
Under consideration for publication in Knowledge and Information
Systems

Efficient processing of optimal meeting
point queries in Euclidean space and
road networks

Da Yan, Zhou Zhao and Wilfred Ng

Department of Computer Science and Engineering,

Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

Abstract. Finding an Optimal Meeting Point (OMP) for a group of people (or a set
of objects) at different locations is an important problem in spatial query processing.
There are many real life applications related to this problem, such as determining the
location of a conference venue, deciding the pick-up location of a tourist bus, and
planing tactics of artificial intelligence in real-time strategy games. Formally, given a
set Q of query points in a spatial setting P , an OMP query fetches the point o ∈ P that
minimizes a cost function defined over the distances from o to all points in Q. Since
there are infinitely many locations in a given space setting, it is infeasible to examine
all of them to find the OMP and, thus, the problem is challenging.

In this paper, we study OMP queries in the following two spatial settings which
are common in real life applications: Euclidean space and road networks. In the set-
ting of Euclidean space, we propose a general framework for answering all OMP query
variations, and also identify the best algorithms for particular types of OMP queries in
the literature. In the setting of road networks, we study how to access only part of the
road network and examine part of the candidates. Specifically, we explore two prun-
ing techniques, namely Euclidean distance bound and threshold algorithm, which help
improve the efficiency of OMP query processing. Extensive experiments are conducted
to demonstrate the efficiency of our proposed approaches on both real and synthetic
datasets.

Keywords: Optimal meeting point; Spatial query processing; Road network; Thresh-
old algorithm

Received Mar 17, 2013

Revised Jun 09, 2013

Accepted Aug 02, 2013

2 D. Yan et al

9 km

6 km 3 km

Fig. 1. Min-max (△) and Min-sum (▽) OMPs

1. Introduction

Optimal Meeting Point queries (or simply OMP queries) are useful in many real-
world applications, ranging from location-based services to computer games. For
example, a travel agency may issue an OMP query to decide the location for a
tourist bus to pick up the tourists, so that the tourists can make the least effort
to get to the meeting point. OMP queries are also important for merging military
forces in a war field or finding a place that is convenient for military officers to
hold a meeting. In strategy games like Warcraft1, a computer player may need
to find OMPs efficiently in order to decide the routes of its warriors.

Formally, given a set of query points Q = {q1, q2, . . . , qn} in a spatial setting
P , an OMP query finds the point o ∈ P that minimizes a cost function defined
over the distances from o to all points in Q. The spatial setting P can be the
Euclidean space or a road network. Besides, there are two ways of defining the
OMP o, which are based on the following two commonly used cost functions:

– min-sum OMP: o = argminp∈P

∑
i d(qi, p), and

– min-max OMP: o = argminp∈P maxi d(qi, p),

where d(pi, pj) denotes the distance between points pi and pj . The metric of
distance can be the Euclidean distance (when it is defined in the Euclidean space
setting) or the network distance (when it is defined in a road network setting).
The network distance between two points in a road network is the length of the
shortest path connecting them.

Figure 1 illustrates the concept of OMPs using a road network having six
people (or query points in general) represented by the six black dots. Let us
assume that those people want to meet together at some location in the road
network. The upward (left) triangle in Figure 1 is the min-max OMP, and the
downward (right) one is the min-sum OMP.

We can see from the above example that, a min-sum OMP minimizes the total
travel distance of all the people, while a min-max OMP minimizes the elapsed
travel time before all the people reach the meeting point. Referring to Figure 1
again, the person at the far left has to walk for 9 km to reach the min-sum OMP,
and those on the right have to wait for him after they reach the meeting point.
On the other hand, all the people would walk for 6 km to get to the min-max
OMP, which is faster than the min-sum one.

The challenge of processing OMP queries is that, since there are infinitely
many locations in P , it is infeasible to examine all of them to find the OMP.

1 http://us.blizzard.com/en-us/games/war3/

http://us.blizzard.com/en-us/games/war3/

Efficient processing of optimal meeting point queries in Euclidean space and road networks 3

To tackle this challenge, we propose two efficient algorithms for answering OMP
queries, in two spatial settings that are fundamental in real-life applications:
Euclidean space and road networks. Our algorithms well tackle the challenge of
infinite search space.

In the setting of Euclidean space, we propose a general framework for answer-
ing all OMP query variations, and also identify the best algorithms for particular
types of OMP queries in the literature.

In the setting of road networks, we study how to derive a finite number of
OMP candidates, and how to access only part of the road network and examine
part of the candidates, by exploring two pruning techniques that improve the
efficiency of processing OMP queries.

The contributions of this paper are summarized as follows:

– We propose and define min-sum and min-max OMP queries, and study efficient
algorithms for answering them in the settings of Euclidean space and road
networks.

– We develop a gradient-descent based framework for answering all OMP query
variations in Euclidean space in general, and also identify the best algorithms
for particular types of OMP queries.

– For both min-sum and min-max OMP queries in road networks, we present an
R-tree based branch-and-bound algorithm, which adopts a pruning technique
called Euclidean distance bound to find an OMP by just accessing part of the
road networks and examining part of the candidates. This algorithm can be
applied when the Euclidean distance between any two locations in the road
network lower bounds their network distance.

– We further propose another algorithm for finding OMPs in road networks. The
algorithm is based on the threshold algorithm for top-k queries, and it is able
to avoid deriving and examining all the candidates.

– We conduct extensive experiments to evaluate the efficiency of the proposed
algorithms on seven real road networks of various sizes, as well as the synthetic
datasets.

The rest of this paper is organized as follows: we review the related work in
Section 2. Section 3 presents our gradient-descent based framework for answering
all OMP query variations in Euclidean space, and reviews the relevant algorithms
in the literature. In Section 4, we study how to derive a finite number of OMP
candidates for min-sum and min-max OMP queries in road networks, and in
Section 5, we describe our algorithms for OMP query processing. The proposed
methods are empirically studied in Section 6. Finally, we conclude our paper in
Section 7.

2. Related Work

In this section, we first give an overview of the related work for OMP queries
in Euclidean space and in road networks. Then, we review the work related to
two other spatial problems, namely aggregate nearest neighbor queries and the
facility location problem, which also aim to determine an optimal location in a
spatial setting, but the spatial contexts are different from our proposed OMP
queries.

4 D. Yan et al

The Weber Problem. The studies of min-sum OMP queries in Euclidean
space date back to the 60s–70s (Cooper, 1968; Ostresh, 1977; Chen, 1984a; Chen,
1984b). When the Euclidean distance is adopted as the metric of distance, the
min-sum OMP query is called the Weber problem (Cooper, 1968), and the min-
sum OMP is called the geometric median of the query point set Q.

Cooper (1968) extended the Weber problem by formalizing the problem of
minimizing the weighted sum of powers of the Euclidean distances, which was fur-
ther generalized to handle radial cost functions by Reuven Chen (Chen, 1984b).
However, it is shown that no closed form formula exists for the Weber problem
and its generalizations, and these problems are usually solved by gradient descent
methods (Beck and Teboulle, 2009; Brimberg and Love, 1993; Wesolowsky, 1982).

OMP in Road Networks. As for OMP queries in road networks, Xu and
Jacobsen (2010) studies them from the perspective of monitoring the proximity
relations of a group of objects in a road network. The concept of an OMP query
is first formalized in our prior work (Yan et al, 2011a), where we only study min-
sum OMP queries. Given a query set Q in a road network G = (V, E), Yan et al
(2011a) proves that a min-sum OMP exists among the points in V ∪Q. Further-
more, two efficient search techniques are proposed in Yan et al (2011a), which
are able to return high-quality meeting points. However, these two methods are
not able to guarantee result optimality.

Compared with the preliminary work (Yan et al, 2011a), this work makes
further contributions in the following issues. Firstly, we study min-sum and min-
max OMP queries in Euclidean space. Secondly, we study min-max OMP queries
in road networks. Last but not least, we improve the efficiency of OMP query
processing in road networks, by using two pruning techniques: Euclidean distance
bound, and threshold algorithm.

Aggregate Nearest Neighbor Queries. Aggregate Nearest Neighbor queries
(or ANN queries in short) (Papadias et al, 2005; Yiu et al, 2005; Li et al, 2011a)
are closely related to our OMP queries. However, the fundamental difference is
that, for ANN queries, the result location is chosen among a finite data point set
P = {p1, p2, . . . , pm}, while for OMP queries, the result location is chosen from
a spatial setting P that contains infinite number of points. ANN queries can
be applied, for instance, when n people at locations {q1, . . . , qn} want to choose
a restaurant to have dinner together, among a set of restaurants at locations
{p1, . . . , pm} in a city. However, when people are not able to fix a set of possible
locations to meet at in advance, ANN queries are not applicable, while OMP
queries are an appropriate choice. OMP queries are also more appropriate, when
a school needs to decide the location for its school bus to pick up the students
in some district, since the location can be anywhere in the road network.

A variation of ANN queries is studied in Li et al (2011b), where the cost
function is defined over the distances from the target location o to any subset
of ϕ|Q| (0 < ϕ ≤ 1) query points in Q. Recently, Ke Deng et al. propose the
group nearest group query (Deng et al, 2012), which generalizes ANN queries
by allowing multiple meeting points. Li et al (2013) studies ANN queries when
query points are continuously moving, and Lian and Chen (2008) studies the
processing of ANN queries when the data and query points are uncertain.

Facility Location Problem. Facility Location Problem (or FLP in short) is
also related to OMP queries. Given a client point set C and a server point set S,
FLP aims to find the location for a new server in a spatial setting, to minimize

Efficient processing of optimal meeting point queries in Euclidean space and road networks 5

a cost function defined over the distance from each client to its nearest server.
The problem is fundamentally different from finding an OMP, since FLP involves
two sets C and S, while OMP queries only consider one query set Q. Yan et al
(2011b), Du et al (2005) and Wong et al (2009) study this problem when P is
the Euclidean space, while Xiao et al (2011) studies this problem when P is a
finite point set in a road network.

3. Finding OMPs in Euclidean Space

In this section, we first define the notation and the concepts of min-sum and
min-max OMPs in Euclidean space. Then, we present our gradient-descent based
framework for answering all OMP query variations. Finally, we identify the best
algorithms for particular types of OMP queries in the literature.

