-
dental deaths, and controlling for it increases the magnitude of the (positive) unem-
ployment coefficient. A potential explanation is that many deaths in this category
occur at work and employment in “polluting” industries is less safe, so that when
production rises, both emissions and nonvehicle accidents increase. The data do not
distinguish whether deaths occurred on the job, but evidence from the Bureau of
Labor Statistics Injuries, Illness, and Fatalities, Census of Occupational Injuries Data-
base confirms the high rates of fatal injuries in the cyclically sensitive manufacturing
and construction industries.49 We replicated the regressions for nonvehicle accidental

45. Pope et al. (2006) find a link between short-term pollution exposure and ischemic
heart disease.

46. We also replicate table 5’s regressions restricting the deaths to just infants or to just
those 85 years old or older, since mortality rates among these groups may be the most sensitive
to pollution and to the business cycle. The causes of death from table 5 are not major
contributors to infant mortality, so there was little relationship between those death rates and
unemployment. The correlation between CO and infant respiratory mortality is about five times
as large as the correlation between CO and overall respiratory mortality. For those 85 years and
older, cardiovascular deaths and stroke deaths were significantly procyclical.

47. These results are consistent with prior research findings (e.g., Ruhm 2000), except
that a procyclical variation in nonvehicle accidents and homicides has sometimes previously
been found. Ruhm (2015) provides evidence that nonvehicle accidents have shifted from
being procyclical to countercyclical over time.

48. Controlling for per capita miles driven (using data from http://www.fhwa.dot.gov
/policyinformation/statistics.cfm), which are significantly correlated with the vehicle fatality
rate, does not substantially alter these results.

49. For instance, using data for 2009 from http://www.bls.gov/iif/oshwc/cfoi/cftb0241
.pdf (accessed September 21, 2015), we calculate that construction industries had a nonvehicle
fatal accident rate that was over four times as large as that for all industries (6.9 versus 1.5 per
100,000 workers) and that this industry accounted for over 30% of such occupational mor-
tality in that year.
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deaths separately for working age (20–64) and non–working age people. In concor-
dance with our hypothesis, the coefficient on PM10 for working age deaths is about
50% larger than the coefficient for non–working age deaths, but both are significantly
positive.

4.5. State Analysis

We replicated our analysis using state- rather than county-level data. The proce-
dures for doing so, issues raised in such an analysis, and the results obtained are

Table 6. Econometric Estimates of the Determinants of External Causes of Death

Vehicle Accident Nonvehicle Accident

Regressor (a) (b) (a) (b)

County unemployment
rate (%) –.00471 –.00534 .00836 .0101

(.00323) (.00338) (.0104) (.00915)
PM10 –.00398 .0232***

(.00665) (.00748)
CO –.00117 .0148

(.0136) (.0139)
O3 –.0114 –.00517

(.00979) (.00844)

Suicide Homicide

(a) (b) (a) (b)

County unemployment
rate (%) .0112 .00950 .00751 .00750

(.0140) (.0120) (.0116) (.0113)
PM10 –.00442 –.0116

(.0166) (.0138)
CO –.0342 .0320

(.0525) (.0308)
O3 –.00121 –.0194

(.0141) (.0163)

Note.—The dependent variables are the natural logs of the specified cause-specific mortality rate (n =
8,876). All models control for state-by-year fixed effects and county-year level demographic characteristics.
Observations are weighted by county population. Standard errors, clustered at the state level, are reported
in parentheses. There is no statistically significant difference between the unemployment coefficient in
columns a and b.

* p < .10.
** p < .05.
*** p < .01.
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detailed in appendix B. The results for total mortality are remarkably similar to those
found at the county level. Pollution is procyclical with only CO (and not PM10 or
O3) positively predicting death rates. The overall macroeconomic effect and the
attenuation from controlling for pollution are also quite similar to those found above:
a one percentage point rise in unemployment predicts 0.32% reduction in total mor-
tality and this effect is attenuated by 13% with the addition of pollution covariates.

