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SUMMARY

Sound perception relies on the planar polarization of
the mechanosensory hair cell apex, which develops
a V-shaped stereocilia bundle pointing toward an
eccentric kinocilium. It remains unknown how intrin-
sically asymmetric bundles arise and are concomi-
tantly oriented in the tissue. We report here that
mInsc, LGN, and Gai proteins, which classically
regulate mitotic spindle orientation, are polarized in
a lateral microvilli-free region, or ‘‘bare zone,’’ at the
apical hair cell surface. By creating and extending
the bare zone, these proteins trigger a relocalization
of the eccentric kinocilium midway toward the cell
center. aPKC is restrained medially by mInsc/LGN/
Gai, resulting in compartmentalization of the apical
surface that imparts the V-shaped distribution of
stereocilia and brings the asymmetric bundle in reg-
ister with the relocalized kinocilium. Gai is addition-
ally required for lateral orientation of cochlear hair
cells, providing a possible mechanism to couple
the emergence of asymmetric stereocilia bundles
with planar cell polarity.

INTRODUCTION

The establishment and maintenance of polarity is critical for the

function and survival of essentially all cells. One striking example

in mammals is found in the sensory epithelium of the cochlea,

wheremechanosensory hair cells (HCs) perceive sounds through

microvilli-derived stereocilia at their apical surface (AS). HCs

display two levels of planar polarity. First, intrinsic polarity is

defined asavector running from thecell center toward the eccen-

tric primary cilium, or kinocilium, that is locatedat the vertexof the

V-shaped bundle of stereocilia. Second, HCs are uniformly ori-

ented in the cochlea, their planar vectors aligned with themedio-

lateral axis of the organ of Corti, a coiled ribbon bearing one row

of inner hair cells (IHCs) and three rows of outer hair cells (OHCs).

This concerted tissue orientation is referred to as planar cell

polarity (PCP) (Goodrich and Strutt, 2011) and, together with

cell-intrinsic asymmetry, is crucial forHC function, asonly stereo-
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cilia deflections along the mediolateral axis can efficiently modu-

late electric currents in HCs (Shotwell et al., 1981).

By embryonic day 14.5 (E14.5) in the mouse, prospective HCs

are postmitotic but still morphologically undifferentiated. The

first evidence of planar polarity occurs when, driven by an un-

known mechanism, the kinocilium shifts away from the center

of the HC to a roughly lateral position, followed by preferential

growth of nearby microvilli into stereocilia (Cotanche and Cor-

win, 1991; Denman-Johnson and Forge, 1999; Tilney et al.,

1992). Because intrinsic asymmetry and tissue orientation are

thus established together and interlocked, the existence of two

levels of HC polarity remained unclear until analyses of mouse

mutants for homologs of ‘‘core’’ PCP genes in invertebrates.

Reminiscent of misoriented wing hairs or body bristles in fly

mutants, mouse PCP mutants show mild to randomized HC

orientation defects depending on the gene, HC subtype, or

cochlear region (Curtin et al., 2003; Lu et al., 2004; Montcouquiol

et al., 2003; Wang et al., 2005, 2006). Kinocilia still shift to the HC

periphery, but their positions are no longer uniformly lateral and

foreshadow HC misorientation before bundles become detect-

able. Importantly, PCP mutant HCs have a largely intact apical

morphology, suggesting that HC cytoskeleton asymmetry is

not instructed by core PCP signaling but relies on different

molecular effectors that are largely unidentified.

This dual polarity system intriguingly stands apart from other

tissues where PCP operates. Indeed, besides uncoordinated

cell orientation, single-cell asymmetry is often also defective in

PCP mutants. Primary cilia fail to shift and tend to remain central

in node cells, leading to beating and left-right patterning defects

(Antic et al., 2010; Borovina et al., 2010; Hashimoto et al., 2010;

Song et al., 2010). The distal hair is mispositioned centrally in fly

wing cells (Wong and Adler, 1993), and basal body rootlets fail to

orient uniformly within one multiciliated cell (Guirao et al., 2010;

Mitchell et al., 2009; Tissir et al., 2010; Vladar et al., 2012).

How is HC intrinsic asymmetry established, then, if not by

PCP? The centrifugal shift of the basal body giving rise to the

kinocilium is required, as impairing ciliogenesis induces a circu-

lar stereocilia bundle in a subset of HCs where the basal body

remains central (Jones et al., 2008). However, although the kino-

cilium is considered a lever for PCP signaling inside the HC that

guides the orientation of the bundle in the tissue, there is no

evidence that the peripheral kinocilium or basal body instruct

V-shaped asymmetrical stereocilia distribution at the AS. Polar-

ized stereocilia bundles still arise in HCs lacking a kinocilium,
Inc.
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even when orientation of the shifted basal body is uncoupled

from the bundle vertex (Jones et al., 2008; Sipe and Lu, 2011).

Thus, it remains unknown how the mechanosensory compart-

ment acquires its functional asymmetry and how this process

is interlocked with HC orientation in the tissue.

Given their ability to couple cortical polarity with the cytoskel-

eton, we set out to investigate whether proteins involved in

mitotic spindle orientation might play a role in the planar polari-

zation of HCs. In Drosophila neuroblasts, proliferation and cell

fate depend on coupling mitotic spindle orientation with cortical

polarity, thereby ensuring asymmetric inheritance of fate deter-

minants between sister cells. At prometaphase, the polarity

proteins Par-3 and aPKC asymmetrically localize at the apical

cortex, where they recruit the adaptor protein Inscuteable

(Insc), which in turn binds Partner of Inscuteable (Pins) and the

heterotrimeric G protein Gai (Kraut et al., 1996; Parmentier

et al., 2000; Schaefer et al., 2000, 2001; Schober et al., 1999;

Wodarz et al., 1999, 2000; Yu et al., 2000). Together, these pro-

teins recruit effectors pulling on astral microtubules to position

themitotic spindle, a role widely conserved across tissues exhib-

iting oriented cell division (Morin and Bellaı̈che, 2011). LGN, a

mammalian homolog of Pins, is a scaffolding protein that directly

binds mammalian Insc (mInsc) via its N-terminal tetratricopep-

tide motifs and Gai via its C-terminal Goloco domains (Yuzawa

et al., 2011; Zhu et al., 2011). LGN is recruited to the cell cortex

by Gai (Du and Macara, 2004), and promotes planar divisions in

the vertebrate neuroepithelium, but perpendicular divisions in

other contexts (El-Hashash et al., 2011; Konno et al., 2008;Morin

et al., 2007; Peyre et al., 2011; Williams et al., 2011). mInsc func-

tions as a tissue-specific adaptor for apicobasal divisions in the

neuroepithelium (Postiglione et al., 2011; Zigman et al., 2005),

and is sufficient to reorient planar divisions vertically (Konno

et al., 2008; Poulson and Lechler, 2010).

