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Abstract

Medicinal chemists’ ‘‘intuition’’ is critical for success in modern drug discovery. Early in the discovery process, chemists select
a subset of compounds for further research, often from many viable candidates. These decisions determine the success of a
discovery campaign, and ultimately what kind of drugs are developed and marketed to the public. Surprisingly little is
known about the cognitive aspects of chemists’ decision-making when they prioritize compounds. We investigate 1) how
and to what extent chemists simplify the problem of identifying promising compounds, 2) whether chemists agree with
each other about the criteria used for such decisions, and 3) how accurately chemists report the criteria they use for these
decisions. Chemists were surveyed and asked to select chemical fragments that they would be willing to develop into a lead
compound from a set of ,4,000 available fragments. Based on each chemist’s selections, computational classifiers were
built to model each chemist’s selection strategy. Results suggest that chemists greatly simplified the problem, typically
using only 1–2 of many possible parameters when making their selections. Although chemists tended to use the same
parameters to select compounds, differing value preferences for these parameters led to an overall lack of consensus in
compound selections. Moreover, what little agreement there was among the chemists was largely in what fragments were
undesirable. Furthermore, chemists were often unaware of the parameters (such as compound size) which were statistically
significant in their selections, and overestimated the number of parameters they employed. A critical evaluation of the
problem space faced by medicinal chemists and cognitive models of categorization were especially useful in understanding
the low consensus between chemists.
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Introduction

A core function of human cognition is to reduce the complexity
of the world to manageable proportions. In everyday life, we
ignore most of the information available in the environment in an
attempt to focus on what is likely to be most important. In some
professional contexts, this process is raised to an art form,
providing a useful context in which to investigate the human
cognitive response to complexity.

For instance, in research departments across the pharmaceutical
industry, medicinal chemists routinely sift through long lists of
compounds with associated data (biochemical activities, physico-
chemical properties, etc.) in order to prioritize some for further
optimization or study, and discard others in the search for new
drug candidates. [1] Although computational tools have been
developed to aid compound prioritization, [2] medicinal chemists
remain intimately involved in compound review. In order to
prioritize compounds, chemists must consider whether they

possess desirable physical chemical properties (e.g., solubility),
how easily they can be synthetically accessed and chemically
manipulated, and whether they can be optimized to bind a desired
target while avoiding undesirable biological properties such as off-
target interactions or mutagenicity. Indeed, guiding compounds
through all the potential pitfalls that lie between an initial
ensemble of hits and a drug candidate is an extremely complex
task, and the selection of the initial chemical starting points for this
endeavor greatly impacts the path that is explored, and the
ultimate success of a drug discovery campaign.

In this paper we examine how chemists tackle this problem as a
way of addressing the more general question of how humans deal
with cognitive complexity. Specifically, we asked chemists to sort
through ,4,000 chemical fragments over several sessions, and to
identify those they deemed attractive for follow-up. (Chemical
fragments are compounds with molecular weight,300, that are
smaller than typical drug-sized compounds. They are used as
starting points for building larger, more drug-like compounds.) We
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built classification models to best characterize which objective
properties of the fragments were most predictive of each individual
chemist’s decisions. In order to ascertain the potentially complex
patterns of features that chemists might find desirable or
undesirable, we applied two orthogonal classification algorithms:
semi-naı̈ve Bayesian (SNB) and Random Forest (RF). While both
methods are capable of identifying important features and
recognizing complex interdependencies between features, SNB is
more readily interpretable. Thus both methods were used to
identify important features, while SNB models were used to
visualize and interpret chemists’ preferences. We also asked
chemists to explain their decision-making. We aim to address three
major questions: 1) How and to what extent do chemists simplify
the problem of identifying promising chemical fragments to move
forward in the discovery process? 2) Do different chemists use the
same criteria for such decisions? 3) Can chemists accurately report
the criteria they use for such decisions? Below we provide a
background for these three questions.

Reducing Complexity
For most decisions we face in the real world based on sampling

available information, the world is much like a superstore – it
offers too much, and most of what’s offered does not meet our
specific requirements. Given this state of perpetual information
overload, people are bound to filter out a great deal of
information. Classic work in cognitive science has been critical
of this strategy, portraying human reasoning as plagued with
biases, based on heuristics that ignore relevant information, and
prone to fallacies. [4,5] This work claims that cognitive limitations
lead people to selectively attend to a subset of available
information and therefore to systematically make non-normative
decisions.

However, recent developments in the study of reasoning
question the idea that ‘‘less’’ always means ‘‘worse.’’ As
Gigerenzer, Todd, and the ABC research group proposed, [6]
the accuracy-effort trade off is not the only reason why people
resort to using incomplete information. In certain environments
(i.e., those characterized by high cue redundancy [a cue can be
thought of as a feature that signals something. For example, shorts
and cleats are cues that someone is a soccer player], low
predictability of outcomes, or with a small amount of evidence
relative to the number of potentially available cues), heuristic-
based reasoning that efficiently ignores some of the available
information and uses simpler computations can in fact lead to
more accurate decisions. [8] In one study, the predictive accuracy
of two relatively simply heuristics–‘‘tallying’’ and ‘‘take-the-best’’–
was compared to multiple regression, a more complex estimation
technique, in 20 scenarios ranging from predicting fish fertility to
fuel consumption. [10] (The tallying heuristic ignores cue weights
and simply counts the number of favoring cues, while take-the-best
searches through cues in order of validity and bases a decision on
the first cue that discriminates between the alternatives. Regression
methods weight the cues differentially, and uses all of them when
making predictions.) Regression was shown to be superior in fitting
the available data, but its flexibility came with the price of
capturing unsystematic patterns in the data, and it was ultimately
outperformed by both heuristic methods when it came to
prediction (see also [11]). Such ‘‘less-is-more’’ effects - where less
information leads to higher accuracy - have been observed in a
variety of settings. For example, expert sports players often make
better decisions under time pressure. [12,13] It appears that for
some kinds of problems and environments, ignoring pieces of
available information can be a signature of expert decision making
rather than faulty reasoning.

Consistent with this view, experts often use only a subset of
available information in decision making. This has been observed
in fields as diverse as medical radiology, [14] medical pathology,
[15] stock trading, [16], clinical psychology, [17] and grain
judging. [18–20] Moreover, experts appear to utilize fewer cues in
realistic decision-making settings than in more controlled exper-
imental settings. [21] For example, judges tended to use all
available information when reaching decisions in a simulated
courtroom setting, but only a small subset in an actual courtroom.
[22] Indeed, experts do not appear to differ from novices in the
amount of information they use, but rather what information they
use, suggesting that experts are more capable of discriminating
what is diagnostic from what is not [23].

In this paper, we address the question of how expert medicinal
chemists approach the problem of selecting promising compounds
from large sets. Do they aim for exhaustive assessment of each
compound, by taking into account all pieces of available
information, or do they simplify the problem by focusing on a
small subset of compound properties?

Consensus among Experts
Another question of interest is the degree to which highly-

trained and experienced medicinal chemists agree with each other
when making decisions about promising chemical fragments. In a
seminal paper, Einhorn argued that consensus among experts is a
mark of expertise, implying that a lack of consensus among experts
demonstrates a lack of expertise. [15] However, evidence from
previous work on expert agreement is mixed. First, consensus
proved to vary with the domain of expertise [24]: for example,
stockbrokers have demonstrated low consensus, [16] while weather
forecasters have demonstrated high consensus. [25] Shanteau
proposed that the degree of consensus among experts may depend
on the properties of the problem space, such as predictability [24,26].

Second, prior work on expert classification suggests that expert
specialization can affect consensus within a common domain of
expertise. For instance, tree experts with different specializations
(maintenance, landscaping, or taxonomy) overall agreed in their
classification of local tree species, but only landscaping experts
showed a distinct tendency to group trees based on their utilitarian
value. [27] Similarly, a comparison of Native American and
majority-culture fisherman in northern Wisconsin showed overall
consensus in their categorization of local freshwater fish species,
but also clear differences with respect to the use of morphological
(majority-culture) and ecological (Native American) dimensions
[28].

Turning to our domain of interest, medicinal chemistry, reports
of consensus between chemists from previous studies have been
varied. When assessing the synthetic accessibility of compounds,
chemists have demonstrated both a considerable amount of
consensus (the correlation coefficient r2 between chemists ranged
from 0.73 to 0.84), [29] and moderate consensus (r2 ranged from
0.50 to 0.63). [30] Lower consensus was observed when chemists
assessed the drug-likeness of compounds (r2 ranged from 0.40 to
0.56). [30] In a study most relevant to the current paper, chemists
asked to remove undesirable compounds from lists of putative
compounds for inventory acquisition showed little consensus. [31]
One difference in the present work is that in our case chemists
were asked to actively select desirable compounds, rather than
reject undesirable compounds. More importantly, we have gone a
step further by analyzing what criteria individual chemists use to
select desirable compounds, revealing why there is an apparent lack
of consensus, and the degree – if any – to which these criteria are
consistent across chemists.