For age and cause of death, the findings are also generally qualitatively consistent
with those from the county-level analysis, but the predicted unemployment rate
effects are often larger at the state level, in accord with results obtained in Lindo
(2015). Conversely, the significance of the correlation between CO and mortality
decreased in most specifications at the state level, which we attribute to the coarser
geographic detail of the CO measure. We also followed Lindo’s suggestion to estimate
county-level models but controlling for state rather than county unemployment rates.
In part, this may account for measurement error, if unemployment is better measured
at the state level and pollution better measured at the county level. The results of this
analysis, for total mortality, are presented in table 7 (standard errors are clustered at
the state level). This table typically reveals larger unemployment rate coefficients than
in the pure county-level analysis (table 3), while the pollution coefficients were little
changed, and the attenuation in the unemployment effect when including controls for
all three pollution measures is marginally larger (19% versus 17%).

4.6. Robustness Checks

Table 8 summarizes additional robustness tests. County-level data are used, and all
models control for demographic variables as well as county- and state-by-year fixed
effects. Each table entry shows the unemployment rate coefficient from a separate
regression. The second row for each model also holds constant the three pollution
measures. Thus these replicate the specifications in columns 1 and 5 of table 3,
other than the changes that are detailed in the third row. Of primary interest is the
extent to which the addition of pollution controls attenuates the unemployment
coefficient.50 In table 8, the standard errors are clustered at the county, not the state,
level. Although this specification is less conservative, we choose it in this table to
make clearer how the various robustness checks affect the significance of the unem-
ployment coefficients. With county-clustered errors, the basic specification (model 1
in table 8) yields coefficients on unemployment that are significant at the 10% level.
Comparing the significance level across the models in table 8 shows how the specifi-
cations affect the main results, although the significance will generally be lower with
state-clustered standard errors, as shown in appendix table A2.

50. All other analyses, at both the state and county level, have also been subjected to
these robustness tests, with results available upon request.
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Model 1 repeats the results of the basic specification (but with standard errors
clustered at the county level), showing that the three pollution measures “explain”
(in a statistical sense) around one-sixth of the total macroeconomic effect. Model 2
is the same, except that the data are not weighted by county population. This might
be desirable if, for example, pollution is more accurately measured in a smaller and
less populous county, because it is geographically small and more of the population
is close to the pollution monitors.51 The overall macroeconomic effect is considerably
weaker in this case—the unemployment coefficient is –.00222 rather than –.00346
and is not statistically significant—but the attenuation when controlling for pollution
is still around 15%.52 In model 3, we do not weight the pollution monitor data by
the percent of total potential monitor days actually observed, which might make sense
if the monitor days are chosen randomly so that, for instance, a monitor with observa-
tions during 183 days should count just as much as one operating every day of the year.
Such reweighting has virtually no impact on the results. In model 4, we drop the years
1982–84, where complete data were available for only a few counties, again without
changing the predicted effects.

Table 7. Econometric Estimates of County-Level Total Mortality, Controlling for State
Unemployment Rate

Regressor (1) (2) (3) (4) (5)

State
unemployment
rate (%) –.00419*** –.00399*** –.00349*** –.00418*** –.00340***

(.00116) (.00110) (.00115) (.00115) (.00111)
PM10 .00695*** .00520***

(.00180) (.00150)
CO .0164*** .0154***

(.00536) (.00527)
O3 .000831 –.00316

(.00426) (.00352)
R-squared .988 .988 .988 .988 .988

Note.—The dependent variable is the natural log of the total mortality rate (n = 8,876). County and
year fixed effects and demographic characteristics are included but not reported. Observations are weighted
by the county population. Standard errors, clustered at the state level, are reported in parentheses.

* p < .10.
** p < .05.
*** p < .01.

51. More generally, unweighted estimates are often preferred to those that are weighted
(e.g., see Wooldridge 1999; Butler 2000; Solon, Haider, and Wooldridge 2015).

