
Ignorance in Social Networks 
Discounting Delays and Shape Matters  

Abstract 
Knowledge is the proper basis for action (Williamson, 2000). But disinformation causes ignorance, 

whether through error (false belief) or omission (agnosticism). We use philosophical simulations 

(Mayo-Wilson and Zollman, 2021) to study how ignorance persists in networks of inquiring rational 

agents. Following Zollman (2007), we simulate communities of agents who generate evidence, share 

it with their neighbours, and then update their beliefs. After recapping previous results, we report two 

novel findings. First, in variations on the mistrust models developed by O’Connor and Weatherall 

(2018), discounting evidence received from neighbours delays convergence to the truth. Second, 

ignorance persists differentially in networks of different shapes, even when they have the same overall 

connectivity. These results shed light on the structural causes of ignorance that can be exploited by 

those engaged in disinformation campaigns; and they constrain the space of knowledge-conducive 

responses. 

1. Introduction 
Actions undertaken by social groups are best when underpinned by relevant knowledge. Appropriate 

responses to climate change, or the coronavirus pandemic, for example, require informed 

(coordinated) democratic action on the part of whole societies. And these actions may be legitimated 

by the inquiries of e.g. certain scientific communities. Yet mis- or even disinformation may disrupt 

knowledge from taking hold within groups of individuals, preventing timely and appropriate action. 

Indeed, knowledge is hard won, and ignorance may persist or prevail even in their absence. 

The current paper investigates ignorance in social networks. We begin by describing our approach, 

detailing key aspects of our models and methods. We then summarize previous results (surrounding 

the Zollman effect and polarization) before presenting two novel findings of our own: first, that 

discounting good evidence delays the emergence of a correct, knowledgeable consensus within 

communities of rational inquirers; and second, that when it comes to the persistence of ignorance, 

social network shape, or topology, matters. We close with some concluding remarks that contextualize 

our findings, indicating their relevance to issues of trust and disinformation. 

2. Models and Methods 
We model the social situations that interest us as involving networks of individual rational agents, 

conducting experiments, sharing their findings, and updating their beliefs in light of the evidence at 

their disposal (cf. Zollman, 2007). Allow us to unpack this. 

2.1 Social Groups as Networks of Individuals 
We model social groups as networks of individuals. These networks can be represented as graphs: 

(sets of) nodes connected by edges. Although the terminology here derives from network theory, the 

approach should be familiar to those acquainted with (the semantics of) predicate logic: a given graph 

represents the extension of a relation amongst (or, on a domain consisting of) some individuals. 

Indeed, multi-edge graphs are possible - these represent the extensions of a number of different 

relations simultaneously (on the domain in question). Moreover, labels can be attached to the nodes: 

this allows for the representation of properties of the individuals. Here we focus on the simple case 

of unlabelled, single-edge graphs. 



Note that, while it is common to present the semantics of predicate logic - and network theory - in the 

language of set theory, so that domains are sets of individuals, this is not essential: a plural framework 

can be employed instead. We will not make much of this here: but it is worth remarking that we are 

not assuming that social groups are sets of individuals; for sets are themselves individual entities over 

and above, and distinct from, their members. (For example, even the singleton set {i} comprising just 

the individual i is distinct from i itself.) We are rather concerned with e.g. scientific communities, or 

democratically self-governing peoples, construed as the individuals themselves - taken collectively.1 

Indeed, there has been much interesting work recently on the metaphysics of social groups. For 

instance, Uzquiano (2004) argued that the Supreme Court of the United States must be construed as 

a sui generis entity distinct from its justices (yet not a set or mereological sum of them either). While 

we are sympathetic to there being such entities (e.g. corporations, and other institutional 

organizations), here we more closely follow the work of Ritchie (2020), for whom ‘social structures are 

central to the nature of all social groups’ (2020: 402), and where structures in turn are ‘complexes… 

of relations’ (2020: 405). Thus, we crucially take the social groups with which we are concerned, to be 

not mere pluralities (or sets!) of individuals, but structured pluralities, or networks of individuals - 

which can be appropriately represented by graphs. 