Inside the Mind of a Medicinal Chemist
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Expert Awareness of Decision Criteria
The counsel of experts is often sought on subjects or items

within their field that are too complex for a non-expert to handle –
for example, bloodstock agents are consulted to assess how
promising a yearling thoroughbred horse is prior to purchase, or a
specialized doctor might be sought to diagnose a puzzling
symptom. These assessments are often summarized in verbal or
written reports, which in turn inform decisions. It would seem
almost ludicrous for an expert to make an important recommen-
dation based on their ‘‘gut feeling,’’ yet there seems to be
mounting evidence that the unconscious mind under certain
circumstances in fact outperforms the conscious mind. Research
suggests that the unconscious is especially good at making complex
decisions, [32] and that introspection can actually reduce the
quality of decisions. [33] It has also been reported that humans are
often unaware of the important factors that play a role during
complex problem solving. [34] Furthermore, people seem to be
ultimately less satisfied with choices that were consciously made,
compared to those made unconsciously. [35,36] Importantly,
complex pattern recognition, which is especially relevant to the
current study, can be obtained unconsciously. [37] This invites one
to reconsider the role of the conscious and unconscious mind when
expert chemists prioritize compounds. When faced with the
inherently complex problem of assessing the desirability of a
compound, are chemists aware of the criteria they use when
selecting compounds to carry forward during drug discovery
campaigns?

Results

Reducing Complexity
Chemists (N = 19) were asked to select desirable fragments from

8 batches of 500 fragments each. In order to determine the
number and type of properties that best predicted each chemist’s
decisions, we built semi-naı̈ve Bayesian (SNB) and Random Forest
(RF) classifiers based on individual chemist’s selections. Medicinal
chemistry relevant descriptors were used to train the classifiers, so
that the resulting models could readily be related to what types of
information (or parameters) were important during selections.

As a first step, we assessed the predictive accuracy of the SNB
and RF classifiers compared to benchmark classifiers built with
state of the art descriptors that are not as interpretable (Figure 1).
For the benchmark classifiers, we trained classifiers with extended
connectivity fingerprints (ECFP4) and simple physical properties
(ALogP, Molecular_Weight, Num_H_Donors, Num_H_Accep-
tors, Num_Rotatable_Bonds, and Molecular_FractionalPolarSur-
faceArea). The interpretable SNB and RF models compared
favorably in predictive accuracy, and in many cases outperformed
the corresponding benchmark. The high predictive accuracy of the
majority of the classifiers supports the notion that most of the
chemists evaluate compounds in an internally consistent manner.
For example, for the SNB benchmark, 15/19 models yielded a
ROC score .0.7 (Figure 1A, black).

The types of parameters used by the SNB and RF classifiers are
depicted in Figure 2: we refer to the most important parameter as
primary (stars), and all other parameters used as secondary
(circles). The descriptors that underlie these parameters are
reported in Tables S9 and S10. To our surprise, the majority of
the classifiers only used 1–2 types of information. For example, for
the SNB classifiers, the majority of classifiers used 2 parameters (16
chemists), while only a few used 1 (1 chemist) or 3 (2 chemists)
parameters. The RF classifiers suggest even fewer parameters are
important: the majority of classifiers use 1 (9 chemists) or 2 (9
chemists) parameters, while only 1 classifier uses 3 parameters.

This suggests that medicinal chemists reduce a complicated
problem into a more tractable one by assessing generally just a
1–2 parameters (or types of information) rather than several.

Value preferences of SNB models. One of the advantages
of our approach is that the SNB classifiers built for each chemist
could be visually investigated to bring to light each chemist’s
preferences in detail. It should be noted that two models that use
the same number of parameters can vary immensely in the
complexity or amount of information that they use, although the
type of information is the same. For example, two chemists might
select fragments based on size and polarity. In one case, a complex
strategy where interdependencies of these parameters might be
used (‘‘large and polar’’ or ‘‘small and nonpolar’’ compounds are
desirable), while another chemist might use a simple strategy
where these parameters are considered independently (‘‘large’’ is
desirable, and ‘‘highly polar’’ is desirable). We verified that our
SNB classifiers could represent both of these strategies (See
Methods and Fig. S2).

We found that in some cases when SNB classifiers were applied
to chemists’ decisions, models revealed relatively straightforward
preferences. For instance, compounds above a certain cutoff for a
particular property are favored, while those below it are
disfavored, or vice versa. For chemist 3, size (as measured by the
number of atoms) was the most important parameter (Fig. 2);
indeed larger fragments were more desirable (Fig. 3A–B). In
contrast, modeling revealed polarity to be the primary parameter
for chemist 12 (Fig. 2), who showed a strong preference for
compounds with a molecular polar surface area less than ,70 Å
(Fig. 3C–D).

In contrast to these straightforward preferences, we also
observed models that revealed more complex preferences,
revealing interdependencies between features. For example, the
primary SNB parameter for chemist 1 was identified as functional
groups (Fig. 2). Chemist 1’s selections were based on specific
combinations of these functional groups (Fig. 4). For example,
compounds with hydroxyl groups and tertiary amines were
deemed favorable, but if aromatic heteroatoms were also present,
they were deemed unfavorable. In fact, chemist 1 in general
disfavored compounds containing aromatic heteroatoms. If,
however, fragments containing aromatic heteroatoms also contain
a carboxylic acid, the compound was seen as favorable. This may
be due to the carboxylic acid increasing the attractiveness of the
otherwise unfavorable fragment since it might be seen as an
especially desirable chemical handle. Importantly, these interde-
pendencies would not have been recognized by our SNB classifiers
if the functional groups were considered independently rather than
jointly.

We then investigated how models built with the same parameter
compared between chemists. Seven chemists based their decision
largely on ring topology; Figure 5 depicts a subset of the most
desirable and undesirable values for a descriptor that jointly
measures the number of ring bonds, aromatic bonds, and ring
assemblies present in a fragment. Representative ring systems that
match each descriptor value are depicted. Once again, we see that
interdependencies between features are present in ring system
preferences. For example, for chemist 19, fused aromatic 6
member rings (11_11_1) are desirable, but when they are
connected to an aliphatic 6 member ring (17_11_2), they are
undesirable. We note that the rings are grouped together in a
chemically intuitive way when they are clustered based on the
chemists’ preferences. The chemists were also clustered based on
which descriptor values they preferred, revealing the underpin-
nings of some of the similarities (SMT) observed between chemists
(discussed below). For example, one of the highest similarities
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observed was between chemist 11 and 19 (SMT = 0.47, Fig. S8),
and for the subset of values from chemists’ models depicted in
Figure 5, they are also the most similar and cluster together first.
The ring topology preferences of chemist 10 and 16, on the other
hand, are in clear contrast with each other. For example, chemist
10 favors 1–2 ring structures that are not fused, while chemist 16
disfavors these (Fig. 5). Furthermore, chemist 16 highly favors
certain fused tricyclic ring structures (17_12_1, 16_11_1, and
16_6_1, Fig. 5) which are disfavored by chemist 10. These
differences explain at least in part the low similarity between
chemist 10 and 16’s overall selections (SMT = 0.19, Fig. S8). Thus,
even if chemists use the same parameter to assess compounds,
their individual preferences can be quite different. We explore the
question of consensus between chemists, which these comparisons
foreshadow, in depth in the next section.

In sum, our models show that medicinal chemists appear to
have approached a complex decision-making problem regarding
the attractiveness of chemical starting points by reducing a
massively multidimensional problem space down to one or two
salient parameters (or types of information). In some cases, these
parameters represent a simple pattern of selections, while in others
more complex patterns have been identified, such as multiple
dimensions being considered jointly.

Consensus among Chemists
The question of consensus among chemists is a complex one;

accordingly we approached it in a number of ways. As a first step,
the agreement in parameters used by each chemist during
selections was examined. We then investigated the fraction of
compounds selected by each chemist. Next, we assessed the
similarity of chemist’s selections with themselves (consistency) and

Figure 1. Predictive accuracy of Semi-Naı̈ve Bayesian (SNB) and Random Forest (RF) classifiers trained on medicinal chemists’
selections. The average ROCS score for a 4-fold cross validation of each classifier is reported. A: SNB classifier built with medicinal chemistry relevant
descriptors (red) is compared to a benchmark Naı̈ve-Bayesian classifier that uses extended connectivity fingerprints and physical chemical properties
as descriptors (black). B: RF classifier built with medicinal chemistry relevant descriptors (blue) is compared to a benchmark RF classifier that uses
extended connectivity fingerprints and physical chemical properties as descriptors (black).
doi:10.1371/journal.pone.0048476.g001
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with each other (consensus). Finally, we investigated the amount of
consensus between chemist selections as a group, and applied the
cultural consensus model to assess to what extent individual
chemists agreed with the group.

Consensus on selection parameters. Because our classifi-
ers revealed which parameters best predicted individual chemists’
responses (Fig. 2), one way in which chemists might show

agreement is by relying on the same parameters to guide decisions.
For the following analysis, we rely on the SNB classifiers, as their
predictive accuracy was on average greater than that of the RF
classifiers.

