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ABSTRACT
Given a set S of servers and a set C of clients, an optimal-
location query returns a location where a new server can
attract the greatest number of clients. Optimal-location
queries are important in a lot of real-life applications, such as
mobile service planning or resource distribution in an area.
Previous studies assume that a client always visits its near-
est server, which is too strict to be true in reality. In this
paper, we relax this assumption and propose a new model
to tackle this problem. We further generalize the problem
to finding top-k optimal locations.

The main challenge is that, even the fastest approach in
existing studies needs to take hours to answer an optimal-
location query on a typical real world dataset, which signifi-
cantly limits the applications of the query. Using our relaxed
model, we design an efficient grid-based approximation algo-
rithm called FILM (Fast Influential Location Miner) to the
queries, which is orders of magnitude faster than the best-
known previous work and the number of clients attracted
by a new server in the result location often exceeds 98% of
the optimal. The algorithm is extended to finding k influen-
tial locations. Extensive experiments are conducted to show
the efficiency and effectiveness of FILM on both real and
synthetic datasets.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
Optimal-location queries are important in a lot of real life

applications. For example, a company can issue an optimal-
location query to find an influential location to locate its
next chain store, so as to maximize its potential revenue.
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Informally, given a set S of servers and a set C of clients,
an optimal-location query returns a location where a new
server can attract the greatest number of clients. In the
previous example, chain stores correspond to servers while
customers correspond to clients, and the company wants to
find a location that can maximize the number of customers
attracted by its new chain store.

Optimal-location queries can also be used in many other
applications, such as profile-based marketing and emergency
schedules. However, most of the previous studies assume
that the set of existing servers and clients are static, since
even the state-of-the-art algorithm for processing optimal-
location queries [1] takes hours to answer such queries on
typical real world datasets. Thus, the existing approaches
that have long response time are not practical to a fast-
evolving environment, where the servers and clients may
move and the server and client sets may change as time
goes by.

For instance, let us consider a military application where
the location of each soldier and each military vehicle is tracked
by GPS. Suppose there are medical workers, apparatus and
instruments sufficient to set up 10 field hospitals, and the
goal is to locate these field hospitals in a military area to
serve as many soldiers as possible. As the battlefront changes
over time, the locations of soldiers and vehicles will also
change, and some field hospitals have to be relocated by
military transport aircrafts.

Assume that there exists a coordination center, which is
responsible for adjusting the location of a field hospital, if
it finds that the hospital can no longer serve sufficient sol-
diers. Then, the center has to find the optimal location as
soon as possible, since fast medical support is critical for
the wounded soldiers. Instead of spending hours to run the
existing algorithms to find an optimal location, it is more
desirable to find a slightly less optimal location within a few
seconds, so that the relocation of the hospital can be carried
out in time. Thus, our goal is to find a near-optimal location
efficiently.

To realize this goal, we propose an approximation algo-
rithm called FILM that is able to return a small region,
where each location is a sub-optimal one, within seconds
to a couple of minutes, which is orders of magnitude faster
than the state-of-the-art algorithm that returns an optimal
one. We also consider the related problem of locating k
new servers in order to maximize the total number of clients
attracted by these servers “collectively”. It is worth men-
tioning that [1] proposes to find k locations, each of which
attracts as many clients as possible. However, since the k lo-



Figure 1: Illustrations of Nearest Location Circle (NLC)

cations are independently found in [1], they may share a lot
of attracted clients and thus the total number of clients at-
tracted “collectively” by these k locations may not be large.
To solve this problem, we extend FILM to finding k influ-
ential locations that collectively attract as many clients as
possible.

The rest of the paper is organized as follows: Section 2
formulates the problem of finding influential locations. Sec-
tion 3 reviews the related work, with an emphasis on the
state-of-the-art algorithm proposed recently. Our grid-based
algorithm, FILM, is described in Section 4. Extensive ex-
periments are conducted in Section 5 to evaluate the effi-
ciency and effectiveness of FILM on both real and synthetic
datasets. Finally, we conclude our paper in Section 6.

2. PROBLEM DEFINITION

2.1 Optimal-Location Query
We now use the example in Figure 1 to illustrate the idea

of optimal-location queries. Figure 1(a) shows a spatial set-
ting with a set of two servers (s1 and s2), and a set of five
clients (c1, c2, c3, c4 and c5). Suppose that we need to
choose a location for a new server s3. Where should it go in
order to attract as many clients as possible? To answer this
question, we first need to define the condition under which
s3 attracts client ci as follows:

Definition 1 (ABUF). The attraction buffer (ABUF)
of a client c ∈ C, denoted ABUF(c), is the union of all the
locations where a new server s can attract c.

Therefore, s3 attracts ci if and only if its location is within
ABUF (ci). Previous work assumes that a client always vis-
its its nearest server, which we call the nearest neighbor as-
sumption (or the NN assumption). Under the NN assump-
tion, when the distance metric is L2-norm (Euclidean dis-
tance), the ABUF of a client is actually a circle as defined
below:

Definition 2 (NLC). The nearest location circle (NLC)
of a client c ∈ C, denoted NLC(c), is the circle centered at
the location of c with radius |c,NN(c)|, where NN(c) is the
nearest neighbor of c in the server set S, and | · | stands for
the Euclidean distance.