2.2 Individuals as Rational Agents 
At the nodes of our networks are rational agents. As agents, they take actions. These actions in turn 

modify their environment; thus, the effects of their actions can be observed, yielding new evidence. 

In our models, the actions are limited to two: agents perform either action A or action B. In particular, 

we can think of the agents as (scientists) conducting experiments, such as trialling a drug on a certain 

number n of experimental patients. 

Insofar as they are rational, our agents’ beliefs are based on the evidence at their disposal, and the 

actions they take are appropriate given their attitudes. Thus, they perform action A (administer a 

familiar drug) if they take it to be more likely to yield a desirable result (e.g. help more of their 

experimental patients), and B if they think (as is in fact the case) B is better (in this same sense).2 They 

observe the results of their experiments (e.g. 6 out of 10 patients recovered), and communicate their 

findings (by testimony) to the people with whom they are connected (by edges) in the network - their 

neighbours.  Finally, they update their beliefs in light of the evidence at their disposal (that which they 

themselves generate, as well as that which is communicated to them by their neighbours). 

What exactly is rational belief updating? We consider two variants. In both, our agents are modelled 

as having a credence, or degree of belief (between 0 and 1), in the (true) proposition that action (or 

drug) B is better (than A).3 A is assumed to have a constant (and known), 0.5 probability (i.e. 50% 

chance) of helping a given patient to recover from their illness; B has a 0.5 + (positive) epsilon 

probability of doing so. The proposition that B is better just is the proposition that epsilon is positive 

 
1 It is common to distinguish ‘collective’ from ‘distributive’ plural predications: the latter are equivalent to 
conjunctions of individual predications, while the former are not; thus, the claim that some people carried a 
piano is likely meant collectively – unless the people in question are e.g. participants in a strongman competition. 
2 More sophisticated models of the practical rationality involved in deciding what action to take are of course 

possible. Here it is the agents’ beliefs alone that determine what they do; but we might expect their desires, 
preferences, or utilities to play a role as well - as in standard decision theory. For instance, O’Connor and 
Weatherall (2019) discuss ‘conformity’ models in which scientific agents are motivated not only by the desire to 
ascertain the truth about the matter they are investigating, but also by a desire to conform with what their peers 
are doing. We do not here explore such variations on the basic models under discussion. 
3 Note that this is already a robust theoretical assumption: some theorists regard (outright) belief as a basic, all-

or-nothing affair; that belief comes in degrees, as assumed in the models we employ, is therefore contentious. 



– which in our models it always is (so that our target proposition is true); but this is not initially known 

to the agents in the models. 

In the models originally employed by Zollman (2007), agents are initially assigned a credence drawn 

from a random uniform distribution (in line with the subjective Bayesian assumption that any credence 

is rational prior to the receipt of evidence). They then update their beliefs in light of the evidence 

available at any given stage using 

Bayes’ rule: Pf(h) = Pi(h/e) = Pi(e/h) x Pi(h)/Pi(e) 

(where Pf is the final probability, after updating, and Pi the initial probability, prior to updating; h is 

some hypothesis, and e is a given piece of evidence).  

Indeed, O’Connor and Weatherall (2019) argue (based on diachronic Dutch book considerations) that 

this is the unique rational method for updating beliefs over time.4 Nevertheless, they themselves 

subsequently suggest that it might sometimes be rational to be more cautious in dealing with the 

available evidence. Thus, in their variant ‘mistrust’ models, agents are uncertain of the evidence with 

which they are presented, and update using 

Jeffrey’s rule: Pf(h) = Pf(e) x Pi(h/e) + Pf(not e) x Pi(h/not e). 

It is worth noting that Bayes’ rule is the special case of Jeffrey’s rule in which Pf(e) = 1 and Pf(not e) = 

0. Thus, the use of Jeffrey’s rule might be thought to simply generalize the use of Bayes’ rule. However, 

the matter is not quite so simple: as Williamson (2000) has noted, Jeffrey’s rule cannot be immediately 

operationalized; in order to put it to use, we need to know what Pf(e) is - and nothing in the rule itself 

determines this. 