3.1. Problem Definition

Notation. We only focus on 2D Euclidean space for simplicity. Although it is
straightforward to generalize the problem definition and gradient-descent solu-
tion to higher dimensional Euclidean spaces, they are less common as a practical
spatial setting. In 2D Euclidean space, each point p is a location with coordinates
(x, y), and the distance between two points p1 = (x1, y1) and p2 = (x2, y2) is
actually the ℓ2-norm of the vector −−→p1p2:

‖−−→p1p2‖2 =
√

(x1 − x2)2 + (y1 − y2)2.

We now review the concept of ℓp-norm (Boyd and Vandenberghe, 2004):

Definition 1. The ℓp-norm (p ≥ 1) of an n-dimensional vector−→x = (x1, x2, . . . , xn)
is given by

‖−→x ‖p = (|x1|
p + |x2|

p + ·+ |xn|
p)1/p. (1)

When p→∞, we obtain the Chebyshev or ℓ∞-norm:

‖−→x ‖∞ = lim
p→∞

‖x‖p = max{|x1|, |x2|, . . . , |xn|}. (2)

Problem Definition. The OMP queries in the Euclidean space are formally
defined as follows:

Definition 2. Given a set of query points Q = {q1, q2, . . . , qn} in 2D Euclidean
space, where qi = (xi, yi), the min-sum OMP of Q is given by argminp∈R2

∑
i ‖
−→qip‖2,

and the min-max OMP of Q is given by arg minp∈R2 maxi ‖
−→qip‖2.

Given a point p ∈ R
2 and a query point set Q, let us define

−→
Qp = (‖−→q1p‖2,

‖−→q2p‖2, . . ., ‖−→qnp‖2). Then, the cost function for min-sum OMP is given by

fsum(p) = ‖
−→
Qp‖1 =

n∑

i=1

‖−→qip‖2, (3)

and the cost function for min-max OMP is given by

fmax(p) = ‖
−→
Qp‖∞ = maxn

i=1‖
−→qip‖2. (4)

6 D. Yan et al

A generalization of the OMP query is the weighted OMP query, where each

query point qi ∈ Q is associated with a weight wi. In this case,
−→
Qp = (w1 ·

‖−→q1p‖2, . . . , wn · ‖
−→qnp‖2), and the cost functions become:

fsum(p) = ‖
−→
Qp‖1 =

n∑

i=1

[
wi · ‖

−→qip‖2

]
, (5)

fmax(p) = ‖
−→
Qp‖∞ = maxn

i=1

[
wi · ‖

−→qip‖2

]
. (6)

The intuition behind Equations (5) and (6) is that, a query point with a
larger weight is more important and, thus, its travel cost is higher. For example,
consider a group of people who want to find a meeting point. If one person is the
boss and the rest are his/her employees, then the boss could be given a weight
larger than his/her employees.

3.2. Gradient-Descent Framework

The problem of finding an OMP of a query point set Q can be regarded as an
optimization problem: to find a point p ∈ R

2 that minimizes the target function
fsum(p) or fmax(p).

Both fsum(p) and fmax(p) are convex functions, since they are the composite
of affine mapping and ℓp-norm operations that preserve convexity (Boyd and
Vandenberghe, 2004). As a result, we can find the OMP using gradient descent:
the convexity of fsum(p) and fmax(p) guarantees that gradient descent is able to
approach the global minimum without being stuck at local minimal values.

Gradient Evaluation. We now consider how to evaluate the gradient of

functions fsum(p) = ‖
−→
Qp‖1 and fmax(p) = ‖

−→
Qp‖∞ at point p = (x, y). Let us

first compute the gradient of ‖
−→
Qp‖m at p = (x, y) for arbitrary m ≥ 1:

‖
−→
Qp‖m =

[
n∑

i=1

wm
i · ‖

−→qip‖
m
2

]1/m

=

{
n∑

i=1

wm
i

[
(xi − x)2 + (yi − y)2

]m/2
}1/m

,

Efficient processing of optimal meeting point queries in Euclidean space and road networks 7

and therefore,

∂‖
−→
Qp‖m
∂x

=
1

m

{
n∑

i=1

wm
i

[
(xi − x)2 + (yi − y)2

]m/2
} 1−m

m

×

n∑

i=1

{
wm

i ·
m

2
·

[
(xi − x)2 + (yi − y)2

]m−2

2

× 2 · (xi − x) · (−1)

}

=

{
n∑

i=1

wm
i

[
(xi − x)2 + (yi − y)2

]m/2
} 1

m
−1

×

n∑

i=1

{
wm

i

[
(xi − x)2 + (yi − y)2

]m
2
−1

· (x − xi)

}

(7)

, g1(x, y)× g2(x, y). (8)

Due to the symmetry of x and y, ∂‖
−→
Qp‖m

∂y is similar to Equation (7), except

that the last term becomes (y− yi) instead of (x− xi). For ease of presentation,
let us define the following short-hand notations:

∆xi = x− xi, (9)

∆yi = y − yi. (10)

Since fsum(p) corresponds to the case when m = 1, according to Equation (7),
we have the following derivatives:

∂fsum(p)

∂x
=

n∑

i=1

wi ·∆xi

‖−→qip‖2
,

∂fsum(p)

∂y
=

n∑

i=1

wi ·∆yi

‖−→qip‖2
. (11)

As for fmax(p), we need to set m→∞, which gives:

lim
m→∞

g1(x, y) = lim
m→∞

[
∑n

i=1(wi · ‖
−→qip‖2)m]

1

m

∑n
i=1(wi · ‖

−→qip‖2)m
=

maxn
i=1(wi · ‖

−→qip‖2)

limm→∞

∑n
i=1(wi · ‖

−→qip‖2)m
,

(12)

where the last step is obtained by using Equation (2).
Note that g2(x, y) can be reformulated as follows:

g2(x, y) =
n∑

i=1

(wi · ‖
−→qip‖2)m ·∆xi

‖−→qip‖22
. (13)

Therefore, according to Equations (8), (12) and (13), we have the following
derivative:

∂fmax(p)

∂x
= lim

m→∞
g1(x, y)× g2(x, y)

= maxn
i=1(wi · ‖

−→qip‖2)×
n∑

i=1

(
∆xi

‖−→qip‖22
· lim

m→∞

(wi · ‖
−→qip‖2)m

∑n
i=1(wi · ‖

−→qip‖2)m

)
. (14)

8 D. Yan et al

18 km

9 km

q6 q1 – q5

3 km

Fig. 2. Choice of the Starting Point for Finding Min-Max OMP

Let us define i∗ = arg maxi(wi · ‖
−→qip‖2), then we have

lim
m→∞

(wi · ‖
−→qip‖2)m

∑n
i=1(wi · ‖

−→qip‖2)m
=

{
1, i = i∗

0, otherwise
. (15)

According to Equations (14) and (15), we obtain

∂fmax(p)

∂x
=

wi∗∆xi∗

‖−−→qi∗p‖2
. (16)

Finally, due to the symmetry of x and y, we also have

∂fmax(p)

∂y
=

wi∗∆yi∗

‖−−→qi∗p‖2
. (17)

Starting Point. We now consider how to choose the starting point for gradi-
ent descent. The starting point should be chosen to be close to the OMP, so that
gradient descent requires fewer steps to reach the OMP. For a weighted min-sum
OMP query, the starting point is usually chosen to be the center of gravity of

the query point set Q, i.e. (
∑n

i=1
wi·xi∑

n
i=1

wi
,
∑n

i=1
wi·yi∑

n
i=1

wi
).

However, this is not a good choice for the min-max OMP query. Consider the
example shown in Figure 2, where all the six query points q1 to q6 carry equal
weight, and the query points q1 to q5 on the left are at the same location. It is
straightforward to see that the min-max OMP is the upward triangle in Figure 2,
but the center of gravity of the query points is the downward triangle, which is
far from the min-max OMP.

Suppose that (qa, qb) is the farthest pair of points in the query point set Q.
We propose to choose the midpoint of the line segment qaqb as the starting point
of gradient descent for min-max OMP queries. Referring again to Figure 2, we
can see that the starting point coincides with the min-max OMP.

In most cases, the midpoint of qaqb, denoted as pc, is a better starting point
than the center of gravity of the query points for min-max OMP queries. Besides,
pc has the following validating property, which enables early termination:

Observation 1. For unweighted min-max OMP queries, if the query point far-
thest from pc is qa, then pc is guaranteed to be the OMP.

Proof. Since pc is the midpoint of qaqb, ‖pcqa‖2 lower bounds fmax(p), ∀p ∈ R2.
Furthermore, since the query point farthest from pc is qa, fmax(pc) = ‖pcqa‖2.
Therefore, pc is the min-max OMP.

Note that the farthest pair (qa, qb) can be obtained in O(n) time, by finding all
the O(n) antipodal pairs among Q, and then selecting the pair with the maximum

Efficient processing of optimal meeting point queries in Euclidean space and road networks 9

separation. A detailed description of the algorithm can be found in Alsuwaiyel
(1999)1.

Gradient Descent Algorithm. Given the starting point and the gradient
of the cost function, we can find the OMP of a query point set Q by gradient
descent. We use the gradient descent algorithm of Boyd and Vandenberghe (2004)
to find the OMP, where the step length is determined by backtracking line search
that utilizes the target (cost) function, instead of being fixed as a small constant.
Gradient descent stops when the movement of the current point (measured by
Euclidean distance) is smaller than the tolerance parameter ǫ, which is usually
set to a small number like 10−6.

3.3. Algorithms for Specific OMP Query Types

While our gradient descent framework is able to answer arbitrary types of OMP
queries, there exist even faster algorithms for particular types of OMP queries,
which we now discuss next.

Faster Algorithms for Min-sum OMP Queries. The gradient descent
method is only based on the first-order Taylor approximation of the target
(cost) function. A more efficient approach for answering weighted min-sum OMP
queries is to employ Newton’s method (Boyd and Vandenberghe, 2004). New-
ton’s method enables faster convergence, since it is based on the second-order
Taylor approximation instead. As a result, besides the gradient of the target
function, Newton’s method also requires its Hessian matrix. Note that fsum(x)
is second order derivable, and we derive its Hessian matrix from Equation (11)
as follows:

∇2fsum(p) =

[
∂2fsum(p)

∂x2

∂2fsum(p)
∂x∂y

∂2fsum(p)
∂y∂x

∂2fsum(p)
∂y2

]

=

n∑

i=1

wi

1
‖−→qip‖2

−
∆x2

i

‖−→qip‖3

2

−∆xi∆yi

‖−→qip‖3

2

−∆xi∆yi

‖−→qip‖3

2

1
‖−→qip‖2

− ∆y2

i

‖−→qip‖3

2

 . (18)

We may also use Newton’s method to find the weighted min-sum OMP. Our
experiments show that Newton’s method takes considerably less steps to reach
the OMP, and is faster than gradient descent.