We illustrate the concept of NLC by our running example
in Figure 1. Assume that currently S = {s1, s2}, and thus
S does not contain the new server s3 to set up. Therefore,

s3 is not involved in the computation of the NLC of a client.
Figure 1(a) shows the NLC of c1 (note that c1 is closer to s1

than to s2). However, if s3 is set up at the location as shown
in Figure 1(a), it becomes the new nearest neighbor (NN)
of c1 and thus attracts c1. This gives rise to the following
observation:

Observation 1. If a new server is set up at a location
within the NLC of a client c ∈ C, the server will attract c.

The same principle also holds when the NLC of c3 is con-
sidered (Figure 1(b)). When we consider only two clients c1

and c3, we have the corresponding NLCs as shown in Fig-
ure 1(c). In this figure, we can see that region II is only
covered by c1’s NLC and thus a new server there will only
attract c1 but not c3. Similarly, a new server in region III
will attract c3 but not c1. In the overlapping region I, it is
obvious that a new server there will attract both c1 and c3.
In the region not covered by any NLCs, a new server there
will certainly attract no clients. If we assume that there are
only two clients c1 and c3, the optimal location for s3 should
be within region I. The above discussion can be formalized
in the following observation:

Observation 2. If a new server is set up at a location
which is covered by the greatest number of NLCs, the new
server will attract the greatest number of clients.

We conclude that an optimal-location query should return
a location which is covered by the greatest number of NLCs.
Figure 1(d) shows a more complicated scenario by consider-
ing all the clients, namely c1, c2, ..., c5. Their NLCs divide
the whole space into a number of partitions. In Figure 1(d),
each partition is marked with a number denoting the number
of NLCs covering the partition. This number corresponds
to the total number of clients who have interest in visiting a
new server set up in this partition. Given a location l in this
partition, we name this number as the influence value of l.
Obviously, any point in the shaded region in Figure 1(d) is
an optimal location.

Now, we generalize the concept of NLC in Observations 1
and 2 to any ABUF, and define the influence value of a
location l based on ABUF:

Definition 3 (Influence Value). Given a location l,
the influence value of l, denoted inf(l), is the number of
clients c ∈ C such that l ∈ABUF(c).

Definition 4 (Optimal-Location Query). Given a
set S of servers and a set C of clients, the optimal-location
query returns a location l such that inf(l) is the maximum.



With a straightforward extension we can also handle the
more general case where each client c ∈ C is associated
with a weight w(c). In this case, Definition 3 can be gen-
eralized as follows: given a location l, its influence value
inf (l) =

∑
c∈C: l∈ABUF (c) w(c), i.e., we compute the sum of

the weights of the attracted clients rather than simply count
the total number.

2.2 Finding Influential Location
Although optimal-location queries are useful in real life

applications, it is expensive to compute the optimal location,
which makes such queries not practical for fast-evolving en-
vironments. Another inherent limitation of such queries is
that only one (optimal) location is returned as the answer,
which is too restrictive. Thus, we propose to study a more
general setting of the queries as follows: “finding k influen-
tial locations to locate k new servers so as to attract as many
clients as possible”. To our knowledge, this problem is still
not formally addressed in the literature.

To support applications that require short response time,
we propose an approximation algorithm called FILM, which
is able to return a near-optimal location within seconds to a
couple of minutes, and can support the top-k queries men-
tioned above.

The key to the design of FILM is a generalization of the
concept of NLC. The traditional optimal-location queries
studied in the previous work adopt NLC as the ABUF. How-
ever, the underlying assumption of the traditional optimal-
location queries that a client always visits its nearest server
(i.e., the NN assumption) may not hold in reality. For ex-
ample, a restaurant that is 55 meters away from our home
and serves better food is more likely to attract us, even if
the nearest restaurant is 40 meters away, although we may
be reluctant to go to a restaurant 500 meters away. This
also holds for long distances. For example, for people living
in the outskirt of a city who want to drive to a supermarket
in the downtown area for shopping, a supermarket 5 miles
away that sells more products is not less attractive than a
supermarket 4 miles away.

In order to tolerate other close servers besides the NN,
[1] proposes to set the radius of the NLC of a client c to
|c, NNk(c)|, where NNk(c) is the k-th nearest server of c,
and k is a user-specified parameter. However, this radius
relaxation still lacks flexibility: for one client, its second NN
may be just a little farther away than its NN and the client
is very likely to visit it, while for another client, its second
NN may be times farther away than its NN, which deters the
client from visiting it. We thus adopt a new NLC relaxation
called Relaxed NLC (RNLC) defined as follows:

Definition 5 (RNLC). The relaxed nearest location cir-
cle (RNLC) of a client c is the circle centered at the location
of c with radius (1 + α) · |c,NN(c)|, where α > 0.

The parameter α in Definition 5 is a user-specified pa-
rameter that describes how far a client is willing to visit a
server. If it is allowed to be set to 0, RNLC is reduced to
NLC. However, note that Definition 5 requires α > 0. Intu-
itively, Definition 5 states that a client is willing to visit a
server whose distance is at most (1 + α) times longer than
the distance between the client and its nearest server.

Each client ci ∈ C can have an RNLC parameter αi spe-
cific to it, and to differentiate from the traditional optimal-
location queries that adopt NLC as the ABUF, we name the

optimal-location queries that adopt RNLC as the ABUF to
be Relaxed Optimal-Location Queries:

Definition 6 (Relaxed Optimal-Location Query).
A relaxed optimal-location query is an optimal-location query
given in Definition 4 that adopts RNLC as the ABUF.

