ARC Alabama Regional Center for Infection Prevention and Control Training and Technical Assistance

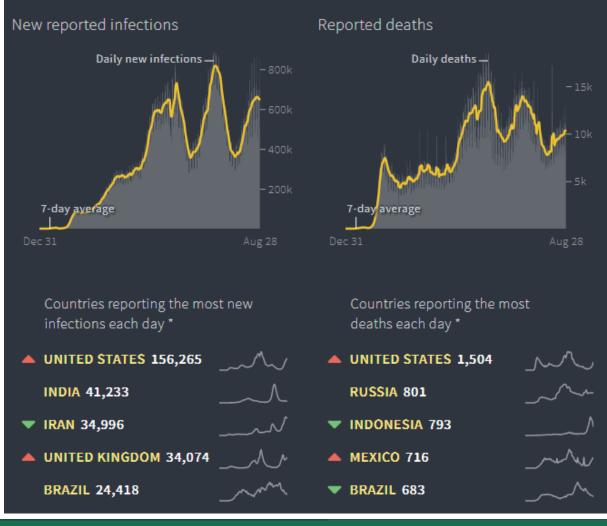
COVID-19 Insights from Alabama

Rachael A. Lee MD, MSPH

Assistant Professor, Division of Infectious Diseases, UAB

UAB Healthcare Epidemiologist

September 1, 2021



Outline

- COVID-19 Epidemiology
 - COVID-19 and Alabama
 - Rates
 - Vaccination
- Clinical considerations in the setting of Delta
 - Hospitalization
 - K-12

Global Rates of COVID-19

- COVID-19 is rising in 72 countries
 - 216,625,000 reported infections
 - 4,680,000 reported deaths
- 22 countries are still near the peak of their infection

ALABAMA REGIONAL CENTER FOR INFECTION PREVENTION AND CONTROL TRAINING AND TECHNICAL ASSISTANCE The University of Alabama at Birmingham

https://graphics.reuters.com/world-coronavirus-trackerand-maps/

COVID-19 in the US

Community Transmission in US by County Total % Change Percent High 3020 93.79% 4.47% -3.42% Substantial 91 2.83% -0.9% Moderate 22 0.68% 86 2.67% -0.16% Low

How is community transmission calculated?

- The United States is at a high level of community transmission with increasing cases
- 7-day moving average of daily new cases increased 2.8%, with 142,000 new cases daily

🛑 High 🛛 🛑 Substantial 💛 Moderate 🔵 Low 🔘 No Data

The University of Alabama at Birmingham

Rates driven by Delta Variant in the US

- The Delta Variant accounts for 97% of cases in the US
 - In Alabama, 94% are attributable to Delta
- Potentially dangerous evolution of future variants in areas with high transmission rates:
 - MUCH more infectious (easy to transmit);
 - more harmful (severity of illness / hospitalization)

aggregated with B.1.617.2

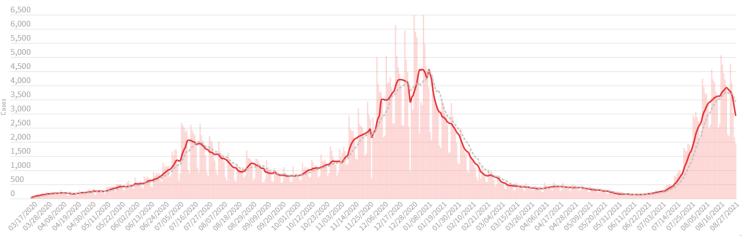
ALABAMA REGIONAL CENTER FOR INFECTION PREVENTION AND CONTROL TRAINING AND TECHNICAL ASSISTANCE

The University of Alabama at Birmingham

https://covid.cdc.gov/covid-data-tracker/#monitoringvaraint-heading

COVID-19 in Alabama

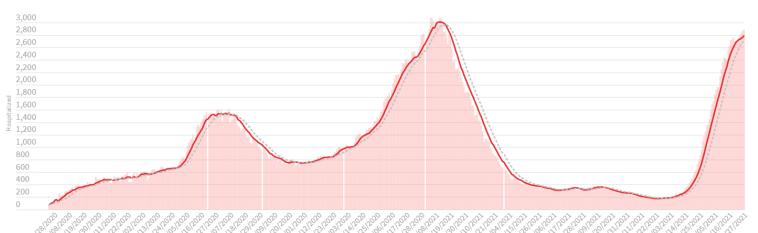
Alabama has had 688,018 total cases


22.6% positivity (out of an average of 18-20,000 tests/day)

2,887 hospitalizations, which is increasing

Cases per day by date of infectiousness

This data is pulled directly from the Alabama Department of Public Health. Cases are assigned a date based on the day when the case was most likely ill and/or infectious. Note: Case numbers, especially for the prior three days, are likely to be revised upward as the state reports more cases.


📕 7-day average of daily cases 📕 14-day average of daily cases 📕 Cases per day

Hospitalized per day

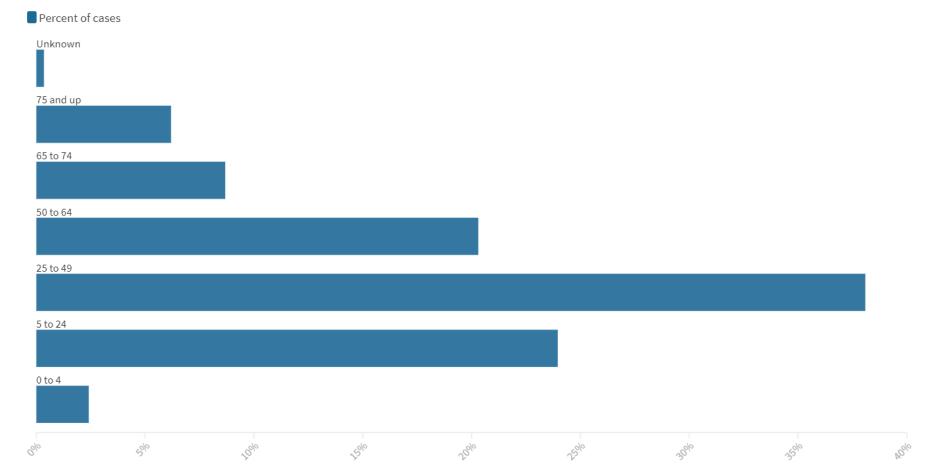
This data is pulled directly from the Alabama Department of Public Health. It represents the number of people in hospital care settings who are being treated for COVID-19 as reported by Alabama's Incident Management Systems, or AIMS