52. At the state level, the results are considerably stronger when not weighting the regres-
sions by (state) population.
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Model 5 captures potential nonlinearities in the pollution-mortality relationship
by adding quadratic terms for the pollution measures. None of the quadratic term
coefficients are significant (the point estimates suggest that mortality is concave in
PM10 and ozone levels and convex in CO), and their inclusion has no effect on the
unemployment rate-mortality relationship. Model 6 age adjusts the total mortality
rate using CDC definitions of the age-standardized population (e.g., see Murphy,
Kochanek, and Xu 2012).53 In contrast to Stevens et al. (2011), we obtain very simi-
lar results to those found when using unadjusted mortality rates. A likely reason for
the difference is that we include more complete controls for age in all of our models.54

Model 7 includes controls for state-specific linear and quadratic time trends.
This specification is less general than our preferred model, which includes a full set
of state-by-year fixed effects, but is presented because state trends have frequently
been included in related previous research (e.g., Dehejia and Lleras-Muney 2004;
Stevens et al. 2011; Hoynes, Miller, and Schaller 2012; Schaller 2013). The results
are robust to this specification, although with slightly smaller coefficient estimates
and standard errors. But as shown in appendix tables A1 and A2, the inclusion of
state or county-level linear trends reduces the attenuation of the unemployment coeffi-
cient when controlling for pollution.

The dependent variable in model 8 is the level rather than log of total mortality.
The unemployment rate coefficients are reduced, as expected since mortality rates
are per 1,000 individuals, but the addition of pollution controls continues to atten-
uate the predicted macroeconomic effect, although by a modestly smaller amount
than before. Finally, in column 9 we include only those counties that include a mo-
nitor, rather than those that have a monitor within 20 miles (4,082 counties rather
than 8,876 counties). This smaller sample includes more populous counties on aver-
age, and the relationship between mortality and unemployment is 60% larger than in
the main model. Including pollution reduces the coefficient magnitude by about 10%.

We also estimated a number of additional models. As an alternative to the stan-
dardized pollution variables, we kept pollution in native units (i.e., in μg/m3 for
PM10 and ppm CO and O3). This had no impact on the estimated effects of macro-
economic conditions, nor did it change the direction or relative significance of the
pollution coefficients. Second, we estimated specifications using trend deviations in
Gross State Product (GSP) as the macroeconomic proxy.55 The GSP coefficient was

53. When age standardizing, mortality in each age category is weighted by a fixed age
distribution for each location, rather than the actual age distribution.

54. Our regressions include seven age categories (plus a reference group) versus just two
in Stevens et al. (2011).

55. Data were from the Bureau of Economic Analysis: http://www.bea.gov/iTable
/iTable.cfm?ReqID=70&step=1. We detrended each state’s annual real GSP (in logs) using
the Hodrick-Prescott filter (Hodrick and Prescott 1997), with a smoothing parameter of
6.25 for annual data (Ravn and Uhlig 2002).
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positive but not quite significant (the p-value was 0.19), weakly suggesting the pro-
cyclicality of mortality. However, the attenuation occurring when adding the pollu-
tion controls was only around 2%.56 Third, we replicated the regressions after first-
differencing the pollution measures, unemployment, and mortality rates. The relation-
ship between unemployment and pollution was consistent with the base case results
though somewhat smaller in magnitude, but with no evidence of a relationship
between pollution and mortality. We attribute this to a misspecification from first-
differencing when the data are actually stationary.57 Fourth, we restricted the sample
to those county years for which we have a measure for CO, but not necessarily for
the other pollutants. We do this since CO was most consistently linked to deaths in
our and previous studies. This increases the sample size from 8,876 to 12,498 county
years. The results are similar to those using the base specification, though the magni-
tude of the relationship between unemployment and mortality is somewhat reduced.
Finally, we estimated models for the subperiods 1982–94 and 1995–2009.58 Consis-
tent with the results of two recent studies (Stevens et al. 2011; Ruhm 2015), we
found that mortality was highly procyclical during the earlier period but not at all in
the later one, with the addition of pollution controls modestly attenuating the pre-
dicted macroeconomic effects in both periods. However, as Ruhm (2015) has em-
phasized, estimates obtained using relatively short time periods are likely to be sensi-
tive to the precise choice of starting and ending dates, and so we do not have much
confidence in these results.

4.7. Comparison to Other Estimates

The preceding analysis demonstrates that air pollution provides a plausible mecha-
nism for some of the procyclicality of mortality. Causality is difficult to prove because

56. Differences in results when using GSP versus those for unemployment rates are not
surprising, since previous studies (e.g., Gerdtham and Johannesson 2005) provide evidence of
stronger procyclical fluctuations in mortality when proxied by unemployment rates than
when using other measures, such as deviations from GDP trends.