We develop a very efficient approximation algorithm (FILM)
to the relaxed optimal-location queries. Although the pa-
rameter α can be different for different clients in the relaxed
optimal-location queries, we use a fixed α for all clients and
prove that as α→ 0+, the influence value of the result loca-
tion of FILM converges to that of the traditional optimal-
location query.

3. RELATED WORK
The optimal-location query was first studied by [2, 1].

[2] proposes an algorithm called Arrangement, whose time
complexity is exponential to the number of clients, resulting
in very poor scalability, while [1] proposes an efficient al-
gorithm called MaxOverlap whose time complexity is poly-
nomial to the number of clients. MaxOverlap is know to
be the fastest algorithm for optimal-location queries. [1]
reports that for a small dataset with 250 clients and 500
servers, the Arrangement algorithm runs for more than one
day while MaxOverlap finishes the task within 0.1s.

The optimal-location query defined in [2, 1] is based on
NLC instead of RNLC. In the following, we briefly introduce
the underlying idea of MaxOverlap [1], as the following four
steps:

• Step 1 (NLC Construction): For each client c ∈ C,
find the NLC of c.

• Step 2 (Intersection Point Computation): For
each pair of NLCs, find the intersection points between
the boundaries of these two NLCs.

• Step 3 (Point Query): For each intersection point
found in Step 2, find all NLCs covering this point.

• Step 4 (Maximum Influence Value Finding): find
the intersection point which is covered by the greatest
number of NLCs, and return the region which is the
intersection of all those covering NLCs.

It is shown in [1] that the region returned by MaxOverlap
corresponds to the optimal partition in which each location
is an optimal one (e.g., the shaded region in Figure 1(d)).

Although MaxOverlap uses a pruning rule to avoid eval-
uating the intersection points that are guaranteed not to be
optimal, it is still quite slow in practice. The time com-
plexity of MaxOverlap is shown to be O(|C| log |S|+ ℓ2|C|+
ℓ|C| log |C|) in [1], where ℓ is the average length of the over-
lapping lists of the clients. MaxOverlap is very expensive if
ℓ is large, and since ℓ = O(|C|), the time cost of MaxOverlap
is super-quadratic to the number of clients.

Unlike MaxOverlap that works on Euclidean distance, [6]
uses Manhattan distance as the metric. In this case, the
ABUF of a client is a square. [6] uses plane-sweep to eval-
uate the optimal-location query. Since [6] focuses on con-
strained optimal-location query that finds an optimal loca-
tion within a query region rather than globally, it elaborates
on the disk-based index to fetch only the ABUFs involved.



Note that MaxOverlap can easily be extended to handle the
constrained optimal-location query, by filtering out the in-
tersection points that are outside the query region.

Some recent work [4, 5] considers the capacity of each
server. Other related work includes [8, 9, 10], all of which
are based on the idea of bichromatic reverse nearest neighbor
[7]. However, they find the most influential server among the
existing servers, while we find an influential location for a
new server, which is a fundamentally different problem from
theirs.

4. FILM ALGORITHM
Although MaxOverlap [1] is the state-of-the-art algorithm

for the evaluation of optimal-location queries, its efficiency
is still far from satisfactory for most practical applications.
This is because MaxOverlap needs to compute and evaluate
a huge amount of intersection points between the bound-
aries of the NLCs. This observation reveals that, in order
to find influential locations much more efficiently, we have
to abandon the idea of checking the intersection points but
to develop a new approach for finding such locations.

The idea of FILM is inspired by the way people solve
the optimal-location query manually. If we are given a pa-
per and a pencil, we will solve the optimal-location problem
by drawing the NLCs of all clients and then find the most
overlapped partition, as illustrated in Figure 1. Since the
“paper” to draw on is a continuous space, and we need to
find the most overlapped region/location within short time,
we partition the “paper” space using grids and manipulate
on the grid cells. FILM returns a grid cell in which each
location is an influential one, as an approximation of the
optimal location.

In the sequel, we first present in Section 4.1 our idea of
FILM when there is only one grid partitioning imposed on
the space. This paves the way of introducing the complete
FILM algorithm in Section 4.2, where we show the neces-
sity of using a hierarchy of multiple grids to improve the
performance of finding an influential location.

4.1 Grid-based Algorithm

4.1.1 Basic Algorithm
Similar to MaxOverlap[1], the first step of FILM is also

to obtain the NLCs of all the clients. To get the NLCs, we
first bulk-load a balanced kd-tree on the server points in S,
denoted as T kd

S . Then, for each client c ∈ C, we find the
server s nearest to c by an NN query on T kd

S and get the
NLC radius |s, c|. We adopt a kd-tree instead of an R*-tree
since operations on kd-tree have time bounds. T kd

S is freed
from memory after we have computed all the NLCs, since it
is no longer needed.