📕 7-day average 📕 14-day average 📕 Hospitalized currently



https://www.alreporter.com/mapping-coronavirus-in-alabama/

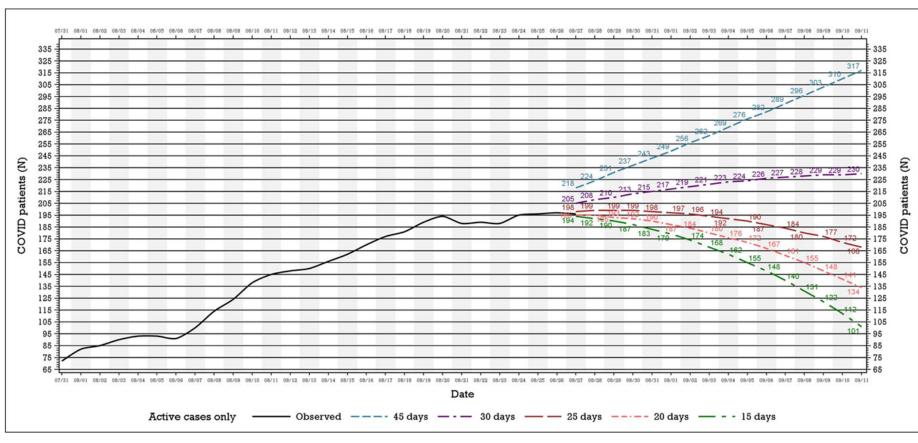
The University of Alabama at Birmingham


Prediction Model for Hospitalizations

ALABAMA REGIONAL CENTER FOR INFECTION PREVENTION AND CONTROL TRAINING AND TECHNICAL ASSISTANCE The University of Alabama at Birmingham

Data Courtesy Suzanne Judd, PhD

COVID Transmission is being driven by younger ages



https://www.alreporter.com/mapping-coronavirus-inalabama/

The University of Alabama at Birmingham

COVID Admission Projections at UAB

Prediction model using max daily census for active cases only:

Tightly controlled in terms of admissions

Large amounts of discharges, convalescing of active cases

Increase in Deaths in the past two weeks

Data courtesy Dr. Russell Griffin PhD

COVID-19 Vaccination

Global Vaccination Rates

- At least 200 countries have started vaccinating against COVID-19
- 38% of people from high income countries have received at least 1 dose

https://graphics.reuters.com/world-coronavirus-trackerand-maps/vaccination-rollout-and-access/

COVID-19 Vaccination in the US

	People Vaccinated	At Least One Dose	Fully Vaccinated
Total Vaccine DosesDelivered440,028,085	Total	204,435,968	173,520,211
Administered 368,863,734	% of Total Population	61.6%	52.3%
Learn more about the <u>distribution of vaccines</u> .	Population ≥ 12 Years of Age	204,207,795	173,388,637
	% of Population ≥ 12 Years of Age	72%	61.2%
173.5M	Population ≥ 18 Years of Age	191,142,250	163,404,705
People fully vaccinated	% of Population ≥ 18 Years of Age	74%	63.3%
901k	Population ≥ 65 Years of Age	50,301,734	44,682,670
People received an additional dose since August 13th, 2021	% of Population ≥ 65 Years of Age	92%	81.7%

Emerging SARS-CoV-2 Variants of Concern

Selected <u>CDC/World Health Organization</u> Designees with Published Clinical Data

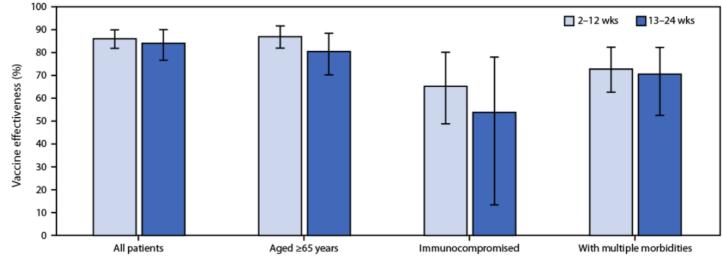
Version 7/30/21

Variant	Location/	Clinical effects						
(WHO label/	Year of	Treatment efficacy						
Pango lineage)	Pango lineage) Origin (in vitro)**		mRNA	Viral vector	Nanoparticle/subunit			
Alpha B.1.1.7	U.K. 2020	Bamlanivimab + etesevimab: Retains neutralization efficacy (FDA EUA) REGEN-COV (casirivimab + imdevimab): Retains neutralization efficacy (FDA EUA) Sotrovimab: Retains neutralization efficacy (FDA EUA) Convalescent sera: Retains neutralization efficacy (Planas, March 2021)	Pfizer-BioNTech vaccine: Preserved effectiveness against infection and severe COVID-19 in the U.K. (<u>Hall, May 2021</u>), Israel (<u>Haas, May 2021</u>), Qatar (<u>Abu-Raddad, May 2021</u>) and Canada (<u>Nasreen, July 2021 -</u> <u>preprint</u>) Moderna vaccine: Preserved effectiveness against infection and severe COVID-19 in Canada (<u>Nasreen, July 2021 -</u> <u>preprint</u>)	Oxford-AstraZeneca vaccine: Slightly reduced effectiveness against infection but preserved effectiveness against severe COVID-19 in the U.K. (Emary, April 2021) and Canada (<u>Nasreen, July</u> 2021 - preprint)	Novavax vaccine: Preserved effectiveness against infection and severe COVID-19 in the U.K. (Heath, June 2021)			
Beta B.1.351	South Africa 2020	Bamlanivimab + etesevimab: Markedly reduced efficacy (FDA EUA; Chen, June 2021) REGEN-COV (casirivimab + imdevimab): Retains neutralization efficacy (FDA EUA; Wang, March 2021)	Pfizer-BioNTech vaccine: Slightly reduced effectiveness against infection but preserved effectiveness against severe COVID-19 in Qatar (<u>Abu-</u> <u>Raddad, May 2021</u>) Moderna vaccine:	Oxford-AstraZeneca vaccine: No effectiveness against infection in South Africa (Madhi, May 2021) Reduced effectiveness against infection but preserved effectiveness against severe COVID-19 in Canada (Nasreen, July 2021 - preprint)	Novavax vaccine: Reduced effectiveness against infection (<u>Shinde, May 2021</u>)			