In this study, we focus on a neglected apical HC compartment

uniquely devoid of microvilli or stereocilia. This ‘‘bare zone’’

appears between the shifted kinocilium and the lateral cell junc-

tions, and hosts the polarized localization of mInsc, LGN, and

Gai. These proteins collectively extend the AS to create the

bare zone, leading to a secondary relocalization of the shifted

kinocilium toward the cell center. mInsc/LGN/Gai exclude

aPKC from the bare zone, and the resulting compartmentaliza-

tion of the HC apex acts as a blueprint to define the V-shaped

contour of the stereocilia bundle and to bring it in register with

the relocalized kinocilium. Gai is also required for HC orientation

in the cochlea, likely participating in PCP signaling to influence

the early kinocilium shift. Therefore, interaction between LGN

and Gai is a candidate mechanism to couple the emergence of

an asymmetric bundle with orientation cues in the tissue, illumi-

nating how themechanosensory compartment is streamlined for

perception in the ear.

RESULTS

mInsc/LGN/Gai Are Planar Polarized at the HC Apical
Surface
Immunostaining of mouse cochlea sections at birth revealed that

mInsc/LGN/Gai are enriched apically in HCs, with a lateral bias

(Figures 1A–1C). En face views showed that these proteins

form a thick crescent lateral to the stereocilia bundle at the AS
Develo
(Figures 1D–1F). Pattern specificity was verified using cochlea

electroporation and organotypic culture, where fusion proteins

were similarly localized, unlike the Egfp control (Figure 1G).

LGN overlapped both with surface microtubules that are polar-

ized laterally, and the lateral portion of the cuticular plate, the

actin-dense structure supporting the stereocilia (Figures 1H

and 1I). The LGN medial boundary precisely matched the emer-

gence of the tallest row of stereocilia (Figure 1H, arrowheads).

Lateral to the bundle, only a small AS region around the base

of the kinocilium was deprived of LGN protein (Figure 1H, arrow).

mInsc and Gai shared a similar subcellular distribution (schema-

tized in Figure 1H0). Interestingly, the lateral HC region where

mInsc/LGN/Gai are localized stands out, as it is devoid of micro-

villi, unlike the medial surface (Figure 1J). Although similarly

polarized along the mediolateral axis, the pattern of mInsc/

LGN/Gai is very distinct from PCP proteins, which are polarized

at cell junctions but absent from the HC surface (Deans et al.,

2007; Montcouquiol et al., 2006; Wang et al., 2005, 2006).

mInsc/LGN/Gai Are Molecular Markers of a Microvilli-
Free Zone Emerging during Apical HC Morphogenesis
Epithelial cells in the sensory epithelium are generally covered

with microvilli, except for the vicinity of the central primary cilium

(Figure 2A), which in prospective IHCs shifts laterally at E15.5

(Figure 2B). Labeling microvilli and young stereocilia with an

antibody against phosphorylated Ezrin/Radixin/Moesin (pERM)

revealed a microvilli-free zone forming lateral to the shifted kino-

cilium (Figure 2C). The formation and extension of this ‘‘bare

zone’’ followed the base-to-apex and mediolateral gradients of

HC differentiation along the cochlea (Figures 2D–2F; McKenzie

et al., 2004). Interestingly, the shifted kinocilium was often in

close proximity to the HC junction, but appeared to recede

toward the HC center with the emergence and extension of the

intervening bare zone (Figures 2B and 2C; see also Figures

S4C and S4D available online). This suggests that kinocilium

placement is the product of (1) a roughly lateral shift that first

brings it in close contact with the cell junction, and (2) an inward

relocalization under the influence of the growing bare zone,

which brings it midway between the lateral junction and the

cell center. Accordingly, HC basal bodies from which the kinoci-

lium nucleates adopted less eccentric positions in progressively

more differentiated HCs after the early shift (Figure 2G). We thus

propose that the bare zone is created de novo between the

shifted kinocilium and the lateral HC junction, as the AS is round-

ing up from an initially hexagonal shape.

mInsc/LGN/Gai distribution at the HC apex precisely coin-

cided with the bare zone in time and space, with LGN first

detected in the lateral region where pERM staining disappeared

in E15.5 IHCs (Figure 2H). Like the bare zone, the LGN domain

appeared and grew following the differentiation gradient (Figures

2I–2K), with an initially narrow apicolateral crescent that

extended to the base of the stereocilia (compare Figures 2H

and 2K). In costainings, LGN matched the region devoid of

pERM signal (Figure 2L). This early asymmetric enrichment was

similar for mInsc and Gai (data not shown). Therefore, mInsc/

LGN/Gai are bona fidemolecular markers of the bare zone. Early

LGN crescents appeared approximately at the time of the kinoci-

lium shift (Figures 2I–2K), but the two were only in loose spatial

register, often displaying distinct planar orientations (Figure 2M,
pmental Cell 27, 88–102, October 14, 2013 ª2013 Elsevier Inc. 89
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Figure 1. mInsc/LGN/Gai Proteins Are Polarized Lateral to the Stereocilia Bundle at the HC Apex

(A–C) Immunostains for mInsc, LGN, and Gai (green) on P0 cochlea sections with the F-actin marker phalloidin (phall; red) and the DNA dye Hoechst (blue). Insets

show a magnification of the lateral-most OHC3. Kinocilium labeling by the mInsc antibody (arrow in A and D) is unspecific, and retained in mInsc mutants (see

Figure S2D).

(D–F) Surface view of P0 organ of Corti immunostained for mInsc, LGN, and Gai. Bottom panels show merge with either phalloidin, or ZO-1 (apical cell junctions)

and peanut agglutinin (PNA, stereocilia bundle). Beside their polarized distribution at the lateral AS, LGN and Gai are also enriched at stereocilia tips (arrowheads).

(G) OHCs electroporated with the indicated protein fusions. Arrowheads show enrichment in the bundle distinct from the AS.

(H) LGNmedial boundary precisely coincides with lateral settling of stereocilia at the AS (arrowheads), and LGN is absent from a small AS region surrounding the

base of the kinocilium, labeled by acetylated tubulin (Ac tub; arrow). LGN pattern is schematized in (H0). MT, apical microtubules; K, kinocilium; SC, stereocilia;

MV, microvillus; CP, cuticular plate. P2 OHC.

(I) LGN covers both surfacemicrotubules (green) and the portion of the cuticular plate (blue) lateral to the bundle. Hatched line depicts boundary between surface

microtubules and the cuticular plate. E18.5 OHCs.

