
1

GraphD: Distributed Vertex-Centric Graph
Processing Beyond the Memory Limit

Da Yan1, Yuzhen Huang2, Miao Liu3, Hongzhi Chen4, James Cheng5, Huanhuan Wu6, Chengcui Zhang7

Abstract—We propose GraphD, an out-of-core Pregel-like system targeting efficient big graph processing with a small cluster of
commodity PCs connected by Gigabit Ethernet, an environment affordable to most users. This is in contrast to some recent efforts for
out-of-core graph computation with specialized hardware. In our setting, a vertex-centric program is often data-intensive, since the
CPU cost of calculating a message value is negligible compared with the network cost of transmitting that message. As a result,
network bandwidth is usually the bottleneck, and out-of-core execution would not sacrifice performance if disk IO overhead can be
hidden by message transmission, which is achieved by GraphD through the parallelism of computation and communication. GraphD
streams edge and message data on local disks, and thus consumes negligible memory space. For a broad class of Pregel algorithms
where message combiner is applicable, GraphD completely eliminates the need of any expensive external-memory join or group-by,
which is required by existing systems such as Pregelix and Chaos. Extensive experiments show that GraphD beats existing out-of-core
systems by orders of magnitude, and achieves comparable performance to in-memory systems running with adequate memory.

Index Terms—Out-of-core, graph, vertex-centric, Pregel.

F

1 INTRODUCTION

S INCE the advent of Pregel [15], various vertex-centric systems
have been actively developed for processing big graphs [4],

[13], [6], [1]. In these systems, a programmer only needs to specify
the behavior of one generic vertex when developing distributed
graph algorithms. Due to this user-friendly programming model,
and good horizontal scalability, vertex-centric systems have been
popularly used in various real applications such as social network
analysis [19] and graph matching [5], [23].

However, most distributed vertex-centric systems require the
entire input graph to reside in main memory of machines. Interme-
diate data generated for communication among machines are also
buffered in memory, and the space consumption can be very high.
For example, [33] reported that to process a graph dataset that
takes only 28GB disk space, Giraph and GraphLab need 370GB
and 800GB memory space, respectively.

While memory is becoming cheaper and memory-rich clus-
ters are becoming affordable to big companies and well-funded
research labs, this is still not the case for many small businesses
and researchers. For example, [1] reported that in the Giraph user
mailing list there are 26 cases of out-of-memory related issues
from March 2013 to March 2014. Nevertheless, it is often the large
body of small businesses and researchers who have urgent need of
scalable graph processing technologies, while big companies have
the capability of developing their own proprietary systems.

Modern applications often generate very big graphs, such as
online social networks, the Web graph, and knowledge graphs.
However, to perform in-memory PageRank computation over a
Twitter graph with 1.96 billion follow-edges (see Table 1 in

• Da Yan and Chengcui Zhang are with the Department of Computer
Science, the University of Alabama at Birmingham. The other authors are
with the Department of Computer Science and Engineering, the Chinese
University of Hong Kong.
E-mails: {1yanda, 7czhang02}@uab.edu, {2yzhuang, 3mliu, 4hzchen,
5jcheng, 6hhwu}@cse.cuhk.edu.hk

Section 6), Giraph and Pregel+ [30] need nearly 264GB and
109GB memory space in our cluster, respectively. To process a
Web graph like ClueWeb with 42.6 billion edges (see Table 1),
Giraph and Pregel+ [30] would need 5.7TB and 2.4TB memory
space, respectively, which is prohibitive.

To process a big graph beyond the memory limit, several
out-of-core systems were developed for running with the disk
of a single machine (often a PC), such as GraphChi [12], X-
Stream [21] and VENUS [3]. For small graphs, these systems
may beat a distributed one since there is no expensive network
communication. However, such a system needs to stream and
process the entire graph, and the execution time increases with
the graph size due to fixed disk bandwidth; this is in contrast to
a distributed system where each machine only needs to process
a portion of the input graph. As a result, distributed out-of-
core systems such as Pregelix [1] and Chaos [20] were recently
developed for streaming the disks of all machines concurrently,
to achieve high aggregate disk bandwidth. As confirmed by our
experiments in Section 6, distributed systems can be much more
efficient than single-machine ones when processing a big graph.

To compensate for the low disk bandwidth in a standalone
environment, researchers have explored the potential of utilizing
flash memory as the external memory media. Flash memory
supports significantly faster random access time than magnetic
disks, and can service multiple concurrent IO requests. Systems
like FlashGraph [32] and G-Store [11] use multithreading to
achieve maximum IO performance out of flash memory. However,
large flash memory is still not widely available to every small
business and researcher for the time being.

We target the setting of a small cluster of commodity PCs
connected by Gigabit Ethernet, which is affordable to most users.
In this environment, disk streaming bandwidth is usually much
higher than network bandwidth, and network communication is
usually the performance bottleneck of a vertex-centric program.
Specifically, vertices communicate by message passing, and the
CPU cost of calculating a message value is negligible compared

2

with the network cost of transmitting that message. In our targeted
setting, a distributed vertex-centric system does not need to keep
graph and messages in memory: they can be streamed on disks,
and as long as the disk IO cost is hidden by the communication
cost, scalability is achieved without sacrificing performance.

In this paper, we introduce our out-of-core Pregel-like system,
GraphD, for efficient big graph processing on a small cluster of
commodity PCs connected by Gigabit Ethernet. We remark that
GraphD is for use when the aggregate memory space is insufficient
for in-memory processing; otherwise, one may use an existing in-
memory Pregel-like system instead. Also, GraphD is designed for
the normal setting without special hardware. If large flash memory
is deployed, one may use dedicated systems like FlashGraph [32]
or G-Store [11]; while if high-speed network is available, one may
use dedicated systems like Chaos [20] or GraM [27] .

GraphD provides the following desirable features:

• Bounded Memory Space. When a graph G = (V,E) is
processed with n machines, we prove that each machine
only requires O(|V |n) memory space.

• Efficient Sparse Computation. GraphD automatically
adapts the amount of edges streamed from local disks to
the number of active vertices that perform computation.

• Overlapping Disk and Network IO. GraphD buffers
outgoing messages to local disks to reduce memory con-
sumption, and this cost is hidden by the slower message
transmission that executes in parallel.

• Efficient External-Memory Processing. For a broad class
of Pregel algorithms where message combiner is appli-
cable, GraphD uses a technique called ID-recoding to
eliminate the need of any expensive external-memory join
or group-by, as required by other systems like Pregelix.

Extensive experiments demonstrate that GraphD is able to achieve
comparable performance to an in-memory Pregel-like system.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 presents the execution model
of GraphD, and analyzes its space cost. Section 4 discusses the
parallel framework of GraphD which fully overlaps computation
with communication. Section 5 describes the ID recoding tech-
nique and Section 6 reports experimental results. Finally, the paper
is concluded in Section 7.

2 BACKGROUND AND RELATED WORK

We first review the computation model of Pregel, and then intro-
duce other vertex-centric systems for processing big graphs.

In this paper, we assume that the input graph G = (V,E) is
stored on Hadoop Distributed File System (HDFS), where each
vertex v ∈ V has a unique ID id(v) and an adjacency list
Γ(v). For simplicity, we use v and id(v) interchangeably. If G is
undirected, Γ(v) contains all v’s neighbors; while if G is directed,
Γ(v) contains all v’s out-neighbors. The degree (or out-degree)
of v is denoted by d(v) = |Γ(v)|. Each vertex v also maintains
a value a(v) which gets updated during computation. A Pregel
program is run on a cluster of machines, W, deployed with HDFS.

2.1 Pregel Review
Computation Model. A Pregel program starts by loading an input
graph from HDFS into the memory of all machines. Each vertex
v is distributed to a machine W = hash(v) along with Γ(v),
where hash(.) is a partitioning function that takes vertex ID as

the input. We denote the set of all vertices that get assigned to W
by V (W). Each vertex v also maintains a boolean field active(v)
indicating whether v is active.

A Pregel program proceeds in iterations, where an iteration is
called a superstep. In Pregel, a user needs to specify a user-defined
function (UDF) compute(msgs) to be called by a vertex v, where
msgs is the set of incoming messages received by v (sent in the
previous superstep). In v.compute(.), v may update its value a(v),
send messages to other vertices, and vote to halt (i.e., deactivate
itself). Only active vertices will call compute(.) in a superstep, but
a halted vertex will be reactivated if it receives a message. The
program terminates when all vertices are halted and there is no
pending message towards the next superstep. The final results are
dumped to HDFS at last.

To illustrate how to write compute(.), we consider the PageR-
ank algorithm of [15] where a(v) stores the PageRank value of
vertex v, and a(v) gets updated until convergence. In Step 1, each
vertex v initializes a(v) = 1/|V | and distributes a(v) to its out-
neighbors by sending each out-neighbor a message a(v)/d(v). In
Step i (i > 1), each vertex v sums up the received message values,
denoted by sum, and computes a(v) = 0.15/|V |+ 0.85 · sum.
It then distributes a(v)/d(v) to each of its out-neighbors.

To reduce communication, users may implement a message
combiner to specify how to combine messages targeted at the same
vertex vt, so that messages generated on a machine W towards vt
will be combined into a single message by W locally, and then
sent to vt. For example, in PageRank computation, the combiner
can be implemented as computing sum, since only the sum of
incoming messages is of interest in compute(.).

Pregel also allows users to implement an aggregator for global
communication. Each vertex can provide a value to an aggregator
in compute(.) in a superstep. The system aggregates those values
and makes the aggregated result available to all vertices in the next
superstep.

In an in-memory Pregel-like system, for each vertex v, ma-
chine W = hash(v) keeps the following information in main
memory: (1) the vertex state, which consists of id(v), a(v) and
active(v), and (2) the adjacency list Γ(v). As vertex degree is
used by a few existing out-of-core systems (e.g., GraphChi [12],
VENUS [3], FlashGraph [32]) to demarcate the adjacency lists
of different vertices, for the consistency of presentation, we also
include d(v) into the vertex state of v, which is given as follow:

state(v) = (id(v), a(v), active(v), d(v)). (1)

2.2 Vertex-Centric Systems
Besides Pregel, many other vertex-centric graph processing sys-
tems have been developed. We categorized into three classes
(1) distributed in-memory systems, and (2) single-machine out-
of-core systems, and (3) distributed out-of-core systems. For (1)
and (3), network bandwidth is the bottleneck, and there are ded-
icated systems to improve communication throughput using high
speed network. For (2), the disk bandwidth is the bottleneck, and
there are dedicated systems to improve IO throughput using flash
memory. We now review each category of systems, and explain
why they are insufficient for the setting that GraphD targets.