Real-Time Learning Network 2021

COVID19LearningNetwork.org

Variant	Location/	Clinical effects						
(WHO label/	Year of	Treatment efficacy	Vaccine effection	Vaccine effectiveness against selected variant* (by vaccine platform)				
Pango lineage)	Origin	(in vitro)**	mRNA	Viral vector	Nanoparticle/subunit			
Delta	India	Bamlanivimab +	Pfizer-BioNTech vaccine:	Oxford-AstraZeneca vaccine:	No data			
B.1.617.2	2020	etesevimab:	Slightly reduced effectiveness	Slightly reduced effectiveness				
			against infection but preserved	against infection but preserved				
		Retains neutralization	effectiveness*** against severe	effectiveness*** against severe				
		efficacy (FDA EUA)	COVID-19 after 2 doses in the	COVID-19 after 2 doses in the U.K.				
		Bamlanivimab alone	U.K. (Bernal, May 2021 -	(Bernal, July 2021), Stowe, May				
		inefficacious	preprint; Stowe May 2021 -	2021 - preprint), Scotland (Sheikh,				
			preprint), Scotland (Sheikh, June	June 2021) and Canada (Nasreen,				
		REGEN-COV (casirivimab +	2021) and Canada (Nasreen,	July 2021 -preprint)				
		imdevimab):	July 2021 -preprint					
		Retains neutralization						
		efficacy (FDA EUA; Planas,	Moderna vaccine:					
		July 2021)	Slightly reduced effectiveness					
			against infection but preserved					
		Sotrovimab:	effectiveness against severe					
		Retains neutralization	COVID-19 in Canada (Nasreen,					
		efficacy (FDA EUA)	July 2021 - preprint					
		Convalescent sera:						
		Potential moderately						
		reduced neutralization						
		(Planas, March 2021)						

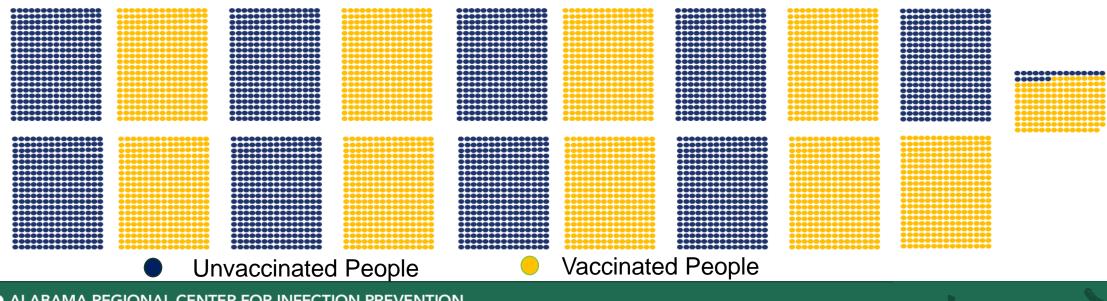


COVID-19 Vaccination in the Face of Variants

- Among fully vaccinated people, vaccination is >90% effective against hospitalizations
- A new study finds that among all adults in New York state, overall effectiveness against new COVID-19 infections declined from about 92% to about 80%.
 - Likely due to Delta + relaxation of masking and physical distancing

FIGURE 2. Sustained vaccine effectiveness* against COVID-19 among hospitalized adults, by patient status^{†,§} and interval since vaccination — 21 medical centers in 18 states,[¶] March–July 2021

Hospitalized patient status


https://www.cdc.gov/mmwr/volumes/70/wr/mm7034e2.htm ?s_cid=mm7034e2_w%E2%80%A2

Do Vaccinations Work?

- Approximately 170,000,000 Americans are vaccinated (leaving around 165,000,000 Americans who are unvaccinated). So, we are nearly split 50/50
- If vaccinations have no effect, the death toll would look nearly identical between the vaccinated and unvaccinated

5,564 people died from COVID during the week of August 15-21

Here is the split we would expect, if vaccinations made no difference

Source: the Joint Commission

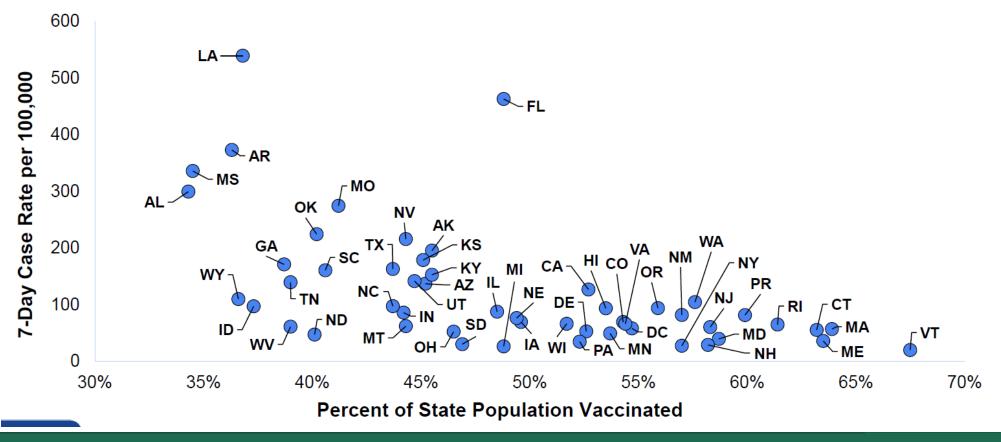
AND CONTROL TRAINING AND TECHNICAL ASSISTANCE The University of Alabama at Birmingham

But here are the data we actually see

- There were 5,564 COVID deaths during the week of August 15th to August 21st
- Depending upon the state you are in, the proportion of vaccinated people who die from COVID ranges from 0.1% to 5% of COVID all deaths.

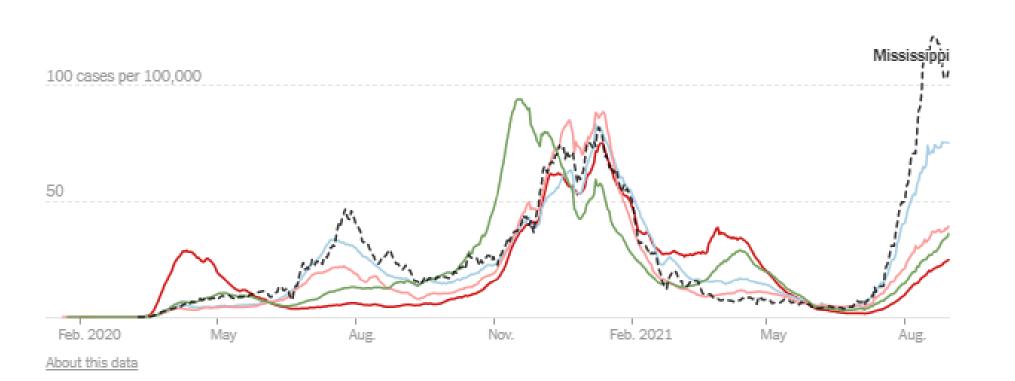
And here are the 6 to 278 vaccinated people who died (you probably heard about breakthrough cases like these on the news)