(J) The AS region where mInsc/LGN/Gai are localized (dotted line) is devoid of microvilli, as illustrated by scanning electron microscopy at birth. Kinocilium is

highlighted in pink. P0 IHC.

Scale bars: 10 mm (A–F), 2 mm (G–J). See also Figure S1.
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2N, and 2P). However, further differentiation brought the kinoci-

lium and bare zone in register, with the kinocilium emerging

exactly at the center of the mInsc/LGN/Gai crescent (Figures

2O and 2P), as seen around birth (Figures 1H and 1I). Conse-

quently, bare zone proteins are unlikely candidates to trigger

the centrifugal shift of the kinocilium, but they likely participate

in the relocalization of the kinocilium (Figure 2Q).
90 Developmental Cell 27, 88–102, October 14, 2013 ª2013 Elsevier
At the tissue level, mInsc/LGN/Gai labeled the only regions of

the whole sensory epithelium lacking microvilli (Figures 1J and

2A–2F), and their asymmetric pattern was limited to HCs,

whereas PCP proteins are also polarized apically in supporting

cells. mInsc was only transcribed in HCs from E14.5 (Figures

S1A, S1B, and S1F–S1H), and although LGN was more ubiqui-

tously transcribed, the protein was only detected and planar
Inc.
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polarized at the HCs apex (Figures S1C–S1E and S1I–S1J). Alto-

gether, by defining a polarized surface devoid of microvilli,

mInsc/LGN/Gai could help define intrinsic asymmetry of the api-

cal cytoskeleton in HCs.

mInsc Is Required for Proper Extension of the Bare Zone
and Bundle Shape
To studymInsc function in HCs, an 82kb deletion (mInscDEL) was

created in vivo that encompassed all coding sequences for the

short mInsc isoform (Figures S2A–S2C). A putative longer iso-

form with 47 additional amino acids N-terminal is transcribed

from an alternative first exon left intact by the deletion (Fig-

ure S2A; Izaki et al., 2006). We detected protein encoded by

the long isoform in control, but not mInscDEL HCs, verifying the

specificity of themInsc antibody and the absence of the long iso-

form in mInscDEL (Figure S2D). Other antibodies detecting both

short and long mInsc isoforms showed the same protein distri-

bution in controls (data not shown). Although mInscDEL pups

looked normal at birth, and mutant and control cochleas could

not be distinguished among littermates, mutant HCs displayed

a consistently smaller AS and bundles that appeared more flat

(Figures S3A and S3B). Analysis at a later stage (P4) confirmed

these results and revealed a specific reduction of the bare

zone surface, whereas the complementary medial AS did not

vary significantly, arguing against developmental delay at birth

(Figures S3C and S3D). In addition, stereocilia formed two

distinct sub-bundles in a small subset of HCs, a severe morpho-

logical defect never observed in controls (Figure S3E). HC orien-

tation in the tissue was unaffected inminscDEL (data not shown).

mInsc is thus specifically required for the normal extension of the

bare zone where it localizes, and for a properly shaped bundle

edge abutting its medial boundary.

LGN Is Essential to Shape the Bundle Contour and
Relocalize the Kinocilium
To study LGN function, we raised a mouse line from a Eucomm

ESclonewhere LGNexon5 is precededbya reporter and flanked

by loxP sites (Figures S2E and S2F; LGNbetageo; flox or LGNBF).

The reporter causedan earlyN-terminal truncation that abolished

LGN immunostaining in HCs, hence confirming LGN inactivation

and antibody specificity (Figure S2G). As inmInscDEL,mutant and

control cochleas could not be distinguished at birth. Neverthe-

less, loss of LGN severely disrupted apical morphology in HCs

(Figure 3A). Phalloidin stainings and scanning electron micro-

scopy revealed defects increasing in severity from disorganized

bundle ultrastructure (type I) to complete loss of cytoskeleton

asymmetry (type III; Figures 3B and 3C). In type I HCs, stereocilia

placement was very irregular at the lateral bundle edge, and bun-

dles were flattened, like inmInscDEL (Figure 3B, arrows). In type II

HCs, two main sub-bundles emerged at distinct positions, and

normally lateral surface microtubules invaded the central and

medial regions where the cuticular plate and stereocilia were

missing (Figures 3B, 3C, and S4A). Type II HCs were reminiscent

of the very abnormalHCs inmInscDEL (FigureS3E). In type III HCs,

surface microtubules were concentrated at the center of the cell,

with three ormore sub-bundles distributed around the periphery,

including laterally where the bare zone normally stands (Figures

3B, 3C, and S4A). The relative proportion of the different mutant

HC types showed some variability across animals (Figures 3D
Develo
and 3E). Importantly, as seen in mInscDEL, absence of LGN

reduced the HC apex surface (Figure 3F). These results suggest

that by establishing an exclusion zone laterally, LGN defines

theasymmetric placement of stereocilia above theASandaffects

the distribution of surface microtubules and the cuticular plate

under the AS.

To a lesser extent than intrinsic morphology, HC planar orien-

tation also appeared abnormal in LGNBF, as suggested by the

misorientation of somecohesive bundles in type I HCs (Figure 3A,

arrowhead). To study HC orientation (PCP) without being biased

by aberrant bundlemorphology, the planar position of the kinoci-

liumwasmonitored for all HCs in a field at P0. Cumulative plotting

revealed abnormally scattered kinocilia in LGNBF (Figures 3Gand

3H). While control kinocilia were centered and emerged laterally

at middistance to the cell junction (see also Figure 2G), mutant

kinocilia occupied variably eccentric positions in the lateral half

of the AS, being rarely found in the medial half. This contrasts

with core PCP mutant HCs, where kinocilia have a normal and

constant eccentricity that coincides with normal morphology.