Distributed In-Memory Systems. Since Pregel [15] is only
for internal use in Google, many open-source Pregel-like sys-
tems emerge including Giraph [4], Pregel+ [30], GraphX [7]
and GPS [22]. Like Pregel, these systems keep an entire input

3

graph in memory during computation, and also buffer intermediate
messages in memory. However, network communication is usually
the performance bottleneck rather than CPUs, and thus GraM [27]
utilizes RDMA-based communication over Infiniband to greatly
improve the network bandwidth, allowing communication to over-
lap with computation to preserve the multi-core parallelism.

Unlike Pregel that adopts synchronous execution where vertex
communicates by message passing, GraphLab [13], [6] adopts
a shared-memory abstraction where a vertex directly pulls data
from its adjacent vertices/edges, and asynchronous execution is
supported to allow faster convergence for algorithms where vertex
values converge asymmetrically. Since this work focuses on out-
of-core systems, we refer interested readers to [8], [14] for more
discussions on existing in-memory vertex-centric systems.

Recently, [25] developed tailor-made graph analytics programs
using MPI and OpenMP, which scale up to thousands of nodes in
the NCSA Blue Waters supercomputer, and outperform existing
vertex-centric systems on a small cluster. This demonstrates a
tradeoff between user-friendliness and efficiency of execution.

Single-Machine Out-of-Core Systems. These systems parti-
tion vertices according to disjoint ranges of vertex ID, and load one
vertex partition to memory at a time for processing. GraphChi [12]
needs to load all vertices in a partition, along with all their adjacent
edges, into memory before processing of the partition begins. X-
Stream [21] only loads all vertices in a partition into memory,
while edges are streamed on local disk. In both GraphChi and X-
Stream, a vertex communicates with each other by writing/reading
data on adjacent edges. VENUS [3] avoids the cost of writing data
to edges, by letting a vertex obtain values directly from its in-
neighbors. However, VENUS is not open source.

While X-Stream does not require edges for a partition to be
pre-sorted like the other systems do, it needs to scan every edges
on disk in each iteration, even if only a small number of vertices
require computation. Unfortunately, this inefficiency for sparse
computation workload is also inherited by its scale-out version,
Chaos [20]. In contrast, GraphChi and VENUS support selective
scheduling which skips scanning those vertex partitions that do
not contain active vertices, but the effectiveness is limited since a
partition needs to be scanned even if it contains only one active
vertex. As we shall see in Section 3.2, GraphD provides an elegant
approach to adapt disk IO cost to the workload sparsity.

In the above systems, disk bandwidth is the performance
bottleneck. While GraphChi targets PC environment, X-Stream
also considers the setting of a high-end server with many cores,
and improves parallelism by streaming edges on flash memory
which provides higher IO bandwidth. However, the key features
of flash memory, i.e., significantly faster random access than
magnetic disk, and the capability of serving multiple concurrent
and asynchronous IO requests, are not utilized. Dedicated systems
like FlashGraph [32] and G-Store [11], and dedicated approaches
like [18] thus use multithreading to fully exploit the bandwidth of
flash memory and thus better utilizing the many cores.

Like [25], [16] noticed that vertex-centric frameworks gain
user-friendliness at the cost of reduced performance, and a tailor-
made program can run much faster using the SSD (or even just
memory) of a laptop. There are also systems for processing big
graphs in a shared-memory environment, such as Ligra [24] and
Galois [17], which demonstrate superb performance due to high
parallelism, but require a machine with big RAM (e.g., 1TB).

Distributed Out-of-Core Systems. Compared with single-

machine systems, these systems only require each machine to
process a partition of the graph, and the disk bandwidth of all
machines are utilized in parallel. HaLoop [2] improves the perfor-
mance of Hadoop for iterative computation, by allowing a job to
cache data to local disks to avoid remote reads. However, HaLoop
still adopts the MapReduce model rather than the user-friendly
vertex-centric model. Pregelix [1] formulates Pregel’s computation
model using relational operators like join and group-by, which are
relatively expensive. It then leverages a general-purpose dataflow
engine for execution. Giraph also supports out-of-core execution,
but [1] reported that it does not function properly.

Chaos [20] scales out X-Stream in order to use the aggregated
disk bandwidth in a cluster. Edge streaming workloads are dis-
tributed among multiple machines, and work stealing is adopted
for load balancing. Chaos’ design allows high performance when
machines in the cluster are connected by high-speed network (e.g.,
40GigE). This is because Chaos spreads data over the machines,
managed by a storage sub-system, and every computing thread
requests the necessary data for processing from the storage subsys-
tem in the unit of chunks to allow sequential data access. The data
transmission cost, however, is not small when the network speed
(e.g., GigE) is not high enough. Thus, as reported in [20], Chaos’
performance was undesirable using GigE, which is typically used
in the type of clusters GraphD is designed for.

3 DATA ORGANIZATION AND STREAMS

In this section, we describe the distributed semi-streaming (DSS)
model of GraphD, show that its memory cost is O(|V |/|W|) and
introduce the design of its disk-resident streams.

3.1 Distributed Semi-Streaming Model
First consider Pregel’s memory cost. For simplicty, we assume
that the types of vertex ID, vertex value, adjacency list item, and
message all have constant size1. Since active(v) and d(v) also
have constant size, state(v) defined in Eq (1) has constant size.

Recall that Pregel keeps the O(|V |) vertex states and O(|E|)
adjacency list items in memory. Let us denote the set of messages
currently in the system by M , where a message is buffered either
on the sender-side or on the receiver-side. Then, O(|M |) memory
space is also required for keeping messages. Therefore, the total
memory space required by Pregel is O(|V |+ |E|+ |M |).

Usually, O(|E|) is much larger than O(|V |). For example, a
user in a social network can easily have tens of friends. Also,
O(|M |) is large. For example, in PageRank computation, one
message is transmitted along each edge in a superstep, and thus
O(|M |) = O(|E|); while in the triangle finding algorithm of [19],
a superstep can transmit up to O(|E|1.5) messages. Therefore, the
dominating memory cost is contributed by adjacency lists (i.e.,
O(|E|)) and messages (i.e., O(|M |)). GraphD streams adjacency
lists and messages on local disks, keeping only the O(|V |) vertex
states in memory. We remark that even the O(|V |) vertex states
can be kept on local disks, as a vertex can be streamed along with
its adjacent edges for vertex-centric computation at each time;
however, as we shall see in Section 3.2, maintaining vertex states
in memory allows GraphD to skip reading the edges of inactive
vertices, which is important when computation workload is sparse.

The O(|V |) vertex states may still be too large to fit in
the memory of a single machine. Since GraphD is a distributed

1. These data types are specified by users through C++ template arguments,
and can have variable sizes in reality (e.g., vertex ID can be a string)

4

system, each machine only needs to keep a portion of vertex
states. GraphD follows a model called distributed semi-streaming
(DSS)2, where each machine W only keeps the states of all its
assigned vertices, V (W), in its memory, and treats their adjacency
lists and incoming and outgoing messages as local disk streams.

It remains to show that DSS distributes the vertex states evenly
among the |W| machines, i.e., each machine holds no more than
O(|V ||W|) vertex states with a small constant (e.g., 2). We now prove
this property, regarding the machine number |W| as a constant.

Lemma 1. Assume that hash(.) is well chosen so that a vertex
is assigned to every machine with equal probability, then with
probability of at least 1−O(1

|V |), it holds that maxW∈W |V (W)|
is less than 2 |V ||W| .

Proof. First, consider a particular machine W . Since every vertex
is hashed to W with probability p = 1

|W| , the total number
of vertices that are hashed to W (i.e., |V (W)|) conforms to
a binomial distribution with mean µ = |V |p and variance
σ2 = |V |p(1− p) < |V |p = µ.

According to Chebyshev’s inequality, we have

Pr
(∣∣∣|V (W)| − µ

∣∣∣ ≥ µ) ≤ σ2/µ2.

Since σ2 < µ, the R.H.S. is less than 1/µ. Moreover, the L.H.S.
is at least Pr(|V (W)| ≥ 2µ). Therefore, we obtain

Pr(|V (W)| ≥ 2µ) < 1/µ. (2)

Since µ = |V |
|W| ,

1
µ = |W|

|V | = O(1
|V |) is a very small number. For

example, when we process a billion-node graph using a cluster of
20 machines, |W| is only 20 but |V | is in the order of 109, and
thus 1/µ is in the order of 10−7–10−8.

We now consider all machines in W, and proceed to prove our
lemma:

Pr(max
W∈W

|V (W)| < 2
|V |
|W|

)

= Pr(max
W∈W

|V (W)| < 2µ)

= Pr
(∧
W∈W

{
|V (W)| < 2µ

})
≥ 1−

∑
W∈W

Pr(|V (W)| ≥ 2µ) (using union bound)

> 1− |W|
µ

(using Eq (2)).

The lemma is proved by noticing that |W|µ = |W|2
|V | = O(1

|V |). For

example, when |W| is 20 and |V | is in the order of 109, |W|
2

|V | is in
the order of 10−6–10−7.

We additionally require that the main memory of a machine be
large enough to hold the state state(v) and adjacency list Γ(v)
of any single vertex v, so that v can access them in v.compute(.).
We add this constraint because Γ(v) of a high-degree vertex v
could require more memory space than O(|V ||W|) (i.e., the bound
of Lemma 1), but this constraint is reasonable given the RAM
size of a commodity PC today, and it is also required by existing
out-of-core systems such as GraphChi and Pregelix.

2. We name the model as DSS due to its similarity to the semi-streaming
computation of external-memory graph algorithms.

ID Value Active Degree
0 2 1.0 Yes 2
1 22 1.0 No 3
2 32 1.0 No 1
3 42 1.0 Yes 3

In-MemoryArray A

2 11 12

13 14

16

15

17 18 19

22

32

42

11
12
13
14
15
16
17
18
19… …

Vertices of V(W)
SE

…

Fig. 1. Vertex States and Edge Stream of a Machine W

3.2 Graph Organization and Edge Streams

While GraphD may load data from and write results to HDFS, dur-
ing iterative computation, GraphD only sequentially reads/writes
binary streams on local disks for efficiency. In GraphD, a stream
is implemented as a file, which is sequentially read (or appended)
using an in-memory buffer B of size b, and B is refilled (or
flushed) when its end is reached. We set b = 64 KB which is
empirically tested to be sufficient to exhibit sequential IO.

When users specify GraphD to load an input graph from
HDFS, the vertices get partitioned among all machines like in
Pregel (recall Section 2.1), where each machine W saves the
adjacency lists of its assigned vertices, V (W), to its local disk
as an edge stream, denoted by SE . Meanwhile, the states of the
assigned vertices, V (W), are kept in memory (for computation)
and also written to local disk (for subsequent local loading, see
below). Optionally, if the graph was previously loaded from HDFS
by another job, users may also specify GraphD to let each machine
directly load the previously saved vertex states to memory.