Approximately 5,286 unvaccinated people died from COVID during the week of August 15-21 like these on the news)


Vaccinated People

Unvaccinated People

Vaccination Rates can control COVID-19


COVID-19 Case Rate (7-day rate per 100,000) By Percent of State Population Fully Vaccinated, July 22-28, 2021

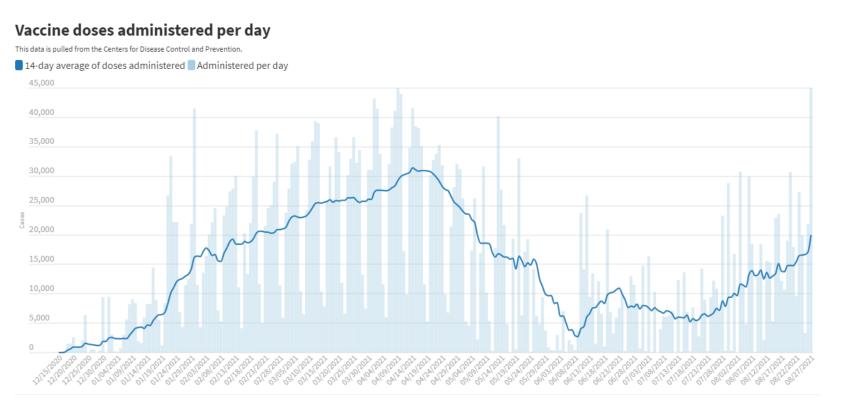
Source: CDC

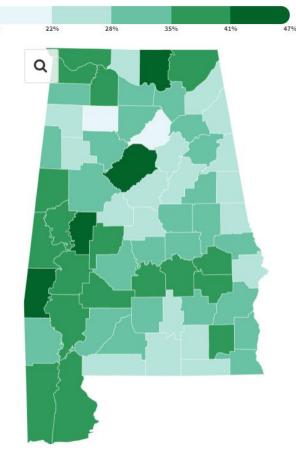
The University of Alabama at Birmingham

Daily cases have changed in different parts of the country

Much of the South is contending with its most serious outbreak of the pandemic

ALABAMA REGIONAL CENTER FOR INFECTION PREVENTION AND CONTROL TRAINING AND TECHNICAL ASSISTANCE The University of Alabama at Birmingham

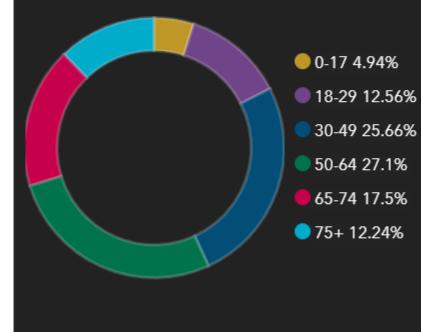

West ■ Midwest ■ South ■ Northeast

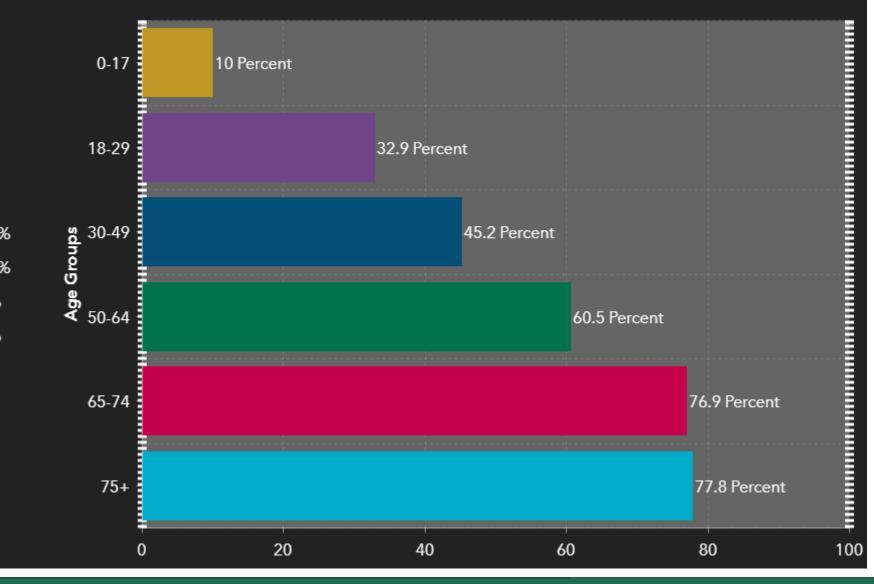

https://www.nytimes.com/interactive/2021/us/covidcases.html

COVID-19 Vaccinations/day in Alabama

Percent of population fully vaccinated

This map shows the counties by the percentage of the county's total population that is fully vaccinated.


Alabama is no longer last in nation! 65% of vaccinations in Alabama today are first doses!


ALABAMA REGIONAL CENTER FOR INFECTION PREVENTION AND CONTROL TRAINING AND TECHNICAL ASSISTANCE The University of Alabama at Birmingham https://www.alreporter.com/mapping-coronavirus-inalabama/

169

Age in Years of People Receiving COVID-19 Vaccine (Age at Time of First Dose)

Percent of People in Alabama Initiating COVID-19 Vaccination by Age (Age at Time of First Dose)

The University of Alabama at Birmingham

Race of People Receiving COVID-19 Vaccine Percent of People Initiating COVID-19 Vaccination by Race 13.1 Percent American Indian or Alaskan Native 56.8 Percent Asian American Indian 0.21% or Alaskan Native Asian 2.02% Black or African 22.16% Black or African American 36.9 Percent American Native Hawaiian or 0.07% Race other Pacific Islander Not Reported 9.87% 27.9 Percent Native Hawaiian or other Pacific Islander Other Race 2.73% Two or More Races 3.75% Unknown 2.36% 94.3 P€ Two or More Races White 56.83% 36.2 Percent White 20 40 60 80 0 100 Hover over the donut chart for the number. *Percentage calculations are based on the population of residents in each race category. https://alpublichealth.maps.arcgis.com/apps/MapSeries/index.html? AND CONTROL TRAINING AND TECHNICAL ASSISTANCE

The University of Alabama at Birmingham

appid=d84846411471404c83313bfe7ab2a367

Clinical Considerations of the Delta Variant

Delta Variant

More contagious (more than 2x)

The number of **people** that **one sick person** will infect (on average) is called R₀.