Mutant kinocilia were connected to either one of the sub-bundles

in OHCs (Figures 3B and S4A), but frequently disconnected from

thebundle in IHCs (FigureS4B). In spite of these severe defects at

birth, the early lateral shift of the kinocilium occurred normally in

LGNBF (Figures S4C–S4E), consistent with the LGN protein cres-

cent being initially polarized independently from the kinocilium

(Figures 2N and 2P). LGN is therefore unlikely to be part of the

PCP machinery that orients the early kinocilium shift (Montcou-

quiol et al., 2003). By contrast, LGN appears crucial for the sub-

sequent inward relocalization of the kinocilium. As in the context

of mitotic spindle orientation, mInsc/LGN/Gai could exert force

on surface microtubules in order to bring the forming bundle in

register with the eccentric kinocilium.

mInsc/LGN/Gai Are Interdependent for Their Normal
Enrichment at the Bare Zone
Because mInsc, LGN, and Gai form a protein complex to orient

the mitotic spindle, we next asked whether they each localized

normally in mutant contexts. LGN protein amounts at the bare

zone were reduced in mInscDEL and, reciprocally, mInsc was

decreased in LGNBF at P0 (Figures 4A–4D). Similarly, Gai was

downregulated at the bare zone in both mInsc and LGN mutant

HCs (Figures 4E–4G). These proteins thus generally rely on each

other for normal levels of enrichment. This molecular interplay

was originally described in fly neuroblasts (Schaefer et al.,

2000, 2001; Yu et al., 2000), and together with documented

protein interactions (Du and Macara, 2004; Yuzawa et al.,

2011; Zhu et al., 2011), suggests that mInsc/LGN/Gai similarly

form a complex in mouse HCs. Importantly, although downregu-

lated in mutant HCs, partner proteins were still detected, polar-

ized, and likely functional to some degree, as HC defects in

mInscDEL and LGNBF showed different severities.

Inactivating Gai Disrupts both HC Orientation in the
Cochlea and HC Intrinsic Polarity
At least two of the three Gai mouse genes, Gai2 and Gai3, were

expressed in purified HCs as detected by RT-PCR (Figure S5A),

and Egfp fusions of the three proteins, but not closely related

Gao, were similarly enriched at the bare zone (Figure S5B).

Thus, to circumvent expected functional redundancy, we
pmental Cell 27, 88–102, October 14, 2013 ª2013 Elsevier Inc. 91
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used Pertussis toxin (PTX) to inactivate G protein signaling. We

first established that coimmunoprecipitation of mycLGN with

Gai2:Egfp was severely impaired by a construct encoding the

PTX catalytic subunit (PTXa), probably because the toxin se-

questers Gai in the inactive Gabg complex (Figure S5C). PTXa

was then expressed specifically in single HCs by electroporating

E14.5 cochleas with a construct carrying an Atoh1 enhancer/

b-globin promoter (Atoh1-PTXa), and apical morphology was

analyzed after 6 days in culture (Figure S5D; see Experimental

Procedures). We predicted that PTXa would affect bare zone

complex enrichment and reduce the HC apex, as seen in mInsc

and LGN mutants. Indeed, all PTXa-electroporated HCs had a

strong decrease of endogenous LGN and mInsc (Figure S6A

and data not shown), and lost the lateral enrichment of coelectro-

porated Gai2:Egfp (Figure S6B). The AS was also reduced

compared to control electroporations (Figure S6C). However,

PTXa caused unique and severe HC orientation (PCP) defects

as monitored by kinocilium planar orientation (Figures S6D–

S6F). To verify that the phenotypes could be accounted for by

Gai, we designed distinct sets of shRNAs against Gai2 and

Gai3 (Figures S6G and S6H), and electroporated them in cochlea

explants. Individually, potent shRNAs against eitherGai2 orGai3

at most reduced the LGN crescent (Figures S6I and S6J). By

contrast, simultaneous knockdown of both Gai2 or Gai3 in the

same HC phenocopied the PTXa results, with severe LGN loss

and drastic HC misorientation (Figures S6I and S6J).

TodissectGai function,wegenerated transgenicmicecarrying

the Atoh1-PTXa construct. Transgenics at E18.5 could not be

distinguished from wild-type littermates, likely due to Atoh1-

restricted PTXa expression. Since all PTXa-electroporated HCs

consistently showed severely reduced LGN in explants, we

used LGN as a readout of PTXa expression. Incomplete trans-

gene expression resulted in a mosaic of affected and unaffected

HCs in the organ of Corti, and we used HCs expressing normal

LGN as internal controls (Figure 5A; see Experimental Proce-

dures). Coordinated orientation in the field (PCP) first appeared

abolished inPTXaOHCs,with a randomizedprofileof angledistri-
Figure 2. LGN Is a Marker of the Microvilli-Free Region Emerging Late

(A–C) Immunostains for phosphorylated ezrin/radixin/moesin (pERM) in the E15.5

IHC indicated by brackets in the top panel. Arrowheads indicate the kinocilium, an

pERM staining.

(D–F) Progressive emergence of the bare zone in increasingly differentiated HCs

regions (D), but have one in the more developed basal regions (E0, F0, asterisk). O
(G) Basal body position at the HC apex at the stages indicated, expressed as a f

lateral junction. Graphs represent mean ± SEM for four samples where pericentrin

cochlea. **p < 0.01, ***p < 0.001; unpaired Student’s t test.

(H) LGN protein is first detected at E15.5 in IHCs and already localized in a cresc

(I–K) Progressive onset of LGN apical enrichment from the apex to the base of an

localization (i, bottomHC; see also Figure S1D). LGN asymmetric enrichment gene

with J0 and J00).
(L) LGN localization overlaps with the bare zone, as revealed by absence of pER

(M) Reference system used to measure the planar orientation of the kinocilium (blu

orientation.

(N and O) Angular register between the kinocilium and the LGN crescent in E16.5

orientation (a) in x and the LGN crescent orientation (q) in y. The red line indicates

(P) LGN crescent (green) and the kinocilium (blue, arrows point to the base) only ad

localization between less (mid cochlea position) and more (base position) mature

(Q) Schematic representation of early apical morphogenesis comparing bare zon

and ‘‘2’’ depict the early shift and subsequent inward relocalization of the kinociliu

Figures S2 and S3.

Develo
bution based on kinocilia positions, whereas IHCs were less

affected (Figures 5B and 5C). Interestingly however, overall

randomization reflected distinct outcomes across rows: kinocilia

in OHC1 seemed inverted, with angles around ±180� (Figure 5D),
whereas OHC2 and OHC3 kinocilia encompassed more variable

angles but were generally positioned at themedial and lateral HC

surface, respectively. Therefore, orientation defects follow an

increasing OHC3 to OHC1 gradient of severity. Together, these

results indicate that generally lateral HC orientation controlled

by the direction of the early kinocilium shift requires Gai, but not

mInsc or LGN, suggesting thatGai could interpret PCP signaling.

In addition, PTXa HCs displayed defects in cell-intrinsic polar-

ity similar tomInsc and LGNmutants. The bare zone was almost

absent in Atoh1-PTXaHCs, with microvilli/stereocilia and the un-

derlying cuticular plate occupying most of the reduced AS (Fig-

ures 5E and 5F). Surface microtubules were polarized, following

the aberrant orientation of the kinocilium (Figure 5G), but invaded

central regions where the cuticular plate wasmissing in HCswith

multiple sub-bundles (Figure 5H), as seen in LGNBF (Figure S4A).