57. Unit root tests suggested that most series were stationary. Specifically, we conducted
the Levin-Lin-Chu (2002) and the Harris-Tzavalis (1999) tests for stationarity for all three
pollution variables, the unemployment rate, and total mortality. Since both tests require
balanced panels, we used the subset of counties that are present in all years from 1986 to
2009 (185 counties) in this analysis. We reject a unit root for both PM10 and O3 using
both tests but for CO only with the Levin-Lin-Chu test. We reject a unit root for unem-
ployment and for total mortality only with the Harris-Tzavalis test (which is more appropri-
ate in our data set with large N but moderate T).

58. We break the sample in this way because 1995, which is roughly the midpoint of the
full sample period, is the first year for which PM10 data become available in the majority of
states.
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of the potential for uncontrolled confounding factors. We can, however, examine
whether our predicted pollution effects are plausible when compared to results from
previous research providing microlevel estimates of the relationship between ambient
concentrations and mortality. This exercise is summarized in table 9, with a detailed
description of the underlying methods and calculations provided in appendix C.

Although the basic procedure is straightforward, several issues need to be ad-
dressed. First, the estimates above examined the percent change in mortality pre-
dicted by a one standard deviation change in the specified pollution level. By contrast,
earlier research reports effects of standard units of pollution (e.g., parts per million or
μg/m3) on different outcome measures (e.g., deaths per 100,000 or relative risk
ratios). Therefore, our first task was to use conversion factors to make our estimates
as comparable as possible to those of prior investigations. Second, some previous
studies focused on incidence (e.g., of strokes or heart attacks) rather than mortality
rates. In these cases, we make the strong assumption that the incidence and mortality
effects are comparable. Third, the prior research analyzes a limited set of mortality out-
comes, using regression specifications that may be quite different than ours.

Given these issues, we present point estimates only (no confidence intervals or
standard errors) to highlight that our “back-of-the-envelope” calculations are not
meant to provide precise estimates but, instead, a qualitative assessment of how our
results compare to those obtained previously. We also emphasize that the prior esti-
mates are often imprecise, so that deviations between our results and those of earlier
work do not necessarily indicate biases or errors in our predictions. For this analysis
we use our estimates from the state-level analysis (see app. B), because these provide
more consistent estimates of the relationship between mortality and unemployment.59

Table 9 provides consistent, although certainly not definitive, evidence corroborat-
ing our hypothesis that pollution may explain a substantial portion of the procy-
clicality of mortality. Based on prior estimates of the mortality effects of pollution,
combined with our results showing how pollution varies with macroeconomic condi-
tions, pollution is estimated to account for between 5% and 40% of the procyclicality
of mortality in most models, although with smaller or larger estimates in three cases
(cols. 4, 6, and 7). Conversely, estimates based fully on our analysis (including those
for the predicted mortality effects of pollution) suggest that air pollution accounts
for 8%–12% of the cyclical fluctuations, in cases where we estimate that it has any
effect.60

59. In particular, the relationship between unemployment and infant mortality, one of
the main outcomes examined in previous studies, is positive (but insignificant) in the county-
level models.

60. We did not find a significantly positive effect of PM10 on deaths from strokes, heart
attacks, or cardiovascular diseases, so table 9 reports a zero impact in these cases.
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5. DISCUSSION

Recent research indicates that mortality increases during times of economic strength
and declines when the economy weakens. This relationship is strongest for the young
and old, rather than for persons of prime working age, suggesting that the direct
effects of changes in labor market conditions are unlikely to fully explain these pat-
terns.61 A plausible alternative is that variations in other risks explain some of the
macroeconomic fluctuations. One such risk, traffic fatalities, has been widely studied
and universally found to increase when the economy strengthens. However, a differ-
ent potential health threat—air pollution—is also likely to depend on the state of the
economy but has not been previously studied. We begin to remedy this shortcoming
by investigating how three types of pollutants, carbon monoxide (CO), particulate mat-
ter (PM10), and ozone (O3), fluctuate with macroeconomic conditions and whether
these variations help to explain observed fluctuations in mortality rates.