In GraphD, each machine organizes its in-memory vertex
states with an array A, as illustrated in Figure 1. Vertices in A are
ordered by vertex ID (e.g., 2, 22, 32, 42, · · · in Figure 1), and the
edge stream SE simply concatenates their adjacency lists in the
same order. In a superstep, compute(.) is scheduled to be called on
the active vertices in A in order. Since a vertex v needs to access
Γ(v) in v.compute(.), the next d(v) items are sequentially read
from SE to form Γ(v). Thus, each superstep only sequentially
reads SE once. If topology mutation is enabled, each superstep
would digest an old edge stream and generate a new edge stream.

Naı̈ve streaming of an entire edge stream is inefficient if only
a small number of vertices are active. For example, X-Stream
adopts this method and [21] admitted that X-Stream is inefficient
for graphs whose structure requires a large number of iterations.

In Figure 1, the edges of inactive vertices 22 and 32 can
actually be skipped if they receive no message. To implement this
idea efficiently, GraphD supports a function skip(k), which skips
the next k items from the stream. Referring to Figure 1 again, after
vertex 2 is processed, we may skip the edges of vertices 22 and 32
by calling skip(4), where 4 is computed by adding their degrees
d(v) (i.e., 3 and 1 in array A). However, it is inefficient to perform
a random disk read for each time skip(.) is called, especially when
there are many small series of inactive vertices in A: the many
random reads could be more costly than streaming the whole SE .

We want to skip a long series of inactive vertices with a
random read, but still achieve sequential disk bandwidth in dense
workloads. We now describe how we achieve this goal. To achieve
this goal, when streaming SE , skip(.) avoids reading data if after
the skipping, the position to read data from is still in the stream
buffer B; otherwise, B is refilled starting from the new read-
position. Obviously, this approach limits the number of random
reads to be at most that incurred when streaming the whole SE .

5

Bsend

Wi

Brecv

Wj

1 2
3

…

j

|𝕎|

F1 F2 F3 F4 F5

Sj
O

sent

Fig. 2. Sending Messages in OMSs

3.3 Message Streams

Overview. Each machine maintains multiple edges streams on
its local disk, including one incoming message stream (IMS),
denoted by SI ; and |W| outgoing message streams (OMSs) SOi
(i = 1, 2, · · · , |W|), where each OMS SOi is used to buffer those
messages destined at vertices on the i-th machine, denoted by
Wi. When a vertex v sends a message to another vertex u in
v.compute(.), we append the message to OMS SOhash(u).

To overlap computation with communication, we require each
OMS to support concurrent data appending (at the tail) and data
fetching (at the head). This is because messages are constantly
generated by vertex-centric computation in high velocity, and have
to be buffered into disk streams to control memory consumption;
concurrently, the buffered messages also need to be fetched from
the disk streams and sent to target machines in batches to fully
utilize the network bandwidth. As a result, an OMS cannot be
implemented simply as an append-only file like SE , and we device
a new structure splittable stream to achieve this goal. We also
design a ring-based sending strategy to ensure balanced network
traffic, and memory-efficient approaches for message combining
and receiving through external memory (EM) merge-sort.

We will show that despite the additional in-memory buffers
required by disk streams and message transmission, our approach
keeps the memory bound established by Lemma 1. We also
remark that this approach is just a baseline, and our ID recoding
technique to be presented in Section 5 further eliminates the need
of maintaining the IMS SI and performing any EM merge-sort.

3.3.1 Outgoing Message Streams
In our target setting, disk streaming bandwidth is much higher
than network bandwidth. Therefore, newly-generated messages
are appended to OMSs first for later fetching and sending, and as
long as message appending and transmission are well overlapped,
disk IO cost is hidden by the communication cost. We now
describe the OMS structure and how buffered messages are sent.

OMS Structure. We implement an OMS as a splittable stream
that supports concurrent data appending and fetching. Specifically,
a splittable stream S breaks a long stream of data items into
multiple files F1, F2, . . . , Fj , and it appends data items to the
last file Fj in a streaming manner. Given a file size parameter B,
S appends a data item o by checking whether Fj’s size will be
larger than B after appending o: (1) if so, Fj is closed and a new
file Fj+1 is created for appending o; (2) otherwise, o is directly
appended to Fj . It is not difficult to see that each file either has
size at most B, or contains only one data item whose size is larger
than B. We shall discuss how to set B shortly.

Since S writes to only one file at any time in a streaming
manner, S requires only b = 64 KB memory space. In GraphD,
since every OMS is organized as a splittable stream, the |W|OMSs
in a machine take |W| · b bytes of memory in total. Even when
|W| = 1000, all OMSs take merely 64 MB of RAM.

Sending Messages in OMSs. When an OMS SOi is writing Fj ,
messages in F1, . . . , Fj−1 can be sent to machine Wi in parallel.
As Figure 2 shows, in GraphD, each machine Wi maintains an in-
memory sending buffer Bsend. A fully-written file split Fk of an
OMS SOj is sent to Wj by first loading messages in Fk to Bsend,
which are then sent to Wj in one batch. Obviously, the buffer size
|Bsend| should be at least the largest possible size of a file split.

We shall discuss how to set |Bsend| shortly. Now, we describe
how we set B. Obviously, the smaller B is, the finer-grained each
file split is, and thus the less likely that message sending will be
stalled on a file that is being appended. However, since messages
are sent in batches of size around B, B cannot be too small as
sending messages in small batches is inefficient. GraphD sets B as
8 MB by default, which is tested to strike a good balance between
the two aspects mentioned above, and keeps file number tractable.

Sending Strategies. Referring to Figure 2 again, each machine
Wi orders the |W| OMSs into a ring, where each OMS keeps
track of the batch number of the last file that has been sent (resp.
fully written), denoted by ns (resp. nw). For example, for SOj in
Figure 2 which is currently appending messages to F5, ns = 2 and
nw = 4. Moreover, each machine keeps track of the position in the
ring, denoted by pos, from whose OMS (i.e., SOpos) the previous
message file is selected to be loaded to Bsend for sending.

If message combiner is not used, we scan through the ring
from position pos, until an OMS SOj is reached whose ns < nw
(i.e., there is at least one file to send). There are two possible cases.
• Case 1: if such an OMS SOj is found before the scan reaches

position pos again, we load Fns+1 to Bsend for sending, and then
update pos as j. For example, for SOj in Figure 2, we only send
F3. Then, the same scan operation is repeated starting from the
updated position in the ring. Note that even if SOj has more than
one file to send toWj (e.g., F4 in Figure 2), the next scan will pick
a file from another OMS SOj′ (j′ 6= j) for sending toWj′ (if such a
j′ exists), to avoid communication bottleneck on the receiver-side.
For the same reason, different machines will initialize position pos
with different values when a job begins.
• Case 2: if the scan reaches position pos again without

finding a valid OMS, then no OMS has a file to send, and thus the
scanning thread goes to sleep. The thread is awakened to repeat
the scan whenever a new message file is written.

On the other hand, if message combiner is used, we adopt
a different scanning strategy to maximize the effect of message
combining: if the scan locates a valid OMS, all its message files
from Fns+1 to Fnw

are combined for sending in one batch.
Specifically, the messages are first merge-sorted (i.e., grouped) by
destination vertex ID; then, another pass over the sorted messages
combines each group into one message and appends this message
to Bsend for sending. The strategy is effective, since (1) when all
active vertices have called compute(.) in the current superstep,
OMSs are finalized and our strategy essentially combines all
remaining messages in each OMS, while (2) otherwise, message
combining runs in parallel with vertex-centric computation, and
thus does not increase the computation time.

Only combined messages are appended to Bsend. GraphD
sets |Bsend| as B by default, but since messages for combining
may come from multiple files (size of each bounded by B),
|Bsend| may need to increase beyond B. However, since there
are at most one combined message for each vertex in the target
machine, |Bsend| is upper bounded by O(maxW∈W |V (W)|).
Thus, if combiner is used, GraphD increases |Bsend| to

6

O(maxW∈W |V (W)|) (if originally smaller). Note that |Bsend|
keeps the O(|V ||W|) memory bound established by Lemma 1.

Also, merge-sorting message files consumes only a small
constant amount of memory space. To see this, assume that we sort
files F1, F2, . . . , Fn by k-way merge-sort, then it takes dlogk ne
sequential passes over all the messages. At any time during the
merge-sort, only one merge operation is running where (at most)
k sorted message files are being merged into one larger message
file. Since we treat each sorted message file as a stream when
reading/appending messages, the merge-sort uses (k + 1) small
in-memory buffers, which takes (k + 1)b memory space.

GraphD sets k to 1000, and thus a merge-sort operation takes
merely (64 MB + 64 KB) memory space. Moreover, the large
value of k allows merge-sort to take only one pass even for very
large graphs, since the number of message files to combine is
usually smaller than k = 1000. To see this, recall that each
message file has size around B = 8 MB, and thus k files have
size around 8 GB, which is quite large for an OMS (which only
contains messages transmitted between one pair of machines).

3.3.2 Incoming Message Stream
Since outgoing messages are loaded to Bsend and sent in batches,
each machine also needs to maintain an in-memory receiving
buffer Brecv with |Brecv| = |Bsend|. In each machine, a receiv-
ing thread listens on the network, and uses Brecv to receive one
message batch at a time. All received message batches constitute
the content of the IMS SI for use by the next superstep.

In a superstep, each active vertex v calls compute(msgs), where
msgs is obtained from SI . Since the vertex-state array A and edge
stream SE are already ordered by vertex ID, we require messages
in SI also to be ordered by destination vertex ID, so that vertex-
centric computation may simply proceed in one pass over A by
sequentially reading from both SI and SE . Specifically, to call
v.compute(msg), v may read the next d(v) items from SE to
obtain Γ(v), and sequentially read all messages targeted at v from
SI and append them to msgs. The sequential read ends when a
message targeted at u > v (or the end of SI) is reached.

However, the order that messages in SI are received depends
on the actual communication process. We adopt the following
approach to make SI ordered: whenever a machine receives a
batch of messages in Brecv , it sorts the messages by destination
vertex ID, and then writes the sorted messages to a file on disk;
when all incoming messages for the current superstep are received,
the sorted message files are then merged into one sorted message
file SI by merge-sort. Like in message combining, merge-sort
takes merely (64 MB + 64 KB) memory space. Moreover, since
each received message batch has size around 8 MB, when there
are no more than 8 GB messages, the message files are simply
merged; merge-sort is unlikely to take more than 2 passes since
this requires a machine to receive over 8 TB messages.