In order to address this issue, and put Jeffrey’s rule into practice in their models, O’Connor and 

Weatherall make an assumption of homophily: people trust others more when they are more alike.5 

Moreover, they assume a particular version of this idea - namely, that people trust each other more 

when their beliefs (on the question whether B) are more similar.6 Finally, they implement this 

(attitudinal) version of the assumption in a specific mathematical formula: 

 Pf (E) = 1 - min({1, d . m}) . (1 - Pi(E)).7 

Here d is the distance (i.e. the absolute value of the difference) between the credences of the recipient 

and the provider of the evidence supplied through testimony. Thus, agents do not discount the 

 
4 Such arguments are contentious - see Williamson (2000). 
5 Note that it is possible to implement Jeffrey’s rule without the assumption of homophily. For instance, in our 

‘testimonials’ models (AUTHORS, IN PREPARATION), we consider the case in which agents set the final 
probability of the evidence they receive to the frequency of truth-telling in their network and/or neighbourhood. 
6 It is also possible to implement the homophily assumption without assuming that the relevant respect of 

similarity is in the credence given to the proposition that B is better. For instance, in our ‘epistemic injustice’ 
models (AUTHORS, IN PREPARATION), we label nodes to indicate different social groups. We might then set one 
(relatively low, possibly null) discount rate for evidence received from those in the same group, and one or more 
other (higher) rates for those from different groups. This would embody a homophily assumption not based on 
differences in credences (which, after all, might be difficult to determine). An alternative approach would simply 
set a single discount rate applied by all agents determined by the group label of the speaker, thereby abandoning 
the homophily assumption entirely. 
7 In fact, O’Connor and Weatherall (2018) use two different rules: they also run simulations using a rule - namely, 

Pf(E) = max({1 - d . m . (1 - Pi(E)), 0}) - that allows for ‘anti-updating’ (whereby the final credence in E is less than 
the initial credence in that same proposition). Here we discuss only simulations with no anti-updating - i.e. those 
using the rule given in the main text. 



evidence they themselves produce at all, since d = 0: accordingly, the final probability of the evidence 

they provide themselves with is 1; that is, they treat this evidence as certain. But for evidence supplied 

by other agents, as d increases, the product of d and the ‘mistrust multiplier’ m increases until it 
reaches (and then exceeds, but is replaced by the smaller value) 1: at this point Pf(E) = Pi(E); in other 

words, the evidence provided is simply ignored (and treated as precisely as certain as it was prior to 

its being given). 

2.3 The Method of Philosophical Simulation 
Like the researchers discussed above, we run computer simulations based on our models of the social 

situations we wish to investigate. Our (python) code first builds a network (of a specified kind and size 

- see below) and assigns initial credences to the agents at its nodes (drawn from a random uniform 

distribution in all of our simulations to date). It then simulates that group of agents conducting 

experiments, sharing results, and updating credences in the manner specified in the model – with the 

values of certain key parameters (e.g. epsilon, number of trials) set. It runs until all agents have 

credence less than 0.5 or over 0.99 in B – or else, in some mistrust models (those leading to 

polarization – see below), the differences in credences preclude any further dynamics (because any 

new evidence produced by B believers is ignored - i.e. completely discounted - by the A believers).  

Some might worry that our simulations will not be appropriately realistic - that is, that they may not 

have ‘external validity’. In particular, it might be thought that the simulations we run make erroneous 

assumptions about either: (i) the nature of the individuals that constitute our social groups 

(specifically, it might be thought that people are not rational though we assume they are); or (ii) the 

character of the networks that bind them into communities; or both. If that is right, then (it is argued) 

we will not be able to draw (legitimate) conclusions - and in this way learn - about the situations we 

are modelling from findings about our simulations. 