Specifically, we used panel data for 1982–2009 to identify the effect of the
macroeconomy on mortality rates, with and without controls for ambient pollution
concentrations. Consistent with previous research, we uncovered a negative correla-
tion between county unemployment and mortality rates, after controlling for county
demographic characteristics and state-by-year fixed effects. Adding the three air pollut-
ants to the model attenuated the predicted unemployment rate effect by about 17%,
consistent with a substantial role for air pollution. This attenuation is significant at the
10% level or better but is insubstantial in models that include linear time trends. CO
concentrations were estimated to be more important than PM10 or O3 concentrations,
but we do not know whether this represents differences in true health effects, the ac-
curacy of pollution measurement, or correlations with other types of pollution or un-
controlled confounding factors.62

The results for specific causes of death were also largely consistent with a role
for air pollution as a mechanism explaining procyclical changes in mortality. In par-
ticular, CO levels had large positive direct estimated effects on fatalities from respira-
tory causes and their inclusion substantially and significantly attenuated the unem-

61. However, there could be indirect effects. For example, working age individuals may
have more time during economic downturns to care for young children or aged parents, re-
sulting in health benefits for these groups.

62. The toxicity of exposure to high CO levels has long been understood, and recent
epidemiological studies also suggest the dangers of exposure at lower levels, for even relatively
brief periods of time (US EPA 2010). Consistent with this, some recent research (Currie and
Neidell 2005; Beatty and Shimshack 2014; Arceo et al., forthcoming) finds a key role for CO.
However, other investigations obtain negative health effects of total suspended particulates
(Chay and Greenstone 2003) or, in some specifications, PM10 (Knittel et al., forthcoming).
We also link PM10 to mortality in some of our estimates. Thus, disentangling between CO
and PM10 mortality effects remains an area with unanswered questions.
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ployment rate coefficients in these models. However, the macroeconomic estimates
were often imprecise, and the attenuation resulting from including the pollution
controls was modest for cardiovascular mortality, the leading cause of death. Pollu-
tion levels were also positively associated with nonvehicle accidental deaths for reasons
that are not well understood but could be related to the growth, during economic
rebounds, of risky cyclically sensitive jobs such as those in construction industries. As
a check on the plausibility of our results, we combined our estimates of the respon-
siveness of pollution to macroeconomic conditions with the findings of detailed previ-
ous investigations examining pollution effects on mortality. The results of this analysis
corroborate the possibility that changes in pollution levels explain a portion of the ob-
served procyclical variation in deaths.

This research should be considered preliminary because of some unexplained
results and since many extensions would be desirable. At the most basic level, we
cannot be sure that we are accurately estimating the true effects of pollution. Our
pollution measures are crude, being limited to just three of many types of pollut-
ants, and measured with error, leading to an understatement of the true effects. In
future work, it would be useful to control for additional pollutants and to go be-
yond average ambient concentrations (e.g., by examining peak levels and fluctuations
around the mean). The use of county-level data is also potentially problematic since
unemployment rates are measured quite noisily. We addressed this by conducting
a state-level investigation, which provided results that were largely consistent with
county-level findings.

Second, we only examine the contemporaneous relationship between health, pol-
lution, and the business cycle; however, both pollution and recessions could have
uncaptured longer-term effects.63 Finally, we cannot be sure that an attenuation of
the estimated macroeconomic effects occurring when pollution controls are added
to the model reflects a causal relationship rather than a spurious correlation be-
tween pollution and unobserved factors. This may lead to an overstatement of the
true effect of pollution and suggests that alternative strategies, such as instrumental
variables techniques, might be useful.64

Our findings should certainly not be taken to imply that recessions are beneficial
(although they may be slightly less costly than is commonly understood) or used to
argue for (or against) macroeconomic stabilization policies. Indeed, the procyclicality
of pollution-induced mortality could be irrelevant to optimal emissions policy, if
the marginal external damages (to which the marginal price of pollution should be

63. See Coile, Levine, and McKnight (2014) for evidence that recessions have long-run
effects on health.

64. On this front, Hicks et al. (2015) conduct a similar analysis using a meteorological
phenomenon known as thermal inversions as an instrument for pollution.
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equalized) do not vary over the business cycle. Conversely, it may be useful to mod-
erate the cyclical fluctuations in pollution if the damages are nonlinear, or if the
elimination or moderation of mortality spikes during expansions is a public policy goal
in its own right. A tradable emissions permits scheme might assist in accomplishing
this goal since the costs of polluting would rise in periods of economic strength, when
the demand for permits is high.
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