Another competitive method for solving the Weber problem is to use Weiszfeld’s
algorithm, a form of iteratively re-weighted least squares, where the current

point p is updated by the operation p ←
(∑n

i=1
qi

‖−→qip‖2

)
/
(∑n

i=1
1

‖−→qip‖2

)
. We

find through experiments that Weiszfeld’s algorithm is comparable to Newton’s
method in terms of efficiency although it takes more steps. This is because New-
ton’s method requires evaluating the Hessian matrix, while the update operation
of Weiszfeld’s algorithm is much cheaper.

Faster Algorithms for Min-Max OMP Queries. While a min-sum

1 Note that the pseudo-code on Page 478 of Alsuwaiyel (1999) is incorrect unless “A ← A ∪
{(pi, pj)}” is added between Lines 13 and 14.

10 D. Yan et al

OMP can only be found by numerical methods, an unweighted min-max OMP
can be computed exactly.

In Euclidean space, an unweighted min-max OMP query with query point
set Q is equivalent to the smallest enclosing circle problem, which finds the
smallest circle that contains all the query points in Q. Note that the center
of that circle is exactly the min-max OMP. Using the terminology of facility
location problem, the unweighted min-max OMP query is also known as the
1-center problem (Drezner and Shelah, 1987).

Shamos and Hoey propose an O(n log n) algorithm (Shamos and Hoey, 1975)
for tackling the smallest enclosing circle problem, which is based on the farthest
Voronoi diagram of Q. The best time complexity is achieved by Megiddo’s algo-
rithm (Megiddo, 1982). Essentially, each iteration of Megiddo’s algorithm prunes
at least ⌊n/16⌋ points, and has time cost O(n); thus, if we denote T (n) to be
the time cost of Megiddo’s algorithm, we have T (n) = O(n) + T (15n/16) =
O(n + 15

16n + (15
16)2n + · · ·) = O(n).

Megiddo’s algorithm is important in theory, since it shows that min-max
OMP can be found in linear time. However, Welzl’s randomized algorithm (De
Berg et al, 2008) is much faster than Megiddo’s algorithm in practice, although it
only runs in expected O(n) time. This is due to the simplicity of Welzl’s random-
ized algorithm, compared with the complicated operations involved in Megiddo’s
algorithm. In this paper, we only focus on Welzl’s randomized algorithm. Our
experiments also show that, for unweighted min-max OMP queries, Welzl’s al-
gorithm is extremely efficient, which is much faster than our gradient descent
method.

Role of Our Gradient-Descent Framework. Although our gradient-
descent framework is not competitive with the alternative approaches mentioned
above for specific types of OMP queries, it serves as a baseline for comparison.
Furthermore, some types of OMP queries do not have an alternative approach
and have to be solved by our gradient-descent framework, such as the weighted
min-max OMP queries.

4. Deriving OMP Candidates in Road Networks

We now study OMP query processing in road networks, which is a more realistic
spatial setting for location-based services, in cities with well-developed traffic
networks. In this section, we first present the approaches of deriving a finite
number of OMP candidates. The algorithmic details of finding the OMP will be
discussed in Section 5.

Notation. Let us use dN (p1, p2) to denote the network distance between
two locations p1 and p2 in a road network.

Given a set of query points Q = {q1, q2, . . . , qn} in a road network G = (V, E),
the min-sum OMP of Q is given by arg minp∈G

∑
i dN (qi, p), and the min-max

OMP of Q is given by argminp∈G maxi dN (qi, p), where p ∈ G means that p is
located on some edge of G.

When Q is clear from the context, we define sd(p) =
∑

i dN (qi, p) and
md(p) = maxi dN (qi, p). Furthermore, we denote by p̃ipj the shortest path be-
tween pi and pj , and if pi and pj are on edge (u, v) ∈ E, we denote by |pipj | the
length of the part of the edge between pi and pj .

Efficient processing of optimal meeting point queries in Euclidean space and road networks11

u v

q

(a)

u v=s

q

(b)

s

u=s v

q

(c)

u v
q=s

(d)

Fig. 3. Four Cases for Split Points

For a point p on edge (u, v) ∈ E, we represent p as a triplet (u, v, θ) with θ
satisfying −→up = θ · −→uv. Note that |up| = θ|uv| and |pv| = (1− θ)|uv|.

4.1. Split Points

Split points are an important concept for deriving OMP candidates in road
networks. For a point q in a road network, its split point on edge (u, v) is defined
as the point s such that

dN (q, u) + |us| = dN (q, v) + |vs|. (19)

Figure 3(a) illustrates the concept of split points, where the dotted curves
denote the shortest paths between the end points. The location marked by the
triangle in Figure 3(a) is the split point s of q on edge (u, v). The shortest path
from q to any point on the left (or right) of s on edge (u, v) passes through u (or
v). The split point s exists because dN (q, u)+|uv| ≥ dN (q, v) and dN (q, v)+|uv| ≥
dN (q, u).

Note that the above definition of split points is only applicable when q is not
on (u, v). This condition can be further divided into three cases illustrated by
Figures 3(a)–(c):

– Case 1: q̃v does not pass through u, and q̃u does not pass through
v (see Figure 3(a)). For an arbitrary point p = (u, v, θ) on edge (u, v),
dN (q, p) can be represented as a piecewise linear function of θ delimited by
s: if θ < |us|/|uv|, dN (q, p) = dN (q, u) + |up| = dN (q, u) + θ|uv|; otherwise,
dN (q, p) = dN (q, v) + |vp| = dN (q, v) + (1− θ)|uv|.

– Case 2: q̃v passes through u (see Figure 3(b)). In this case, the split
point is vertex v, as can be verified by using Equation (19). For an arbitrary
point p = (u, v, θ) on edge (u, v), dN (q, p) = dN (q, u)+ |up| = dN (q, u)+θ|uv|,
which is a linear function of θ.

– Case 3: q̃u passes through v (see Figure 3(c)). In this case, the split point
is vertex u, as can be verified by using Equation (19). For an arbitrary point
p = (u, v, θ) on edge (u, v), dN (q, p) = dN (q, v) + |vp| = dN (q, v) + (1− θ)|uv|,
which is a linear function of θ.

12 D. Yan et al

In the above three cases, one can easily derive from Equation (19) that s =

(u, v, θs), with θs = |uv|+|qiv|−|qiu|
2|uv| .

When q = (u, v, θq) is on (u, v) (see Figure 3(d)), we define q to be the split
point s, so that for an arbitrary point p = (u, v, θp) on edge (u, v), dN (q, p) =
|θp − θq| · |uv|, which is still a piecewise linear function delimited by s.

Therefore, given a query point set Q, for each query point q ∈ Q and a point
p on edge (u, v), dN (q, p) is always a piecewise linear function delimited by the
split point s. Since sd(p) is the sum of piecewise linear functions, it achieves the
minimum or the maximum at delimiting points. Thus, Xu and Jacobsen (2010)
concludes that a min-sum OMP must exist among the split points. An algorithm
is proposed in Xu and Jacobsen (2010) which checks the split point of each query
point in Q on each edge in the road network G = (V, E), and picks the split point
p with the smallest value of sd(p) as the min-sum OMP. As a result, the number
of candidates to check is |Q| · |E|. Although Xu and Jacobsen (2010) includes
a pruning technique to skip some split points that are guaranteed not to be a
min-sum OMP, the search space after pruning is still huge.

4.2. Deriving Min-sum OMP Candidates

We discover the following property of min-sum OMP queries in road networks,
which significantly reduces the computational cost:

Theorem 1. Given a query point set Q = {q1, q2, . . . , qn} in graph G = (V, E),
where each point qi is associated with a weight wi. If all the weights are integers
or rational numbers, then V ∪Q must contain a min-sum OMP.

Theorem 1 states that it suffices to check only the vertices in V and the
points in Q for finding the min-sum OMP, which reduces the candidate space of
min-sum OMP queries from |Q| · |E| into (|V | + |Q|). Note that Theorem 1 is
valid even for weighted min-sum OMP, since computers approximate irrational
numbers with floating point numbers. Our previous experiments in Yan et al
(2011a) show that the algorithm that is based on Theorem 1 is always an order
of magnitude faster than the algorithm of Xu and Jacobsen (2010).

Before we present the complete proof of Theorem 1, we first prove that this
theorem holds when query points are unweighted, as would be established by
Lemma 2. The proof of this special case is based on Lemma 1 below. We will
then use Lemma 2 to prove Theorem 1 for weighted query points.

Lemma 1. Given a query point set Q, let sd(p) denote the sum of distances of
point p to the points in Q. Suppose that no point in Q is on edge (u, v) except
for the two end points u and v, then for any point x on edge (u, v), we have
sd(x) ≥ min{sd(u), sd(v)}.

Proof. For a point x on edge (u, v), we denote Qu as the set of query points whose
shortest paths to x pass through u. Accordingly, Qv = Q−Qu is the set of query
points whose shortest paths to x pass through v. Without loss of generality, let
us assume that |Qu| ≥ |Qv|. Figure 4 illustrates this scenario, where the hollow
points are the query points and the dotted lines are part of their shortest paths
to x.

Now, consider the point x′ on edge (u, v) which is δ closer to u than x. Let
Qab (a, b ∈ {u, v}) denote the set of query points that belong to Qa when the

Efficient processing of optimal meeting point queries in Euclidean space and road networks13

uv x x'

δ

Fig. 4. Illustration of Lemma 1

meeting point is x and belong to Qb when the meeting point is x′. Therefore, we
can classify the points in Q into the four disjoint sets of Quu, Qvv, Quv and Qvu.

For these four point sets, we have the following properties:

1. ∀p ∈ Quu, dN (p, x′) = dN (p, x)− δ.
This is because: dN (p, x′) = dN (p, u) + |ux′| = dN (p, u) + (|ux| − δ) =
(dN (p, u) + |ux|)− δ = dN (p, x)− δ.

2. ∀p ∈ Qvv, dN (p, x′) = dN (p, x) + δ.
This is because: dN (p, x′) = dN (p, v)+|vx′| = dN (p, v)+(|vx|+δ) = (dN (p, v)+
|vx|) + δ = dN (p, x) + δ.