In response to this objection, and by way of clarification of our method, we must, unfortunately, be 

brief. We begin with point (i). First, while many irrationalities have been suggested (Kahneman, 2011), 

there is some debate around whether reliance on such heuristics is genuinely irrational (Mousavi and 

Gigerenzer, 2017). Second, we are idealizing: just as physicists model situations as involving no air 

resistance, or a frictionless plane, so we too imagine our social groups as comprising agents without 

irrationalities. This simplification allows us to approximate the truth before refining our models. Third, 

relatedly, this allows us to identify causes and provide explanations. Our aim is not (yet, at least) to 

make predictions about how social groups will behave when investigating a given issue under 

particular circumstances. (Thus, in a sense we require less of the external validity of our simulations 

than some might expect.) More specifically, fourth, we wish to uncover structural causes of ignorance 

(e.g. due to misinformation): if we assume (even if falsely) that agents are perfectly rational, and we 

nevertheless discover that communities of these agents remain ignorant of the truth in our 

simulations (for an extended period of time), then it will be apparent that (at least some) ignorance 

has a cause other than the psychological failings of the agents constituting them. These causes 

ultimately derive from the (social) structures within which the agents are embedded. And finally, fifth, 

we are also engaged in an interpretive, and normative, (humanities) investigation (not just a 

descriptive, scientific one): we are aiming to assess (a) whether our models of rational agents are 

appropriate, or apt, in the sense that they capture what we have in mind when we think of (the ideal 

of) rationality (this is the interpretive element), and (b) whether behaving in the ways our agents do 

really is rational (especially in light of the foreseeable social consequences) - that is, whether agents 

really ought to behave in those ways (this is the normative aspect). For all of these reasons, we believe 



that much can be learned about real social situations, even through simulations based on somewhat 

simplified models.8 

Turning to (ii), we are aware of the concern – which is why, in addition to looking at highly controlled, 

artificial and relatively small networks, we also run our simulations on networks drawn from real world 

data sets (AUTHORS, UNDER REVIEW). Thus, unlike (at least some) previous efforts in ‘computational 

philosophy’ (Grim and Singer, 2022), our framework allows us to scale our simulations to run on large 

data sets - and we exploit the opportunities this affords. Moreover, whatever our findings in relation 

to smaller simulations on artificially generated networks, we hope to extrapolate from them to explain 

findings based on real world data sets with the structural features, whatever they might be, that actual 

social networks possess. For instance, we may find cleaner patterns within more controlled 

environments that may nevertheless be discerned - albeit with some noise - in more complex, realistic 

settings; though they might have been difficult to detect, or recognize, if we worked exclusively with 

real-world data sets. Nevertheless, we here focus on simulations run on small, artificial networks. 

3. Results 
Researchers employing philosophical simulations built on the models described above have obtained 

a number of results. We begin by sketching previous results, before reporting our own findings. 

3.1 The Zollman Effect 
Zollman (2007) found (amongst other things) that simulations (using Bayesian updating) converged to 

the true belief that B is better more quickly (i.e. in fewer steps) in complete networks (see figure 1) in 

which each agent is connected (by an edge) to every other than in cycle networks (see figure 2) where 

each agent is connected to exactly two neighbours (with the network as a whole forming a ring).9 But 

he also found that the complete networks were more likely than cycles to converge to the false belief 

that A is better. In his own words, his results suggested ‘two interesting conclusions. First, in some 

contexts, a community of scientists is, as a whole, more reliable when its members are less aware of 

their colleagues’ experimental results. Second, there is a robust tradeoff between the reliability of a 

community and the speed with which it reaches a correct conclusion.’ (2007: 574) 

 
8 Mayo-Wilson and Zollman (2021) defend ‘simulation as a core philosophical method’ (2021: 3647), offering 

two central arguments, and responding to objections. The second of their arguments is irrelevant for our 
purposes (since it concerns benefits to the researchers, rather than the research), but the first depends on the 
crucial claim that computer simulations can play many of the same roles as thought experiments do - indeed, 
they argue that the former can be better at doing so in relation to five of the six aims they identify for the latter. 
We are inclined to agree with much of what they say, and note that one of the aims they mention is to 
‘[d]istinguish explanatory reasons and identify those causes that explain a phenomenon’ (2021: 3650) - which 
is, at least roughly, one of the objectives we have given above in relation to our simulations. The only aim that 
Mayo-Wilson and Zollman recognize in the case of thought experiments, but do not argue is well served by 
simulations is that of ‘[e]licit[ing] normative intuitions’ (2021: 3650) - but that is something that we do hope our 
simulations can help us to do, as hinted above. Of course, we agree that ‘simulations almost never answer 
philosophical questions by themselves’ (2021: 3649) - but we think they can play a role, within a given dialectical 
context, in drawing out normative intuitions that can help to settle an issue (such as what rationality requires). 
9  Zollman looked at various other small networks as well. Some of these will be discussed below. 