One-parameter models. While 14 parameters were avail-
able for constructing models, only 9 parameters were actually
observed in the SNB classifiers for each chemist; 5 were observed

Figure 2. The parameters extracted from the SNB (red) and RF (blue) classifiers are compared with parameters designated as
important in chemists’ self-reports (grey). The primary parameters for the classifiers are depicted as stars, and the secondary parameters are
depicted as circles. The one-tailed Fisher exact probability test (p) is reported for each parameter (except chains and charge), indicating that the SNB
and RF parameters show agreement with each other, while the self reported parameters are independent of either of the classifier’s parameters.
doi:10.1371/journal.pone.0048476.g002

Inside the Mind of a Medicinal Chemist

PLOS ONE | www.plosone.org 5 November 2012 | Volume 7 | Issue 11 | e48476



in the one-parameter models. If preference for each parameter is
equally likely, we can take .111 (i.e., 1 out of a possible 9
parameters observed) as a hypothetical random probability of a
given chemist preferring a given parameter, and compare the
observed distribution to this prediction via binomial probability
(i.e., compute whether more chemists prefer a particular model
than expected by chance). Doing so, we observed that eight
chemists’ best one-parameter model utilized ring topology
(p = .0006). Four chemists utilized functional groups, and another
four used hydrogen bond donors/acceptors; these distributions of
parameter preferences did not differ from chance levels (p = 0.153).

Two-parameter models. Similar logic can be used to
examine agreement on two-parameter models; here, with 36
unique binary combinations of nine parameters, probability of
random agreement is .028. One chemists’ decisions could only be
described by a one-parameter model; eleven different two-
parameter models were needed to describe the remaining 18
chemists. Of these, more than expected by chance used ring
topology plus functional groups (N = 5, p = 0.0001). Likewise, more
chemists used ring topology plus hydrogen bond donors/acceptors

than expected by chance (N = 4, p = 0.001). No other two-
parameter model was observed more than expected by chance.

In sum, chemists showed moderate agreement on which
parameters were relevant to the decision process.

Fraction of compounds selected per chemist. One simple
metric of agreement is the fraction of compounds selected by each
chemist per batch. The fraction of compounds deemed suitable to
carry forward varied widely between chemists, ranging from 7% to
97% (average = 45%), though each chemist was relatively consis-
tent from batch to batch (average standard deviation = 7%, Fig.
S6A). This variance between chemists was not related to their ideal
library size (Fig. S7A) nor linearly related to the number of targets
a chemist had previously worked on (R2 = 0.05, Fig. S7B). The
fraction passed could, however, be explained by each chemist’s
reported selection strategy (Fig. S7C). Chemists who reported
selecting only the ‘‘best’’ fragments passed a lower fraction of
compounds (0.1360.07) than chemists that reported excluding
only the ‘‘worst’’ fragments (0.6160.34); those who reported
intermediate strategies passed an intermediate fraction of com-
pounds (0.3960.25).

Figure 3. Examples of selection preferences based on simple physicochemical properties, and the corresponding SNB classifiers. A:
Histogram of number of atoms of fragments selected by chemist 3 as good (green) or bad (red) starting points for drug discovery campaigns.
Frequencies are normalized by the total number of selected or unselected compounds, respectively. B: Bayesian score versus number of atoms for
minimal Bayesian model build for chemist 3. A positive score indicates a favorable number of atoms, while a negative score indicates an unfavorable
number of atoms. C: Histogram of molecular polar surface area of fragments selected by chemist 12 as good (green) or bad (red) starting points for
drug discovery campaigns. Frequencies are normalized by the total number of selected or unselected compounds, respectively. D: Bayesian score
versus molecular polar surface area bins for SNB classifier built for chemist 12.
doi:10.1371/journal.pone.0048476.g003
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Figure 4. The SNB classifier built using a descriptor subsumed by the functional group parameter is illustrated for chemist 1. Keys
that represent the presence (black) or absence (white) of chemical substructures are ordered from negative (bad) on the left to positive (good) values
on the right (A). The worst and best substructure keys are zoomed in on (B). Specific chemical substructures (tertiary amine – blue, aromatic
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Similarity between chemists’ selections. We next exam-
ined how similar individual chemist’s selections were to themselves
(consistency) and to each other (consensus) when viewing the same
compounds. The modified Tanimoto similarity (STM), [38] which
ranges from 0 (entirely dissimilar) to 1 (identical), was used to assess
the agreement between chemist’s selections. This measure is
symmetrical, and therefore equally sensitive to both agreement in
selections and rejections. It also takes into account the fraction of

selections or rejections for a given comparison; for example, if
there is a low number of selections when comparing two chemists,
agreement in selections will be weighed more heavily than
agreement in rejections. For assessing consistency, a subset of
227 compounds that were present in more than one batch was
used. When chemists were compared to themselves, the similarity
between selections ranged from 0.37–0.82, with an average of 0.52
(Fig. S8A), indicating moderate consistency. To examine consen-

heteroatom – violet, hydroxyl – aqua, and carboxylic acid - orange) are highlighted for one of the worst keys and two of the best keys, and illustrative
examples of fragments that would be described by these keys are depicted (C).
doi:10.1371/journal.pone.0048476.g004

Figure 5. Ring topology SNB classifier comparison between chemists. The most favorable and unfavorable keys for the
RingBonds_AromaticBonds_RingAssemblies (RB_AB_RA ) descriptor model, which measures the number of ring bonds (RB), aromatic bonds (AB),
and ring assemblies (RA) present in a compound, were examined. Representative scaffolds that correspond to these keys are depicted, and are
clustered based on how chemists viewed them. The Bayes score for each models built on individual chemists for each key is reported in a heat map.
The favorable keys receive a positive score, while unfavorable keys receive a negative score.
doi:10.1371/journal.pone.0048476.g005
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sus between chemists, the entire set of 3,685 unique compounds
was used. When chemists selections were compared to each other,
the similarity ranged from 0.05–0.52, with an average similarity of
0.28 (Fig. S8B–D); this indicates substantial disagreement about
particular fragments. In sum, chemists were moderately internally
consistent in their evaluation of compounds, but the consensus
between chemists was low.

Consensus in compound selection or rejection. To
further investigate these patterns, we calculated the percentage
of chemists in agreement on each compound (Fig. S9A). Strikingly,
consensus (defined here as 75% of chemists’ agreeing on
acceptance or rejection) was reached for only 8% of the
compounds reviewed (313 compounds). Moreover, agreement
was asymmetrical; 1% of the compounds are considered good
while 7% of the compounds are considered bad (Fig. S9A). This is
not simply due to a bias in chemists rejecting more compounds
than they accept, since on average chemists accepted nearly half
(45%) of the compounds. Representative examples of the most
undesirable fragments are depicted in Figure S10.

Furthermore, NB models were built on the consensus ($75%
agreement) selections of all chemists (Table S11–12). Separate
models were built to identify consensus ‘‘good’’ compounds and
consensus ‘‘bad.’’ Models were built with extended connectivity
fingerprints (ECFP4). We anticipate that the features identified by
consensus selections of chemists for identifying undesirable
compounds will be particularly useful in removing undesirable
fragments from large collections of compounds, for example,
during compound acquisition or when designing focused in-house
screens of fragments.

Characteristics of high consensus chemists. We then
investigated to what extent individual chemists agreed with the
group as a whole on compounds where there appeared to be
consensus. The cultural consensus model (CCM) is an ideal
method for this purpose since it estimates the knowledge - what we
term estimated consensus - of respondents on a scale of 0–1 based
on the observed agreement between survey answers. [40] (The
cultural consensus theory assumes that high consensus is a sign of
knowledge (expertise), and thus high-consensus individuals are
termed high-knowledge individuals. We use the cultural consensus
model as an atheoretical tool to identify members that agree most
with the group, so we term them ‘‘high estimated consensus’’
individuals, rather than ‘‘high estimated knowledge’’ individuals.)
In this case the survey answers are the fragment selections. As a
prerequisite, a single underlying model explaining respondent’s
decisions must first be demonstrated. The CCM as implemented
in ANTHROPAC 4.0 [41] was used to test for consensus. As
expected, a single underlying model did not fit the entire set of
selections. By preselecting a set of high agreement compounds
(.75% agreement, 313 compounds), a one culture model could be
built, as attested by a large ratio of 6.9 between the first and
second eigenvalue. In general, an eigenvalue ratio greater than 3
to 1 indicates a single pattern of responses across questions. [42]
Importantly, by applying the CCM to the subset of high consensus
compounds, an estimated consensus of each chemist was obtained
which revealed a vast spectrum of agreement with the group,
ranging from 0.07 to 0.66. From this analysis we could also
identify a subset of chemists who agreed most with the group; from
this subset we could further investigate agreement among high
consensus chemists (see below).