Algorithm 1 Basic Algorithm of FILM

1: for each client c ∈ C do
2: Compute its NLC NLC(c)
3: end for
4: for each client c ∈ C do
5: for each grid cell g that overlaps with NLC(c) do
6: counter(g)←− counter(g) + 1
7: end for
8: end for
9: return arg maxg counter(g)

After getting all the NLCs, we “draw” them on the grid
partitioning of the space as shown in Algorithm 1, where
each grid cell is a small square and its side length is called
the grid side length. A counter counter(g) is attached to
each grid cell g to record the number of NLCs overlapping
with the cell, which is initialized to 0. After all the NLCs
are drawn, the grid cell with the maximum counter value is
returned. In the cases where the clients are weighted, Line 6
of Algorithm 1 becomes counter(g) ←− counter(g) + w(c),
where w(c) is the weight of client c.

4.1.2 Analysis
In this subsection, we justify that Algorithm 1 returns a

grid cell in which each location is an influential one, and as
the grid side length approaches 0, the influence value of a
location in the result cell approaches the maximum influence
value.

To prove this, we can view Algorithm 1 as an approxima-
tion algorithm to the relaxed optimal-location query defined
in Definition 6. We now present the following theorem:

Theorem 1. If a grid cell g overlaps with the NLC of
client c whose radius r ≥ δε (ε is the grid side length, δ > 1),

then any location in g is within the RNLC of c with α ≥
√

2
δ

.

ε

r ≥ δε

r'

c

s

s'

Figure 2: Illustration of Theorem 1

Proof. To illustrate the idea of Theorem 1, Figure 2
shows the NLC of a client c, whose nearest server is s. As-
sume that the grid side length is ε and the radius of the
NLC is r ≥ δε. Figure 2 is an extreme case for a grid cell g
to overlap with the NLC of c. The point in g that is farthest
from c is the upper right corner of g, denoted gur. It is obvi-
ous that, for any point s′ in g, if we denote d = |c, gur| and
d′ = |c, s′|, we have d′ ≤ d. Since d = |c, gur| = r +

√
2ε, we

have d′ ≤ r +
√

2ε.
Note that Figure 2 is the extreme case, and for any grid

cell g′ closer to c than g (and hence overlaps with NLC (c)),
we must also have ∀s′ ∈ g′, |c, s′| ≤ r+

√
2ε ≤ r+

√
2( r

δ
) =

(1 +
√

2
δ

)r.
Therefore, if a grid cell g overlaps with the NLC of c, then

g is within the RNLC of c with α ≥
√

2
δ

(see Definition 5),
which proves Theorem 1.

The parameter δ in Theorem 1 has a straightforward geo-
metric meaning: for a grid with grid side length ε, δε defines
the lower bound of the radius of any NLC “drawn” on it. δ
is also important for the grid hierarchy described later.

Next, we describe the relationship of our new parameter
δ with the parameter α in Definition 5: Given the user-

specified RNLC parameter α, we require δ ≤
√

2
α

according
to Theorem 1. On the other hand, smaller grid side length
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Figure 3: Underestimated Cell

ε leads to better approximation, and thus we want δ ≤ r
ε

to
be as large as possible. As a result, the optimal setting is

δ =
√

2
α

.
Although α is a more intuitive parameter that indicates

the maximum distance a user can tolerate, we use δ as the
user-specified parameter instead, due to its more straight-
forward geometric meaning. In fact, given α, we can always

set δ =
√

2
α

, and thus setting both parameters are essentially
equivalent.

If a grid cell g does not overlap with the NLC of a client c,
we do not add counter(g), although g may overlap with the
RNLC of c (e.g., the gray cell in Figure 3). Therefore, the
counter value of a grid cell g computed by our approach is a
conservative estimation of the number of clients that a new
server in g attracts, for the relaxed optimal-location query.

However, as δ → +∞ (α =
√

2
δ
→ 0+), the boundary of

RNLC approaches NLC and the probability that the above
underestimation happens for a grid cell approaches 0. There-
fore, we have the following theorem:

Theorem 2. The counter value of a grid cell g is a con-
servative estimation of the number of clients that a new
server in g attracts, and this value approaches the exact value
as δ → +∞.

Thus, the influence value of a location in the result cell
of Algorithm 1 approaches the maximum influence value, as
δ → +∞.

4.1.3 Implementation Details
We first introduce our grid structure as shown in Figure 4.

The whole space is divided into a number of grid cells with
grid side length ε. Each cell is indexed by two integers ⟨i, j⟩,
such that its lower left vertex coordinate is (iε, jε). For
example, Cells I, II, III, IV and V in Figure 4 are indexed
as ⟨0, 0⟩, ⟨−1, 0⟩, ⟨1, 0⟩, ⟨0, 1⟩ and ⟨−4,−4⟩, respectively.

( 0, 0 )

III III

IV

ε

V

Figure 4: Grid Cell Indexing with Coordinates

Figure 5: Grid Cells with Counters Added

Line 5 in Algorithm 1 aims at obtaining all the grid cells
overlapping with an NLC. To find these cells efficiently,
given an NLC with center c = (x, y) and radius r, we de-
fine the candidate cell set of the NLC to be the set of cells
{⟨i, j⟩ | ⌊x− r⌋ < i < ⌊x + r⌋, ⌊y − r⌋ < j < ⌊y + r⌋}. The
round down operation ⌊x⌋ is used because we index each cell
by its lower left vertex.