ALABAMA REGIONAL CENTER FOR INFECTION PREVENTION AND CONTROL TRAINING AND TECHNICAL ASSISTANCE The University of Alabama at Birmingham

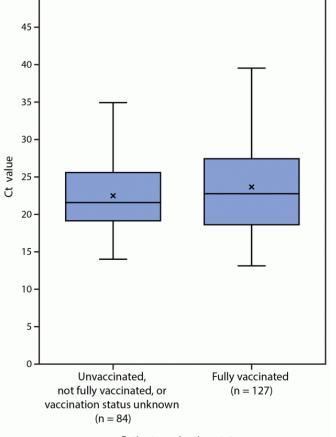
https://www.npr.org/sections/goatsandsoda/2021/08/11/10261900 62/covid-delta-variant-transmission-cdc-chickenpox

Phases involved in airborne transmission of respiratory viruses. Virus-laden aerosols (<100 μ m) are first generated by an infected individual through expiratory activities, through which they are exhaled and transported in the environment. They may be inhaled by a potential host to initiate a new infection, provided that they remain infectious. In contrast to droplets (>100 μ m), aerosols can linger in air for hours and travel beyond 1 to 2 m from the infected individual who exhales them, causing new infections at both short and long ranges.

<u>Aerosols</u> (an over-arching term)- includes a range of particles

<u>Droplets</u>: larger than 5-10 microns (a micron [µm]; about 1/10 the width of a human hair) fall to the ground within seconds of impact on another surface without evaporating

<u>Droplet nuclei</u>: remain suspended in the air and evaporate quickly, leaving behind particles consisting of proteins, salts, and suspended viruses


- can remain airborne for hours
- It is only the droplet nuclei that are capable of riding the air currents through a hospital, etc

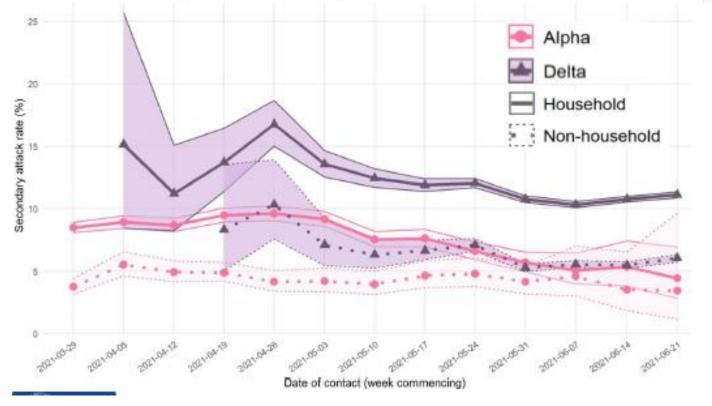
ALABAMA REGIONAL CENTER FOR INFECTION PREVENTION AND CONTROL TRAINING AND TECHNICAL ASSISTANCE The University of Alabama at Birmingham https://www.science.org/doi/epdf/10.1126/science.abd9149

Delta Variant and Transmission

50

- Transmissibility depends on a variety of factors, including:
 - Magnitude and duration of viral shedding
 - Ventilation
 - Symptoms
 - PPE
- Recent studies have shown similar viral loads in vaccinated vs unvaccinated

Similar viral loads initially, then drops quickly as vaccine antibodies kick in

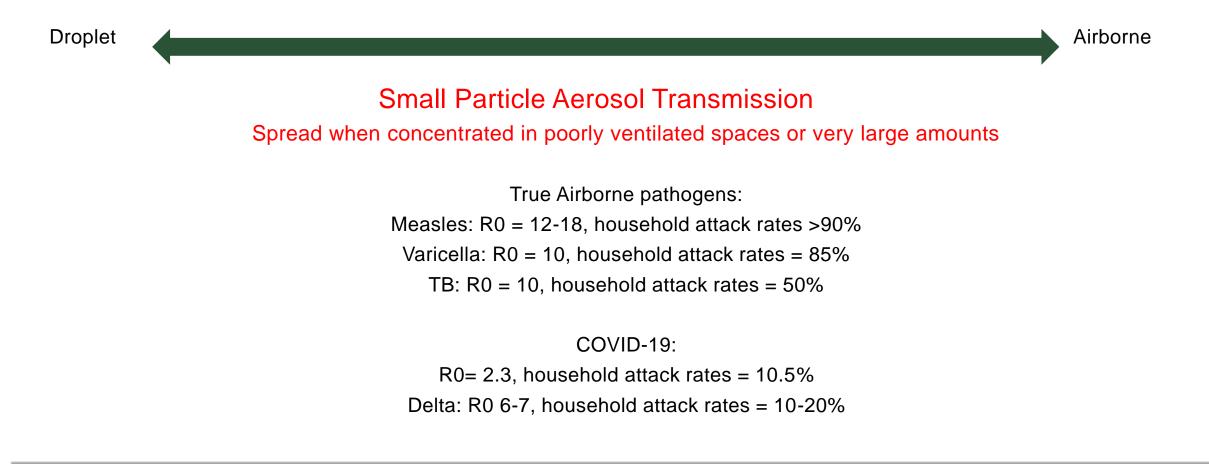

Patient vaccination status

https://www.cdc.gov/mmwr/volumes/70/wr/mm7031e2.htm https://www.medrxiv.org/content/10.1101/2021.07.28.21261295v1

Secondary Attack Rate

Secondary attack rates amongst household and non-household contacts of non-travel cases of Alpha and Delta, with 95% confidence intervals (29 MAR 2021 to 27 JUN 2021)

In unvaccinated persons, Delta variant infections are at least twice as infectious as infections with non-Delta variants


ALABAMA REGIONAL CENTER FOR INFECTION PREVENTIONAL CENTER FOR INFECTION PREVENTION INFECTION PREVENTION INFECTION PREVENTION INFECTION PREVENTION INFECTION PREVENTION INFECTION INFECTIONICIAL INFECTIONICIAL INFECTION INFECTIONICIA INFECTIONICIA INFECTIONICAL INFECTIONICIA INFECTIONICIA INFECTIONI INFECT

The University of Alabama at Birmingham

nvestigation of SARS-CoV-2 variants of concern: technical briefings -GOV.UK (www

Airborne vs droplet

• Droplet and airborne transmission are not really a dichotomy, more like a continuum with many factors

28

Delta and Severity of disease

- Data from 43,338 COVID-19 positive patients
 - 8,682 Delta
 - 34,656 Alpha
- Delta patients were younger (median 29y)
- Delta had >2x risk of hospitalization (particularly in unvaccinated)
- Delta used the emergency department more than Alpha patients

https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(21)00475-8/fulltext

	Alpha variant (B.1.1.7)	Delta variant (B.1.617.2)	HR (95% CI), delta variant	a variant vs alpha		
			Unadjusted	Adjusted*		
Hospital admission within 14 days after specimen	764/34 656 (2.2%)	196/8682 (2:3%)	1.03 (0.88-1.21)	2-26 (1-32-3-89)		
Hospital admission or emergency care attendance within 14 days after specimen	1448/34 656 (4-2%)	498/8682 (5·7%)	1-39 (1-25-1-53)	1-45 (1-08-1-95)		
Data are n/N (%) except where otherwise stated. HR=hazard ratio. *Stratification for age group, ethnicity, lower-tier local authority, calendar week of specimen, vaccination status; regression adjustment for age (linear), date (linear), sex, index of multiple deprivation, and international traveller status.						