  
Fig 1: Complete network (size 16) Fig 2: Cycle network (size 16) 

 

O’Connor and Weatherall introduced the term ‘Zollman effect’ as a name for the ‘phenomenon’ in 

which ‘scientists improve their beliefs by failing to communicate’ (2019: 63) – i.e. the first of Zollman’s 

findings (in his own report above). Interestingly, however, Rosenthal, Bruner, and O’Connor (2017) 

speak of ‘the general effect noted by Zollman—that sparser networks are more reliable than well-

connected ones.’ Now, one network is sparser than another, when it has lower density – where this is 

the number of actual connections (or edges) in the network divided by the number of potential 

connections (which itself is half the number of nodes n multiplied by n-1). (Thus, a complete network 

has the highest possible density: 1.) And yet O’Connor and Weatherall (2018) suggest (in footnote 28 

on p.198) that the Zollman effect concerns ‘social structure’: and while density is determined by 

structure, there is more to the latter than the former. We will return to this below. 

In any case, Rosenstock, Bruner, and O’Connor report ‘results replicating Zollman’s (2007) simulations 

with a wider parameter space’ (2017: 241) than Zollman himself employed. They ‘find that parameters 

for which there is a notable benefit to decreased network connectivity occupy a relatively small niche 

of the total space.’ (2017: 241) In particular: ‘the difference in likelihood of successful convergence 

between the two network configurations [cycle and complete] decreases’ (2017: 241) as epsilon 

increases; ‘the difference in rates of successful convergence for the cycle and complete networks is 

more significant for lower [number] n [of trials]’ (2017: 243); and crucially, ‘[t]he Zollman effect is 

strongest for smaller networks, but as network size increases it drops off’ (2017: 244). 

3.2 Polarization 
O’Connor and Weatherall (2018) ran simulations in complete networks using Jeffrey’s rule for 

updating, with the evidence provided by others being discounted increasingly with larger differences 

in credences (as described above). (As we have seen, this assumes homophily: we trust others more 

when they are more like us – and in particular, when their opinions are similar to our own.) They found 

that their simulations often ended in a state they refer to as ‘polarization’. Of course, polarization can 

be - and has been - understood in a number of ways. O’Connor and Weatherall themselves say that 

‘polarization involves the emergence of two subgroups, one whose members all have credence > .99, 

and the rest with a variety of stable, low credences, such that they prefer the worse theory [that A is 

better]’ (2018: 866).10  

 
10 They go on to say: ‘(More precisely, a stable outcome is one in which every agent either (a) has credence > .99 
or else (b) has credence <= .5 such that their distance to all agents whose credence is > .99 satisfies m ∗ d >= 1.) 
Because the agents with low credences are outside the “realm of influence” of those testing the informative 
theory, they do not update their beliefs.’ (2018: 866) 



Reporting their findings on polarization (so understood), O’Connor and Weatherall say: ‘In our 

models,… over all parameter values, we found that only 10% of trials ended in false consensus, 40% 

in true consensus, and 50% in polarization. These values should not be taken too seriously, since 

parameter choices influence where and when polarization happens, but the point is that adding 

evidential assessments based on shared belief dependably generates stable polarization.’ (2018: 866) 

This requires unpacking, as well as qualification. 

We begin with the qualification. In the (no anti-updating) formula (given above) that O’Connor and 

Weatherall (2018) use to operationalize Jeffrey’s rule in the context of their homophily assumption, 

polarization is only a possible outcome when the mistrust multiplier is sufficiently large that min({1, d 

. m}) is 1. Since d itself is a real number between 0 and 1, this is only the case when m > 1. Thus, adding 

evidential assessments based on shared belief dependably generates stable polarization in this case 

only. So much for the qualification; now for the unpacking. Unfortunately, O’Connor and Weatherall 

do not themselves provide the information needed to unpack their findings in the case where mistrust 

can lead to polarization. Elsewhere [AUTHORS, UNDER REVIEW], we report the results of the 

simulations we ran (on complete networks) to uncover the requisite details. In brief, we found that 

ignorance – whether through error (i.e. false belief) or omission (i.e. agnosticism due to polarization) 

- was more likely to prevail in the long-run in O’Connor and Weatherall’s polarization models (with 

m>1) than in Zollman’s original models (keeping other parameter settings fixed). Here we focus on the 

case where the mistrust multiplier m ≤ 1. 