We then sought to characterize the selection characteristics of
chemists who agreed most with the group. We found that chemists
with higher estimated consensus tended to select an intermediate
fraction of fragments (,0.2–0.7, Fig. 6). This is not entirely
intuitive, since the majority of compounds that the CCM was built

on were rejected compounds, so we might expect a high rejection
rate for chemists with high estimated consensus. We might also
suspect that chemists with high estimated consensus rely on the
same parameters when making selections. Since the ring topology
metric was the most common primary SNB parameter for
chemists (Fig. 2), it makes sense intuitively that it should be an
important property to chemists with the highest estimated
consensus. Indeed, ring topology was identified as the primary
SNB parameter for the chemists with the highest estimated
consensus (chemist 6, 8, 11, and 19), and as a secondary SNB
parameter for the chemists with the next highest estimated
consensus (chemist 1, 15, and 18). We also noted that a chemist’s
estimated consensus was unrelated to the predictability of the
chemist’s selections (color-coded, Fig. 6).

We next assessed to what extent the consensus between chemists
with high estimated consensus was enhanced compared to the
consensus between the same number of chemists selected
randomly when considering the entire dataset of selections (Fig.
S9B and S9C). The chemists with high estimated consensus
(chemist 1, 6, 8, 11, 15, 18, and 19) showed a significantly greater
agreement in undesirable compounds (Fig. S9B). The agreement
in desirable compounds, however, was no greater than the
agreement between chemists selected randomly (Fig. S9C). This
reinforces the notion that while there seems to be agreement in
what is undesirable, there does not appear to be agreement in
what is desirable.

In sum, the overall consensus between chemists is low, and what
little agreement there is among chemists seems to be regarding
undesirable fragments.

Chemists’ Awareness of Decision Criteria
To assess the extent of chemists’ self-awareness, we compared

the parameters reported by chemists to those identified by our
SNB and RF classifiers (Fig. 2). The average number of
parameters reported by each chemist (8.162.2) was much larger
than the number of parameters identified by the SNB (2.1 6 0.5)
or RF (1.660.6) classifiers for each chemist, which the two-tailed
paired sample t-test indicates as significant (p = 9.1610210and
p = 5.7610210, respectively). Indeed every single chemist reported
properties that were never identified as important by our SNB or
RF classifiers. In addition to the properties reported in Figure 2,
there were simple parameters (chiral centers and rotatable bonds;
included in averages above) and more complex parameters (shape
and complexity); not included in the averages above) that were
reported by chemists though our approach never identified them
as being useful in reproducing selections (Figure S11). Further-
more, Fisher exact probability tests indicated that for each
parameter reported in Figure 2, the SNB parameters or RF
parameters were independent of the self-reported parameters (p-
values range from 0.46–0.74 for SNB or 0.22–0.80 for RF,
excluding the Novelty/IP parameter, Fig. 2), while indicating that
the SNB and RF parameters are consistent with each other (p-
values range from 0.0058–0.11). In addition, for 12/19 chemists,
the primary parameters identified by SNB and RF are in
agreement with each other. In other words, there was no
systematic relation between the parameters reported by the
chemists and those indicated by our modeling, although the
parameters identified by the SNB and RF classifiers were
consistent with each other.

Perhaps one of the more astounding discrepancies from above,
chemist 3 reported that several properties were important, but
failed to report that size played any role during selections. Our
SNB and RF classifiers both revealed that size, an especially
straightforward parameter to assess, was the most important
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feature in distinguished chemist 3’s selections from rejections
(discussed above).

The lack of agreement between the parameters identified as
important by SNB or RF classifiers and self-reported parameters
for many chemists suggests that medicinal chemists are often
unaware of the principal factors that influence their selections.

Discussion

Overview
In this paper we explored how medicinal chemists categorized

chemical fragments as desirable or undesirable starting points for
development into lead compounds. This allowed us to not only
investigate the cognitive basis of this important aspect of drug
discovery, but also to address basic issues in cognitive science. We
focused on three major questions: 1) to what extent, if any, do
chemists simplify the problem of identifying promising chemical
fragments to move forward in the discovery process? 2) Do
chemists agree with each other about the criteria used for such
decisions? 3) Can chemists accurately report the criteria they use
for such decisions?

Reducing Complexity
Our results clearly show that chemists greatly reduced the

complexity of the problem they were solving. Potentially, one
could utilize dozens of parameters (or types of information) to
make decisions about fragment suitability. We specifically queried
14 possible parameters in our modeling, 9 of which were used at
least once by at least 1 chemist according to either the SNB or RF
classifiers. Strikingly, our modeling suggests that the vast majority
of chemists only used 1–2 parameters to categorize compounds. In
other words, chemists transformed a massively complex categori-

zation problem into a tractable one- or two-dimensional problem.
This does not seem to be a bias of our approach since applying our
method to simulated classifiers indicated that we could correctly
identify at least 4 parameters used in categorization. Furthermore,
we used two types of orthogonal classification algorithms to reach
these conclusions. It should also be pointed out that SNB models
using only 1 parameter can capture rather complex preferences, as
in the case of chemist 1’s functional group model. Even so, it is
clear that a one parameter model does not use all of the types of
information that are available. Category formation based on one
dimension, as opposed to many, has been observed in previous
psychology experiments as well, even when subjects were asked to
use all dimensions when categorizing items [43].

Consensus among Chemists
We found evidence of moderate agreement among medicinal

chemists with respect to the parameters that best modeled their
decisions about chemical fragments. For example for the SNB
classifiers, eight chemists’ primary parameter was ring topology,
and out of 36 possible two-parameter models, two accounted for
47% of chemists. However, we found little agreement with respect
to decisions about particular fragments. Only 8% of fragments
were accepted or rejected by more than 75% of chemists, the
similarity among chemists’ decisions was low, and the cultural
consensus model failed to reveal a single underlying model of
chemists decisions for the complete fragment set. In other words,
even if chemists used the same feature to categorize compounds–
which they generally did–they often preferred different values for
these features. Moreover, more agreement among chemists was
observed regarding what constitutes an undesirable fragment.

Figure 6. The selection characteristics of chemists with high estimated consensus. The cultural consensus model was applied to a subset
of fragments (311) with .75% agreement by chemists. The estimated consensus obtained by this method is plotted against the fraction of fragments
passed by chemists for the entire survey. Each shape describes the primary SNB parameter used to reproduce chemists’ selections, and the color
depicts the ROC score of naı̈ve Bayesian classifiers built using ECFP4 as a descriptor for each chemist. A subset of high consensus chemists is above
the dashed grey line.
doi:10.1371/journal.pone.0048476.g006
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We also applied the cultural consensus model to identify
individuals that agreed the most with the group as a whole, and to
assess the amount of agreement between the chemists. Applying
the model to a subset of compounds with high agreement between
chemists ($75%) was necessary in order to obtain a one culture
model. It should be noted that the majority of these compounds
were deemed undesirable (265/313, Fig. S9A). When we looked at
the agreement on desirable and undesirable fragments (for the
entire set of survey compounds) between a subset of chemists with
high estimated consensus versus a subset of randomly selected
chemists, the agreement in the fraction of undesirable compounds
was greater, but there was no difference in the fraction of desirable
compounds (Fig. S9B–C). These results imply that while there is
some agreement regarding undesirable fragments, there does not
seem to be a significant amount of agreement regarding desirable
fragments. This may be an example of negativity bias – ‘‘bad’’
information tends to be processed longer than ‘‘good’’ informa-
tion, and stronger memories are formed of ‘‘bad’’ items. [44,45]
Perhaps chemists have retained more knowledge of chemical
motifs or properties that literature refers to as undesirable, or that
they have had bad personal experiences with, and also paid more
attention to these undesirable motifs or properties while they were
processing the compounds. In some sense this finding also seems to
contradict the notion that chemists tend to recycle privileged
scaffolds that they find attractive, ultimately constraining the
diversity of chemical series and libraries. [46] It suggests that while
individuals have preferences for specific scaffolds, as evidenced by
the highly predictive SNB and RF classifiers that were built, these
biases are not often shared between chemists.

As mentioned in the introduction, a lack of consensus does not
necessarily reflect a lack of expertise, but rather may be a result of
the particular problem space under investigation. [24,26] Three
structural factors that contribute to lack of consensus among
experts are especially relevant to compound prioritization in drug
discovery.

One factor that leads to low consensus is if a single solution does
not exist. [24] This is especially true in drug discovery, as
evidenced by multiple drugs often being developed for a single
target. In light of this, chemists may be playing to their own
strengths. In the same way that a master chess player must
navigate his chess pieces towards victory, and opens a game in a
manner that compliments his own style of play, a medicinal
chemist, in the context of a project team, must navigate the path of
compounds that he selects to work with towards more optimal
properties. The path that one chemist might take likely differs
from another, due to the diversity of knowledge and skill sets that
an individual brings to the table.