For example, all the cells in Figure 5 compose the candi-
date cell set of the NLC in the figure. To see how to find this
set, we note that the NLC has center (0, 0) and radius r such
that 3ε < r < 4ε, and therefore the candidate cell set of the
NLC is computed as {⟨i, j⟩ | ⌊0− r⌋ < i < ⌊0+ r⌋, ⌊0− r⌋ <
j < ⌊0 + r⌋} = {⟨i, j⟩ | − 4 < i < 3,−4 < j < 3}.

However, only the gray cells in Figure 5 are those that
really overlap with the NLC. Therefore, after obtaining the
candidate cell set of an NLC, we need a filtering step to
find all the cells overlapping with the NLC. For each cell
g = ⟨i, j⟩ in the candidate cell set, we determine whether it
overlaps with an NLC with center c = (x, y) and radius r,
by checking whether MINDIST (g, c) ≤ r, where MINDIST
is defined similar to [11]:

MINDIST (g, c) =
√

(xg − x)2 + (yg − y)2

xg =

 iε, if iε > x
iε + ε, if iε + ε < x
x, otherwise ,

yg =

 jε, if jε > y
jε + ε, if jε + ε < y
y, otherwise

Note that each grid cell can be represented as a key-value
pair, where the key is the cell index ⟨i, j⟩ and the value is
the counter of the cell. Since it may be extremely memory-
inefficient to materialize all the cells in the grid (especially
if the cells are very small compared to the whole space in-
volved, or if most of the space is not covered by any NLC),
we organize the cells by a balanced search tree, where for
a cell ⟨i, j⟩, i serves as the primary key and j serves as the
secondary key.

Only those cells that overlap with at least one NLC are
stored in the tree. Algorithm 2 shows the operations done

Algorithm 2 Grid Cell Processing

1: if g overlaps with NLC then
2: if g ∈ GRID then
3: counter(g)←− counter(g) + 1
4: else
5: Create grid cell g
6: counter(g)←− 1
7: Insert g into GRID
8: end if
9: end if



for each cell g in the already obtained candidate cell set
and the NLC NLC in question, assuming GRID to be the
binary search tree storing the cells. Line 1 of Algorithm 2 is
checked using MINDIST.

Although there are many efficient realizations of a bal-
anced search tree (e.g., [12]), we simply use the “map” con-
tainer from the C++ STL library, which is actually a red-
black tree.

4.2 Adaptive Gird Hierarchy
To see the necessity of a hierarchy of multiple grid struc-

tures, let us first analyze the characteristics of NLCs on real
datasets.
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Figure 6: North American Dataset

Figure 6 shows the North American dataset from [14],
where the 9203 red points are cultural landmarks and the
24493 blue points are populated places. We treat the cul-
tural landmarks as servers and the populated places as clients,
and assume that people tend to visit the cultural landmarks
close to them. After all the NLCs are computed, we find that
the radii of the NLCs span several orders of magnitude. For
example, the smallest NLC of the North American dataset
has radius 1.23 × 10−3 while the largest is 9.505. We find
similar patterns in all the datasets we use.

As a result, if we use only one grid, of which the grid side
length is suitable for the smallest NLC, “drawing” larger
NLCs would involve quite a lot of cells, which degrades the
performance. Thus, we need to adapt the grid structure to
the NLC size automatically, which results in the grid hier-
archy of FILM.

To achieve reasonable approximation quality, the grid cells
we choose should be sufficiently small compared with the
size of an NLC “drawn” on it. Therefore, we set a lower-
bound to the size of any NLC handled by a grid as follows,
where δ is the same parameter as in Theorem 1 and is the
user-specified parameter of our grid hierarchy:

Definition 7. Given a grid structure with grid side length
ε, any NLC that is “drawn” on it should have radius r ≥ δ ·ε.

However, a grid structure of too fine granularity is not
necessary for large NLCs, and will degrade the evaluation
performance. Thus, we also set an upper-bound to the size
of any NLC handled by a grid:

Definition 8. Given a grid structure with grid side length
ε, any NLC that is “drawn”on it should have radius r < δ2 ·ε.

To sum up, for a grid structure whose grid side length is
ε, we only draw on it those NLCs with radius r satisfying
δ · ε ≤ r < δ2 · ε.

O

A

Figure 7: Two Consecutive Grids in the Hierarchy

FILM uses a set of grids such that consecutive grids have
grid side lengths being different by a factor of δ. Figure 7
shows an example space with 2 consecutive grid structures,
where δ = 4 and the smaller grid side length ε1 is of the
lower level grid, and the large grid cells drawn with bold
lines whose grid side length is ε2 = 4ε1 are of the higher
level grid. Note that low level grids are just refinements of
the upper level ones, e.g., each large grid in Figure 7 contains
exactly δ2 = 16 small grids.

According to our grid hierarchy, each NLC is handled by
exactly one grid structure in the hierarchy. For example, in
Figure 7, the grid with grid side length ε1 can only handle
NLCs with radius 4ε1 ≤ r < 16ε1, and the grid with grid side
length ε2 can only handle NLCs with radius 4ε2 ≤ r < 16ε2,
i.e., 16ε1 ≤ r < 64ε1.

4.2.1 Algorithm for Mining k Influential Locations
The algorithm of FILM consists of 2 steps: 1)build grid

hierarchy from NLCs; and 2)evaluate the influence value es-
timation of each grid cell and pick the maximum one.