3.3 Discounts Delay 
What happens in O’Connor and Weatherall-style models when polarization is not a possible outcome? 

To find out, we ran simulations on complete networks, using O’Connor and Weatherall’s (no anti-

updating) operationalization of Jeffrey’s rule with mistrust m = 1. Since polarization is not a possible 

outcome in this case, we did not see the increased ignorance in the long-run due to agnosticism that 

we saw for m > 1. But when it comes to some of the issues that must be resolved through collective 

decision-making, such as efforts within democracies to avoid catastrophic climate change, timeliness 

is important; and so we looked at how long ignorance persisted in these models when it was eventually 

overcome. More specifically, we compared the mean number of steps in simulations that converged 

on the correct consensus that B is better in these models and in Zollman’s original models. To ensure 

the robustness of our findings, we also considered ways of amplifying or dampening the effect of the 

distance between credences that, unlike in O’Connor and Weatherall’s rule, cannot result in 

polarization. Thus, rather than multiplying the initial probability of the negation of the evidence (1 - 

Pi(E)) by min({1, d . m}) before setting the final probability of the evidence as 1 minus the result, we 

explored the effects of multiplying by the square, and by the square root, of d instead.11 Table 1 below 

shows our findings. 

Size Epsilon Trials Model Total 
(count) 

Steps 
(mean) 

U value P value 

16 0.001 16 Zollman 558 5121   

   Square(d) 94 7,867 36,844.5 0.00 

   Mistrust 
m=1 

430 14,649 193,902 0.00 

 
11 When m = 1, O’Connor and Weatherall’s no anti-updating rule is equivalent to Pf (E) = 1 - d . (1 - Pi(E)). We also 

considered the d-squared rule, Pf (E) = 1 – d2 . (1 - Pi(E)), and the root-d rule, Pf (E) = 1 - √d . (1 - Pi(E)). Since d ≤ 
1, squaring dampens the effect of distance in discounting the evidence, while taking the root amplifies it. 



   Root(d) 91 19,215 47,956 0.00 

 0.001 64 Z 577 1,287   

   S 95 1,955 38,336 0.00 

   M 421 3,233 202,012 0.00 

   R 98 7,499 52,553 0.00 

 0.01 16 Z 93 53   

   S 95 78 5,506 0.00 

   M 430 129 31,830.5 0.00 

   R 96 228 8,306 0.00 

 0.01 64 Z 99 14   

   S 95 19 6,103 0.00 

   M 435 59 34,939 0.00 

   R 99 9,962 8,908.5 0.00 

64 0.001 16 Z 597 1,710   

   S     

   M 451 7,197 234,197 0.00 

   R 100 15,738 57,935.5 0.00 

 0.001 64 Z 595 419   

   S 97 688 41,121.5 0.00 

   M 456 1,575 244,823.5 0.00 

   R 97 2,987 56,180.5 0.00 

 0.01 16 Z 98 16   

   S 98 31 7,251.5 0.00 

   M 452 61 39,782.5 0.00 

   R 99 89 9.475 0.00 

 0.01 64 Z 100 5   

   S 98 6 6,292.5 0.00 

   M 453 13 38,155.5 0.00 

   R 98 22 9,326.5 0.00 

 

Table 1: Comparing O’Connor and Weatherall-style simulations with Zollman’s original models. 
Jeffrey’s rule is employed and evidence is discounted in line with a homophily assumption in the 
former. In the latter, Bayes’ rule is used, and evidence is fully trusted. We used a Mann-Whitney U-
test (p < 0.05) to show that ignorance persists for longer (i.e. more steps) in homophily models, 
even when it is eventually overcome. Discounting good evidence delays convergence to the truth. 