3. Quv = ∅.
This is because: for any p ∈ Qu when the meeting point is x, we have dN (p, v)+
|vx′| = dN (p, v) + (|vx| + δ) > dN (p, v) + |vx| ≥ dN (p, x) = dN (p, u) + |ux| =
dN (p, u) + (|ux′|+ δ) > dN (p, u) + |ux′|, which implies that the shortest path
from p to x′ cannot pass through v (i.e. p 6∈ Qv) when the meeting point is x′.

4. ∀p ∈ Qvu, dN (p, x′) ≤ dN (p, x) + δ.
This is because: dN (p, x′) ≤ dN (p, v)+|vx′| = dN (p, v)+|vx|+δ = dN (p, x)+δ.

Therefore, we have

∑

q∈Q

dN (q, x)

=

 ∑

q∈Quu

+
∑

q∈Qvv

+
∑

q∈Quv

+
∑

q∈Qvu

 dN (q, x)

≥
∑

q∈Quu

[dN (q, x′) + δ] +

 ∑

q∈Qvv

+
∑

q∈Qvu

 [dN (q, x′)− δ]

=

 ∑

q∈Quu

+
∑

q∈Qvv

+
∑

q∈Qvu

 dN (q, x′)

+δ(|Quu| − |Qvv| − |Qvu|).

As Quv = ∅, we have
∑

q∈Quv
dN (q, x′) = 0. Besides, since |Qu| ≥ |Qv| when

the meeting point is x, i.e. |Quu|+ |Quv| ≥ |Qvu|+ |Qvv|, we have |Quu|−|Qvv|−
|Qvu| ≥ −|Quv| = 0.

14 D. Yan et al

qi1 qi2 qisu v…

Fig. 5. Illustration of Lemma 2

According to the above analysis,
∑

q∈Q

d(q, x)

≥

 ∑

q∈Quu

+
∑

q∈Qvv

+
∑

q∈Quv

+
∑

q∈Qvu

 d(q, x′)

=
∑

q∈Q

d(q, x′).

Thus, we conclude that sd(x′) ≤ sd(x) for arbitrary x, x′ and δ. If we set x′

to be u, we reach the conclusion that ∀x on edge (u, v), sd(u) ≤ sd(x). Due to
the symmetry of u and v, if |Qv| ≥ |Qu| we get: ∀x on edge (u, v), sd(v) ≤ sd(x).
To sum up, ∀x on edge (u, v), min{sd(u), sd(v)} ≤ sd(x).

Intuitively, Lemma 1 shows that for any edge on the road network, one of
the endpoints is at least as good as any other point on the edge in terms of
the sum-of-distances value. Now, let us take into consideration the special case
where there exist some query points on an edge, as illustrated by Figure 5. By
using Lemma 1, we have the following lemma:

Lemma 2. Given an OMP query with query point set Q on a road network
G = (V, E), V ∪Q contains an OMP.

Proof. For each edge (u, v) that contains some query points on it, but not at
the end points u and v, let us denote these query points as qi1 , qi2 , . . . , qis, as
illustrated in Figure 5. We introduce s dummy vertices pi1 , pi2 , . . . , pis on the
edge (u, v), where each dummy vertex pij , (j = 1, 2, . . . , s) is located at qij .

After the introduction of the dummy vertices for all the edges that contain
some query points on it but not at its end points, we obtain another road network
G′ such that all the query points in Q are at its vertices. Since the vertex set of
G′ is V ∪Q, we can conclude that V ∪Q contains an OMP according to Lemma 1.

Using Lemma 2 we now prove Theorem 1, which is for the general case of
weighted query points.

Proof. It is straightforward to convert the rational number weights into integer
weights with the same weight distribution among all the points in Q. For ex-
ample, suppose Q = {q1, q2, q3}, w1 = 0.15, w2 = 1.11 and w3 = 0.8, then we
may re-assign the weights to be w1 = 15, w2 = 111 and w3 = 80. Clearly, this
transformation does not change the result point x = argminx

∑
i wi · dN (qi, x).

Now, let us assume that all the weights are integers. We replace each point qi

with wi new points at the same location of qi, each of which has weight 1. The
resulting new query point set Q′ can be treated as unweighted, and thus Q′ ∪ V
contains the OMP x according to Lemma 2. It is straightforward to see that the

Efficient processing of optimal meeting point queries in Euclidean space and road networks15

|v1 v2|=6

|v1 v3|=7

|v1 v4|=5

|v2 v3|=7

|v3 v4|=4

|v1 q1|=4

|v2 q2|=3

|v1 q3|=2

v1

v2

v3

v4

q1
q2

q3

(a) A Road Network with Query Points

(b) Distance Functions on (v1, v3)

dN(q1, p)

dN(q3, p)

dN(q2, p)

θ

Fig. 6. Evaluation of Min-Max OMP Candidates

transformation from Q to Q′ does not change the result point x, and that the
locations in Q′ is exactly the locations in Q.

4.3. Deriving Min-Max OMP Candidates

Unlike min-sum OMP queries, the min-max OMP may not coincide with any
split points or edge endpoints. For each edge (u, v) ∈ E, we define its candidate
for min-max OMP as the local optimal point arg minp∈(u,v) md(p). Figure 6
illustrates the process of computing the min-max OMP candidate for an edge.
We show in Figure 6(a) an example of a road network with three query points q1,
q2 and q3, where the edge length and the positions of the query points are given.
One can easily derive the distance functions dN (qi, p) (i = 1, 2, 3) for point p =
(v1, v3, θ) on edge (v1, v3), which is shown in Figure 6(b), and md(p) is the upper
envelope of the distance functions dN (qi, p). In Figure 6(b), md(p) = dN (q2, p)
when 0 ≤ θ ≤ 4.5/7, and md(p) = dN (q3, p) when 4.5/7 < θ ≤ 1, and the min-
max OMP candidate is the lowest point on the upper envelope, i.e. θ = 4.5/7
where md(p) = 6.5. Here, the split points on edge (v1, v3) are those points with
θ = 1/7, 4/7, 6/7, and the min-max OMP candidate is neither a split point, nor
an edge endpoint.

We now present our approach of computing the min-max OMP candidate of
an edge (u, v). The first step is to compute the split points of all query points
qi on (u, v), and divide the domain [0, 1] of θ into several ranges using the split
points. Referring to the example in Figure 6 again, we can obtain three ranges
[0, 1/7], [1/7, 4/7] and [4/7, 6/7] for θ. Note that in each range [θa, θb], for any
query point qi, the portion of function dN (qi, p), denoted as dN (qi, p)|[θa,θb], is a
unique linear function.

After deriving the ranges, we compute the local optimal points for all ranges,
and then choose the one with the minimum value of md(p) as the min-max OMP
candidate of edge (u, v).

16 D. Yan et al

(b) Case 2: All Falling

 a b

(a) Case 1: All Rising

 a b

(c) Case 3: Intersected (d) Case 4: Not Intersected

 a b a b

Fig. 7. Illustration of Observation 2

For each range [θa, θb], we call a query point qi as “rising” (or respectively
“falling”) if dN (qi, p)|[θa,θb] increases (or respectively decreases) as θ increases.
Our algorithm for computing the local optimal point in each range is based on
the following observation:

Observation 2. Within each range [θa, θb] of an edge (u, v), the distance func-
tions dN (qi, p)|[θa,θb] of all the rising (or respectively falling) query points qi are
linear functions of θ with the same slope |uv| (or −|uv|).

Therefore, referring to Figure 7(a) (or (b)), if all the query points are rising
(or falling), their distance functions dN (qi, p)|[θa,θb] are parallel line segments
and the upper envelope is defined only by the highest one. Otherwise, the upper
envelope is defined by both the highest distance function of the rising query
point, and the highest distance function of the falling query point: if the two line
segments intersect (see Figure 7(c)), the local optimal point is the intersection
point of the two line segments; otherwise, the upper envelope is defined by the
higher line segment (see Figure 7(d)).

Thus, a local optimal point of a range can be computed by picking the highest
distance functions, which takes O(|Q|) time. Since there are O(|Q|) ranges for
each edge, it takes O(|Q|2) time to find the min-max OMP candidate on each
edge, which is rather expensive.

To cope with this problem, candidate evaluation should be avoided on those
edges that do not contain the min-max OMP. We now formalize this idea by
proposing a pruning rule, which is given in Theorem 2.

Lemma 3. For any two points p and p′ in the road network, md(p) ≤ md(p′)+
dN (p, p′).

Proof. Let qj be the query point farthest from p, and let qk be the query point
farthest from p′. Then, md(p) = dN (qj , p) ≤ dN (qj , p

′)+dN (p′, p) ≤ dN (qk, p′)+
dN (p, p′) = md(p′) + dN (p, p′).

Theorem 2. For any point p on edge (u, v), md(p) ≥ (md(u)+md(v)−|uv|)/2.

Proof. According to Lemma 3, we have md(u) ≤ md(p) + |up|, and md(v) ≤
md(p)+|pv|. The proof follows immediately by summing the above two inequalities.

Theorem 2 gives the lower bound of the md(p) for all points p on (u, v). Let
p∗ be the best min-max OMP candidate currently found. If the lower bound
defined by Theorem 2 is larger than md(p∗), then (u, v) can be pruned.

Efficient processing of optimal meeting point queries in Euclidean space and road networks17

5. Algorithms for Answering OMP Queries in Road

Networks

In this section, we present the algorithms for finding the OMP in a road network.
In Section 5.1, we introduce how we organize the road network and compute the
network distance. We present our baseline algorithm in Section 5.2, the Euclidean
distance bound based algorithm in Section 5.3, and the threshold algorithm based
algorithm in Section 5.4.

5.1. Road Network Organization

Road Network Representation. We use the adjacency list representation to
organize road networks. Since our algorithms for processing OMP queries require
the techniques of graph traversal, we hold the road network data in memory to
avoid I/O operations. In fact, although several disk-based adjacency list repre-
sentations have been proposed for road networks (Yiu et al, 2005; Shekhar and
Liu, 1997; Papadias et al, 2003), these methods require one I/O operation to
access an edge, and thus, they are very inefficient for graph traversal.

Most road network data fit well into the main memory of a modern com-
puter, such as the road networks for cities from Li et al (2005). Even when the
road network is too large to fit into the memory, such as a continental road net-
work, one may partition the road network using existing road network partition
techniques (Xu and Jacobsen, 2010; Yan et al, 2013), and only load the relevant
partitions into the main memory. Since this issue is not in the scope of this work,
we do not provide further discussion.

Network Distance Computation. The definition of OMP queries is based
on the network distance from a meeting point p to all the query points in Q.
Therefore, before presenting our algorithms for answering OMP queries, we first
briefly describe our approach to computing the network distance.