3.4 Cost Analysis & Other Issues
We now show that the total memory cost incurred by IMS and
OMSs on each machine is a small constant and thus does not in-
fluence the O(|V |/|W|) memory bound established by Lemma 1,
assuming a small cluster where |W| < 1000. For communication,
each machine maintains two buffers Bsend and Brecv which
take 2B = 16 MB memory space. For computation, appending
messages to the OMSs needs |W| · b < 64 MB memory, and
reading SE and SI needs 2b = 128 KB memory. When combiner

W1

UsUr Uc

Mi

Mi+1

W2

UsUr Uc

Mi

Mi+1

Mi
Mi

W3

UsUr Uc

Mi

Mi+1

MiMi
Mi

Mi

Mi+1 Mi+1 Mi+1
Mi+1 Mi+1 Mi+1

Ur sync

Ur sync

notify notify
notify

Uc sync

notify

Uc sync

notify
notify

Mi+2 Mi+2

Fig. 3. An Illustration of the Parallel Framework

is used, the merge-sort for combining messages, and the merge-
sort for constructing SI , each takes (64 MB + 64 KB) memory.
Therefore, each machine requires around 200 MB memory besides
that for the vertex-state array A, well affordable by a modern PC.

In each superstep, all the streams SE , SI and SOi are sequen-
tially read and/or written for only one pass, while the merge-sort
for combining messages (resp. for constructing SI) takes one (or
for a giant graph, two) additional pass over the outgoing (resp.
incoming) messages. Thus, the disk IO cost is low.

Data loading from HDFS is similarly processed as message
passing, except that data items in an OMS and an IMS are now
vertices (along with their adjacency lists) rather than messages.
This additionally requires that |Bsend| and |Brecv| be at least
large enough to hold the highest-degree vertex and its adjacency
list during loading. The received vertices are merge-sorted by
vertex ID into SI , which is then split into A and SE in one pass.

GraphD also supports algorithms that perform topology muta-
tion. Edge mutations are performed in v.compute(.) by directly
updating Γ(v), which is written to a new local edge stream.
Vertex mutations are performed after vertex-centric computation,
where new vertices are appended to the vertex-state array A, and
deleted vertices are simply masked in A. Our design of streams
also naturally supports checkpointing, by periodically backing up
current streams to HDFS for later recovery.

4 PARALLEL FRAMEWORK OF DSS

We now introduce how GraphD utilizes the components described
in Section 3 for parallel graph computation, to overlap computa-
tion (disk streaming) with communication (message transmission).

Specifically, each machine runs three units in parallel: (1) a
sending unit Us that sends outgoing messages; (2) a receiving
unit Ur that receives incoming messages; and (3) a computing
unit Uc that performs vertex-centric computation (to generate
messages). Parallelism within each machine is realized through the
interaction of the three units as illustrated by Figure 3, which we
shall explain in more detail in the following paragraphs. We first
present our two (realistic) assumptions that our parallel framework
lies on: (i) messages transmitted on a channel between a pair of
machines are received in the same order as they were sent, which
is guaranteed by TCP connections; (ii) we use condition variables
to avoid a waiting thread from occupying CPU resources, which
is implemented by std::condition variable of C++ 11.

7

Synchronization Between Supersteps. GraphD implements
Pregel’s synchronous execution model. Since network bandwidth
is the bottleneck, it is unreasonable to delay the transmission of
messages generated in Step i, by transmitting messages generated
in Step (i+ 1). For example, consider Step i in Figure 3: machine
W3 finishes receiving messages (by Ur) earlier than W2 and starts
to compute Step (i + 1) (by Uc). If W3 transmits the generated
messages (by Us) immediately, its messages towards W2 will
compete for the network bandwidth and delay W2’s progress for
Step i since W2 is still receiving messages generated in Step i.

Therefore, the sending unit Us of every machine should block
the sending of messages generated by its computing unit Uc in
Step (i + 1), until all messages generated in Step i have been
received by the receiving units Ur of all machines. GraphD guar-
antees this property, by letting Ur in each machine synchronize
with the receiving units of all other machines, after it has received
all the messages generated in Step i towards its machine (we
will discuss how Ur determines this condition shortly). After
the synchronization, Ur guarantees that all messages generated
in Step i have been transmitted, and thus it notifies Us (through a
condition variable) to send messages generated in Step (i+ 1).

Referring to Step i in Figure 3 again, Ur of all machines syn-
chronize right after they finish receiving messages, as indicated by
the first dashed line marked with “Ur sync” (2nd horizontal line).
Now consider W3: even though Uc starts computing Step (i+ 1)
before “Ur sync”, Us blocks until Ur passes “Ur sync”.

Message Receiving. We now explain how Ur decides whether it
has received all messages of Step i. Specifically, whenever Us in
a machine Wj has sent all its messages towards another machine
Wk (i.e., Wj’s OMS SOk is exhausted), it will send a special “end
tag” to Wk. As a result, a machine Wk just needs to count the
number of end tags received, and if it reaches |W|, messages from
all machines must have been received. This is correct because
the previously mentioned “Ur sync” guarantees that all messages
(including end tags) generated in Step imust be transmitted before
any message (including an end tag) generated in Step (i+ 1).

Here, Us decides that it has exhausted its OMS SOk (and sends
an end tag to Wk) if the following two conditions are both met:
(1) Uc has finished vertex-centric computation for Step i, and will
thus generate no more messages of Step i; and (2) there is no more
message file in OMS SOk for sending.

Vertex-Centric Computation. To call v.compute(msgs) in Step
(i + 1), we need to guarantee that msgs contains all the mes-
sages targeting v from Step i. Therefore, when Uc finishes its
computation of Step i, it has to be blocked until Ur has received
all messages towards it generated in Step i; then Ur notifies Uc to
start computing Step (i+1). Referring toW3 in Figure 3 again, Uc
finishes computing Step i much earlier than Ur finishes receiving
messages; but Uc has to wait for Ur to get all necessary messages
and notify it, before starting to compute Step (i+ 1).

However, unlike Us, Uc does not need to wait till all receiving
units are synchronized, and may start generating messages of
Step (i+ 1) earlier, although these messages will only be sent by
Us after the synchronization. Referring to W3 in Figure 3 again,
Uc starts computing Step (i+ 1) before “Ur sync”.

To summarize, in Step i, Ur first keeps receiving messages
until |W| end tags are received, then notifies Uc that it is allowed
to compute Step (i+1), then synchronizes with the receiving units
of the other machines; and if the job should continue, Ur then
notifies Us that it is allowed to send messages for Step (i+ 1).

Position New ID Old ID
0 0 33
1 3 66
2 6 99
3 9 132

…

Vertex Array A

Machine 0

Position New ID Old ID
0 1 43
1 4 76
2 7 109
3 10 142

…

Vertex Array A

Machine 1

Position New ID Old ID
0 2 53
1 5 86
2 8 119
3 11 152

…

Vertex Array A

Machine 2

33
76
119

…

Fig. 4. Example of ID Recoding

The benefit of letting Uc start computing Step (i + 1) earlier
is that, when Us starts to send messages of Step (i + 1), it can
readily find fully-written OMS files for sending, and thus network
bandwidth can be fully utilized.

Synchronization of Global Information. When Uc of a machine
W performs vertex-centric computation in Step i, it aggregates
data to its local aggregator, and updates local control information
such as whether W has sent any message and whether any vertex
is active after calling compute(.). These data need to be synchro-
nized to decide whether to continue computing Step (i + 1),
and to obtain the global aggregator value for use by compute(.)
in Step (i + 1). We let the computing units of all machines
synchronize these global data as soon as they finish their vertex-
centric computation, and there is no need to wait for the slower
message transmission to complete. For example, in Figure 3, we
can see that in each superstep, synchronization among Uc of
all machines, indicated by dashed line marked with “Uc sync”,
is before “Ur sync”. This allows Uc to start computing a new
superstep much earlier than the synchronization among receiving
units. For example, in Figure 3, W3 starts computing Step (i+ 1)
(by Uc) before “Ur sync” of Step i. If Uc decides that the job
should terminate after synchronizing with other computing units,
it signals Us and Ur to terminate after they finish processing their
current superstep, and then terminates itself.

5 THE ID-RECODING TECHNIQUE

Many Pregel algorithms use message combiner to reduce com-
munication workload. For these algorithms, GraphD supports a
more efficient execution mode, which uses a technique called ID-
recoding to (1) directly digest incoming messages in memory
which eliminates SI , and to (2) combine outgoing messages in
memory which eliminates the need of external-memory merge-
sort on OMS file splits, while (3) retaining the O(|V ||W|) memory
bound established by Lemma 1. As a result, each superstep only
requires one sequential pass over the edge stream SE and over the
generated messages (through message appending to OMSs). In
contrast, Pregelix performs expensive external-memory sort and
group-by operations even for algorithms where combiner applies.

Vertex ID Recoding. The key idea of ID recoding is to establish
an efficient-to-compute one-to-one mapping between the ID of
a vertex and its position in the state array A. Before introduc-
ing how GraphD establishes this mapping, we first present our
underlying assumptions. In GraphD, machines are numbered by
0, 1, · · · , |W| − 1, and the vertex IDs are to be recoded into
0, 1, · · · , |V | − 1. When GraphD runs in recoded mode, it uses
the vertex partitioning function hash(v) = id(v) modulo |W|.

As an illustration, Figure 4 shows the vertex state arrays A
in a cluster of 3 machines, where for each vertex, we show its
old ID and new (i.e., recoded) ID. We can see that the old IDs

8

are sparsely numbered as 33, 43, 53, · · · , and are recoded into
dense new IDs 0, 1, 2, · · · . In the recoded mode, new IDs are
used as the actual vertex ID, and our recoding scheme guarantees
that after recoding, the worker of a vertex v can still be computed
by hashing v’s (new) ID, i.e., hash(v) = id(v) modulo |W|. For
example, for the second vertex in A of Machine 2, its new ID is
5, and 5 modulo 3 is equal to 2, which is exactly the machine ID.

For a vertex at position pos of array A in Machine i, we can
compute its new ID as (|W|·pos+i). For example, in Figure 4, the
vertex whose old ID is 86 is at position 1 of array A in Machine 2,
and thus its new ID is computed as (3 · 1 + 2) = 5. Moreover,
given the new ID of a vertex, id, on Machine i, we can compute
its position in A as bid/|W|c. For example, in Figure 4, the vertex
whose new ID is 5 (in Machine 2) is at position b5/3c = 1.

Preprocessing. To run a job in recoded mode, we need to prepro-
cess the graph to assign its vertices with new IDs 0, 1, · · · , |V |−1.
We now describe our preprocessing algorithm, which is essentially
a GraphD job running in the basic mode as presented in Section 3,
and thus requires only O(|V ||W|) memory on each machine.

During preprocessing, old IDs are used as the vertex ID
for vertex-to-machine assignment and vertex-to-vertex message
passing. After the input graph is loaded, each machine Wi scans
its array A and assigns each vertex (at each position pos) a new
ID (|W| ·pos+i). However, for each vertex v, the neighbor IDs in
Γ(v) (which are stored in SE) are still the old IDs. For example,
in Figure 4, we show the adjacency list of the vertex at position
3 in array A of Machine 2, whose neighbors are vertices with
old IDs 33, 76, 119, etc. (i.e., the gray vertices in Figure 4); even
though the vertex is assigned a new ID 11, its adjacency list items
in SE are still the old IDs 33, 76, 119, etc. We need to replace
them with their new IDs, 0, 4, 2, etc., since new IDs will be used
for message passing in recoded mode.