 

As can be seen, agents’ discounting of the evidence they receive in these models leads to significant 

delays in arriving at the correct consensus that B is better. Moreover, the mean number of steps 

required to converge to the truth increases as the discounting effect of the distance between 

credences becomes more pronounced. It should, of course, be remembered that, in these models, all 

agents are reliable truth-tellers, reporting the results of their experiments accurately, so that the 



evidence received is factive (i.e. true), even if (due to its probabilistic nature) potentially misleading 

as regards the underlying issue under investigation. It is therefore possible that in other contexts, 

where information sources are less reliable, discounting what is presented as ‘evidence’ may yield 

benefits. Nevertheless, the current findings provide a kind of benchmark result: discounting good 

evidence delays convergence to the truth; ignorance persists longer under mistrust than full trust. 

3.4 Shape Matters 
We reported (above) the finding, due to Zollman, that sparser (small) networks converge to the truth 

more reliably than denser ones: that is, for a given size of (small) network, the proportion of 

simulations that achieve consensus in the long run that B is better than A decreases with the density 

of the network; or, in other words, better connected (small) networks are more error prone. 

For a given network size, the density of the network determines the average neighbourhood size in 

that network. Moreover, how much evidence a node receives is controlled by (the number of trials 

conducted by each agent and) the size of its neighbourhood. (It is not strictly determined by this, since 

how many of its neighbours take action B can vary while the size of its neighbourhood does not.) So 

network size and density together control the quantity of evidence each node receives on average at 

any given simulation step. Thus, what Zollman found was that, for a given size of (small) network, 

there being more information on average for each node yields a consensus more quickly, but – 

somewhat surprisingly – with a greater chance of error. 

But there is more to network structure than density alone. Each network has a specific shape (or 

topology). Above we saw the complete (figure 1) and cycle (figure 2) networks. (Clearly, the complete 

network is more densely connected than the cycle.) A star network (figure 3) consists of a central node 

with all other nodes connected only to (themselves and) it. Networks of other kinds are generated by 

stochastic processes, with different instances of the kind having somewhat different shapes. For 

instance, a Barabasi-Albert network (figure 4) is generated by ‘preferential attachment’: as each new 

node is added to the network it forms a fixed number of attachments to previous nodes (1 in the 

network shown in figure 4), with the probability of forming an edge connecting it to a given node 

determined by the size of the neighbourhood of that other node; in other words, the more edges a 

node has, the more likely it is for the next new node to attach to it. Random networks (not pictured) 

are formed by making edges between any two nodes with a given, fixed probability; and Watts-

Strogatz networks (not pictured) begin as rings, or cycles, of a given thicknesses (with each node 

connected to e.g. 2 neighbours, or 4, or…), with edges then rewired, with a certain probability, to 

connect to a randomly chosen node. 

  
Figure 3: Star network (size 16) Figure 4: Barabasi-Albert network (size 16) 

 



Do other structural features of networks, besides density, influence the knowledge or ignorance of 

the group? We compared simulations run (using Bayes’ rule) on networks of different kinds, but with 

similar densities, and found that, even when it was eventually eradicated (with all the nodes 

converging on the correct consensus that B is better), ignorance persisted significantly longer in 

networks of some kinds as opposed to others. For example, in networks of size 64, cycles and stars, as 

well as certain Barabasi-Albert (attachments: 1) and Watts-Strogatz (knn: 2) networks, the density of 

connections is approximately 0.03 (i.e. roughly 3% of possible connections are actualized). And yet 

(with epsilon 0.001) the number of steps required for convergence to B differed significantly between 

the simulations run on these networks. Stars were the fastest. Cycles were next, though much slower. 