A second factor that leads to low consensus is if the basic science
in a field is still evolving. [24] This is particularly true of drug
discovery – for example, some topics that have recently garnered
much attention that are especially relevant to the current paper
are which scaffolds are the most promising in drug discovery, [47]
what are the optimal properties of chemical starting points [48] or
drug candidates, [49,50] what are the actual properties of
compounds explored by medicinal chemists and how have they
varied over time, [51] and how does the subset of chemical
reactions that tend to be employed in drug discovery constrain the
exploration of chemical space. [52,53] These studies bear
testament that there is still a great deal to learn about the basic
science of drug discovery.

A third structural factor that results in low consensus is when
experts work in dynamic situations with evolving constraints. [24]
In drug discovery, the intended targets of therapeutics are
constantly changing, and thus the chemical matter employed to

perturb these targets is constantly evolving as well. Furthermore
the constraints placed on what defines a suitable therapeutic
compound have changed over time. More than ever, researchers
are aware of undesirable on or off-target effects, and in many cases
are able to interrogate them, ultimately raising the bar for target
specificity and minimal toxicity. Indeed, it has been argued that
many historically successful therapeutics such as aspirin and
acetaminophen would not be considered suitable therapeutics in
the current drug discovery environment [54].

Tying Complexity Reduction and Consensus Together:
Goal Derived Categories

One interesting way to frame both the complexity reduction
and consensus results is in terms of goal-derived categories. Goal-
derived categories unite otherwise diverse entities in the service of
a particular goal; for instance, shirts, novels, and toothbrushes are
all things to pack in a suitcase. [55] Like common taxonomic
categories (e.g., dog, tree, car), goal-derived categories have been
shown to exhibit prototype structure (i.e., some exemplars are
more prototypical or ‘‘better’’ members of the category than
others). However, different factors determine prototype structure
for the two types of categories. The best examples of taxonomic
categories tend to be similar to many other members; they
represent the central tendency of the category. In contrast, the best
examples of goal-derived categories tend to be instances that
satisfy specific ideals–i.e., instances that have characteristics that
serve the goal optimally. Another determinant of typicality for
goal-derived categories is frequency of instantiation, or how often
an instance is encountered as a member of the category.

It’s plausible that our chemists are deciding whether or not the
target fragments are members of the goal-derived category
promising fragments for drug discovery follow-up. If so, chemists should
make decisions based on how well fragments satisfy ideals, and
their frequency of instantiation as promising leads. [56] In our
case, ideals are characteristics that fragments should possess if they
are considered desirable for lead development (e.g., synthetic
accessibility, facile derivatization, etc.), whereas the frequency of
instantiation could be thought of as the number of times a chemist
encounters a compound or chemical motif and associates it with
being desirable or undesirable for lead development. Our results
show that although chemists tend to converge on a small subset of
possible parameters for making these decisions, they show little
agreement on the optimal values for these parameters. This lack of
consensus could arise from several sources.

First, the complexity of what constitutes an attractive starting
compound for optimization in the drug-discovery process may
have led to differences in the ideals that chemists sought to
optimize. Second, people often optimize more than one ideal
during categorization, [55] and it is likely that in our case
individual chemists may also weight the importance of multiple
ideals differently. For example, one chemist might place more
emphasis on making sure a fragment can be easily evolved, while
another might place more emphasis on reducing potential toxicity.
Furthermore, chemists may also associate different parameters
with these ideals. For instance, two chemists may both desire a
fragment that specifically interacts with a target, and one chemist
may view shape as an important feature, while another may view
hydrogen bonding interactions as more important.

One reason that chemists might share the same ideals (e.g.,
synthetic ease), while favoring different values for these ideals may
be due to their personal experience (e.g., synthetic transformations
they are most familiar with). In other words, the distribution of
frequencies of instantiation is undoubtedly different for individu-
als, and this may be reflected by different optimal values. If
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chemists have worked in different target areas, they may have been
exposed to different chemotypes or functional groups. [47,57] A
follow-up questionnaire was employed to identify which target
areas survey takers had experience in (Fig. S12). The diversity of
backgrounds that was observed may have lead chemists to view
different motifs that are commonly encountered while working on
specific drug target areas as ‘‘druglike,’’ privileged, or easy to work
with. It is also likely that even if chemists have been exposed to the
same target classes during their professional careers, they may
extract different features from desirable compounds during
learning based on their backgrounds [58,59].

There is likely a complex relationship between a chemist’s ideals
and the parameters that were identified by the SNB and RF
classifiers as indicative of their selections. In specific cases,
however, by visually inspecting the individual SNB classifiers, it
is tempting to extrapolate ideals for individual chemists based on
the ideal’s impression upon optimal values for specific parameters.
For example, in one model (chemist 12), compounds with a polar
surface below a certain threshold are desirable, and those above it
are undesirable. This ideal has been stated in drug design
literature: the polar surface area of a drug-like compound should
not be too high, as it negatively impacts oral bioavailability
[60,61].

Chemists’ Awareness of Decision Criteria
Chemists were largely unaware of the factors that influenced

their decisions about compounds. Chemists reported that they
relied on more parameters than they actually did, according to the
SNB and RF classifiers, and there was little agreement overall
between the properties chemists identified and the parameters that
predicted their decisions. We should point out that for specific
instances parts of the self reports were extremely accurate. For
example, chemist 10 disclosed a list of features largely related to
the ring topology parameter. This list was written down before
evaluating the first set of compounds, and was used as a reminder
throughout the exercise. Although the reported features were
evident in chemist 10’s selections, several other self-reported
parameters were not identified as important. In stark contrast to
chemist 10 is a chemist who reported that sometimes, in addition
to the specific properties they reported, they trusted their ‘‘gut
feeling.’’ Perhaps, since a predictive model could be built for this
chemist, this ‘‘gut feeling’’ is really based on previous unconscious
learning. As discussed in the introduction, such lack of awareness
of the factors affecting decisions is fairly characteristic of human
decision-making in complex situations. Furthermore, experts have
also been described as inarticulate about the process used to make
decisions. [62] In our study, the intuition was clearly rooted in
expertise: a compound is unlikely to ‘‘strike’’ anyone as promising
or unpromising unless one has extensive record of performing such
complex evaluations. This raises an interesting question: would
novice chemists be more or less aware of the parameters they
based their decisions on than experts proved to be? If lack of
expertise makes the compound evaluation a slower, more effortful
process, we can expect novices to be more accurate in reporting
the parameters that influenced their decisions - unless they are put
under time pressure forcing them to rely on their fast (non-expert)
intuitive thinking. Another question is why the participants
overestimated the number of parameters they relied upon.
Perhaps, if the self-reports were based on post hoc rationalization
of already made decisions, the reports were driven by a meta-
expectation about the average number of parameters an expert
should consider in such a situation in order to arrive to a justified
decision. If chemists reading this paper find themselves surprised
at the small number of parameters their colleagues used, their

reaction informally testifies to the existence of that very meta-
expectation.

Implications and Conclusions
We found that chemists tend to exhibit stable decision bias by

consistently considering one or two parameters rather than many.
What does this imply for drug discovery? As discussed by
Gigerenzer & Brighton, [8] stable bias is sometimes preferable
over optimization strategies. Both stable bias and over-fitting the
data with an excessive number of parameters contribute to the
overall amount of predictive error. A simple strategy that avoids
over-fitting by accepting bias can in the end turn out to be more
successful. This principle lays ground for many ‘‘less-is-more’’
effects, where ignoring parts of available information leads to a
more accurate prediction. As Hertwig & Herzog put it, ‘‘the art is
to ignore the right information.’’ [63] What should and shouldn’t
be ignored is determined by the specific problem one is trying to
solve. Under the approach of ecological rationality, [8,64] simple
and complex decision strategies should be compared not in terms
of overall adherence to domain-general principles of logic, but
based on how well they fare in specific environments. This leads
one to question whether drug discovery is a good domain for the
simplified decision strategies that chemists are using. Future studies
aiming to address this might entail associating some measure of
success with compounds, and comparing the ability of chemists
versus potentially more complex computational protocols in
selecting desirable chemical starting points.

As discussed earlier, drug discovery is a multiple solution
problem space, and individual chemists can use their unique
strengths to explore chemical space while optimizing lead
compounds. That being said, a problem arises when a personal
bias does not lead one down a fruitful path. Consequently, our
research has implications for the education of medicinal chemists
and the structure of project teams. When hiring young chemists to
practice medicinal chemistry, pharmaceutical companies tend to
prefer a strong organic synthesis background over all other skill
sets, even over a medicinal chemistry background. [65–68] It is
thought that skills perceived as secondary can be taught on-site,
post-employment. [65–68] Thus, it may be beneficial to expose
medicinal chemists to diverse chemical motifs, and how they have
been advanced in the industry, in order to broaden the toolbox of
interesting chemical starting points for individual medicinal
chemists. Furthermore, project teams should be aware that if
one chemist’s influence is dominating how chemical space is
explored, the chemist’s personal bias may not necessary lead down
a beneficial path, although that path may exist. As such, it may be
advantageous to rely on two to three chemists with different
backgrounds and synthetic strengths in identifying interesting
series of initial compounds to explore, and then ultimately
pursuing the most promising leads once additional knowledge
has been generated.