Table 2: Hospitalisation outcomes for patients with the delta variant compared with patients with the alpha variant

	Alpha variant*	Delta variant*	Adjusted HR (95% CI)†, delta variant vs alpha variant	p value‡
Hospital admission				
Unvaccinated or <21 days after first vaccination dose	536/28029 (1·9%)	149/6681 (2-2%)	2-32 (1-29-4-16)	
≥21 days after first vaccination dose with or without second vaccination dose	228/6627 (3·4%)	47/2001 (2·3%)	1-94 (0-47-8-05)	0.82
Hospital admission or en	nergency care attenda	nce		
Unvaccinated or <21 days after first vaccination dose	1095/28029 (3·9%)	369/6681 (5-5%)	1-43 (1-04-1-97)	
≥21 days after first vaccination dose with or without second vaccination dose	353/6627 (5·3%)	129/2001 (6-4%)	1.58 (0.69-3.61)	0.82

Data are n/N (%) except where otherwise stated. HR-hazard ratio. *These crude descriptive frequencies are unadjusted for age and other confounders, and so they are not directly comparable between the groups. †Stratification for age group, ethnicity, lower-tier local authority, calendar week, vaccination status; regression adjustment for age, sex, index of multiple deprivation, specimen date, and international travel status. ‡p values are for tests for interaction between vaccination status and variant.

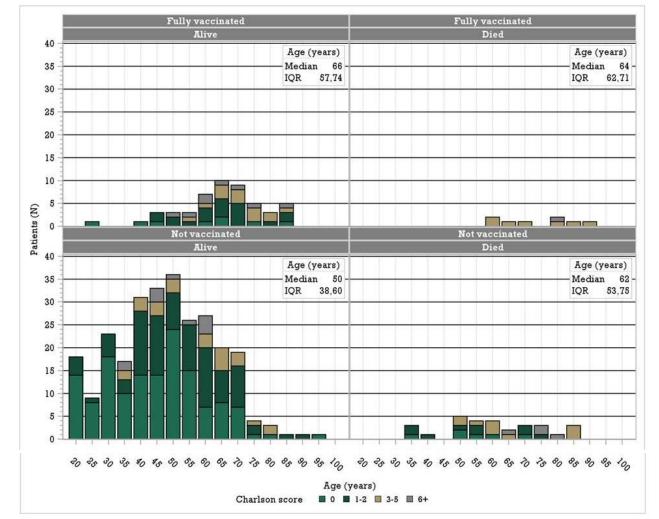
Table 3: Hospitalisation outcomes for patients with the delta variant compared with patients with the alpha variant, by vaccination status

Risk of Reinfection with Delta

- Among Kentucky residents who were previously infected with SARS-CoV-2 in 2020, those who were unvaccinated against COVID-19 had a significantly higher likelihood of reinfection.
- Preprint from Israel has recently concluded that natural immunity confers longer lasting and stronger protection
 - Difficulty in understanding if the data is truly capturing efficacy of vaccine vs natural immunity
 - We have no way to predict who will develop enough antibodies to be considered protected after COVID infection

TABLE 2. Association of SARS-CoV-2 reinfection* with COVID-19
vaccination status — Kentucky, May–June 2021

	No.	_	
Vaccination status	Case-patients	Control participants	OR (95% CI)†
Not vaccinated	179 (72.8)	284 (57.7)	2.34 (1.58-3.47)
Partially vaccinated [¶]	17 (6.9)	39 (7.9)	1.56 (0.81-3.01)
Fully vaccinated ⁵	50 (20.3)	169 (34.3)	Ref
Total	246 (100)	492 (100)	_



https://www.cdc.gov/mmwr/volumes/70/wr/mm7032e1.htm ?s_cid=mm7032e1_w

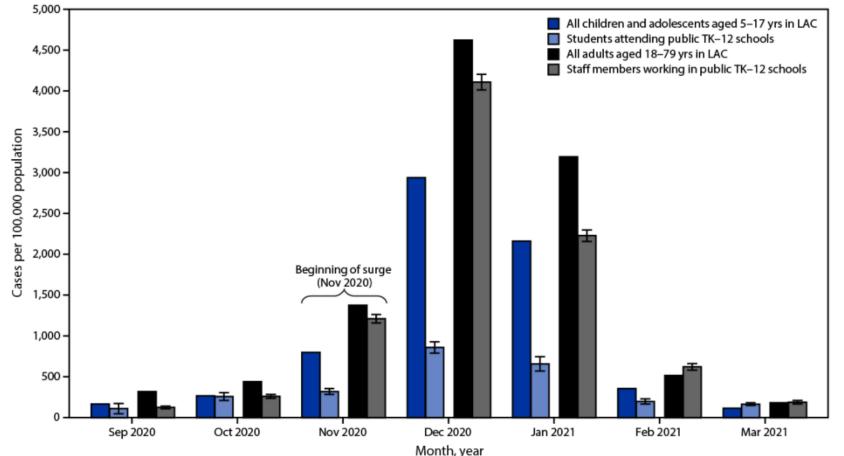
Vaccinations and admissions at UAB

Over 30 day period:

- 531 patients, 12% fully vaccinated
 - 1/3 of fully vaccinated are immunocompromised
- A vast majority of the hospitalized who are not vaccinated:
 - Have no or 1 comorbidity
 - Overall younger