Recoding the IDs in SE (i.e., adjacency lists) takes 3 super-
steps. Let us denote the old (resp. new) ID of a vertex v by ido(v)
(resp. idn(v)). In Step 1, each vertex v sends ido(v) to every out-
neighbor u ∈ Γ(v) asking for idn(u). For example, the vertex
with ido(v) = 152 in Figure 4 sends messages to neighbors 33,
76, 119, etc., asking for their new IDs 0, 4, 8, etc. In Step 2, a
vertex u responds to each requester ido(v) by sending idn(u) to
it. Continuing with the previous example, when vertices 33, 76
and 119 receive vertex 152’s ID, they will send their new IDs 0,
4 and 8 to vertex 152, respectively. Finally, in Step 3, each vertex
v simply appends the received new neighbor IDs to a new edge
stream SErec, which is the edge stream for use in recoded mode.
Continuing with the previous example, vertex 152 simply appends
the received new neighbor IDs 0, 4, 8, etc. to SErec. Note that the
whole recoding process sends only O(|E|) messages.

For an undirected graph, we can skip Step 1 since a vertex u
can directly send idn(u) to each neighbor v ∈ Γ(u).

Execution in Recoded Mode. After a graph is recoded as
mentioned above, state array A and stream SErec of each machine
are already on its local disk; our recoded mode thus simply lets
each machine load A to memory, and stream SErec on local disk.

Additionally, users are required to specify an identity element
e0, which when combined with any message m, gives the com-
bined message whose value is still m. For example, e0 = 0 for
PageRank computation since e0+m = m; while if the combiner’s
operation is to take minimum rather than sum, e0 can be set as∞.

◦ In-Memory Message Digesting. In recoded mode, Ur now
directly digests messages in memory, eliminating the need of

constructing SI using EM merge-sort. To achieve this goal, in
each step i before receiving messages, Ur first creates an in-
memory array with |V (W)| message elements, denoted by Ar .
Here, Ar[pos] refers to the combined message targeting the vertex
at A[pos]. Each element in Ar is initialized as e0. For example,
for Machine 2 in Figure 4, Ur creates an array Ar where Ar[1],
Ar[2], Ar[3] and Ar[4] corresponds to combined messages to
be received by vertices 2, 5, 8 and 11, and if the job performs
PageRank computation, all elements in Ar are initialized as 0.

When a batch of messages is received into Brecv , for each
message, we compute the position of its destination vertex u in
array A from u’s ID, i.e., pos = bid(u)/|W|c, and then combine
the message to Ar[pos]. For example, if Machine 2 in Figure 4
receives a message with value 0.2 targeting vertex 5, 0.2 will be
simply added to Ar[1] since pos = b5/3c = 1.

After all messages generated in Step i are received and Uc
starts processing Step (i+ 1), the corresponding vertex of A[pos]
is regarded as having received messages only if Ar[pos] 6= e0,
in which case compute(msgs) is called on the vertex with msgs
containing only the combined message Ar[pos]. Continuing with
our previous example about PageRank computation, now Ar[pos]
equals the sum of messages received by the vertex at A[pos]; and
Ar[pos] = 0 (i.e., e0) implies that the vertex has no message.

Finally, when Uc finishes computing Step (i+ 1), it frees Ar
from memory as messages from Step i are no longer needed.

Let us define A(i)
r as the array Ar that is created by Ur for

receiving messages generated in Step (i − 1) and then freed by
Uc after it finishes computing Step i. Then, two arrays of Ar
coexist in any superstep: in Step i, Ur creates A(i+1)

r and updates
it with received messages (for use by Uc in Step (i+1)), while Uc
obtains incoming messages from A

(i)
r for computation. The two

arrays require O(|V (W)|) additional memory, which still keeps
the O(|V ||W|) memory bound established by Lemma 1.

◦ In-Memory Message Combining. Similarly, Us always main-
tains an in-memory array with maxW∈W|V (W)| message ele-
ments, denoted by As, for combining outgoing messages. This
does not breach the O(|V ||W|) memory bound of Lemma 1.

Each element of As is initialized as e0. Recall that Us
combines and sends those messages from one OMS (i.e., towards
one destination machine) at a time. To combine a set of messages
towards a machine Wi, for each message that targets at a vertex
u, Us computes its position in array A of the destination machine
Wi, i.e., pos = bid(u)/|W|c, and then combines the message to
As[pos]. For example, assume that vertices 5 and 8 in Machine 2
in Figure 4 both send message 0.2 to vertex 4 in Machine 1; since
pos = b4/3c = 1, both 0.2 values are added to As[1] giving 0.4.

After all messages in an OMS are combined to As, for each
message element As[pos] 6= e0, Us attach the message value with
the ID of its destined vertex, i.e., |W| ·pos+ i (i is the destination
machine ID); Us then appends the target-labeled message to
Bsend for sending. Continuing with the previous example where
As[1] = 0.4 in Machine 2, then Us will label this combined
message with the destined vertex ID 4, computed as 3 · 1 + 1.

To guarantee that all elements of As are e0 before combining
the next batch of message files, Us sets each As[pos] (6= e0) back
to e0 after the corresponding message gets appended to Bsend.
◦ Topology Mutation. Topology mutation is handled similarly as
in the basic mode, with a change for vertex addition. Specifically,
in a superstep, after vertex-centric computation, Uc first recodes
the IDs of the newly added vertices by synchronizing with the

9

TABLE 1
Graph Datasets

Data Type |V| |E| AVG Deg MAX Deg
Twitter

directed

52,579,682 1,963,263,821 37.34 779,958
WebUK 133,633,040 5,507,679,822 41.21 22,429
ClueWeb 978,408,098 42,574,107,469 43.51 7,447
Kron-32-16 232 67,971,861,142 15.83 14,454,242
Friendster undirected 65,608,366 3,612,134,270 50.06 5,214
BTC 164,732,473 772,822,094 4.69 1,637,619

computing units of other machines, using the same method as
preprocessing does; Uc then appends these recoded vertices to
A. The overhead caused by the above intra-superstep id-recoding
operation is proportional to the number of vertices added.

6 EXPERIMENTS

This section reports the results of our empirical study of GraphD’s
performance, which is compared with other existing systems,
under various hardware environments.

6.1 Experimental Setup
Datasets. Table 1 lists the graph datasets used for our evaluation.
There are five real datasets: two directed web graphs WebUK3 and
ClueWeb4; two social networks Twitter5 (directed) and Friendster6

(undirected); and an RDF graph BTC7. To test system scalability,
we also generated a giant synthetic graph Kron-32-16 using
Graph 500 Kronecker graph generator8, where scale is 32 (i.e.,
there are 232 vertices), and edge factor (i.e., |E|/|V |) is 16. We
removed repetitive edges, and thus, the actual |E|/|V | is 15.83.

Algorithms. We evaluate the performance of the systems using
three well-studied Pregel algorithms: PageRank computation [15],
single-source shortest path (SSSP) computation [15] and the Hash-
Min algorithm of [31] for computing connected components.

PageRanks is only evaluated on directed graphs since it target
vertices with directed links; Hash-Min is only evaluated on undi-
rected graphs where connected component is defined; while SSSP
is evaluated on both directed and undirected graphs.

Systems. The distributed out-of-core systems we compare against
include Pregelix (Release 0.2.12), HaLoop and Chaos. The single-
machine systems we compare against include GraphChi and X-
Stream (v1.0). We also report the performance of representative
in-memory systems, Pregel+ and Giraph (1.1.0), as a reference to
measure the disk IO overhead incurred by out-of-core execution.
The source code of GraphD and all the applications evaluated can
be found at: http://www.cse.cuhk.edu.hk/systems/graphd.

6.2 Performance on a Cluster of PCs
Recall that GraphD target a small cluster of commodity PCs
connected by Gigabit Ethernet. This set of experiments compare
existing systems under this environment. We ran the systems using
16 desktop PCs in a lab classroom, each with four 3.40GHz cores
(Intel Core i5-4670), 8GB RAM and a 320GB disk. The PCs are
connected by an unmanaged switch, and we observed that the
1gbps network bandwidth cannot be able to fully reached.

3. http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05
4. http://law.di.unimi.it/webdata/clueweb12
5. http://konect.uni-koblenz.de/networks/twitter mpi
6. http://snap.stanford.edu/data/com-Friendster.html
7. http://km.aifb.kit.edu/projects/btc-2009/
8. https://github.com/graph500/graph500/tree/master/generator

In our previous description of GraphD, we assumed that each
machine runs only one process which consists of three threads for
the units Us, Uc and Ur . In order to better utilize the multi-core
processors, we actually ran multiple processes on each machine.
Here, each PC runs 2 processes (and thus streams 2 edge streams)
concurrently. Running more processes does not help since the
network and disk bandwidths are already saturated.

We do not include Chaos in this set of experiments, since
Chaos is designed to run with high-speed network like 40GigE.
As we shall see, in Section 6.7, the performance of Chaos is much
poorer than other systems when GigE is used.

We denote the normal (resp. recoded) mode of GraphD by
“GDBasic” (resp. “GDRecoded”). GDBasic, Pregel+, and Pregelix
need to load graph data from HDFS; while GDRecoded only needs
to let each machine load data from local disk. In contrast, HaLoop,
GraphChi and X-Stream directly scan the disk-resident graph in
each iteration, and there is no data loading phase.

Table 2 reports the running time of various systems on our
PC cluster. For each system that loads data, we report the time as
“loading time” + “computation time”. For example, for Pagerank
on WekUK, GDBasic takes 628.9s to load the graph, and 1189
seconds to run computation for 10 supersteps, while HaLoop takes
19954s for 10 supersteps and there is no loading phase.

Among the systems, GDRecoded needs to recode input graph
first, and GraphChi needs to preprocess input graph into shards.
There preprocessing times are reported in grey font in Table 2.
For example, for Pagerank on WekUK, GDRecoded first recodes
input graph by using 651.4s to load it, and 841.7s for the actual
recoding, after which the recoded graph can be loaded from local
disks in 1.74 seconds, and 10 supersteps of computation takes
982.3s; also, GraphChi needs to spend 2114s to shard WekUK,
before the actual computation that takes 3614s.

For each experiment, we also mark the smallest “computation
time” among all systems in red font labeled with a star.

PageRank. Table 2(a) reports the results of PageRank over three
directed graphs. We only ran 10 iterations on WebUK and Twitter
and 5 supersteps on ClueWeb, since each iteration takes roughly
the same time, and each iteration is very time-consuming for all
the other out-of-core systems that we compared with.