The first step is detailed as follows: The obtained NLCs
are first sorted in non-decreasing order of the radius. Then
a pass through the sorted list allocates the NLCs to the cor-
responding grids based on the bounds in Definition 7 and 8.
The result of the first step is shown in Figure 8, where we
obtain a list of grids (i.e., GList), and each grid element
in GList records: 1)len: the grid side length, 2)[start, end]:
the set of NLCs allocated to the grid, and 3)tree: the bi-
nary search tree holding the grid cells of the grid, which is
initialized to an empty tree.

An important issue is the choice of the value of the grid
side length εmin of the lowest level grid. We choose εmin =
rmin/δ where rmin is the radius value of the smallest NLC.
In this way, the lowest level grid handles the NLCs with
radius δεmin ≤ r < δε2

min, i.e., rmin ≤ r < εmin · rmin.
After obtaining GList, the NLCs allocated to each grid

are “drawn” on that grid as described in Section 4.1, and
the counter information of the grid cells are stored in the
binary search tree of that grid.

So far, the grid hierarchy has been constructed from the
NLCs, and we are ready to evaluate the influence value es-
timation of each grid cell using our grid hierarchy —— a
basic operation for the second step of FILM. The key to this
operation is the following observation of our grid hierarchy:

Observation 3. Given a grid cell g = ⟨i, j⟩ with grid side
length ε, we can identify the cell in a upper level grid with
grid side length ε′ that contains g, as g′ = ⟨⌊iε/ε′⌋, ⌊jε/ε′⌋⟩.



GList

len εmin

[start, end] [1, i1]

tree Ø

Sorted NLC List

… … …

len δεmin

[start, end] [i1+1, i2]

tree Ø

len δ
2
εmin

[start, end] [i2+1, i3]

tree Ø

…

i3i2+2

…

i2+1i2i1+2i1+1i121

C’

Figure 8: NLC Allocation to Grids

O

A

c
1

c
2

c
3

c
4

Figure 9: Estimation Integration Among Grids

We call g′ the covering cell of g in this case. For exam-
ple, the covering cell of Cell A = ⟨−3, −3⟩ in Figure 7 is the
lower left large cell: ⟨⌊−3ε1/ε2⌋, ⌊−3ε1/ε2⌋⟩ = ⟨⌊−3/4⌋, ⌊−3/4⌋⟩
= ⟨−1, −1⟩. Therefore, our structure hierarchy allows us
to find the covering cell of a grid cell in an upper level grid
structure in O(1) time.

Since each grid only handles the NLCs of a subset C′ ⊆ C
of the clients, the counter value of a grid cell g is just a
conservative influence value estimation on this subset C′.

Figure 9 shows some NLCs on the grid hierarchy of Fig-
ure 7, where the two small NLCs c1 and c2 are drawn on
the lower level grid, and the two large NLCs c3 and c4 are
drawn on the higher level grid. After the grid hierarchy is
built, the counter value of Cell A is 2 due to its overlap with
c1 and c2, and the counter value of the upper left large cell
(denoted as gul) is also 2 due to its overlap with c3 and c4.

The counter of Cell A does not take c3 and c4 into con-
sideration. Note that c4 does not even overlap with Grid A.
However, the clients of c3 and c4 can also be attracted by
a new server in Cell A. This is because c3 and c4 overlap
with gul, the covering cell of Cell A, and according to The-
orem 1, all the locations in gul are in the RNLCs of c3 and
c4, including all the locations in Cell A.

Therefore, to get a conservative influence value estimation
for cell g in terms of the whole client set C (for the relaxed
optimal-location query), we need to sum up the counter val-
ues of all the covering cells of g in the upper level grids,
besides the counter value of g. For example, the conser-
vative estimation for Cell A in Figure 9 is the sum of its
counter value and the counter value of gul, which is 2+2=4.
The covering cell of g in an upper level grid can be identi-
fied in O(1) using Observation 3. Algorithm 3 shows how

the influence value estimation înf(g) of cell g is computed.

Algorithm 3 Grid Cell Influence Value Estimation

1: înf(g)←− counter(g)
2: for each grid GRID of level higher than that of g do
3: Find the covering cell g′ of g in GRID
4: if g′ ∈ GRID then

5: înf(g)←− înf(g) + counter(g′)
6: end if
7: end for

Algorithm 3 is executed on all the cells of all the grids
in the hierarchy and the cell with maximum influence value
estimation is returned.

However, a more general problem is to find k influential lo-
cations that collectively attracts the most clients. The exact
problem can be viewed as a special case of the maximum cov-

erage problem, where each intersection point between NLC
boundaries corresponds to a subset of clients C that a new
server there can attract, and the objective is to choose k such
points(subsets) that covers as many clients in C as possible.

Although the maximum coverage problem is NP-hard [13],
the greedy algorithm of choosing a subset which contains the
largest number of uncovered elements at each stage, achieves
an approximation ratio of 1− 1

e
[13]. Inspired by this, FILM

can be easily extended to find k influential grid cells by per-
forming the following 2 steps at each stage, after the previous
cell gpre is picked: 1)find the NLCs overlapping with gpre,
and cancel them out from the grid hierarchy, and 2)pick the
cell with maximum influence value estimation from the grid
hierarchy as the next result cell. Algorithm 4 shows how
an NLC NLC is canceled out from the the grid hierarchy,
where we assume NLC is allocated to grid GDNLC .