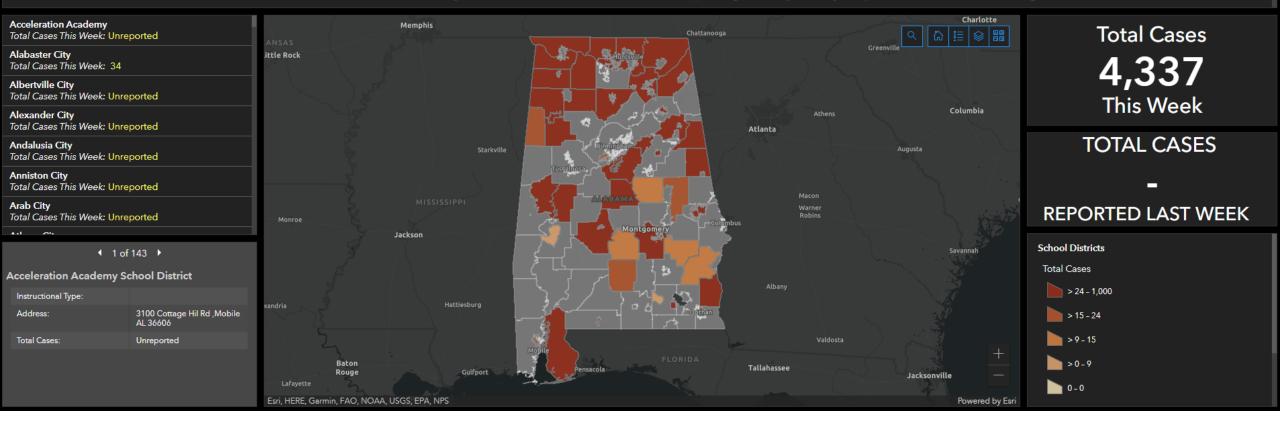
Summary of Delta vs other variants

- In unvaccinated people without prior infection:
 - Delta achieves a higher viral load than other variants
 - Delta is at least twice as infectious
- In Vaccinated people with breakthrough infections:
 - Delta achieves higher viral load compared to other variants
 - How much more infectious Delta is in this population remains unknown


Prevention of Spread of COVID-19 in schools

In-person teaching in Los Angeles

FIGURE. COVID-19 case rates* among children, adolescents, and adults[†] in transitional kindergarten through grade 12 schools and in the community, by month — Los Angeles County, California, September 2020–March 2021



In schools with safety protocols in place for prevention and containment, case rates in children and adolescents were 3.4 times lower during the winter peak compared with rates in the community.

ALABAMA REGIONAL CENTER FOR INFECTION PREVENTION AND CONTROL TRAINING AND TECHNICAL ASSISTANCE The University of Alabama at Birmingham https://www.cdc.gov/mmwr/volumes/70/wr/mm7035e3.htm ?s_cid=mm7035e3_x

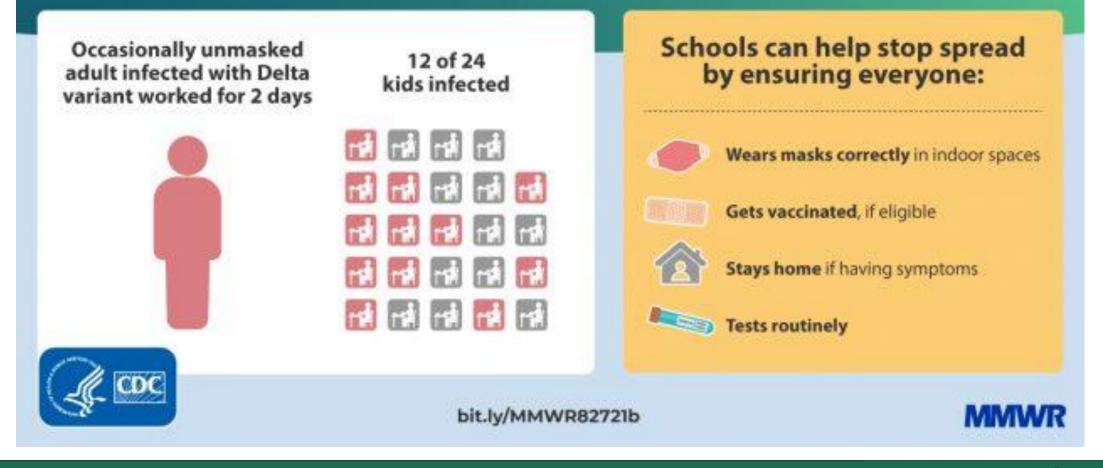
Alabama Dashboard for K-12

August 27, 2021 - The Alabama Department of Public Health and the Alabama State Department of Education are working together to get the reporting process in place for the 2021 - 2022 school year. This week is a test week. We currently have 52 out of 143 schools districts reporting. Thank you for your patience and understanding!

https://alpublichealth.maps.arcgis.com/apps/MapSeries/in dex.html?appid=d84846411471404c83313bfe7ab2a367

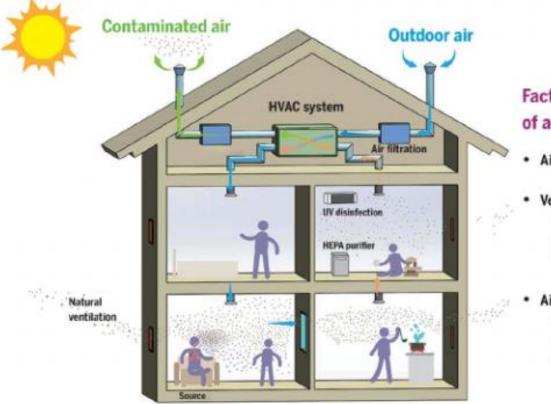
The University of Alabama at Birmingham

COVID-19 IN SCHOOLS


LEE COUNTY SCHOOLS: MASKS OPTIONAL AUGUST 9-13 = 105 CASES AUGUST 16/17 = 88 CASES

AUGUST 10-13 = 12 CASES

Source: Los County School System, Auburn City Schools


The Delta variant spreads easily in indoor spaces when people are unmasked and unvaccinated

https://www.cdc.gov/mmwr/volumes/70/wr/mm7035e2.htm ?s_cid=mm7035e2_w

Controlling Transmission of COVID-19

Factors affecting distribution of aerosols indoors

Airflow direction pattern

Ventilation type

 Natural
 Mechanical

- Hybrid

Air filtration and disinfection

- Portable air cleaner with HEPA filters

- Air filtration in HVAC system
- Upper room UV disinfection

Ventilation Masking Cleaning high touch surfaces Staying home when ill Distancing Vaccination

Fig. 4. Factors affecting indoor airborne transmission. Whereas the motion of large droplets is predominantly governed by gravity, the movement of aerosols is more strongly influenced by airflow direction and pattern, type of ventilation, and air filtration and disinfection.