Kinocilia were abnormally close to cell junctions (Figures 5D, 5E,

and 5I) as observed only transiently during normal HC differenti-

ation (Figures 2A and 2G), suggesting that the bare zone is

needed for the inward relocalization process. Again, defects

were increasingly pronounced from OHC3 to OHC1, and IHCs

were less affected (Figures 5A, 5I, and 5J and data not shown).

Altogether, by (1) binding LGN/mInsc to create the bare zone

and (2) interpreting PCP information to guide the early kinocilium

shift, Gai is a good candidate to couple the intrinsically asym-

metric distribution of stereocilia, surface microtubes, and the

cuticular plate with orientation cues in the tissue that use the

kinocilium as a lever in the HC.

The HC Apical Surface Undergoes Axial
Compartmentalization Independently from PCP
Signaling
Core PCP proteins segregate in antagonistic modules located on

opposite sides of the cell membrane (Goodrich and Strutt, 2011).
rally during Apical HC Morphogenesis

cochlea. Bottompanels show alternate channel magnifications of a prospective

d asterisks the microvilli-free regions (bare zone in C) defined by the absence of

from the apex to the base of a E17.5 cochlea. IHCs lack a bare zone in apex

HCs follow the same progression, with a delay (E and F, asterisk).

raction of the mediolateral cell diameter, where 0.5 is the cell center and 1 the

-labeled basal body position was measured for HCs in a field at the base of the

ent (asterisk).

E16.5 cochlea. Prospective HCs only very transiently show unpolarized LGN

rally coincides with the kinocilium shift (compare top and bottomHCs in I, and J

M staining (asterisk).

e; a) and the center of the LGN crescent (green; q). 0� angle is a perfectly lateral

(N) and P0 (O) OHCs. Plotted points represent single OHCs with the kinocilium

perfect register. 95 (N) and 92 (O) OHCs from four different samples are shown.

opt a perfect register along with HC differentiation, as illustrated by comparing

E17.5 OHCs.

e protein distribution with cytoskeletal landmarks at the HC apex. Arrows ‘‘1’’

m, respectively. Scale bars: 2 mm (A–C, L, and P), 5 mm (D–F and H–K). See also
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Figure 3. Defective Stereocilia Placement and Kinocilium Relocalization in LGNBF Mutants at Birth

(A) Phalloidin stainings of the organ of Corti at 3 positions along the apicobasal axis of the cochlea. OHCs with a single bundle are sometimes misoriented

(arrowhead).

(B and C) Scanning electron microscopy (B) and fluorescent (phalloidin; C) views of OHC examples representing graded phenotype severity at the cochlea base

(type I less affected > type III more affected). Stereocilia settling at the lateral bundle edge is very irregular in type I HCs (B, arrows). Type III HCs have sub-bundles

laterally where the bare zone is normally found (B and C, arrowheads). Cell boundary is outlined and the kinocilium is highlighted in pink (B). Bottom panels in (C)

show intermediate examples between type I–II and II–III HCs.

(D and E) Proportions of each severity type at the cochlea base in 14 (OHCs) and 12 (IHCs) LGNBF samples (fraction ± SD).

(F) The HC apical surface is significantly reduced in LGNBF HCs (OHCs: �12.4%, p = 0.0002, n = 14 controls and mutants; IHCs: �10.9%, p = 0.0109; n = 11

controls and 13 mutants). Graph shows mean ± SEM. *p < 0.05, ***p < 0.001, unpaired Student’s t test.

(G and H) Polar plots of kinocilium position at the AS obtained from four different samples. Scale bars: 10 mm (A), 2 mm (B and C). See also Figures S2 and S4.
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At HC/supporting cell junctions, core PCP proteins are enriched

in either medial or lateral subdomains. At the hair cell apex,

mInsc/LGN/Gai are restricted to the lateral bare zone, raising

the question whether complementary medial proteins exist.

While investigating candidates, we observed that aPKC was

polarized medially at the AS (Figure 6A). Three different anti-

bodies showed similar protein distribution, and antibody speci-

ficity was controlled using a shRNA against aPKCz (Figures

S7A and S7B). aPKC colabeling with mInsc and LGN revealed

close surface complementarity between aPKC medially and
94 Developmental Cell 27, 88–102, October 14, 2013 ª2013 Elsevier
the bare zone laterally in the same HC (Figures 6B and 6C).

The lateral bundle edge sat at the interface (Figure 6D; see

also Figure 1H). Interestingly, Par-3 was localized at the bare

zone (Figure 6E), and complementary to aPKC (Figure 6F). A

Par-3 fusion protein electroporated in cochlea explants

confirmed enrichment lateral to the bundle (Figure S7C).

We next asked how aPKC distribution is achieved during

HC differentiation. At E15.5 in IHCs and E16.5 in OHCs,

aPKC covered the AS in LGN-negative HCs, but was downregu-

lated laterally in more differentiated, LGN-positive HCs (Figures
Inc.
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(A and B) LGN enrichment is reduced but still detectable at the bare zone (arrowheads) of mInscDEL HCs. Arrows indicate LGN at the tips of stereocilia.

(C and D) mInsc enrichment is reduced but still detectable at the bare zone (arrowheads) of LGNBF HCs. Kinocilium labeling is unspecific (open arrowheads; see

Figure S2D).

(E–G) Gai at the bare zone (arrowheads) is downregulated but still detectable in both mInscDEL (F) and LGNBF (G). While unchanged in mInscDEL stereocilia

(F, arrows), Gai loses its specificity for tips and localizes to the whole defective bundle in LGNBF (G, arrows), an extra source of antibody signal that should not

obscure decreased protein levels at the bare zone (G, arrowheads). Magnified and split channel views of boxed HCs are shown on the right of each main panel.

Scale bars: 5mm.
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7A–7D). Moreover, the region of aPKC exclusion coincided with

the spatial extent of LGN (Figures 7A–7D) and the bare zone

defined by absence of pERM (Figure S7D) at all stages and

cochlea levels analyzed. This suggests that aPKC localization

is antagonized by mInsc/LGN/Gai. Consistently, aPKC localized

normally until birth in mInscDEL HCs, but invaded the reduced

bare zone around P1 (Figure 7E). aPKC was still excluded from

both the base of stereocilia and the kinocilium in mInscDEL,

showing selective ectopic localization only where mInsc/LGN/

Gai are normally present (Figures 7F and 7G). In LGNBF, aPKC

invaded the lateral AS, but from earlier stages (Figures 7H and

7I). Similarly, aPKC was ectopically found past the bundle

in PTXa-expressing HCs, irrespective of cell orientation in the

field (Figure 7J). Two distinct axial compartments are thus

defined by the segregation of polarity proteins at the AS, with

mInsc/LGN/Gai acting in part to exclude aPKC at the bare

zone. Unlike aPKC, however, Par-3 distribution was largely un-

changed in mInsc and LGN mutant HCs (data not shown). By

analogy with fly neuroblasts, where mInsc/LGN/Gai homologs

are recruited by Par-3 via binding to Insc (Schober et al., 1999;

Wodarz et al., 1999), Par-3 might thus function as a localization

cue in HCs. Supporting this possibility, murine Par-3 and

mInsc proteins interacted directly in a cell-free pull-down assay

(Figure S7E).