Algorithm 4 Cancel NLC out from the Grid Hierarchy

1: for each grid GD of level not lower than GDNLC do
2: Find the candidate cell set of NLC in GD
3: Pick the cells overlapping with NLC into set CELLS
4: for each cell g ∈ CELLS do
5: counter(g)←− counter(g)− 1
6: end for
7: end for

Complexity Analysis: For NLC computation, it takes
O(|S| log |S|) to construct the server kd-tree, and then for
each client, an NN query is issued on the tree, with a total
time of O(|C| log |S|). According to Definition 8, the candi-

date cell set size of any NLC is upperbounded by
(
2 · δ2·ε

ε

)2

=

4 · δ4. Therefore, for all |C| NLCs, there are at most n =
4 · δ4|C| cells stored in our grid hierarchy. For each of the
n grids, we need to estimate its influence value using Algo-
rithm 3, the time of which is bounded by O(l log n), where l
is the number of grids in the hierarchy (typically around 6).
To sum up, the time complexity of FILM is O(|S| log |S| +
|C| log |S|+n·l log n) = O(|S| log |S|+|C| log |S|+δ4(log δ4)l|C|
+ δ4|C|l log |C|), which is O(|C| log |C|) to the number of
clients, much better than the super-quadratic time cost of
MaxOverlap[1].

5. EXPERIMENTS
We have conducted extensive experiments on an AMD

Opteron-based Linux CPU Server with 4×AMD Opteron
844 (1.8GHz) CPU and 8GB memory. We implemented



Table 1: Experimental Results on Real Datasets
MaxOverlapNLC MaxOverlapRNLC FILM

S C Exec Time Influence Exec Time Influence Exec Time InfRNLC RatioRNLC InfNLC RatioNLC

NAcl NApp 374.63 s 354 866.98 s 627 5.375 s 395 0.63 332 0.938
CA GR 4379.65 s 1389 3685.37 s 1558 6.305 s 1460 0.937 1296 0.933
CA GM 351916.73 s 3872 659814.0 s 5640 6.92 s 4369 0.775 3820 0.987

FILM in C++, and used the program of MaxOverlap pro-
vided by the authors of [1] for experimental comparison.1

The real datasets we used are obtained from R-tree Por-
tal[14], which are summarized in Table 2. NApp and NAcl

contain 2D points representing the populated places and the
cultural landmarks in North American, respectively. We also
used the pre-processed real datasets adopted by [1], i.e., CA,
GR and GM that contain 2D points representing geometric
locations in California, Greece and Germany, respectively.
On each dataset, we report our experimental results aver-
aged over 10 runs.

Table 2: Summary of Real Datasets
S |S| C |C|

NAcl 9203 NApp 24493
CA 62556 GR 23268
CA 62556 GM 36334

As for the synthetic datasets, for each parameter configu-
ration, we generated 5 independent sets of client and server
points, and ran the program twice on each set. The reported
results are averaged over the 10 runs.

Since we find that the experimental results on weighted
clients are similar to those for the unweighted case, we only
report the latter.

5.1 Experiments on Real Datasets
Table 1 shows our experimental results on the three datasets

in Table 2 when the gird hierarchy parameter δ = 4 (i.e., α =√
2

4
). We denote by MaxOverlapNLC the original MaxOver-

lap algorithm, and MaxOverlapRNLC the modified Max-
Overlap algorithm which uses RNLCs by expanding the radii

of NLCs by α =
√

2
δ

.
For FILM, we use infRNLC to denote the influence value

estimation of the result cell, and define ratioRNLC as the
ratio of infRNLC to the influence value of the result of
MaxOverlapRNLC , which measures the approximation qual-
ity of FILM to the relaxed optimal-location query.

To measure the result quality of FILM for the exact optimal-
location query, we define infNLC to be the influence value
of the center of the result cell of FILM. Since a user can
pick any location in the result cell, we use the cell center to
evaluate the result quality for simplicity.

Note that the center may not be the best choice, since
many NLCs may just overlap with the boundary part of the
cell. However, even in this case, their corresponding clients
are still very likely to visit a server in the center since it is
just a little farther than their nearest server, which is not
considered by the conservative measure infNLC . We use
the ratio of infNLC to the influence value of the result of
MaxOverlapNLC (i.e., the maximum influence) to evaluate
the optimality of the result of FILM.
1http://www.cse.ust.hk/∼raywong/code/maxRNN.zip
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Figure 10: Approximation Quality on Real Datasets

From Table 1 we can see that the execution time of Max-
Overlap is very sensitive to the data distribution. For ex-
ample, MaxOverlapNLC takes 4379.65s to compute the op-
timal location on CA–GR, but 351916.73s on CA–GM (over
80 times), despite the fact that the number of data points in
GM is only 1.56 times that of GR. On the other hand, the
execution time of FILM is very short and stable.

Theorem 2 only guarantees that FILM will be a good
approximation algorithm for MaxOverlapRNLC when δ is
large. Thus, when δ = 4 as in Table 1, ratioRNLC may not
be close to 1 for some datasets (e.g., NAcl-NApp). However,
from ratioNLC we can see that FILM already approximates
MaxOverlapNLC well when δ = 4, i.e., the center of the re-
sult cell of FILM is already a quite influential location when
NLC is adopted as the ABUF.