Some previous studies about query processing in road networks material-
ize the network distances between all the |V |(|V | − 1) pairs of vertices (Yiu et
al, 2005; Yan et al, 2011a), and store them on disk. However, the storage cost
is prohibitive for large road networks, and this method requires one I/O opera-
tion to obtain the network distance between each pair of vertices during query
processing.

In fact, for each OMP query with query set Q, it is sufficient to run |Q|
rounds of Single-Source Shortest Path (SSSP) computation online, each with a
source qi ∈ Q. On the other hand, our previous work on OMP queries (Yan et
al, 2011a) chooses to materialize all pairwise network distances offline, and as a
result, these algorithms become I/O bound.

We have done experiments to compare the algorithms in Yan et al (2011a)
with those proposed in this paper, and the results show that the algorithms
proposed in this work are much more efficient than the original algorithms, ex-
cept for a gradient-descent-style greedy algorithm that does not guarantee result
optimality.

Another choice for network distance computation is to use a shortest path
index. A lot of shortest path indices have been proposed for road networks.
For example, the indices of Samet et al (2008), Sankaranarayanan et al (2009),
and Cohen et al (2003) still require to pre-compute all pairwise network distances

18 D. Yan et al

offline, but they consume less space than O(|V |2) at the cost of spending longer
query time than O(1). On the other hand, the indices of Geisberger et al (2008)
and Tao et al (2011) focus on accelerating online shortest path computation.

As shortest path computation is not our main focus, we simply compute
network distance online by Dijkstra’s algorithm. For each query point qi ∈ Q,
we run Dijkstra’s algorithm with source qi in a pay-as-you-go fashion: whenever
the query evaluation requires a network distance dist(p, qi), we check whether
it is already computed by the SSSP computation with source qi; if dist(p, qi) is
already computed, we use it directly; otherwise, we continue to run the SSSP
computation until dist(p, qi) is computed.

Our pay-as-you-go SSSP computation only visits the vertices that have to be
visited, and each vertex is visited at most once from a source qi. The method is
particularly effective when the query points in Q is clustered in a small region
of the whole road network.

5.2. Baseline Algorithms

Recall that the min-sum OMP candidates consist of all the vertices in V and
all the query points in Q. The baseline algorithm for min-sum OMP queries,
denoted as BLsum, evaluates sd(v) for all v ∈ V and evaluates sd(q) for all
q ∈ Q. It then returns the candidate point with the minimum sum-of-distances
value as the min-sum OMP.

For min-max OMP queries, an OMP candidate is derived for each edge of
a road network G = (V, E). The baseline algorithm for min-max OMP queries,
denoted as BLmax, checks each edge (u, v) ∈ E: if (md(u) + md(v) − |uv|)/2 >
md(p∗) where p∗ is the best candidate currently found, then (u, v) is pruned ac-
cording to Theorem 2; otherwise, the OMP candidate is computed and compared
with p∗, and then p∗ gets updated if necessary.

5.3. Euclidean Distance Bound Based Approach

Our first set of algorithms are designed to answer OMP queries in road networks
whose edge length corresponds to the physical distance. The algorithms are based
on Best-First Search (BFS) technique over an R-tree index. We now briefly
review the concepts of BFS and Euclidean distance bound.

Best-First Search. BFS is an effective search technique for optimization
problems over discrete data domains, and has been applied in the evaluation of
various spatial queries.

Given a discrete data domain O = {o1, . . . , on}, suppose that we want to
find a data object o ∈ O such that o minimizes a target function f(o). The
BFS framework requires that, for each data object o, a tight lower bound of
f(o), denoted as LB(o), can be efficiently computed. The data objects are then
checked in non-decreasing order of LB(o), since objects with smaller LB(o) have
a higher chance of being optimal. Meanwhile, the data point o∗ with the minimum
target function value currently found is maintained. The search stops as long as
a data object o is checked to have LB(o) ≥ f(o∗), since all the non-checked data
objects o′ have target function values f(o′) ≥ LB(o′) ≥ LB(o) ≥ f(o∗).

The BFS framework has two benefits: (1) only a portion of the data objects

Efficient processing of optimal meeting point queries in Euclidean space and road networks19

are checked, and (2) the threshold value f(o∗) decreases after checking each
object, which increases the chance of pruning.

Although other search techniques are applicable for OMP query processing in
road networks, they cannot outperform BFS. For example, a novel road network
partitioning scheme is proposed in Xu and Jacobsen (2010), by which an OMP
query only needs to access the graph fragments that collectively enclose all the
points in Q. However, this method does not enjoy the second benefit of BFS
mentioned above, and as is observed by Yan et al (2013), it is only correct in
planar road networks without flyovers and tunnels. Our prior work (Yan et al,
2011a) also proposes two efficient search techniques to find high-quality meeting
points but they do not guarantee result optimality. On the other hand, the
algorithms proposed in this paper find the exact OMPs.

Euclidean Distance Bound. When applying our branch-and-bound algo-
rithms, we require that the following network distance lower bound holds for any
two points pi and pj in a road network,

dN (pi, pj) ≥ ‖pipj‖2. (20)

For any point p in a road network and a query point set Q, Equation (20)
implies the following Euclidean distance lower bounds of sd(p) and md(p):

sd(p) =

n∑

i=1

dN (qi, p) ≥
n∑

i=1

‖qip‖2. (21)

md(p) = max n
i=1dN (qi, p) ≥ max n

i=1‖qip‖2. (22)

Let e be an entry of an R-tree node, and let e.B be the Minimum Bounding
Rectangle (MBR) of e. Note that any object indexed under e is contained within
e.B. Furthermore, let mindist(e.B, qi) be the minimum Euclidean distance be-
tween e.B and qi, which can be easily computed (Yan et al, 2011b). Then, we
have the following Euclidean distance lower bounds for any point p contained
within e.B:

sd(p) =
∑n

i=1dN (qi, p) ≥
∑n

i=1mindist(e.B, qi) , LBsum(e, Q). (23)

md(p) =
n

max
i=1

dN (qi, p) ≥
n

max
i=1

mindist(e.B, qi) , LBmax(e, Q). (24)

We use lighter notations, LBsum(e) and LBmax(e), to denote the lower
bounds on the RHS (right-hand side) of Equations (23) and (24), whenever
Q is clear from the context. We also denote the lower bounds on the RHS of
Equations (21) and (22) by LBsum(p) and LBmax(p).

Branch-and-Bound Algorithms for Finding OMP. We first consider
the algorithm for finding a min-sum OMP. Since the vertices in V are the can-
didates of the min-sum OMP, we first bulk-load an R-tree index T over all the
vertices in V , using the sort-tile-recursive algorithm (Leutenegger et al, 1997).
Note that each vertex is just a 2D point.

Our branch-and-bound algorithm for answering min-sum OMP queries, de-
noted as BBsum, is given in Algorithm 1. We check the vertex candidates in
Lines 5–14, following the BFS framework: a priority queue H is maintained dur-
ing R-tree traversal, whose elements are given by (key, val), where val = e is
either an R-tree node or a vertex, and key is the BFS lower bound LBsum(e).

20 D. Yan et al

Algorithm 1 The Branch-and-Bound Algorithm (BBsum)

Input: a query set Q, a road network G = (V, E),
an R-tree index T built on the vertices in V
Output: an OMP p∗

1: p∗ ← NULL; best←∞
2: H ← empty priority queue with elements of format (key, val)
3: for each entry e in root(T) do
4: H.enqueue(LBsum(e), e)
5: while H is not empty do
6: (LBsum(e), e)← H.dequeue()
7: if LBsum(e) ≥ best then
8: break
9: if e is a vertex then

10: Compute sd(e)
11: Update p∗ and best if sd(e) < best
12: else
13: for each entry e′ in the R-tree node that e points to do
14: H.enqueue(LBsum(e′), e′)
15: for each query point q ∈ Q do
16: if LBsum(q) < best then
17: Compute sd(q)
18: Update p∗ and best if sd(q) < best
19: return p∗

Algorithm 2 The Branch-and-Bound Algorithm (BBmax)

Input: a query set Q, a road network G = (V, E),
an R-tree index T built on the edges in E
Output: an OMP p∗

1: p∗ ← NULL; best←∞
2: H ← empty priority queue with elements of format (key, val)
3: for each entry e in root(T) do
4: H.enqueue(LBmax(e), e)
5: while H is not empty do
6: (LBmax(e), e)← H.dequeue()
7: if LBmax(e) ≥ best then
8: return p∗

9: if e is an edge (u, v) then
10: if (md(u) + md(v)− |uv|)/2 < best then
11: Compute OMP candidate pc of (u, v)
12: Compute md(pc)
13: Update p∗ and best if md(pc) < best
14: else
15: for each entry e′ in the R-tree node that e points to do
16: H.enqueue(LBmax(e′), e′)
17: return p∗

Efficient processing of optimal meeting point queries in Euclidean space and road networks21

Elements with smaller LBsum(e) are processed first. We maintain the best meet-
ing point p∗ currently found, as well as the sum-of-distances value best = sd(p∗),
during the checking, until the BFS stopping condition is satisfied (Lines 7–8).
After checking all the vertex candidates, we already have a tight threshold best,
which is then used for “Euclidean distance bound” pruning when we check all
the query point candidates (Lines 15–18).

We now consider the branch-and-bound algorithm for answering min-max
OMP queries, denoted as BBmax, which is given in Algorithm 2. The algorithm
is similar to BBsum, except that the OMP candidates are computed from each
edge (Line 11), rather than directly available. Since each edge contains an OMP
candidate, we first build an R-tree T over all the edges in E, and during query
processing, we check the edges using BFS over the R-tree T . Note that each edge
is just a line segment, since in real road network datasets, a non-straight edge is
usually modeled by a polyline, which explains why many vertices have degree 2.

We will demonstrate that the “Euclidean distance bound” technique is very
effective in Section 6.2. Compared with the baseline algorithms, the branch-
and-bound algorithms considerably improve the performance of answering both
min-sum and min-max OMP queries. However, BBsum and BBmax can only be
applied when the network distance is lower bounded by Euclidean distance, as
defined in Equation (20).

5.4. Threshold Algorithm Based Approaches

The branch-and-bound algorithms are only applicable when the edge length of
a road network corresponds to the physical distance. However, this assumption
may not always hold. For example, the edge length may refer to travel delay.