Using theVangl2Lp allele, we tested the prediction that both AS

protein modules should be intact in a core PCP mutant, in which

HCswith compromised orientations retain normal intrinsic polar-

ity. mInsc/LGN and aPKC were normally enriched at the bare
Develo
zone and the complementary AS compartment in misoriented

Vangl2Lp HCs, respectively (Figures S8A–S8C). Conversely, in

both mInscDEL and LGNBF organs of Corti, the asymmetric

enrichment pattern of the core PCP proteins Dvl2 and Fz6 was

similar to controls (Figures S8D–S8G). Therefore, polarity pro-

teins at the AS and core PCP proteins represent two largely

independent polarity systems.

The Bare Zone Complex Excludes aPKC and Stereocilia
to Shape the Bundle at the HC Apex
Addressing aPKC and Par-3 function proved difficult, likely

because their function at apical junctions is crucial to create

andmaintain theAS,anobstacle toaddressa further role inplanar

patterning. We thus undertook a gain-of-function approach

to establish the importance of lateral (mInsc/LGN/Gai) versus

medial (aPKC) protein localization on stereocilia distribution at

the HC apex. Crumbs (Crb) localizes at the AS in epithelial cells,

and as expected, a Crb3:venus protein was enriched at the HC

apex without planar polarization (Figure 8A). Consequently, a

Crb3:myc:Gai2 fusion localized more uniformly than Gai alone,

anddrastically extendedendogenousLGNfroma lateral crescent

to the whole apex (Figure 8B). Remarkably, Crb3:myc:Gai2

conversely restricted aPKC to a central domain bearing an abnor-

mally constrained and roundedbrush of stereocilia/microvilli (Fig-

ure 8C). A Crb3:myc:LGNconstruct had the same effect on aPKC

and bundle shape, as expected from extended endogenous LGN

localization in Crb3:myc:Gai2 HCs (Figure 8D). Importantly, Crb3

without the Gai moiety did not extend LGN domain or result in
pmental Cell 27, 88–102, October 14, 2013 ª2013 Elsevier Inc. 95
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Figure 5. Pertussis Toxin Affects both HC Orientation and HC Intrinsic Asymmetry In Vivo

(A) IncompleteAtoh1-PTXa transgene expression results in amosaic of affected (associated arrows, defective LGN enrichment) and unaffected (asterisks, normal

LGN enrichment) HCs in the E18.5 organ of Corti. HC planar orientation based on kinocilium position (green) is indicated by the direction of the arrow for each

affected HC.

(B and C) Frequency distribution of HC orientation. PTXa and control HCs are respectively LGN-negative and LGN-positive HCs in the same field in 3 transgenic

samples at the cochlea base (n = 147 control OHCs, 162 PTXa OHCs, 43 control IHCs, 42 PTXa IHCs).

(D) Polar plots of kinocilium position by OHC row for the cells graphed in (B).

(E) Close-up on adjacent affected (left, associated arrow) and unaffected (right, asterisk) OHC1s. Arrow indicates inverted orientation of the affected HC based on

the kinocilium position (arrowheads). Affected cells have smaller apexes (outlined in orange), and the much reduced bare zone coincides with an abnormally

eccentric kinocilium (arrowhead). The portion of the bare zone devoid of F-actin is outlined in white.

(F) AS in affected HCs expressed as a fraction of control HCs in the same field (n = 3; mean ± SEM).

(G) Same general description as in (E). In most affected HCs, acetylated tubulin-labeled surface microtubules are still polarized (orange brackets) and follow the

orientation of the HC given by the kinocilium (arrowheads).

(H) In some affected cells with multiple sub-bundles (hollow arrowheads), surface microtubules invade more central HC regions where the phalloidin-labeled

cuticular plate is defective (arrowheads), as also observed in LGN mutant HCs (Figure S4A). Arrow indicates HC orientation as in (E) and (G).

(legend continued on next page)
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Figure 6. aPKC Defines a Medial Compartment Complementary to mInsc/LGN/Gai and Par-3 at the HC Apex

(A) aPKC is polarized medially at the AS (arrows) in P0 HCs.

(B and C) Colabeling of mInsc (B, E17.5 IHC) and LGN (C, P4 IHC) with aPKC.

(D) The stereocilia bundle (red) emerges from the lateral-most portion of the aPKC-positive AS.

(E) Par-3 is polarized lateral to the bundle (PNA, blue) at the AS at P0 (arrow). The boxed HC is magnified in the bottom panels for each channel view (E and E0).
(F) Colabeling of Par-3 and aPKC (E18.5 OHC). In (B), (C), and (F), single channels are shown separately with the merge at the bottom, and HC boundary and the

border between the bare (lateral) andmedial zones are outlined. Arrowheads indicate aPKC (B and F) or Par-3 (E and F) at apical junctions. Scale bars: 5 mm (A and

E), 2 mm (B–D, F). See also Figure S7.
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constrained aPKC or bundles. Along with ectopic aPKC distribu-

tion in bare zonemutants, these results suggest that mInsc/LGN/

Gai limit aPKC medially to create a molecular blueprint for cyto-

skeleton asymmetry at the HC apex, notably defining the contour

of the growing stereocilia bundle (Figure 8E).

DISCUSSION

In this study, we uncover a function for mInsc/LGN/Gai that is un-

related to the control ofmitotic spindle orientation, cell fate, or tis-

sueorganization.StudyingHCmorphologicaldifferentiation in the

mouse cochlea after proliferation has ended, we show that these

proteins guide the planar polarization of the apical cytoskeleton.

Early Kinocilium Shift and Planar Cell Polarity
Following on the analogy with spindle orientation, we first envi-

sioned that the early crescent of mInsc/LGN/Gai could recruit

effector proteins to pull on surface microtubules and trigger

the centrifugal shift of the kinocilium. While mInsc/LGN/Gai

become polarized at E15.5 and generally coincide with eccentric

kinocilia, this hypothesis proved improbable. First, protein cres-

cents at the HC apex seem ill-suited to exert planar forces for a
(I) Kinocilium placement at the HC apex expressed as a fraction of the cell

SEM; n = 3).