The chemical space available for exploration by medicinal
chemists in the search for therapeutics is vast. This search process
serves as a real-life example of humans making decisions about the
unknown, based on limited knowledge, which holds huge potential
for reward. Inherent in this search is the reduction of complexity to
a manageable number of dimensions. Here we have revealed in
part how experts have cognitively tackled this daunting problem,
and identified in detail the parameters employed when prioritizing
which compounds to explore during drug discovery. By focusing
on how humans explore, interact, and understand chemical space,
rather than solely viewing drug discovery as a sterile process where
the ‘‘right’’ answer or compound will eventually emerge, it is
hoped that the human biases inherent in drug discovery may be
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leveraged or mitigated to the advantage of the discovery of
therapeutically beneficial chemical matter.

Methods

Overview
We sought to illuminate which molecular features influence the

attractiveness of a compound to a chemist by statistically
interrogating the choices made by individual chemists asked to
review ,4,000 chemical fragments (compounds,300 MW), and
select fragments they would be willing to carry forward in a lead
discovery effort. Fragments are ideal for this purpose as they are
less complex than larger compounds, with fewer potentially
conflicting features, allowing easier interpretation of chemists’
decisions. Furthermore, a survey of a given number of fragments
covers a much greater fraction of the possible fragment chemical
space than a survey of the same number of small molecules would
cover of possible small molecule chemical space, suggesting that
models derived from the study may be more transferable. A study
based on fragment selections is also especially relevant to the
pharmaceutical industry as many companies now use fragment
based screening as a method to identify interesting chemical
scaffolds, [69–71] and the number of hits is often high enough to
warrant prioritization of a subset of fragment hits. [72] We
simplified the selection exercise by not including biochemical
information that might influence selections. In our case, the
selections should solely rely on the structures of the fragments that
are presented, and how chemists assess whether they would want
to explore derivatives of such fragments. Here we describe the
surveys, follow-up questionnaires, SNB and RF classifiers, and
validation of the classifiers.

Fragment Set Preparation
Fragment-sized compounds (MW#300) were selected from the

Novartis archive and filtered based on physicochemical property
cutoffs (ClogP, number of hydrogen bonding groups, etc.) and
undesirable substructures based on in-house and external knowl-
edge (e.g., epoxides). In addition, the number of chemical handles,
diversity, chemical attractiveness (based on in-house Bayesian
models trained on medicinal chemists assessing HTS hit
compounds) were used to select the compounds. The fragments
were further required to have prototypes in the archive. The
identity, purity and solubility of the compounds were determined
by NMR, and additional profiling included binding to a CM5
BiaCore chip. The results from the BiaCore and NMR
experiments were used to filter for acceptable compound quality
control (QC) and solubility, respectively, yielding a set of ,3,700
compounds for further analysis and selection by chemists.

Survey
The ,3,700 molecules above were separated into eight batches.

Previous experience with interactive selection of attractive
fragments by chemists suggested 500 molecules was an optimal
batch size for visual evaluation. 227 molecules were sent more
than once (in different batches), in order to assess consistency in
chemists’ selections when they viewed the same compound on
separate occasions.

The molecule batches were created in the order BiaCore and
NMR profiling proceeded and imported into ICM sessions
(internally modified version of ICM Chemist from MolSoft [73]).
ICM offered a chemically aware spreadsheet that could be toggled
into an interactive structure grid where cells could be selected and
table position navigated with keyboard (in addition to mouse) to
minimize fatigue. The grid could be interactively resized to show

the desired number and size of molecules on different displays. By
default, upon opening a session, the view was in grid mode, with
compound structure, ClogP and number of heavy atoms displayed
(Fig. S1). All molecules were deselected by default. Before starting,
each user was asked to shuffle the molecules into a new random
order via a hyperlink in the session, to reduce order bias (first
molecules receiving more attention than last) in the user group as a
whole. To select a molecule, users needed to press the number 1
key and to undo selection, 0. The session could be saved and work
continued at another time. Upon completion, the user was asked
to upload the session to a shared location.

Chemists were invited to participate in the selection panel via an
e-mail message from senior chemistry management. 19 chemists
evaluated at least 7 out of the 8 batches of compounds. They were
located at 3 Novartis sites: Basel (Switzerland), Cambridge (MA,
USA), and Emeryville (CA, USA). They were all of doctorate-level
training, and had various levels of experience working in industry.
The target areas that the chemists had worked on are reported in
Figure S12. The molecule batches were sent to the panel of
chemists over two months. Participants were asked to pick
molecules they would be willing to follow up if they were hits in
a fragment screening campaign. Participants were purposely given
vague instructions on how they might assess each fragment,
suggesting they might consider things like whether fragments were
sufficiently functionalized so that they could interact with binding
sites, whether they could be grown, and their shape. No guidance
was given about number of molecules to select. Selections from the
uploaded ICM sessions were extracted with an ICM script into
ASCII files and further processed with Pipeline Pilot 8.0 [74].

Follow-up Questionnaire
After completing the fragment surveys, chemists were asked to

complete a web-based follow-up questionnaire that consisted of
both open-ended and closed-ended questions. A number of items
on the questionnaire were based on preliminary findings from our
classification models, although we did not share any of our results
with the participating chemists.

Simulated Classifiers
It has been demonstrated that great care must be taken when

attributing meaning to features used by classification algorithms.
[75] Thus, simulated classifiers with known selection preferences
were built to validate that classification models would be able to
correctly extract what parameters were used during compound
selection, prior to deriving classification models based on each of
the chemists’ selections. The simulated classifiers categorize
fragments as desirable or undesirable fragments, and those
category labels are then used to build classification models (SNB
or RF) that would hopefully recapitulate the criteria used to build
the fragment sets. The simulated classifiers assessed the same
fragment set as the chemists, and selected desirable and
undesirable compounds based on predefined criteria. For each
compound, the classifier first assessed whether the compound fell
into the desired chemical space (i.e., passing specific physical
chemical property cutoffs, not possessing undesirable substruc-
tures, etc.), and then classified the compound as good or bad. To
build noise into the classification to more realistically represent
human decisions, desirable and undesirable compounds were
misclassified 5% of the time.

The first set of simulated classifiers selected compounds based
on 1–4 parameters (Table S1). The purpose of these classifiers was
to assess how accurately SNB and RF classifiers could identify the
type and number of parameters being used by the simulated
classifier.
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A second set of simulated classifiers was designed in order to
assess the ability of SNB classifiers to correctly classify compounds
when there are interdependencies between attributes. The
simulated classifiers selected fragments as good or bad based on
1–2 attributes, with selection patterns varying from simple to
complex. The two attributes of the compounds that were used by
the simulated classifiers were number of atoms (size parameter)
and molecular polar surface area (MPSA, polarity parameter).
Four selection criteria for desirable fragments were assessed
(depicted from left to right in Fig. S2A) using the following
pseudocode:

1) number of atoms$15

2) MPSA,60

3) number of atoms$15 AND MPSA,60

4) (number of atoms$15 AND MPSA$60) OR (number of
atoms,15 AND MPSA,60)

The last selection strategy is an example of the classical XOR
(exclusive ‘or’) nonlinear problem [76].

A third set of simulated classifiers which selected fragments as
good or bad randomly was used to ensure that the SNB or RF
classifiers identified legitimate parameters used during selections.
We tested three different cutoffs for the random classifiers to use
for the fraction of fragments to select (0.1, 0.5, 0.9).

Classification Models
Pipeline Pilot 8.0 [74] was used to build all classification models

based on either simulated classifier or chemists’ selections. A 4-fold
cross validation was carried out for all classifiers as follows. The
survey responses were divided into 4 training and test sets (Table
S2), and after training a model, the average area under the
receiver operating characteristic curve (ROC score) for the test sets
was used to assess a given model’s predictability (for example,
Fig. 1).

Descriptors and parameters. 72 medicinal chemistry-
relevant descriptors (Table S3) were assessed or developed in
order to more readily elucidate what properties (e.g., number of
chemical handles, ring topology, number of hydrogen bond
donors or acceptors, etc) needed to be included as descriptors in
order to build accurate classification models for each individual
chemist. Many of these descriptors were directly calculated with
standard components available in Pipeline Pilot 8.0. A number of
these descriptors, however, were either obtained by combining
values calculated by Pipeline Pilot into a fingerprint, so that they
were considered jointly, calculated by a stand alone program, or
calculated with an in-house Pipeline Pilot protocol. Some of the
less straightforward descriptors are described in Tables S4
(chemical handles) and S5 (functional groups).

For semi-naı̈ve Bayesian (SNB) classifiers, it was necessary to
consider a number of descriptors jointly by combining individual
values into a fingerprint (for example ring bonds, aromatic bonds,
and ring assemblies: RB_AB_RA, illustrated in Fig. 5), in order to
model interdependencies. This is not necessary for random forest
(RF) classifiers, since interdependencies are encoded in the
structure and splits of each tree. Thus, while RF classifiers used
the same descriptors, they only needed to be used independently
when training the RF. Continuous descriptors were binned into
,5 bins prior to training the RF classifier.