Therefore, we develop our second set of algorithms to work on arbitrary road
networks, based on the Threshold Algorithm (or TA) for top-k queries. We first
review Fagin’s TA (Fagin et al, 2003).

Threshold Algorithm. We are given a relational table with schema (A1, A2, . . . , An)
along with n lists of all the tuples in the table, where each list Li sorts the tuples
in non-decreasing order of the value of attribute Ai. Fagin’s TA picks the top-1
tuple t with the smallest score

∑n
i=1 Ai(t) (or maxn

i=1 Ai(t)), by accessing the
next tuple of the lists Li in a round-robin fashion, until the score lower bound
of all the unchecked tuples becomes larger than the best score currently found.
Suppose that the last element accessed in Li is ti, then the score lower bound is
computed as

∑n
i=1 Ai(ti) (or maxn

i=1 Ai(ti)).

Application of TA for Finding OMPs. Our algorithms concurrently and
incrementally expand the network around each qi ∈ Q using Dijkstra’s algorithm.
For each qi, the vertices are visited in non-decreasing order of dN (qi, v) in the
expansion. Here, a vertex v is analogous to a tuple in TA, dN (qi, v) is analogous
to the attribute value Ai(v), and the list Li in TA corresponds to the sequence of
vertices v with non-decreasing dN (qi, v). In contrast to TA, we do not check the
lists in a round-robin fashion. Let ni be the next vertex to visit in the network
expansion of qi, then we pick the vertex nj to check in each iteration, where
j = mini{dN (ni, qi)}.

To realize this traversal order, for each query point qi ∈ Q, we maintain
a shortest path wrapper wi for incremental SSSP computation with source qi.
The wrapper wi supports two operations. First, wi.top() returns the next vertex

22 D. Yan et al

ni whose network distance dN (qi, ni) is to be computed, and returns NULL
when the network distances to all the vertices in V are computed. Second,
wi.forward() computes dN (qi, ni) and updates the distance estimations for all
the vertices adjacent to ni, which corresponds to one round of Dijkstra’s algo-
rithm.

Unlike our baseline algorithms and branch-and-bound algorithms presented
in Sections 5.2 and 5.3, which use pay-as-you-go SSSP computation implicitly
when computing sd(v) (or md(v)) for some OMP candidate v, our TA-based
algorithms use the shortest path wrapper explicitly for traversal, rather than for
network distance computation.

Note that each vertex v is visited for at most |Q| times, upon which time
dN (qi, v) is available for all qi, and sd(v) (or md(v)) is computed.

If a vertex v is an OMP candidate, we add v to a candidate set S when v is
visited for the first time, and the evaluation of sd(v) (or md(v)) is delayed until
v is visited for the |Q|-th time. We maintain a lower bound for vertex v which
is initialized as the Euclidean distance bound (cf. Equation (21) or (22)) when v
is visited for the first time, and the bound is tightened by replacing ‖qiv‖2 with
dN (qi, v) whenever qi expands to v. Let p∗ be the best meeting point currently
found, then v is removed from S if the tightened lower bound is larger than
sd(p∗) (or md(p∗)). We say that v is pruned in this case.

For an OMP candidate p on edge (u, v), we can only compute sd(p) or md(p)
when both u and v are visited for Q times. To realize this operation, whenever
a vertex is visited for the first time, for any edge e adjacent to it, we put e into
S if e may contain an OMP candidate.

Let nj (from wj) be the next vertex to check, then we have the following stop
condition:

Theorem 3. If S = ∅ and dN (nj , qj) ≥ sd(p∗)/|Q| (or dN (nj , qj) ≥ md(p∗)),
then p∗ is the OMP.

Proof. First, S = ∅ implies that all the checked candidates are pruned.
For any non-visited candidate p on an edge (u, v), it holds that neither u nor

v is visited, since edge (u, v) would be added into S whenever there exists an
OMP candidate on (u, v) and u or v is checked.

Furthermore, such an edge (u, v) does not contain any query point qi, or
otherwise, p∗ is not assigned a value yet since no vertex has ever been fetched
from wrapper wi.

Thus, for any query point qi, we have dN (p, qi) ≥ min{dN (u, qi), dN (v, qi)} ≥
dN (nj , qj), which implies sd(p) ≥ sd(p∗) when dN (nj , qj) ≥ sd(p∗)/|Q| (or,
md(p) ≥ md(p∗) when dN (nj , qj) ≥ md(p∗)).

It follows the proof, since p is an arbitrary non-visited candidate.

TA-Based Algorithms for Finding OMP. Algorithm 3 shows our TA-
based algorithm for min-sum OMP queries, denoted as TAsum. A priority queue
H is used to maintain the traversal order, which contains the next vertex to visit,
nj , for each query point qj . H and the shortest path wrappers wi are initialized in
Lines 3–7, and whenever a vertex nj is processed, H gets the next vertex to visit
from wj in Lines 38–40. Each min-sum OMP candidate v (note that v is either
a vertex or a query point qi) is associated with a counter counter(v) to record
the number of times it is visited, bound(v) to record the sum of the non-updated
Euclidean distance bounds, and sd(v) to record the sum of the actual network
distances already obtained. Lines 9–22 process the current vertex nj , and Lines

Efficient processing of optimal meeting point queries in Euclidean space and road networks23

Algorithm 3 The TA-Based Algorithm (TAsum)

Input: a query set Q, a road network G = (V, E),
Output: an OMP p∗

1: p∗ ← NULL; best←∞; S ← ∅
2: H ← empty priority queue with elements of format (key, val)
3: for each query point qi ∈ Q do
4: Initialize shortest path wrapper wi with source qi

5: ni ← wi.top()
6: if ni 6= NULL then
7: H.enqueue(dN (ni, qi), (ni, qi)); wi.forward()
8: while H is not empty do
9: (nj , qj)← H.dequeue()

10: if S = ∅ ∧ dN (nj , qj) ≥ best/|Q| then
11: return p∗

12: if counter(nj) = 0 then
13: bound(nj)←

∑n
i=1 ‖qinj‖2; sd(nj)← 0

14: S ← S ∪ nj if bound(nj) < best
15: if nj ∈ S then
16: bound(nj)← bound(nj)− ‖qjnj‖2
17: sd(nj)← sd(nj) + dN (nj , qj)
18: S ← S − nj if sd(nj) + bound(nj) ≥ best
19: counter(nj)← counter(nj) + 1
20: if nj ∈ S ∧ counter(nj) = |Q| then
21: Update p∗ and best if sd(nj) < best
22: S ← S − nj

23: for each edge (u, v) adjacent to nj containing a query point qi do
24: if both dN (u, qi) and dN (v, qi) are computed by wi then
25: if qi ∈ S then
26: Evaluate dN (qi, qj)
27: bound(qi)← bound(qi)− ‖qiqj‖2
28: sd(qi)← sd(qi) + dN (qi, qj)
29: S ← S − qi if sd(qi) + bound(qi) ≥ best
30: counter(qi)← counter(qi) + 1
31: if qi ∈ S ∧ counter(qi) = |Q| then
32: Update p∗ and best if sd(qi) < best
33: S ← S − qi

34: else
35: if counter(qi) = 0 then
36: bound(qi)←

∑n
k=1 ‖qkqi‖2; sd(qi)← 0

37: S ← S ∪ qi if bound(qi) < best
38: nj ← wj .top()
39: if nj 6= NULL then
40: H.enqueue(dN (nj , qj), (nj , qj)); wj .forward()
41: return p∗

24 D. Yan et al

Algorithm 4 The TA-Based Algorithm (TAmax)

Input: a query set Q, a road network G = (V, E)
Output: an OMP p∗

1: p∗ ← NULL; best←∞; S ← ∅
2: H ← empty priority queue with elements of format (key, val)
3: for each query point qi ∈ Q do
4: Initialize shortest path wrapper wi with source qi

5: ni ← wi.top()
6: if ni 6= NULL then
7: H.enqueue(dN (ni, qi), (ni, qi)); wi.forward()
8: while H is not empty do
9: (nj , qj)← H.dequeue()

10: if S = ∅ ∧ dN (nj , qj) ≥ best then
11: return p∗

12: if counter(nj) = 0 then
13: md(nj)← maxn

i=1 ‖qinj‖2;
14: for each edge e adjacent to nj do
15: {Let v be the other endpoint of e}

16: if
md(nj)+md(v)−|njv|

2 <= best then
17: S ← S ∪ e
18: else
19: md(nj)← dN (nj , pj) if dN (nj , pj) > md(nj)
20: for each edge e adjacent to nj do
21: {Let v be the other endpoint of e}

22: if e ∈ S ∧ md(nj)+md(v)−|njv|
2 > best then

23: S ← S − e
24: counter(nj)← counter(nj) + 1
25: if counter(nj) = |Q| then
26: for each edge e adjacent to nj do
27: {Let v be the other endpoint of e}
28: if e ∈ S ∧ counter(v) = |Q| then
29: Evaluate the OMP candidate on e
30: Update p∗ and best if necessary
31: S ← S − e
32: nj ← wj .top()
33: if nj 6= NULL then
34: H.enqueue(dN (nj , qj), (nj , qj)); wj .forward()
35: return p∗

23–37 process the query points qi on edges (u, v) adjacent to nj, among which
Lines 24–33 correspond to the case where both endpoints of (u, v) are visited by
qj , and Lines 35–37 correspond to the case where only one endpoint is visited by
qj .

Algorithm 4 shows our TA-based algorithm for min-max OMP queries, de-
noted TAmax. The algorithm is similar to Algorithm 3, except that the candidate
set S is now a set of edges that contain OMP candidates rather than the OMP
candidates themselves. Also, note that md(v) is just the lower bound for vertex
v that gets initialized in Line 13 and updated in Line 19 (according to Equa-

Efficient processing of optimal meeting point queries in Euclidean space and road networks25

tion (22)), and it is needed only for pruning in Lines 16 and 22 (according to
Theorem 2).

It is worth noting that the TA-based algorithms are proposed to study the
potential of using the TA technique to improve the performance of answering
OMP queries. However, there is no guarantee that the TA technique is always
effective. In fact, our experiments in Section 6.2 show that, TAmax is much faster
than BLmax, but TAsum is not effective.

6. Experiments

In this section, we evaluate the performance of our algorithms using both real and
synthetic datasets. We find that the weights of query points do not significantly
influence the performance of OMP query processing and, thus, we only report
the experiments on unweighted OMP queries.

We randomly generate query points in a spatial setting. Since the experimen-
tal results on query sets generated with biased distribution are similar to those
on uniform query sets, we only report the experiments with uniformly generated
query sets. For each experimental setting, the reported results are averaged over
100 randomly generated queries.