(J) Cartoon of PTXa and control OHC1 shown in (E) and (G). The secondary reloca

stereocilia; CP, cuticular plate; MV, microvillus. Scale bars: 5 mm (A), 2 mm (E, G

Develo
side translation of the kinocilium, which would be expected to

involve proteins enriched at apical junctions. Second, the protein

crescent and the shifted kinocilium often adopt distinct orienta-

tions, with the kinocilium at the very edge of the protein domain.

Third, none of the functional insults to mInsc, LGN or Gai pre-

vented the centrifugal shift of the kinocilium, although inactivat-

ing Gai, but not LGN, led to drastic HCmisorientation. Therefore,

we conclude that, while it does not trigger the shift per se, Gai

influences its general direction. Interestingly, PTXa does not

randomize HC orientation, with OHC1 being cleanly inverted,

raising the possibility that instead of providing an orientation

cue, Gai could participate in the elusive readout of PCP protein

asymmetry. HCs kinocilia can indeed shift toward or away

from the same core PCP protein when comparing cochlear

and vestibular HCs, or HCs located on opposite sides of the

line of polarity reversal in the vestibule (Deans et al., 2007;

Wang et al., 2006). Amodel in whichGai does not strictly assume

a PCP function is supported by comparing polarity proteins at

the AS (this study) and PCP proteins at apical junctions. While

both groups form opposite modules along the mediolateral

axis and their protein members rely on each other for normal

enrichment (this work and Deans et al., 2007; Montcouquiol
diameter, where 0.5 is the cell center and 1 the lateral junction (mean ±

lization of the kinocilium is indicated with the arrow ‘‘2’’. MT, microtubules; SC,

, and H). See also Figures S5 and S6.
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Figure 7. aPKC Is Excluded from the Lateral HC Surface by mInsc/LGN/Gai

(A–D) Early during differentiation, HCs downregulate aPKC at the emerging bare zone (arrowheads) labeled by LGN. Note how less differentiated HCs with little or

no LGN enrichment still have lateral aPKC staining (right IHC in A, both OHCs in B, and left OHC in C).

(E) aPKC becomes ectopically localized laterally (arrowheads) at P1 in mInscDEL.

(F and G) Close-up views of P1 OHCs (F) and IHCs (G). The position of the lateral HC junction is indicated by the dotted line (F). aPKC is abnormally enriched at the

bare zone (arrowheads) in mInscDEL, but still absent from the base of both stereocilia (F, arrow) and the kinocilium (G, arrow).

(H and I) aPKC already invaded the bare zone at E18.5 in LGNBF (arrowheads). Magnified and alternate channel views of boxed OHC in (H) shown in (I; right).

(J) aPKC loses its AS restriction in PTXa-electroporated HCs from cochlea explants cultured for 6 days (arrowheads). Electroporated HC orientation is indicated

by an arrow. Note how aPKC is found on both sides of the bundle irrespective of HC orientation. Scale bars: 5 mm (E and H), 2 mm (A–D, F, G, I, and J).
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et al., 2006; Vladar et al., 2012; Wang et al., 2005, 2006), they

seem to be largely independent, as judged by normal protein dis-

tribution in reciprocal mutant contexts.

In mInsc/LGN/Gai mutant contexts, partner proteins fail to be

enriched at proper levels, yet cell-intrinsic defects are ranging in

severity from reduced (mInscDEL) to absent (PTXa) bare zone,

and from misaligned stereocilia edge (mInscDEL; LGNBF type I)

to complete loss of bundle asymmetry (LGNBF type III; PTXa).

Besides being unequally required for common tasks, the unique

role of Gai in HC orientation also indicates that these proteins

can exert distinct functions, despite their colocalization and

physical interactions.
98 Developmental Cell 27, 88–102, October 14, 2013 ª2013 Elsevier
Bare Zone Formation and Kinocilium Inward
Relocalization
We report here a detailed description of the lateral portion of the

HC apex deprived of microvilli or stereocilia and its origin,

notably by identifying mInsc/LGN/Gai as molecular markers.

Concomitantly, we discover that, as the HC apex grows and

becomes rounded, the shifted kinocilium undergoes a relocaliza-

tion from a lateral position close to the HC junctions to a more

central position. In PTXa HCs, where mInsc/LGN/Gai fail to be

enriched and a region devoid of microvilli is virtually absent,

the kinocilium remains closely juxtaposed to the junction. Based

on these observations, we propose that mInsc/LGN/Gai are
Inc.
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required for adding apical membrane lateral to the shifted kino-

cilium, thereby creating the compartment we call the bare

zone, and relocalizing the kinocilium on the medial side of the

mInsc/LGN/Gai crescent (Figure 8F). mInsc/LGN/Gai appear

well suited to superimpose the apical cytoskeleton with the

cortical domain they define at the AS, possibly using traction

on surface microtubules to corral, balance and maintain the

basal body/kinocilium at the vertex of the forming bundle.

Accordingly, in LGNmutant HCs, surface microtubules lose their

crescent restriction and kinocilia adopt a wide range of lateral

positions, emerging at variable distances from the HC center.

PTXa HCs show the same defects, but kinocilia and surface

microtubules are overall more consistently eccentric, suggesting

that while Gai uniquely influences the early shift, it has a less

prominent role than LGN in kinocilium relocalization. Conversely,

mildly imprecise orientation observed in LGNBF HCs is likely

explained by improper kinocilium relocalization and/or mainte-

nance following the normal early shift.

A Blueprint of Complementary Proteins at the Apical
Surface
Our data indicate that the HC apex becomes compartmental-

ized in the mediolateral axis during differentiation (Figure 8F).

This model is strengthened by the complementary medial and

lateral localization of aPKC and Par-3, which are known to

function with mInsc/LGN/Gai in the regulation of spindle orien-

tation. Bare zone proteins negatively regulate aPKC localization

since its lateral exclusion is lost in mInsc/LGN/Gai mutant

contexts, and forced extension of the bare zone complex

constrains the aPKC domain. Of note, ectopic aPKC in the

bare zone is only detected late in mInsc mutants, but occurs

earlier in LGN mutants, possibly contributing to the more

severe defects observed in LGNBF. Interestingly, exclusion of

LGN from the mitotic cell apex is required to secure planar

divisions and was reported to depend on aPKC in some but

not other epithelial cell types (Bergstralh et al., 2013; Guilgur

et al., 2012; Hao et al., 2010; Peyre et al., 2011; Zheng et al.,

2010). As mutating the serine in LGN identified as an

aPKC target in MDCK cysts (Hao et al., 2010) failed to alter

mycLGN distribution at the HC apex (data not shown), it re-

mains unclear whether aPKC reciprocally regulates bare zone

protein localization.

aPKC was reported to progressively exclude Par-3 from the

AS in some epithelia, limiting it to apical junctions (Afonso and

Henrique, 2006; Martin-Belmonte et al., 2007; Morais-de-Sá

et al., 2010; Walther and Pichaud, 2010). Therefore, the lateral

bare zone might represent a special kind of apical compartment

where Par-3 is retained via the absence of aPKC. In the HC

medial domain as in many other epithelial types, aPKC enrich-

ment at the ASmight contribute to microvilli assembly by recruit-

ing and activating ezrin, a scaffolding protein required for normal

microvilli development in enterocytes (Saotome et al., 2004;

Wald et al., 2008).