In order to identify what type of information was used to classify
compounds, each descriptor is mapped to one or more general
parameters. For example, both molecular weight and number of
atoms map to the parameter ‘‘size.’’ In this way, descriptors
identified as important by a classification model can then be

converted to parameters that they relate to, elucidating the type of
information used during classification by a medicinal chemist. A
total of 14 parameter classes were defined, namely ring topology,
functional groups, h-bonding groups, size, polarity, lipophilicity,
synthetic accessibility, novelty/IP, chains, charge, chiral centers,
complexity, rotatable bonds, and shape.

For the accuracy benchmark models for both SNB and RF,
extended connectivity fingerprints with diameter 4 (ECFP4) were
used in combination with simple physical properties (ALogP,
Molecular_Weight, Num_H_Donors, Num_H_Acceptors, Num_-
Rotatable_Bonds, and Molecular_FractionalPolarSurfaceArea) as
descriptors to train a naı̈ve Bayesian (NB) or RF classifier,
respectively. The ECFP descriptor takes into account all
substructures of a compound, and has been well established as
input to classification models in accurately separating classes of
compounds. [77] While the ECFP descriptor lends itself to
accurate model construction, the resulting models are not readily
interpretable in terms of what general parameters might be
important. Thus, classifiers constructed with ECFPs stand as
excellent accuracy benchmarks that other more interpretable
models might achieve.

Semi-naı̈ve Bayesian (SNB) classifiers. SNB classifiers
were developed in order to generate models that are easily
interpretable like their progenitor, naı̈ve Bayesian models, but also
capture interdependencies of attributes that naı̈ve Bayesian models
cannot. [76] Our classifiers are semi-naı̈ve in the sense that
features are often considered jointly rather than independently,
and we perform a feature subset selection on the descriptors that
are used by the classifiers in order to remove redundant descriptors
that will lower overall model accuracy, [78] and to remove
features that do not contribute to selections.

In all, 192 classifiers were first built for each chemist using one
or more medicinal chemistry relevant descriptors. It would not be
feasible to test all descriptors in all possible combinations, so a
number of avenues were used for focusing on the most relevant
models to build. In some cases all combinations of a few
uncorrelated descriptors were considered. In addition, a number
of classifiers were designed by combining descriptors that 1)
showed some enrichment in desirable or undesirable fragments for
at least one chemist and 2) were not correlated with each other.
The enrichment of a particular descriptor could readily be assessed
by the magnitude of a ROCS score for a model based on that
descriptor; all descriptors that resulted in ROCS scores .0.6 for at
least one chemist were tested in combination with other
descriptors. To assess for correlation between descriptors, we used
a PCA analysis of the descriptors, various correlation statistics, and
expert knowledge. Thus, two descriptors that are known to
measure similar properties (say number of atoms, and molecular
weight), were not paired together. This was not done in a rigorous
way, however, because even if two descriptors that are somewhat
related to each other are paired together, if the information that
they provide is redundant rather than complementary, then the
resulting model’s predictive accuracy will likely be the same or
lower than that of a model that uses only one of the said
descriptors, and the model with redundant descriptors would not
be selected during feature subset selection (see below).

In order to identify the most important parameters for each chemist,
we developed a feature subset selection method that identifies the SNB
classifier that only uses essential descriptors (Fig. S3). As mentioned
before, each descriptor is mapped to a more general parameter. Thus
each model can also be thought of as built from one or more
parameters. In the first step of selection, the best 1 parameter model is
selected (N = 1) from all possible 1 parameter models, as assessed by the
average ROCS score from the 4-fold cross validation of each classifier.
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It is then compared to the best 2 parameter model (N+1). If the best 2
parameter model is significantly more accurate, as indicated by the
ROC score increasing by .0.009, then N is incremented (N = 2), and
the current N parameter model is compared to the N+1 parameter
model. A cutoff of 0.009 was used as it resulted in the selection of SNB
classifiers with parameters that were known to be important for the
simulated classifiers, while not selecting SNB classifiers that contained
parameters that did not relate to the simulated classifier. This process is
continued until the predictive accuracy of the N+1 parameter model
does not increase more than 0.009. The parameter identified for the
N = 1 SNB classifier is termed the primary parameter. All other
parameters (if any) are termed secondary.

We also note that we took into account the possibility of local
minimum when selecting features to include in the SNB classifier.
For example, a local minimum might be found if a 2 parameter
model is not significantly more accurate than a 1 parameter
model, but a 3 parameter model is. In order to avoid local minima,
the accuracies of all models were computed regardless of the
number of parameters in the model for each chemist, and the
accuracy of the selected SNB classifier was compared to that of the
most accurate classifier. In most cases, when a local minimum was
obtained, SNB models with an intermediate number of parameters
were missing, and these models were added to the analysis.

Prior to applying this method to chemists’ selections, it was first
validated on simulated classifiers, which separated compounds
based on known parameter preferences. The first set of classifiers
tested whether the classifiers could identify the correct type of
information being used by the simulated classifier, and what
number of parameters classifiers could identify. The predictive
accuracy of the classifiers trained with the medicinal chemistry
relevant descriptors compared well with benchmark classifiers (Fig.
S4) trained with ECFP4 descriptors and simple physical properties
(ALogP, Molecular_Weight, Num_H_Donors, Num_H_Accep-
tors, Num_Rotatable_Bonds, and Molecular_FractionalPolarSur-
faceArea). The number and types of parameters identified as
important by the SNB classifiers (Fig. S5) were in good agreement
with the criteria used by each of the simulated classifiers to select
compounds (Table S1). The descriptors that underlie the
parameters are reported in Table S7. This study demonstrated
that our method could correctly identify up to 4 parameters (or
types of information) used to separate compounds. As we show
below, this was more than enough to recapitulate the chemists’
selections.

We used a second set of simulated classifiers to assess the ability
of the SNB classifiers to correctly classify compounds when
interdependencies were present between attributes. Four different
SNB classifiers were trained on the simulated classifiers’ selections.
Two of the SNB classifiers assessed consisted of one attribute
(Atoms Fig. S2B, or MPSA Fig. S2C). Another SNB classifier
included both Atoms and MPSA (Fig. S2D). A final SNB classifier,
considered Atoms and MPSA jointly (Fig. S2E). For each of the
simulated selection strategies, the SNB classifier that would be
selected by our feature subset selection method is boxed (Fig. S2).
For the simple selection strategies based solely on one attribute
(Atoms or MPSA), the classifier trained using only that attribute is
selected. In the third scenario, where fragments with $ 15 atoms
and MPSA,60 are considered desirable, the classifier that uses
both Atoms and MPSA (independently) is selected. In the fourth
scenario, the XOR case, the classifier that considers both number
of atoms and MPSA jointly is selected.

This study reveals that when attributes are considered jointly,
SNB classifiers can recapitulate complex patterns that might result
from dependencies between attributes. Indeed, these types of
patterns are investigated in the Results section for other attributes

that were considered jointly, and turned out to be important in
chemists’ selections (see ‘‘Value Preferences of SNB Models’’, as
well as Figures 4 and 5).

A third set of simulated classifiers tested how SNB classifiers
behaved when fragments were selected randomly. When SNB
classifiers were applied to the random simulated selections, no
ROC score was obtained that was greater than 0.55 (Table S6).
This sets a threshold for ROC scores that we can consider better
than random. Indeed, all of the models built on the chemists
selections were higher in accuracy, suggesting that our method is
indeed robust, and that ROC scores.0.55 will only be obtained
when selections are not randomly made.

Bayesian models have been discussed in detail elsewhere, so we
will only highlight important equations for our work. The
Bayesian Score for a given feature is:

BayesianScoreFeature(i)

~ ln P featureiDdesirableð Þ=P featureið Þð Þ
ð1Þ

and the total Bayesian score over all features is:

TotalBayesianScore

~
X

ln P featureiDdesirableð Þ=P featureið Þð Þ
ð2Þ

In our case, the Bayesian score for a feature is positive if a feature
or bin is desirable and negative if it is undesirable. When a
compound is being classified by a SNB classifier, if the total
Bayesian score is positive than it is scored as desirable, and if it is
negative it is scored as undesirable. The Bayesian scores for
specific features or bins in SNB models were useful in interpreting
and visualizing specific models (Fig. 3, 4, 5).

Random forest (RF) classifiers. In order to independently
validate the results from the SNB classifiers, we employed RF
classifiers as an orthogonal classification method. The Learn RP
Forest model component was used in Pipeline Pilot 8.0 [74] to
generate the RF classifiers. The descriptors used were the
medicinal chemistry relevant descriptors (mentioned above),
except continuous descriptors were binned into 5 bins, and joint
descriptors were not used (since dependencies can be encoded by
the tree structure and splitting patterns). The model used is termed
a balanced forest of random trees. [39,80] For each tree, a
minimum of 10 samples were allowed per node, the maximum
tree depth was 20, the Gini index was used to choose the split for
each node, [7] and the weighting method was uniform. In each
Forest, there were 500 trees, bagging was used, [3] the class sizes
were equalized, [9] and the number of descriptor properties to
consider for use as a split criterion within each tree was set to the
square root of the total number of descriptors. [9] Three trials
(with 3 random seeds) were used for each of the 4 sets of training
and test sets.