All the experiments were done on a computer with 3Hz Intel CPU and 3GB
memory. All our programs were written in JAVA, and run on CentOS 5.7.

6.1. Performance of Answering OMP Queries in Euclidean
Space

Query Generator. We generate two kinds of query point sets. In the first
setting, |Q| query points are randomly generated in the domain [0, 1] × [0, 1].
In the second setting, we generate k groups of clustered points. Specifically, k
square windows with side length δ (0 < δ < 1) are generated within the domain
[0, 1]×[0, 1], and then |Q|/k query points are randomly generated in each window.
In our experiments, we set δ = 20% and k = 2, and fix the tolerance parameter
ǫ of our gradient descent framework to be 10−6.

Results of Min-sum OMP Queries. From now on, we denote our gradient
descent method for min-sum OMP queries by Grad, Newton’s method by Newton,
and Weiszfeld’s algorithm by Weisz.

Figure 8 shows the experimental results of our algorithms for min-sum OMP
queries, when the query set size |Q| varies. In this set of experiments, we select |Q|
from {200k, 400k, . . . , 2000k}. Figures 8(a) and (b) show the running time and
number of rounds of the three algorithms when the query points are randomly
generated in a [0, 1]× [0, 1] window. We can see that Newton is faster than Weisz,
and both algorithms are two orders of magnitude faster than the gradient descent
method; furthermore, Newton always stops in 2–3 rounds with the help of the
Hessian matrix.

Figures 8(c) and (d) show the running time and number of rounds of the three
algorithms when the query points are generated in two windows, each with |Q|/2
query points. The results are similar to those of Figures 8(a) and (b), except that
the benefit of Newton is more prominent: Newton is an order of magnitude faster

26 D. Yan et al

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

E
xe

c.
 T

im
e

(m
s)

|Q| (× 100k)

Newton
Grad
Weisz

(a) One-Win Execution Time

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 R

ou
nd

s

|Q| (× 100k)

Newton
Grad
Weisz

(b) One-Win Number of Rounds

 10

 100

 1000

 10000

 100000

 2 4 6 8 10 12 14 16 18 20

E
xe

c.
 T

im
e

(m
s)

|Q| (× 100k)

Newton
Grad
Weisz

(c) Two-Win Execution Time

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 R

ou
nd

s

|Q| (× 100k)

Newton
Grad
Weisz

(d) Two-Win Number of Rounds

Fig. 8. Min-sum OMP Query Results in Euclidean Space

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 4 6 8 10 12 14 16 18 20

E
xe

c.
 T

im
e

(m
s)

|Q| (× 100k)

GRAD
RAND

(a) One-Win Execution Time

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

 2 4 6 8 10 12 14 16 18 20

E
xe

c.
 T

im
e

(m
s)

|Q| (× 100k)

GRAD
RAND

(b) Two-Win Execution Time

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 R

ou
nd

s

|Q| (× 100k)

One-Win
Two-Win

(c) Number of Rounds

 0
 1e-007
 2e-007
 3e-007
 4e-007
 5e-007
 6e-007
 7e-007
 8e-007

 2 4 6 8 10 12 14 16 18 20

G
R

 R
at

io

|Q| (× 100k)

One-Win
Two-Win

(d) Min-Max Ratio

Fig. 9. Min-Max OMP Query Results in Euclidean Space

Efficient processing of optimal meeting point queries in Euclidean space and road networks27

than Weisz. This observation verifies that Newton is the best choice for min-sum
OMP, and performs extremely well with biased query point distribution.

To sum up, we recommend to use Newton in applications that require find-
ing min-sum OMP (weighted or unweighted). For example, the SPM algorithm
proposed in Papadias et al (2004) and Papadias et al (2005) for answering ANN
queries, requires to find the min-sum OMP first, for the purpose of search space
pruning. The gradient descent method was originally used in Papadias et al
(2004) and Papadias et al (2005) to find the min-sum OMP, while Newton’s
method is actually a more efficient method.

Results of Min-Max OMP Queries. From now on, we denote our gra-
dient descent method for min-max OMP queries by GRAD, and denote Welzl’s
randomized algorithm by RAND. Furthermore, given the meeting point p re-
turned by GRAD and the exact OMP p∗ computed by RAND, we define the
GRAD:RAND ratio (or simply the GR ratio) to evaluate the quality of p, and
the ratio is given by:

maxn
i=1 ‖qi, p‖2

maxn
i=1 ‖qi, p∗‖2

− 1. (25)

The quality of the meeting point p is higher when the GR ratio is closer to 0.
Figure 9 shows the experimental results of our algorithms for min-max OMP

queries, when the query set size |Q| varies. In this set of experiments, we select
|Q| from {200k, 400k, . . . , 2000k}. Figure 9(a) shows the running time of both
algorithms when the query points are randomly generated in one window of
[0, 1]× [0, 1], where we can see that RAND is over an order of magnitude faster
than GRAD. Figure 9(b) shows the running time of both algorithms when the
query points are generated in two windows, each of which has |Q|/2 query points,
where we obtain the same observation as in Figure 9(a). The results are within
the expectation, since the expected time complexity of RAND is O(|Q|).

Figure 9(c) shows the number of rounds of GRAD when the query points are
generated in one window and two windows: GRAD usually stops after one round
in the two-window case, due to our choice of starting point and the application
of Observation 1 for early termination (i.e. in many cases the starting point is
already the exact OMP).

Figure 9(d) shows the GR ratio when the query points are generated in one
window and two windows: the ratio value is very small, and thus the result
OMPs of GRAD are of high quality. Note that the GR ratio is smaller in the
two-window case, due to our method of picking starting point and the application
of Observation 1.

To sum up, we recommend to use RAND for finding unweighted min-max
OMP, but since RAND is not applicable for weighted min-max OMP queries, we
have to use our gradient descent method to find the weighted min-max OMP.

6.2. Performance of Answering OMP Queries in Road
Networks

Real Road Network Datasets. We evaluate the performance of our algorithms
for the OMP queries in road networks, using the five road network datasets
from Li et al (2005), and the railroad and highway networks from CTA Trans-

28 D. Yan et al

Table 1. Real Road Network Datasets

Name |V | |E|

California (CA) 21048 21693

North America (NA) 175813 179179

Oldenburg (OL) 6105 7035

San Francisco (SF) 174956 223001

San Joaquin County (TG) 18263 23874

RailRoad Network (RWay) 25785 32249

Highway Network (HWay) 74028 111936

portation Networks 1. Table 1 summarizes the seven datasets, which include the
road networks of a continent (NA), a US state (CA), a US city (SF), a US county
(TG), a European city (OL), and other types of networks (RWay and HWay).
Although we use different kinds of network datasets, the experimental results
are quite consistent over all kinds of network datasets. Therefore, we only show
our experimental results for the CA dataset. The complete results are given in
http://www.cse.ust.hk/~yanda/datasets/summary.pdf.

Query Generator. For each dataset, we generate query point sets by ran-
domly generating a square window on the road network, and then randomly
generate |Q| query points on the part of the road network in the window. Let W
denote the difference between the x-coordinates of the leftmost vertex and the
rightmost vertex in the road network, and let H denote the difference between
the y-coordinates of the highest vertex and the lowest vertex in the road network.
Then, given a query window parameter α, the size of the query window is set to
αW × αH , and it is randomly generated within the minimum bounding box of
the road network.

Measures. We define network access as the proportion of vertices in a road
network that are visited during OMP query evaluation (i.e. by the SSSP com-
putation with sources qi). Note that if the road network is stored on a disk as
in Yiu et al (2005), Shekhar and Liu (1997) and Papadias et al (2003), network
access can be directly translated into the number of I/O operations, where each
I/O operation accesses the adjacency list of a visited vertex.

Results of Min-sum OMP Queries. Figures 10(a) and (b) show the run-
ning time and network access of min-sum OMP queries when the window pa-
rameter α = 10%, and |Q| varies from 100 to 1000. Figure 10(a) shows that the
running time of all three algorithms increase as |Q| increases. From Figure 10(a),
we can see that TAsum is over one order of magnitude slower than the other two
algorithms, which is because of the loose lower bound in the stopping criteria.
Besides, BBsum is twice as fast as the baseline BLsum. Figure 10(b) shows that
the network access is insensitive to |Q|, and that TAsum in most cases accesses
the whole road network, while the other algorithms access just a small fraction of
the network. Note that even the baseline BLsum accesses just 20% (rather than

1 http://cta.ornl.gov/transnet/

http://www.cse.ust.hk/~yanda/datasets/summary.pdf
http://cta.ornl.gov/transnet/

Efficient processing of optimal meeting point queries in Euclidean space and road networks29

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10

E
xe

c.
 T

im
e

(m
s)

|Q| (× 100)

BLsum
BBsum
TAsum

(a) Execution Time v.s. |Q|

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

N
et

w
or

k
A

cc
es

s
(%

)

|Q| (× 100)

BLsum
BBsum
TAsum

(b) Network Access v.s. |Q|

 1

 10

 100

 1000

 10000

 2 4 6 8 10 12 14 16 18 20

E
xe

c.
 T

im
e

(m
s)

α (%)

BLsum
BBsum
TAsum

(c) Execution Time v.s. α

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

N
et

w
or

k
A

cc
es

s
(%

)

α (%)

BLsum
BBsum
TAsum

(d) Network Access v.s. α

Fig. 10. Min-sum OMP Query Results for the CA dataset

100%) of the road network. This advantage is attributed to our pruning method
in the evaluation of sd(v): when checking vertex v, if we find that the partial sum-

mation
∑k

i=1 dN (qi, v) (k < n) is not smaller than the current optimal sd(p∗), v
is pruned without evaluating dN (qi, v) (k < i < n).

Figures 10(c) and (d) show the running time and network access of min-sum
OMP queries when |Q| is fixed to 100, and the window parameter α varies from
2% to 20%. Figure 10(c) shows that the running time of TAsum is insensitive to
α, which is because it always access the whole network as shown in Figure 10(d).
On the other hand, Figure 10(d) shows that BLsum and BBsum access a larger
fraction of the road network as α increases, which is because the query points
spread out over a larger portion of the network, which has to be accessed by
BLsum and BBsum. As a result of accessing a larger fraction of the network, the
running time of BLsum and BBsum also increases as α increases.