As Table 2(a) shows, Pregel+ can only process Twitter in our
PC cluster due to the limited memory space, and it is even slightly
slower than GDBasic and GDRecoded. This is because, network
bandwidth is the bottleneck rather than disk IO, and GraphD’s
parallel framework fully hides the computation cost inside the
communication cost; while in Pregel+’s implementation, message
transmission starts after computation finishes (i.e., all messages
are generated). On ClueWeb, GDRecoded takes only 4639s to
finish 5 supersteps, much faster than GDBasic which takes 7920s;
however, this is brought about due to graph recoding which takes
10956s, which is still worthwhile if we need to run PageRank for
many computations till convergence. Also, the computation time
of ID Recoding is consistently less than twice of the data loading
time, and is thus an efficient preprocessing.

Among the other systems, Pregelix is much slower than
GDBasic since it performs costly relational operations. X-Stream
is generally much slower than GraphChi as also observed by [3].
HaLoop is sometimes slower than X-Stream (e.g., on WebUK)
even though it uses all machines.

Hash-Min. Table 2(b) reports the results of Hash-Min over the
two undirected graphs, where the number of supersteps is what it

10

TABLE 2
Performance on the PC Cluster (time unit: seconds; ?: smallest computation time among all systems)

BTC
(30 supersteps)

Friendster
(22 supersteps)

116.8 + 81.7* 367.0 + 309.5
112.4 + 51.3 +

1.25 + 82.4
380.5 + 273.3 +
1.08 + 279.9*

115.9 + 88.9 388.7 + 294.7
96.3 + 337.9 204.2 + 1397

8152 s 11534 s
217.3 +
353.4 s

1240 +
6815 s

2518 s 12012 s

WebUK
(10 supersteps)

ClueWeb
(5 supersteps)

Twitter
(10 supersteps)

628.9 + 1189 5835 + 7920 188.7 + 458.2
651.4 + 841.7 +
1.74 + 982.3*

6020 + 10956 +
23.0 + 4639*

189.4 + 288.0 +
1.02 + 434.6*

Out of Memory Out of Memory 187.7 + 480.6
426.3 + 7390 3221 + 13861 119.5 + 1419

19954 Out of Disk 3218
2114 +
3614 Out of Disk 622.2 +

1488
17669 Out of Disk 5989

GDBasic

GDRecoded

Pregel+
Pregelix
HaLoop

GraphChi

X-Stream

BTC
(16 supersteps)

Friendster
(23 supersteps)

WebUK
(665 supersteps)

Twitter
(16 supersteps)

170.3 + 1.70* 642.6 + 150.8 1152.8 + 191.6 335.2 + 69.1
116.9 + 57.5 +

1.26 + 3.28
403.5 + 300.1 +
1.083 + 143.9*

667.1 + 914.2 +
2.86 + 223.8

199.5 + 286.0 +
1.04 + 65.8

177.1 + 2.24 Out of Memory Out of Memory 334.0 + 54.1*
193.5 + 60.1 405.9 + 1648 620.0 + 24108 197.8 + 236.9

3729 10663 > 24 hr 3790
235.7 +

72.8
1150 +
10230

1884 +
41538

583.3 +
2017

1025 11803 > 24 hr 3102
(a) Performance of PageRank (b) Performance of Hash-Min (c) Performance of SSSP

takes to find all connected components. Similar to the PageRank
experiments, GDBasic, GDRecoded and Pregel+ exhibit similar
performance since network bandwidth is the bottleneck for them
all, and Recoded even beats Pregel+ over Friendster.

The computation workload of Hash-Min is typically as fol-
lows: most vertices perform computation in the first few super-
steps, but as computation proceeds, less and less vertices perform
computation in a superstep, making the computation workload
very sparse. Sparse workload is not a problem for in-memory
systems since all adjacency lists are memory-resident; meanwhile,
GraphD is also able to avoid accessing many useless adjacency
lists with the help of its streaming function skip(num items) which
we introduced in Section 3.2. However, the other out-of-core
systems do not have effective support for sparse workload, and
thus as Table 2(b) show, their computation times are much longer
than GraphD and Pregel+.

SSSP. Table 2(c) reports the results of SSSP over two directed
graphs WebUK and Twitter, and two undirected graphs BTC and
Friendster. The number of supersteps required are also shown. All
edges were given weight 1, and thus the computation is essentially
breadth-first search (BFS).

Unlike PageRank and Hash-Min, the computation workload
of every superstep for BFS (or more generally, SSSP) is sparse.
This is because in BFS, a vertex will only send messages to its
neighbors when it is reached from the source vertex for the first
time. Since every vertex sends messages along adjacent edges
for only once during the whole period of computation, the total
workload is merely O(|E|), which amounts to the workload of
just one superstep in PageRank computation.

Table 2(c) shows that Pregel+ beats all the out-of-core systems
on Twitter, which is not surprising since Pregel+ keeps all adja-
cency lists in memory. GraphD is also comparable, thanks to the
use of streaming function skip(num items).

Surprisingly, on BTC and WebUK, GDBasic even outperforms
GDRecoded. This is because, if there are too few messages to send
in each superstep, the overhead of manipulating the additional
arrays (i.e., Ar and As mentioned in Section 5) in recoded mode
backfires. Note that all computations on BTC finished in seconds
for both modes of GraphD, whose workload is really low. While
computations on WebUK took a longer time, this is mainly because
of the large number of supersteps (i.e., 665). After all, IO-Recode
needs to create, update and tear down those large additional arrays
for 665 times.

Also surprisingly, on WebUK, Pregelix is over two orders of
magnitude slower than GraphD. We found that Pregelix incurs
a fixed cost of at least 35 seconds for each superstep, while a
superstep of GDBasic can be as low as 0.02–0.03 seconds.

Table 2(c) also shows that X-Stream is impractical for jobs
that run many iterations of sparse-workload vertex computation,
since it needs to stream all edges in each iteration. For example,
X-Stream could not finish on WebUK after a whole day. In fact,
the authors of X-Stream themselves admitted this problem at the
end of Section 5.3 in [21].

Finally, graph loading in ID Recoding is faster than GDBasic.
This is because during ID Recoding, SE does not include edge
weights. We only attach edge weights when we append recoded
adjacency list items to SErec.

6.3 Performance on a Cluster of High-End Servers
From now on, we evaluate the scalability of various systems on
a more scalable cluster of 15 high-end servers, each with twelve
2.0GHz cores (two Intel Xeon E5-2620 CPUs), 48GB RAM and a
200GB disk. These servers are connected by Cisco C2960 switch
which we observe to better utilize the network bandwidth than the
unmanaged switch in our PC cluster. To better utilize the multi-
core processors, we ran 8 GraphD processes on on each machine.
Running more processes does not help since the network and disk
bandwidths are already saturated.

The cluster additionally has access to a 2TB disk, allowing us
to run single-machine systems over big graphs like ClueWeb and
Kron-32-16, whose size exceeds the disk capacity of each server
(e.g., the input file of ClueWeb has size exceeds 400GB).

In addition to Pregel+, we also include Giraph as a reference
in-memory system. Although Giraph loads data, we only report the
total time since Giraph reports times labeled “Initialize”, “Input
Superstep”, “Setup”, etc., in addition to the time for running each
superstep. Also, we only run Giraph in-memory mode, since we
find that for graphs where in-memory mode runs out of memory,
out-of-core Giraph still runs out of memory (also observed in [1]).

Table 3 reports the running time of various systems. Our obser-
vations are similar to those from Table 2, with some differences.

Firstly, the performance improvement of GDRecoded over
GDBasic is much more significant than in the PC cluster. For
example, while GDRecoded only reduces the time of PageRank
computation over ClueWeb from 7920s (of GDBasic) to 4639s
(less than 2x) in Table 2, it reduces the time from 7422s to 1003s
(over 7x) in Table 3. This make ID recoding more favorable if
PageRank computation is going to run for many iterations. The
much better performance of GDRecoded is contributed by its
elimination of EM merge-sort, whose cost cannot be fully hidden
since the network bandwidth is better utilized now.

Also, by comparing Table 2 and Table 3, we can see that
computation on the server cluster is also much faster than on the
PC cluster, thanks to the better network bandwidth utilization of
the server cluster.

11

TABLE 3
Performance on the High-End Cluster (time unit: seconds; ?: smallest computation time among all systems)

BTC
(30 supersteps)

Friendster
(22 supersteps)

30.4 + 59.2 75.2 + 197.3
33.5 + 14.3 +
2.44 + 34.5

75.6 + 96.9 +
2.58 + 94.8*

18.6 + 20.7* 47.2 + 104.8
566.3 757.7

102.5 + 503.3 95.6 + 1236
9507 5817
169.2 +
550.0

1430 +
1808

124.8 6513

WebUK
(10 supersteps)

ClueWeb
(5 supersteps)

Twitter
(10 supersteps)

Kron-32-16
(5 supersteps)

141.5 + 1093 1271 + 7422 44.7 + 424.6 1839 + 8744
157.8 +213.8 +
3.92 + 331.6

1786 + 3306 +
22.1 + 1003*

66.4 + 86.2 +
2.71 + 121.2*

2367 + 4233+
32.9 + 1636*

70.3 + 234.9* Out of Memory 28.5 + 135.7 Out of Memory
Out of Memory Out of Memory 1366 Out of Memory
144.0 + 1744 1847 + 13820 59.2 + 877.6 2304 + 16045
17532 Out of Disk 3607 Out of Disk
2048 +
1768

26604 +
15966

729.4 +
1166

32768 +
19563

11198 75637 4542 96381

GDBasic

GDRecoded

Pregel+
Giraph
Pregelix
HaLoop

GraphChi

X-Stream

BTC
(16 supersteps)

Friendster
(23 supersteps)

WebUK
(665 supersteps)

Twitter
(16 supersteps)

31.6 + 4.75 135.0 + 118.3 252.8 + 166.2 88.9 + 35.0
30.7 + 29.0 +
2.57 + 9.06

55.1 + 78.8 +
2.23 + 66.2

134.3 + 202.2 +
2.65 + 253.6

65.7 + 72.3 +
2.33 + 25.3

25.3 + 1.59* 67.9 + 43.4* 102.7 + 74.4* 39.3 + 19.8*
277.3 429.4 3270 232.1

172.1 + 200.5 137.3 + 568.3 186.6 + 3586 119.1 + 462.5
9016 3781 > 24 hr 1828
161.6 +
155.9

1478 +
2041

1922 +
14740

631.2 +
637.4

105.5 4943 > 24 hr 2413
(a) Performance of PageRank (b) Performance of Hash-Min (c) Performance of SSSP

3 6 9 12 15
Number of Machines

200

400

600

800

1000

1200

1400

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
)

GDBasic
GDRecoded

(a) Machine Scalability on WebUK

3 6 9 12 15
Number of Machines

0

2000

4000

6000

8000

10000

12000

14000

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
) GDBasic

GDRecoded

(b) Machine Scalability on ClueWeb

3 6 9 12 15
Number of Machines

100

200

300

400

500

600

C
om

pu
ta

tio
n

Ti
m

e
(s

ec
on

ds
) GDBasic

GDRecoded

(c) Machine Scalability on Twitter

Fig. 5. Scalability Results to Number of Machines

Among the totally 10 experiments shown in Table 3, Pregel+
beats GraphD in 6 of them. This is because GraphD’s parallel
execution framework is not able to fully hide the disk streaming
overhead when network bandwidth utilization is high. However,
GDRecoded still wins 4 experiments, and is close to Pregel+
in performance for the other experiments, which demonstrates
the effectiveness of our parallel execution framework and ID
recoding technique. Note that GDRecoded also wins 5 out of the
9 experiments in Table 2.