For the RF classifiers, the percent selection frequency of each
descriptor was used as a measure of that descriptor’s importance.
This was averaged over the 3 trials for each of the 4 training sets,
and the average percent selection frequency was converted to a z-
score for each model. A cutoff was then determined to ascertain
which descriptors were important. This cutoff was established by
using simulated classifiers which selected compounds based on
known parameter preferences, and then observing at which value
the parameters of importance lied above the cutoff, and
parameters not used by the simulated classifier lied below the
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cutoff. We found that a cutoff of 2.1 worked well to separate
important descriptors from unimportant descriptors for the
simulated classifiers (see below), and subsequently used this cutoff
to identify important descriptors for RF classifiers trained on the
chemists’ selections as well. The parameter corresponding to the
descriptor with the highest z-score is termed the primary RF
parameter, and all other parameters above the 2.1 cutoff (if any)
are termed secondary.

In all cases, the parameters that relate to the types of criteria
used by the simulated classifiers to categorize fragments as
desirable or undesirable were identified. In some cases, however,
unlike the SNB classifiers, additional parameters were deemed
important as well. The selection of these parameters could be
rationalized, however, when the descriptors underlying these
parameters were investigated. For example, in the case of the
Molecular_PolarSurfaceArea and Atoms_MPSA simulated classi-
fiers, the Functional Groups parameter was incorrectly identified
by the RF classifier. The descriptor that mapped to the Functional
Groups parameter in this case was the sulfonamide descriptor
(Table S8, which counts the number of sulfonamides present).
Although sulfonamides were not specifically selected by the
simulated classifiers, their presence correlates somewhat with
polar surface area (the more sulfonamides, the greater the polar
surface area), so their selection makes some sense. Similarly, for
the Substruct_FG simulated classifier, the Ring Topology classifier
was incorrectly identified as important. The descriptor that was
used in this case was Num_AromaticRings (Table S8, which
counts the number of aromatic rings present). This makes sense
because the simulated classifier deemed aromatic amines in 5-
membered rings as undesirable, so the number of aromatic rings
present will be roughly related to this. In summary, while the RF
classifiers identify the correct parameters, they also sometimes
identify additional parameters due to descriptors that correlate
somewhat with properties that were used during selections. This
was not observed with the SNB classifiers.

Supporting Information

Figure S1 Simulated fragment selection session.
(BMP)

Figure S2 A: Simulated classifiers selected fragments as
good (green) or bad (red) based on thresholds for
molecular polar surface area (MPSA) or number of
atoms. The Bayes score of different bins for Naı̈ve Bayesian
models built using atoms (B), molecular polar surface area (C),
atoms and molecular polar surface area independently (D), or
atoms and molecular polar surface area jointly (E) are depicted.
For the exclusive or (XOR) case (fourth panel in all rows), only the
semi-naı̈ve Bayesian model can correctly represent the simulated
classifiers pattern. The ROCS score for each of the models is
reported in corresponding panel for that model. The panel of the
classification model that would be selected by the feature subset
selection method that was employed is boxed with a black square.
(PDF)

Figure S3 Feature subset selection for SNB classifiers.
N is set to 1, and the best N parameter model is selected. It is then
compared to the best N+1 parameter model. If the ROC score of
the best N+1 parameter model is significantly more accurate than
the current best N parameter model (difference.0.009), then N is
incremented, and the process is repeated. If not (differ-
ence,0.009), then the current best N parameter model is selected.
(PDF)

Figure S4 Predictive accuracies for SNB and RF classi-
fiers when trained on selections made by simulated
classifiers.
(PDF)

Figure S5 The parameters extracted from the SNB (red)
and RF (blue) classifiers for selections made by
simulated classifiers. The primary parameters for the
classifiers are depicted as stars, and the secondary parameters
are depicted as circles.
(PDF)

Figure S6 The fraction of compounds selected as
desirable by each chemist. A: The fraction of compounds
selected per batch by each chemist. The average fraction pass is
0.45 and the average standard deviation is 0.07. B: Histogram of
the number of chemists that passed a specified fraction of
fragments per batch.
(PNG)

Figure S7 Relating the fraction of compounds selected
as desirable to various factors. A: The average fraction of
compounds passed per batch for chemists with different ideal
fragment library sizes. B: The fraction of compounds passed versus
the number of targets a chemist had worked on. C: The average
fraction of compounds passed per batch for chemists with different
selection strategies. Self-reports were used to obtain the ideal
fragment size, number of past targets, and selection strategies.
(PNG)

Figure S8 The similarity of selections when comparing
chemists’ selections to themselves and to each other. A
histogram of the modified Tanimoto similarities (SMT) comparing
chemists to themselves (A). Similarities between chemists depicted
as a heat map (B) and in table form (C). A histogram of modified
Tanimoto similarities obtained between chemists (D). Two clusters
formed by chemists using a modified Tanimoto similarity cutoff of
$0.44 (E).
(PNG)

Figure S9 A comparison of consensus in desirable or
undesirable fragments. A: The fraction of consensus good
(green) or bad (red) compounds that pass when a given threshold
for consensus is used. At all thresholds, there are more consensus
good than consensus bad compounds. B: The fraction of
consensus bad compounds for seven chemists with high estimated
knowledge (red) versus seven randomly selected chemists (black) C:
The fraction of consensus good compounds for seven chemists
with high estimated knowledge (green) versus seven randomly
selected chemists (black).
(PNG)

Figure S10 A selection of the fragments deemed worst
by the group. The number of yes and no votes is below each
structure.
(TIF)

Figure S11 Parameters that were included in self-
reports but not identified as important by SNB or RF
models for each chemist. Note, ‘‘Diversity’’ and ‘‘Metabolic
Stability’’ were self-reported, but attempts were not made to model
these parameters.
(PDF)

Figure S12 The types of targets chemists have previ-
ously worked on, as self-reported in the follow-up
questionnaire.
(TIF)
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Table S1 Simulated classifiers with 1–4 rules for
identifying good fragments are listed.
(DOC)

Table S2 Training and Test sets for 4-fold cross
validation. The eight batches of compounds that were surveyed
were jackknifed as follows to yield 4 training and test sets.
(DOC)

Table S3 Descriptors (72) used for building minimal
Bayesian models. The parameter(s) that the descriptor is
subsumed by is reported, as well as whether it was calculated using
Pipeline Pilot (PP) or RDKit. Some descriptors were derived from
combining or mathematically manipulating metrics previously
calculated by Pipeline Pilot or RDKit (Custom).
(DOC)

Table S4 Chemical handles. For the chemical_handles
descriptor, chemical handles that a chemist might manipulate
were counted. Specific types of substructures were only considered
chemical handles if they were located on the core, on an R-group,
or both.
(DOC)

Table S5 Functional groups included in functional
group key. A fingerprint of medicinal chemistry relevant
functional groups (smarts_fp) was developed to characterize the
functional groups present or absent in a compound. SMARTS
substructures were used to identify the presence of substructures,
and these were combined into a functional group key. If the
functional group is present in the fragment, the value for it in the
key is 1, while if it is absent the value is 0. This is the descriptor
used in the model illustrated for chemist 1 in Figure 4.
(DOC)

Table S6 ROC Scores obtained for random simulated
classifiers that passed different fractions of compounds.
(DOC)

Table S7 Descriptors identified as important by the
SNB classifiers for selections made by the simulated
classifiers. The best 1 parameter model is designated 1_para-
mater (this corresponds to the descriptor that underlies the
primary parameter), and the final SNB model is designated
N_parameters.
(XLSX)

Table S8 Descriptors identified as important by the RF
classifiers for selections made by the simulated classi-
fiers.
(XLSX)

Table S9 Descriptors identified as important by the
SNB classifiers for selections made by chemists. The best
1 parameter model is designated 1_paramater (this corresponds to
the descriptor that underlies the primary parameter), and the final
SNB model is designated N_parameters.
(XLSX)

Table S10 Descriptors identified as important by the
RF classifiers for selections made by the chemists.
(XLSX)

Table S11 ECFP4 features extracted from NB models
built using consensus voting (.75% agreement) for
desirable features. Compounds selected by .75% of the
chemists were categorized as desirable, and all others were
categorized as undesirable. The 50 features most indicative of the
desirable category that were present at least 2 times are reported in
SMILES format.
(XLS)

Table S12 ECFP4 features extracted from NB models
built using consensus voting (.75% agreement) for
undesirable features. Compounds unselected by .75% of
the chemists were categorized as undesirable, and all others were
categorized as desirable. The 50 features most indicative of the
undesirable category that were present at least 2 times are reported
in SMILES format.
(XLS)
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