Barabasi-Albert networks slower still; and Watts-Strogatz networks were the slowest. We tested each 

pairwise comparison for significance (p<0.005) using a Mann-Whitney U-test – our findings are in 

Table 2 below.12 

 Star  
(mean steps: 
 68,818) 

Cycle  
(mean steps: 
109,127) 

Barabasi-Albert 
(mean steps: 
119, 976) 

Watts-Strogatz 
(mean steps: 
120, 596) 

Star  
(n=600) 

- U=294,660.5 
p=0.00 

U=43,898.5 
p=0.00 

U=31282.0 
p=0.00 

Cycle  
(n=600) 

 - U=134,036.0 
p=0.00 

U=98,518.5 
p=0.00 

Barabasi-Albert  
(n=500) 

  - U=107,933.5 
p=0.04 

Watts-Strogatz 
(n=400) 

   - 

 

Table 2: Comparing the number of steps required for convergence to B in various kinds of (size 64) 
networks with similar densities (all approximately 0.03). In these simulations, each B node 
conducted 64 trials, and the value of epsilon was 0.001. Here we report the number of simulations 
of each kind, as well as the U- and p-values (<0.05) for each Mann-Whitney U-test performed. 

 

These considerations show that the persistence of ignorance in a social network of rational (Bayesian) 

agents is influenced not only by the density of connections in that network, but also by the kind of 

network it is: the number of steps needed for convergence to the truth is significantly different 

between networks of different kinds with similar densities.  

Interestingly, Zollman claimed that, in the small networks he tested, ‘the in-network degree variance 

is not correlated with success’ (2007: 482): that is, while the average neighbourhood size within a 

network affects reliability, variation in neighbourhood size does not. However, we found that variation 

in the size of the nodes’ neighbourhoods can make a difference to the persistence of ignorance. We 

used a normalized measure we called ‘moment_sd’: it is the standard deviation in neighbourhood size 

divided by the mean neighbourhood size. Figure 5 (below) shows that (with epsilon 0.001 and 16 trials) 

steps increase as this measure increases in Barabasi-Albert and Watts-Strogatz networks with density 

 
12 With the parameter setting above, but with 16 (rather than 64) trials, we again found significant differences 
between networks kinds, except between Barabasi-Albert and Watts-Strogatz; the same was true for size 16 
networks of these kinds, with both 16 and 64 trials. Increasing the numbers of attachments and nearest 
neighbours, however, we did see significant differences between Barabasi-Albert and Watts-Strogatz networks 
with both 16 and 64 trials, for: size 16, density 0.53; size 64, density 0.06; and size 64, density 0.12. 



0.53.13 While more work is needed to understand the way(s) in which it does so, it is clear that network 

shape matters. 

 

Figure 5: The effect of moment_sd on steps. R-squared: 0.064014. Slope (CI: 95%): 20513.379535 
+/- 4644.725867. Number of simulations: 1100. 

4. Concluding Remarks 
We have explored ignorance in social networks, discussing computer simulations that employ simple 

models of inquiring communities. We avoided imbuing the agents in these models with psychologically 

motivated departures from rationality, in the hope of uncovering other (social and environmental) 

reasons why knowledge may fail to emerge in a timely fashion. Building on previous work, our results 

show: first, that when all agents truthfully report their own observations, discounting the evidence 

they provide delays any eventual correct consensus; and second, that the shape (and not just the 

connectivity) of the network formed by a community of agents influences how long ignorance is likely 

to persist within it.  

These findings may be disconcerting. The first suggests that it will not do to respond to the threat of 

mis- and disinformation simply by advocating greater sceptical caution in incorporating the evidence 

available within one’s social network: trustworthy information will not be efficiently assimilated if 

distrust runs rampant. The second finding may even suggest strategies for disinformants - such as 

 
13 The trend seen here was less pronounced, but still present, in these networks when trials increased to 64; and 
in size 64 networks with densities 0.12 and 0.06. In the lowest density networks (i.e. Barabasi-Alberts with 1 
attachment and Watts-Strogatz, knn: 2) there was no significant correlation. 



finding ways to occupy the central node in a star network (O’Connor and Weatherall, 2019). Yet this 

cuts equally in the opposite direction: those wishing to ensure the dissemination of trustworthy 

information may equally accommodate the point – whether they be social or other (e.g. news) media 

organizations, or governments or charities that provide oversight. In any case, the results themselves 

provide a starting point upon which further research on strategies for coping with our informational 

environment may build, and that constrain viable approaches to combatting mis- and disinformation. 
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