Interestingly, we also observed asymmetrical enrichment of

both aPKC and Par-3 at apical junctions, with the same respec-

tive mediolateral bias as the HC apex (data not shown and Fig-

ure S7C). Although a detailed characterization of aPKC/Par-3

localization at the junctions was beyond the scope of this study,

an interesting possibility is that their junctional localization could
Develo
help spread a PCP-related signal to the HC apex, linking the

polarity of the two compartments. In this respect, Par-3 is a

candidate to orient the early mInsc/LGN/Gai crescent indepen-

dently from the kinocilium because its enrichment at the AS is

not dependent on the bare zone complex.
The Bare Zone and Asymmetric Stereocilia Distribution
at the HC Apex
Proteins known to regulate stereocilia formation have been pri-

marily identified by mapping deafness genes in humans, and

most are localized in the stereocilia proper or in interstereociliary

and stereokinociliary links, promoting stereocilia differentiation,

growth, and integration/maintenance into a bundle (Richardson

et al., 2011). Here, in contrast, we propose that there is also a

blueprint for the distribution of stereocilia at the HC surface, at

the time when the differentiation process is only starting in elec-

ted microvilli. Compartmentalized polarity proteins at the AS

guide both the asymmetric organization of the cytoskeleton un-

der the AS (the surface microtubules and the cuticular plate) and

above the AS (stereocilia, kinocilium) (Figure 8F). Our data spe-

cifically indicate that mInsc, LGN and Gai create a sharp micro-

villi exclusion boundary as a strategy to define the V-shaped

contour of the stereocilia bundle (Figure 8F). Classic anatomical

studies did not comment on the bare zone, but noted how the

lateral edge of the bundle, which is initially circular, progressively

becomes semicircular and then V-shaped in mammals (Kalten-

bach et al., 1994; Zine and Romand, 1996). These changes in

bundle contour clearly mirror the absence, first appearance,

and changing medial boundary of the bare zone proteins.

Although phenotype severity varies in mInsc, LGN, and PTXa

mutants, the bare zone surface and the bundle edge are system-

atically affected, culminating in the ectopic growth of stereocilia

on the lateral HC apex in LGN and PTXa mutants. Such major in-

sults to bundle asymmetry likely account for hearing impairment

in human syndromes recently associated to LGN mutations

(Doherty et al., 2012; Walsh et al., 2010; Yariz et al., 2012). Inter-

estingly, the medial edge of the bundle is defined days after the

lateral edge, when microvilli unintegrated into the bundle disap-

pear after birth (Zine and Romand, 1996). Therefore, medial and

lateral bundle edges are implemented through radically different

processes, an additional asymmetry at the HC apex that could

be relevant to the establishment of graded heights across ster-

eocilia rows.

In summary, we propose that mInsc/LGN/Gai simultaneously

establish the asymmetrical distribution of differentiating stereo-

cilia at the HC apex and use traction on surface microtubules

to reposition and center the kinocilium in the middle of the

bare zone, at the vertex of the forming bundle (Figure 8F).

Because the direction of the early kinocilium shift is controlled

by PCP signaling and Gai to impart a roughly lateral HC orienta-

tion in the tissue, mInsc/LGN/Gai are uniquely positioned to both

create and align intrinsic bundle asymmetry with tissue polarity

during early HC differentiation.
EXPERIMENTAL PROCEDURES

Mice

All animal work was carried out in accordance with the Canadian Council on

Animal Care guidelines and approved by the IRCM Animal Care Committee.
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Figure 8. LGN/Gai Negatively Regulates aPKC and Stereocilia Distribution to Shape the Bundle at the HC Apex

(A) A Crumbs3 (Crb3):venus fusion is enriched without planar asymmetry at the HC apex (arrowheads) and in the stereocilia bundle (arrow) in cochlea explants

cultured for 6 days.

(B) Crb3:myc:Gai, but not Crb3:myc delocalizes endogenous LGN to the whole HC apex (arrow). In (B–D), the electroporated HC (myc-positive, green) is

indicated by arrowheads.

(C and D) Crb3:myc:Gai (C) and Crb3:myc:LGN (D), but not Crb3:myc constrain aPKC and phalloidin-labeled microvilli/stereocilia to a central island at the HC

apex (dotted blue circle). The electroporated HC boundary is shown by a dotted red circle.
(legend continued on next page)
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Primary Antibodies

Primary antibodies used were rabbit anti-mInsc (raised against long isoform-

specific MRRPPGDGDSTGEG peptide), rabbit anti-LGN (gifts from F. Matsu-

zaki, RIKEN, and Q. Du, Georgia Regents University), rabbit anti-Gai (gift from

J. Knoblich, IMBA), rabbit anti-pERM (gift from S. Carreno, Université de Mon-

tréal), rabbit anti-Par-3 (Upstate Biotechnology), rabbit or mouse anti-aPKC

(SCBT), rabbit anti-phosphorylated aPKC (Cell Signaling Technology), mouse

anti-acetylated a-tubulin (Sigma), rabbit anti-pericentrin (Covance), goat anti-

g-tubulin (SCBT), mouse anti-ZO-1 (Invitrogen), rabbit anti-Dvl2 (Cell Signaling

Technology), goat anti-Fz6 (R&D Systems), rabbit anti-Egfp (Invitrogen), rabbit

anti-b-galactosidase (Cappel), and mouse anti-myc (9e10, SCBT). Immunos-

tainings were performed as described in the Supplemental Experimental

Procedures.

Cochlea Electroporation and Organotypic Culture

Cochlea electroporation and explant culture were carried out by modifying

established protocols, as detailed in the Supplemental Experimental Proce-

dures. For all experiments, cochleas were electroporated at E14.5 and

cultured for 6 days.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and eight figures and can be found with this article online at http://dx.doi.

org/10.1016/j.devcel.2013.09.011.
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