6.4 Scalability to the Number of Machines

While distributed computation allows each machine to only pro-
cess a portion of the whole graph, this comes at the cost of network
communication, which can form the performance bottleneck.
The communication cost actually increases with the number of
machines, since each machine has |W| message streams and thus
the total number of message streams is |W|2, and the transmission
of these streams contend for sender-side and receiver-side network
bandwidth. When more machines than necessary is used, the
increased communication cost may outweigth the benefit brought
by workload dividing. This is also the reason why GraphD targets
a small cluster.

We now demonstrate that GraphD scales out in a small cluster,
by running PageRank computation over WebUK, ClueWeb and
Twitter in our server cluster, with 3, 6, 9, 12, 15 machines, respec-
tively, where each machine runs 8 processes. The performance
results are reported in Figure 5. We can see that the performance
of both GDBasic and GDRecoded improves as the number of
machines increases, but the trend slows down as the number of
machines become larger. In fact, Figure 5(c) shows that GDBasic
performs the best when there are 9 machines, and the performance
becomes poorer if we further increase machine number. This is
because Twitter is relatively small, and with 9 machines, GDBasic
already allows each process to process an affordable workload, but
the increased communication cost begins to backfire.

TABLE 4
Time of Message Generation v.s. Message Transmission

WebUK
(10 steps)

ClueWeb
(5 steps)

Twitter
(10 steps)

M-Send M-Gene M-Send M-Gene M-Send M-Gene
PC

Cluster
GDBasic 1189 s 274.2 s 7920 s 4853 s 458.2 s 61.9 s

GDRecoded 982.3 s 242.1 s 4639 s 2605 s 434.6 s 45.0 s
Server
Cluster

GDBasic 1093 s 91.2 s 7422 s 2954 s 424.6 s 32.8 s
GDRecoded 331.6 s 101.3 s 1003 s 613 s 121.2 s 35.7 s

In general, GDRecoded is much faster than GDBasic, and
WebUK and ClueWeb are big enough so that increasing machine
number all the way to 15 still keeps improving the performance
of GDBasic and GDRecoded (as workload dividing is still very
effective).

6.5 Cost of Communication v.s. Computation
We now demonstrate that network communication is the per-
formance bottleneck of GraphD in both our PC cluster and
our server cluster, by considering PageRank computation over
WebUK, ClueWeb and Twitter.

Recall that in each superstep, vertex-centric computation gen-
erates messages (by Uc), which get sent in parallel by Us.

Table 4 shows the time taken by both GDBasic and
GDRecoded to transmit messages (Column “M-Send”), and the
time to generate messages (Column “M-Gene”). Since the be-
havior of Uc and Us of different processes may vary due to
imbalanced workload distribution (e.g., caused by vertex degree
difference), we only report the time for the first process. All
reported times are summed over all the 10 (or 5) supersteps,
and “M-Gene” only sums the portion of time for vertex-centric
computation.

We can see from Table 4 that in all the 6 data-cluster com-
binations, message transmission happens during the whole period
of each superstep, but Uc only computes in the early stage (often
much less than half) of each superstep. This demonstrates that
network bandwidth is really the performance bottleneck.

12

10 20 30 40 50 60 70 80 90 100 110 120
Process ID

0

2

4

6

8

10

Av
er

ag
e

Su
pe

rs
te

p
M

es
sa

ge
 N

um
be

r

106

GDBasic
GDRecoded

(a) Per-Superstep Message Number Distribution on WebUK

10 20 30 40 50 60 70 80 90 100 110 120
Process ID

0

1

2

3

4

5

Av
er

ag
e

Su
pe

rs
te

p
M

es
sa

ge
 N

um
be

r

106

GDBasic
GDRecoded

(b) Per-Superstep Message Number Distribution on Twitter

Fig. 6. Number of Messages Sent by Each Process in Each Superstep, Averaged over Five Supersteps of PageRank Computation

10 20 30 40 50 60 70 80 90 100 110 120
Process ID

0

5

10

15

Av
er

ag
e

Su
pe

rs
te

p
Ti

m
e

(s
ec

on
ds

)

GDBasic
GDRecoded

(a) Per-Superstep Computation Time Distribution on WebUK

10 20 30 40 50 60 70 80 90 100 110 120
Process ID

0

1

2

3

4

5

6

Av
er

ag
e

Su
pe

rs
te

p
Ti

m
e

(s
ec

on
ds

)

GDBasic
GDRecoded

(b) Per-Superstep Computation Time Distribution on Twitter

Fig. 7. Number of Messages Sent by Each Process in Each Superstep, Averaged over Five Supersteps of PageRank Computation

6.6 Workload Distribution

Recall from Section 3.2 that GraphD (normal mode) distributes
vertices to processes using vertex ID hashing, which is exactly like
in Pregel. However, vertex-based partitioning does not take vertex
degree difference into consideration. For example, in Table 1, the
average degree of Twitter (resp. WebUK) is 37.34 (resp. 41.21),
but the maximum vertex degree is 779,958 (resp. 22,429). A high-
degree vertex adds much more workload to its assigned process
than an average vertex, and thus, we would like to check whether
the workload of every processes are still reasonably balanced.

For both WebUK and Twitter (with uneven vertex degree
distribution), we ran 5 supersteps of PageRank computation over
GDBasic and GDRecoded (15 machines × 8 processes/machine),
and count the average number of messages sent by each process
in a superstep as shown in Figure 6, and the average time spent by
each process in computing a superstep as shown in Figure 7.

Figure 7 shows that although the computation time varies
a bit among the workers due to the dynamics of computation
and communication, the distribution is still relatively balanced.
Figure 6 shows that message workload distribution is highly
balanced for both GDBasic and GDRecoded. This is because the
large quantity of vertices on each process is able to average out
the variance caused by the high-degree vertices assigned to this
process. However, if one is willing to partitioning a big graph
(which is often costly), it is straightforward to apply the two
methods mentioned in [29] to GraphD: (i) partition-based ID
recoding, or (ii) expanding vertex ID with process ID.

The most popular partitioning algorithm is Metis [9], as
adopted by Mizan [10] and Giraph++ [26], which minimizes
cross-partition edges (and hence minimize communication) in ad-
dition to balancing workloads. Integrating graph partitioning into
GraphD may further improve its load balancing and the ultimate
performance. GPS [22] and Mizan [10] further support dynamic
vertex migration during computation to balance workloads, but the
effectiveness may be limited as Section 3.4 of [28] reveals.

TABLE 5
Performance of Distributed Systems (Comparison with Chaos)

Dataset Pregel+ GDBasic GDRecoded Pregelix Chaos

PageRank WebUK 305.2 s 1235 s 335.5 s 1888 s 23651 s
Twitter 164.2 s 469.3 s 123.9 s 936.8 s 4701 s

HashMin BTC 39.3 s 89.6 s 36.9 s 605.8 s 11714 s
Friendster 152.0 s 272.5 s 97.4 s 1332 s 17762 s

SSSP

BTC 26.9 s 36.4 s 11.6 s 372.6 s 3525 s
Friendster 111.3 s 253.3 s 68.4 s 705.6 s 13509 s
WebUK 177.1 s 419.0 s 256.3 s 3773 s > 24 hr
Twitter 59.1 s 123.9 s 27.6 s 581.6 s 3672 s

6.7 Comparison with Chaos

While Chaos [20] is also a distributed out-of-core graph engine,
we have not included it in our comparison as it is designed to run
with high-speed network, and [20] admits that the performance is
undesirable with Gigabit Ethernet as we shall demonstrate here.

Unlike other distributed systems, Chaos does not support
parallel data loading from HDFS. A graph needs to be converted
into the binary format required by Chaos, and be distributed to
machines before the actual computation. Without counting the
preprocessing cost, Chaos is still much more expensive for graph
computation than the other distributed systems we compared,
mainly because it is designed only to run with a high-speed
network. To demonstrate it, we run Chaos9 in our server cluster
to repeat our experiments. Table 5 shows the execution time of
the distributed Pregel-like systems along with Chaos (at the last
column). The execution time of Chaos reported in Table 5 does
not include that for preprocessing, and we are not able to report
results for the big datasets ClueWeb and Kron-32-16, since they
cannot be preprocessed due to insufficient disk space. We can see
from Table 5 that Chaos is significantly more expensive than the
other distributed systems, which verifies that Chaos is not a good
choice if high speed network is not available.

9. https://github.com/epfl-labos/chaos

13

TABLE 6
Space Cost of PageRank Computation over Twitter

Memory Disk
GDBasic 38.6 GB 32.3 GB

ID Recoding 37.9 GB 31.3 GB
GDRecoded 32.9 GB 36.1 GB
Pregel+ 109.4 GB —
Giraph 264.2 GB —

Memory Disk
Pregelix 315.5 GB 66.7 GB
HaLoop 305.2 GB 96.9 GB
GraphChi 11.7 GB 48.1 GB
X-Stream 40.1 GB 29.9 GB
Chaos 114.3 GB 448.2 GB

6.8 Space Costs
Besides execution time, space usage is also an important metric
of system scalability. Table 6 shows the peak usage of memory
space and disk space, summed over all machines, when running
PageRank computation over Twitter. We can see that GraphChi
uses the least memory space, followed by our GraphD jobs, and
then X-Stream. Pregelix executes with a dataflow engine that
fully utilizes the available memory to reduce external-memory
cost. Interestingly, Pregelix and HaLoop use even more aggregate
memory space than in-memory systems Pregel+ and Giraph,
possibly due to the space-consuming auxiliary structures for
communication and for B-tree based vertex storage. Finally, we
can see that on-disk data organization is much less compact in
Chaos than in the other systems (over 10x w.r.t. GraphD), which
explains why Chaos has poor performance in Table 5, i.e., the data
request model of Chaos requires transmitting the huge amount of
incompact data, which is very slow with Gigabit Ethernet.