Since our goal is to approximate MaxOverlapNLC effi-
ciently rather than to approximate MaxOverlapRNLC for
arbitrary δ, FILM works well in this sense and therefore we
will focus on ratioNLC in the following discussion. As δ be-
comes larger, both ratioRNLC and ratioNLC approaches 1,
but we cannot set δ too large because of the factor O(δ4) in
the time and space cost of FILM.

Fortunately, δ does not have to be very large to ensure
good approximation quality. Figure 10 shows that RatioNLC

approaches 1 as δ increases, and δ = 10 is already sufficient
for FILM to achieve over 98% of the maximum influence
value.

There is a natural measurement of the memory usage of
FILM, i.e., the total number of cells stored in the grid hi-
erarchy (denoted Ncell). Since each grid cell is composed of
a 2-integer index ⟨i, j⟩ and a counter, which consumes 12
bytes in a typical computer, the space cost of FILM can be
approximated as 12×Ncell bytes.

Figure 13 shows the memory usage of FILM on the 3 real
datasets, where we can see that Ncell increases fast with
the increment of δ. Despite of this fact, a computer with
gigabytes of memory like the one we use can easily handle
FILM with δ up to 10, which is already sufficient to ensure
good approximation.
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Figure 11: Execution Time on Real Datasets
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Figure 12: Influence Value on Real Datasets
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Figure 13: Memory Usage on Real Datasets

Figure 11 shows the running time of FILM on the 3 real
datasets, where “index” denotes the time to construct the
grid hierarchy, and “top-k” denotes the time to cancel out
the (k−1)-th result cell (if k > 1) and find the k-th result cell
from the grid hierarchy. We can see that the running time
of FILM increases as δ increases, and that it takes FILM
seconds to tens of seconds to return an influential cell de-
pending on δ, which is considerably faster than MaxOverlap.

Figure 12 shows the result of FILM that finds k influential
grid cells greedily on the 3 real datasets, where “top-k” de-
notes the number of new clients attracted by a server at the
center of the k-th result cell. The number of clients attracted
by the servers at the centers of the top-k cells increases with
the increment of δ, although the influence value fluctuates
at around δ = 6. It is possible that if we randomly pick a
location in each result cell rather than the cell center, there
would be less fluctuation.
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Figure 14: Top-1 Cells on North American Dataset

Figure 14 shows our results on NAcl–NApp shown in Fig-
ure 6, where the red points are servers, the blue points are
clients, the ‘x’ point is the intersection point returned by
Max-OverlapNLC , the ‘*’ point is by Max-OverlapRNLC , the
green cell is the result of FILM when δ = 2, the cyan cell
is when δ = 4, the magenta cell is when δ = 6, the yellow
cell when δ = 8, and the black cell is when δ = 10. We can
see that the top-1 cell approaches ‘x’ from ‘*’ as δ increases,
which is also observed on CA-GR and CA-GM. Note that
Figure 14 covers only 0.02% of the whole space in Figure 6.

5.2 Experiments on Synthetic Datasets
Since the effect of δ on the synthetic datasets is similar to

that on the real datasets, we only report the results when
δ = 4. We generated the synthetic datasets by Uniform
distribution or Gaussian distribution, and did two sets of
experiments on them: 1)|C| = |S|, and 2) varying |C|/|S|.



In the first set of experiments, we set |C| = |S| = 102,
103, 104 and 105. The results show that it takes FILM more
time on the more biased datasets of Gaussian distribution.
For |C| = |S|, both the running time and memory usage of
FILM are linear to the dataset size, and so is the running
time of MaxOverlap.

We only show our experimental results for the second set
of experiments in this subsection to save space. Since |S|
and |C| are comparable on the real datasets we use, and in
the real life |C| tends to be much larger than |S| for a server
to serve many clients, we study the performance of FILM
and MaxOverlap with varying |C|/|S|.

We set |C| = 100000 but use various |S|, the results of
which are shown in Figures 15 and 16, where “FILMg” de-
notes the results of FILM on datasets with Gaussian distri-
bution, “RNLCu” denotes the results of Max-OverlapRNLC

on datasets with Unform distribution, “NLCg” denotes the
results of Max-OverlapNLC on datasets with Gaussian dis-
tribution, and so forth.
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We can see from Figure 15 that as |C|/|S| becomes larger,
Maxoverlap becomes much more expensive, while the time
cost of FILM is insensitive to |C|/|S|. For example, when
|C|/|S| = 10 (i.e., |S|=10000), Maxoverlap already takes
hundreds of seconds, which is even worse as |S|/|C| becomes
larger (e.g., Maxoverlap takes over 28000s on“RNLCg”when
|S|=1000). When |S| = 100, MaxOverlap shows no trend to
end after running for a week on any generated dataset of
this configuration, and therefore these values are missing.
The reason that large |C|/|S| is expensive for MaxOverlap
is that there are more intersection points to evaluate, since
each NLC tends to be larger. On the other hand, FILM is

even faster for small |S| although the NLCs become larger,
thanks to our grid structure that is adaptive to the NLC
size.

6. CONCLUSION
We designed an efficient influential location miner called

FILM, which returns a small grid cell in which all locations
have an influence guarantee. In contrast to the existing ap-
proaches that return precisely an optimal location at the
expense of long running time, our approach returns near-
optimal locations in considerably less time. Thus, our ap-
proach is practical for many time-critical applications that
require short response time of finding influential locations.
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