ALABAMA REGIONAL CENTER FOR INFECTION PREVENTION AND CONTROL TRAINING AND TECHNICAL ASSISTANCE The University of Alabama at Birmingham

https://www.science.org/doi/epdf/10.1126/science.abd9149

Mask wearing for Respiratory Viruses

Study or subgroup	Cases	Control	Odds Ratio	Weight	Odds Ratio
	n/N	n/N	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI
Chen 2009	59/91	541/657	- -	13.46%	0.4[0.25,0.64]
Lau 2004a	93/330	388/660	+	54.01%	0.28[0.21,0.37]
Liu 2009	15/51	259/426	_ 	11.37%	0.27[0.14,0.51]
Nishiura 2005	8/25	35/90		3.01%	0.74[0.29,1.9]
Seto 2003	0/13	51/241	←	1.58%	0.14[0.01,2.34]
Wu 2004	25/94	121/281		12.95%	0.48[0.29,0.8]
Yin 2004	68/77	178/180	←	3.62%	0.08[0.02,0.4]
Total (95% CI)	681	2535	•	100%	0.32[0.26,0.39]
Total events: 268 (Cases), 1573 (Con	trol)				
Heterogeneity: Tau ² =0; Chi ² =10.65, o	df=6(P=0.1); I ² =43.66%				
Test for overall effect: Z=11.07(P<0.0	0001)				
		Favours masks	0.05 0.2 1 5 20	Favours control	

Analysis 1.3. Comparison 1 Case-control studies, Outcome 3 Wearing mask.

RCTs of masking in the setting of a pandemic are unethical

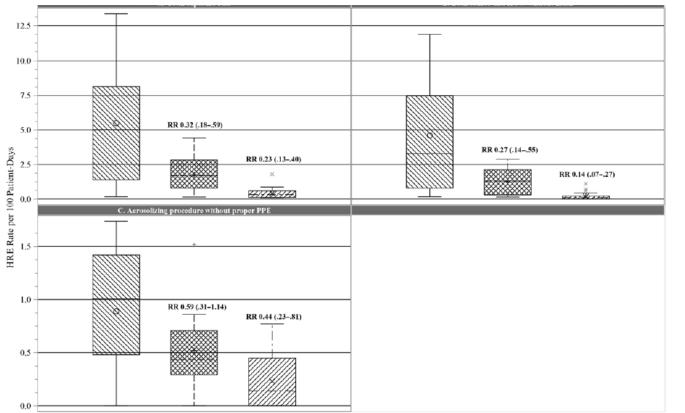
In a Cochrane review of 67 studies, including RCTs of respiratory viruses concluded: Surgical masks or N95 respirators were the most consistent and comprehensive supportive measures. N95 respirators were non-inferior to simple surgical masks but more expensive, uncomfortable and irritating to skin

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993921/p df/CD006207.pdf

Effectiveness of Mask Wearing to Control Community Spread of SARS-CoV-2

Table. Studies of the Effect of Mask Wearing on SARS-CoV-2 Infection Risk^a

Source	Location	Population studied	Intervention	Outcome
Hendrix et al	Hair salon in Springfield, Missouri	139 Patrons at a salon with 2 infected and symptomatic stylists	Universal mask wearing in salon (by local ordinance and company policy)	No COVID-19 infections among 67 patrons who were available for follow-up
Payne et al	USS Theodore Roosevelt, Guam	382 US Navy service members	Self-reported mask wearing	Mask wearing reduced risk of infection by 70% (unadjusted odds ratio, 0.30 [95% CI, 0.17-0.52])
Wang Y et al	Households in Beijing, China 124 Households of diagnosed cases comprising 335 people index cases or ≥1 household member prior to index case's diagnosis		member prior to index case's	Mask wearing reduced risk of secondary infection by 79% (adjusted odds ratio, 0.21 [95% CI, 0.06-0.79])
Doung-ngern et al	Bangkok, Thailand	839 Close contacts of 211 index cases	Self-reported mask wearing by contact at time of high-risk exposure to case	Always having used a mask reduced infection risk by 77% (adjusted odds ratio, 0.23 [95% CI, 0.09-0.60])
Gallaway et al	Arizona	State population	Mandatory mask wearing in public	Temporal association between institution of mask wearing policy and subsequent decline in new diagnoses
Rader et al	US	374 021 Persons who completed web-based surveys	Self-reported mask wearing in grocery stores and in the homes of family or friends	A 10% increase in mask wearing tripled the likelihood of stopping community transmission (adjusted odds ratio, 3.53 [95% CI, 2.03-6.43])
Wang X et al	Boston, Massachusetts	9850 Health care workers (HCWs)	Universal masking of HCWs and patients in the Mass General Brigham health care system	Estimated weekly decline in new diagnoses among HCWs of 3.4% after full implementation of the mask wearing policy
Mitze et al	Jena (Thuringia), Germany	City population aged ≥15 y	Mandatory mask wearing in public spaces (eg, public transport, shops)	Estimated daily decline in new diagnoses of 1.32% after implementation of the mask mandate
Van Dyke et al	Kansas	State population	Mandatory mask wearing in public spaces	Estimated case rate per 100 000 persons decreased by 0.08 in counties with mask mandates but increased by 0.11 in those without
Lyu and Wehby	15 US states and Washington, DC	State populations	Mandatory mask wearing in public	Estimated overall initial daily decline in new diagnoses of 0.9% grew to 2.0% at 21 days following mandates
Karaivanov et al	Canada	Country population	Mandatory mask wearing indoors	Estimated weekly 25%-40% decline in new diagnoses following mask mandates


^a See the Supplement for the complete table.

All Rights RdAMAd2021;325(10):998-999. doi:10.1001/jama.2021.1505

The University of Alabama at Birmingham

Decreasing High-risk Exposures for Healthcare Workers Through Universal Masking and Universal Severe Acute Respiratory Syndrome Coronavirus 2 Testing on Entry to a Tertiary Care Facility

Jeremey Walker,^{1,©} Molly E. Fleece,¹ Russell L. Griffin,² Sixto M. Leal,³ Jorge A. Alsip,⁴ William S. Stigler,⁵, Sarah D. Nafziger,⁶ Jeanne M. Marrazzo,¹ and Rachael A. Lee¹

Universal masking decreased the rate of high-risk exposures per patient-day by 68%

and universal testing further decreased those exposures by 77%.

Intervention period

 Intervention period

 Image: Preintervention (11–25 March)

 Image: Preintervention (11–25 March)

 Image: Preintervention (11–25 March)

Acknowlegdements

Thank you to the Alabama Regional Center for Infection Prevention and Control Training and Technical Assistance!