6.9 Performance for Machine Learning
Pregel-like systems can also be used for machine learning al-
gorithms that perform iterative computation, such as k-means
clustering [19] and gradient descent. We implemented k-means
clustering in GraphD to explore its performance and scalability. In
this program, each vertex (i.e., data point) v maintains a value
indicating which of the k centers is closet to v, while each
coordinate of v is treated as an edge so that coordinates are
streamed from SE during computation. In a superstep, a vertex
recomputes its closet center from the k centers aggregated from
the last superstep, and then aggregates its coordinates to its new
center in the aggregator which then computes new centers for the
next superstep. The algorithm was implemented in normal mode,
since vertices need not send messages and thus recoded mode does
not help. We generated synthetic k-dimensional points using k
Gaussian distributions with standard deviation 0.5, where the i-th
Gaussian distribution is centered at the point whose i-th coordinate
is 1 and whose other coordinates are 0. Points were generated
from the Gaussian distributions in a round-robin manner, and the
experiments were run on our high-end cluster.

The performance on GraphD is very good. For example,
when there are 0.1 billion points of 5 (resp. 6) dimensions, each
superstep takes 0.17s (resp. 0.19s); when there are 1 billion points
of 5 (resp. 6) dimensions, each superstep takes 0.84s (resp. 1.15s).

6.10 Comparison with FlashGraph
We also tested the state-of-the-art single-machine SSD-based
system FlashGraph, with a standalone server with 8GB RAM and
a 128GB SSD (Samsung PM851 Series). We report the results of
PageRank computation over Twitter.

After putting Twitter to FlashGraph’s SAFS (a file system for
SSD), the space used is 31.06 GB, comparable to GraphD as
shown in Table 6. FlashGraph runs an asynchronous PageRank

algorithm where only unconverged vertices perform computation,
and thus the time of an iteration becomes shorter and shorter. It
took 2763s and 31 iterations to finish PageRank computation on
Twitter but the first 10 iterations are all over 120s (the first one
takes 165s). In contrast, Table 2 shows that GraphD used less than
500s to finish 10 supersteps of PageRank computation on Twitter.

However, we remark that FlashGraph is a promising solution
when an array of SSDs are available, since it uses only one
machine and can work with multiple SSDs (while the server used
in this experiment has only one SSD).

7 CONCLUSIONS

We presented a Pregel-like system, called GraphD, for efficient
out-of-core processing of very large graphs with average comput-
ing resources that are readily available to most users. To process a
graphG = (V,E) with nmachines using GraphD, we proved that
each machine only requires O(|V |/n) memory space. GraphD is
also carefully designed to support sparse computation workload
efficiently, to parallelize computation with communication, and
to eliminate the need of any expensive external-memory opera-
tion by ID recoding. Open-source implementation of GraphD is
provided, and extensive experiments demonstrated that GraphD’s
performance is competitive even when it is compared with an in-
memory Pregel-like system.

While GraphD achieves impressive performance on a com-
modity cluster with a low bandwidth network, we remark that
GraphD can be inferior to the state-of-the-art systems in other
settings. For example, when the cluster memory is not a concern
and network bandwidth is large enough, distributed in-memory
systems such as GraM [27] can outperform GraphD as GraphD’s
design does not take advantage of the sufficiency in memory
and network bandwidth to boost its performance. GraphD’s per-
formance can also be inferior to single-machine systems such
as Ligra [24], Galois [17], and FlashGraph [32], which achieve
superb performance with a many-core machine with big RAM
(e.g., 1TB) or big flash memory. More detailed discussion on the
different types of existing systems is given in Section 2.
Acknowledgments. This work was partially supported by Grants
(CUHK 14206715 & 14222816) from the Hong Kong RGC,
MSRA grant 6904224, ITF 6904079, and Grant 3132821 funded
by the Research Committee of CUHK.

REFERENCES

[1] Y. Bu, V. R. Borkar, J. Jia, M. J. Carey, and T. Condie. Pregelix: Big(ger)
graph analytics on a dataflow engine. PVLDB, 8(2):161–172, 2014.

[2] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop: Efficient
iterative data processing on large clusters. PVLDB, 3(1):285–296, 2010.

[3] J. Cheng, Q. Liu, Z. Li, W. Fan, J. C. S. Lui, and C. He. VENUS: vertex-
centric streamlined graph computation on a single PC. In ICDE, pages
1131–1142, 2015.

[4] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrish-
nan. One trillion edges: Graph processing at facebook-scale. PVLDB,
8(12):1804–1815, 2015.

[5] J. Gao, C. Zhou, J. Zhou, and J. X. Yu. Continuous pattern detection
over billion-edge graph using distributed framework. In ICDE, pages
556–567, 2014.

[6] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph:
Distributed graph-parallel computation on natural graphs. In OSDI, pages
17–30, 2012.

[7] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica. Graphx: Graph processing in a distributed dataflow framework.
In OSDI, pages 599–613, 2014.

[8] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin.
An experimental comparison of Pregel-like graph processing systems.
PVLDB, 7(12):1047–1058, 2014.

14

[9] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. Scientific Computing, 20(1):359–
392, 1998.

[10] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis. Mizan: a system for dynamic load balancing in large-scale
graph processing. In EuroSys, pages 169–182, 2013.

[11] P. Kumar and H. H. Huang. G-store: high-performance graph store for
trillion-edge processing. In SC, pages 830–841, 2016.

[12] A. Kyrola, G. E. Blelloch, and C. Guestrin. GraphChi: Large-scale graph
computation on just a PC. In OSDI, pages 31–46, 2012.

[13] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. Distributed GraphLab: A framework for machine learning in
the cloud. PVLDB, 5(8):716–727, 2012.

[14] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-scale distributed graph
computing systems: An experimental evaluation. PVLDB, 8(3), 2015.

[15] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: a system for large-scale graph
processing. In SIGMOD, pages 135–146, 2010.

[16] F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what cost.
In 15th Workshop on Hot Topics in Operating Systems (HotOS XV).
USENIX Association, 2015.

[17] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for
graph analytics. In SOSP, pages 456–471, 2013.

[18] R. A. Pearce, M. Gokhale, and N. M. Amato. Multithreaded asyn-
chronous graph traversal for in-memory and semi-external memory. In
SC, pages 1–11, 2010.

[19] L. Quick, P. Wilkinson, and D. Hardcastle. Using pregel-like large scale
graph processing frameworks for social network analysis. In ASONAM,
pages 457–463, 2012.

[20] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel. Chaos:
Scale-out graph processing from secondary storage. In SOSP, 2015.

[21] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: edge-centric graph
processing using streaming partitions. In SOSP, pages 472–488, 2013.

[22] S. Salihoglu and J. Widom. GPS: a graph processing system. In SSDBM,
page 22, 2013.

[23] Y. Shao, B. Cui, L. Chen, L. Ma, J. Yao, and N. Xu. Parallel subgraph
listing in a large-scale graph. In SIGMOD, pages 625–636, 2014.

[24] J. Shun and G. E. Blelloch. Ligra: a lightweight graph processing
framework for shared memory.

[25] G. M. Slota, S. Rajamanickam, and K. Madduri. A case study of complex
graph analysis in distributed memory: Implementation and optimization.
In IPDPS, pages 293–302, 2016.

[26] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson. From
”think like a vertex” to “think like a graph”. PVLDB, 7(3):193–204, 2013.

[27] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin, Y. Dai, and
L. Zhou. Gram: scaling graph computation to the trillions. In SoCC,
pages 408–421, 2015.

[28] D. Yan, Y. Bu, Y. Tian, and A. Deshpande. Big graph analytics platforms.
Foundations and Trends in Databases, 7(1-2):1–195, 2017.

[29] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-centric framework
for distributed computation on real-world graphs. PVLDB, 7(14):1981–
1992, 2014.

[30] D. Yan, J. Cheng, Y. Lu, and W. Ng. Effective techniques for message
reduction and load balancing in distributed graph computation. In WWW,
pages 1307–1317, 2015.

[31] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu. Pregel algorithms
for graph connectivity problems with performance guarantees. PVLDB,
7(14):1821–1832, 2014.

[32] D. Zheng, D. Mhembere, R. C. Burns, J. T. Vogelstein, C. E. Priebe, and
A. S. Szalay. Flashgraph: Processing billion-node graphs on an array of
commodity ssds. In FAST, pages 45–58, 2015.

[33] C. Zhou, J. Gao, B. Sun, and J. X. Yu. Mocgraph: Scalable distributed
graph processing using message online computing. PVLDB, 8(4):377–
388, 2014.

Da Yan is an assistant professor with the De-
partment of Computer Science at the University
of Alabama at Birmingham. He is the winner of
the 2015 Hong Kong Young Scientist Award, and
he also led the BigGraph@CUHK project (see
http://www.cse.cuhk.edu.hk/systems/graph). His
research interests include Big Data analytics,
distributed systems, graph data management,
geospatial data management, and data mining.

Yuzhen Huang received his Bachelor degree in
Computer Science from Sun Yat-sen University.
He is currently a PhD student in the Department
of Computer Science and Engineering, The Chi-
nese University of Hong Kong. His research
interests include analysis in massive temporal
graphs and distributed systems.

Miao Liu received his Bachelor degree in Soft-
ware Engineering from Shenzhen University. He
is currently a research assistant in the Depart-
ment of Computer Science and Engineering,
The Chinese University of Hong Kong. His re-
search interests include large-scale graph min-
ing and distributed systems.

Hongzhi Chen is an MPhil student in the De-
partment of Computer Science and Engineering
at the Chinese University of Hong Kong. He is
interested in distributed computing systems and
large-scale graph processing.

James Cheng is an assistant professor with the
Department of Computer Science and Engineer-
ing at the Chinese University of Hong Kong.
His research focuses on big data infrastructures,
distributed computing systems, and large-scale
network analysis.

Huanhuan Wu received his Bachelor degree in
Computer Science and Technology from Zhe-
jiang University. He is currently a PhD candidate
in the Department of Computer Science and En-
gineering, The Chinese University of Hong Kong.
His research interests include analysis in mas-
sive temporal graphs and non-trivial distributed
algorithms.

Chengcui Zhang is a Professor of Computer
Science at the University of Alabama at Birm-
ingham (UAB). She works in the broad areas
of multimedia databases and information re-
trieval, multimedia data mining, multimedia se-
curity and forensics, Geoinformatics, and applied
Bioinformatics. She has published over 150 ref-
ereed articles, many at the top tier venues in
computer sciences including IEEE Transactions,
IEEE Multimedia, ACM Multimedia (MM), IEEE
Intl. Conf. on Data Mining (ICDM), ACM Conf. on

Communication and Computer Security (CCS), and IEEE Intl. Conf. on
Multimedia and Expo (ICME). Dr. Zhang’s research has been externally
supported by NSF, NIH, and by awards/gifts from the industry, including
IBM, eBay, and Comcast. Dr. Zhang was the former Chair of IEEE
Technical Committee on Semantic Computing and has served as the
Conference Program Chair for many IEEE Conferences. She is an
Associate Editor of IEEE Trans. on Multimedia and Intl. J. of Multimedia
Data Engineering and Management.