Since TAsum is always slower than the baseline BLsum, it should not be used
in min-sum OMP queries. The bad performance of TAsum is due to its loose
stopping threshold, and is also observed in Yiu et al (2005) for ANN queries. On
the other hand, BBsum always performs the best, and should be used whenever
the edge length of a road network is based on the physical distance. Otherwise,
BLsum is the proper choice.

Results of Min-Max OMP Queries. Figures 11(a) and (b) show the
running time and network access of min-max OMP queries when α = 10%, and
|Q| varies from 100 to 1000. Since BLmax checks all the edges e ∈ E using
Theorem 2, md(v) has to be evaluated for all v ∈ V . As a result, the network
access of BLmax is always 100% and, thus, we do not show it in Figure 11(b).
Unlike TAsum, TAmax is faster than the baseline BLmax, since its lower bound

30 D. Yan et al

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10

E
xe

c.
 T

im
e

(m
s)

|Q| (× 100)

BLmax
BBmax
TAmax

(a) Execution Time v.s. |Q|

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

N
et

w
or

k
A

cc
es

s
(%

)

|Q| (× 100)

BBmax
TAmax

(b) Network Access v.s. |Q|

 10

 100

 1000

 2 4 6 8 10 12 14 16 18 20

E
xe

c.
 T

im
e

(m
s)

α (%)

BLmax
BBmax
TAmax

(c) Execution Time v.s. α

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

N
et

w
or

k
A

cc
es

s
(%

)

α (%)

BBmax
TAmax

(d) Network Access v.s. α

Fig. 11. Min-max OMP Query Results for the CA dataset

in the stopping criteria is much tighter: an edge is inserted and maintained in
candidate set S, only if points on the edge is closer than the current optimal
md(p∗) from all the query points (checked by Theorem 2). Figures 11(a) and (b)
show that BBmax always performs the best, while TAmax is better than BLmax

in terms of both running time and network access. Figures 11(c) and (d) show
the running time and network access of min-max OMP queries when |Q| = 100,
and α varies from 2% to 20%, where we obtain similar results.

To sum up, BBmax is desirable for processing min-max OMP queries when-
ever the edge length of a road network is based on the physical distance. Other-
wise, TAmax is the proper choice.

6.3. Impact of Outliers to the OMP Algorithms for Road
Networks

In this subsection, we study how sensitive our pruning techniques are to outlier(s)
in a query group.

Query Generator. Let the data domain be a W ×H rectangle. We define
five zones in the data domain as illustrated in Figure 12, where each zone is
a 20%W × 20%H rectangular window. For each query Q, we generate |Q| − 1
query points randomly in Zone 1 and the last query point (as an outlier) in Zone
i for i ∈ {1, 2, . . . , 5}. The larger i is, the farther the outlier is to the other query
points. Note that the data domain is no longer the MBR of all the vertex points,
since some zone can be empty. For example, in HWay and RWay, many regions
are oceans without network coverage. We thus choose the data domain a smaller

Efficient processing of optimal meeting point queries in Euclidean space and road networks31

Zone 5

Zone 2

Zone 3

Zone 4

Zone 1

Fig. 12. Zones Used in the Query Generator

 10

 100

 1000

 1 2 3 4 5

E
xe

c.
 T

im
e

(m
s)

Zone of Outlier

BLsum
BBsum
TAsum

(a) Exec. Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

N
et

w
or

k
A

cc
es

s
(%

)

Zone of Outlier

BLsum
BBsum
TAsum

(b) Network Access (Min-sum)

Fig. 13. Effect of Outlier on Min-sum OMP Algorithms on CA

dense region so that all zones are not empty. We just generate query points in
the dense region, and the actual OMP is still allowed to be located in a sparse
region.

Results of Min-sum OMP Queries. Figures 13(a) and (b) show the
running time and network access of min-sum OMP queries when the outlier
lies in different zones. For CA pick the data domain for query generation as
x = [−124,−120] and y = [39, 42]. We can see that for all the algorithms, the
running time and network access is not significantly affected by the outlier loca-
tion. In general, the running time and network access slightly increase when the
outlier is farther way from the other query points.

Results of Min-max OMP Queries. Intuitively, the location of an outlier
has a greater impact on the location of the min-max OMP than the min-sum
OMP. Therefore, it is more important to study how sensitive the performance of
min-max OMP algorithms is to the outlier location.

Figures 14(a) and (b) show the running time and network access of min-sum
OMP queries when the outlier lies in different zones. As shown in Figure 14(a),
except BLmax which already performs exhaustive search, the other two algo-
rithms take significantly longer time when the outlier is farther away from the
other query points. While BBmax is always faster than BLmax, TAmax is slower
than BLmax when the outlier is very far away due to the additional overhead
caused by Fagin’s TA. This shows that the pruning technique of Fagin’s TA is
not effective when the query points are scattered over a large region. However,
when the query points are not too scattered, TAmax can be over an order of

32 D. Yan et al

 10

 100

 1000

 1 2 3 4 5

E
xe

c.
 T

im
e

(m
s)

Zone of Outlier

BLmax
BBmax
TAmax

(a) Exec. Time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

N
et

w
or

k
A

cc
es

s
(%

)

Zone of Outlier

BBmax
TAmax

(b) Network Access

Fig. 14. Effect of Outlier on Min-max OMP Algorithms on CA

magnitude faster than BLmax, and thus, it is thus preferred when BBmax is not
applicable.

7. Conclusions

In this paper, we present a comprehensive study of OMP query processing in
two spatial settings, Euclidean space and road networks. We utilize two new
pruning techniques, Euclidean distance bound and threshold algorithm, to de-
velop efficient algorithms for finding OMPs in road networks. The algorithms
are efficient, since they only access part of the road networks and examine part
of the candidates. We also propose a gradient-descent framework for answering
weighted OMP queries in Euclidean space in general, and review the literature to
identify the best algorithm for particular types of OMP queries. Finally, we find
the best choice of the algorithms for each type of OMP query through extensive
experiments on both real and synthetic datasets.

As a future work, we plan to study the performance of our proposed algo-
rithms when the road network dataset is stored on a disk, especially focusing on
how the I/O overhead impacts the overall cost of query processing.

Acknowledgements. This work is partially supported by GRF under grant numbers
HKUST 617610.

References

Alsuwaiyel MH (1999) Algorithms: Design techniques and analysis. World Scientific Pub Co
Inc.

Beck A, Teboulle M (2009) Gradient-based algorithms with applications to signal recovery.
Convex Optimization in Signal Processing and Communications.

Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press.
Brimberg J, Love RF (1993) Global convergence of a generalized iterative procedure for the

minisum location problem with lp distances. Operations Research, 41(6): 1153–1163.
Chen R (1984a) Location problems with costs being sums of powers of Euclidean distances.

Computers & operations research, 11(3): 285–294.
Chen R (1984b) Solution of location problems with radial cost functions. Computers & Math-

ematics with Applications, 10(1): 87–94.
Cohen E, Halperin E, Kaplan H, Zwick U (2003) Reachability and distance queries via 2-hop

labels. SIAM Journal on Computing, 32(5): 1338–1355.

Efficient processing of optimal meeting point queries in Euclidean space and road networks33

Cooper L (1968) An extension of the generalized weber problem. Journal of Regional Science,
8(2): 181–197.

De Berg M, Cheong O, van Kreveld M, Overmars M (2008) Computational geometry. Springer
Berlin Heidelberg.

Deng K, Sadiq S, Zhou X, Xu H, Fung GPC, Lu Y (2012) On group nearest group query
processing. IEEE Transactions on Knowledge and Data Engineering, 24(2): 295–308.

Drezner Z, Shelah S (1987) On the complexity of the Elzinga-Hearn algorithm for the 1-center
problem. Mathematics of Operations Research, 12(2): 255–261.

Du Y, Zhang D, Xia T (2005) The optimal-location query. Advances in Spatial and Temporal
Databases, pp 163–180. Springer Berlin Heidelberg.

Fagin R, Lotem A, Naor M (2003) Optimal aggregation algorithms for middleware. Journal of
Computer and System Sciences, 66(4): 614–656.

Geisberger R, Sanders P, Schultes D, Delling D (2008) Contraction hierarchies: Faster and sim-
pler hierarchical routing in road networks. Experimental Algorithms, pp 319–333. Springer
Berlin Heidelberg.

Kellaris G, Mouratidis K (2010) Shortest path computation on air indexes. Proceedings of the
VLDB Endowment, 3(1-2): 747-757.

Leutenegger ST, Lopez MA, Edgington J (1997). STR: A simple and efficient algorithm for R-
tree packing. IEEE 13th international conference on data engineering (ICDE), April 1997,
pp 497–506.

Li F, Cheng D, Hadjieleftheriou M, Kollios G, Teng SH (2005) On trip planning queries in
spatial databases. Advances in spatial and temporal databases, pp 273–290. Springer Berlin
Heidelberg.

Li F, Yao B, Kumar P (2011a) Group enclosing queries. IEEE Transactions on Knowledge and
Data Engineering, 23(10): 1526-1540.

Li Y, Li F, Yi K, Yao B, Wang M (2011b) Flexible aggregate similarity search. Proceedings
of the 2011 ACM SIGMOD international conference on management of data, June 2011,
pp 1009–1020).

Li J, Yiu ML, Mamoulis N (2013) Efficient notification of meeting points for moving groups via
independent safe regions. IEEE 29th international conference on data engineering (ICDE),
2013, pp 422–433.

Lian X, Chen L (2008) Probabilistic group nearest neighbor queries in uncertain databases.
IEEE Transactions on Knowledge and Data Engineering, 20(6): 809–824.

Megiddo N (1982) Linear-time algorithms for linear programming in R3 and related prob-
lems”. Proceedings of 23rd annual IEEE symposium on foundations of computer science,
November 1982, pp 329–338.

Ostresh LM (1977) The mulitfacility location problem: applications and descent theorems.
Journal of Regional Science, 17(3): 409–419.

D. Papadias, Q. Shen, Y. Tao and K. Mouratidis. “Group nearest neighbor queries”. In ICDE,
2004. Papadias D, Shen Q, Tao Y, Mouratidis K 2004 Group nearest neighbor queries. 20th
international conference on data engineering, March 2004, pp 301–312.

Papadias D, Tao Y, Mouratidis K, Hui CK (2005) Aggregate nearest neighbor queries in spatial
databases. ACM Transactions on Database Systems (TODS), 30(2): 529–576.

Papadias D, Zhang J, Mamoulis N, Tao Y (2003) Query processing in spatial network databases.
Proceedings of 29th international conference on very large data bases, Volume 29, VLDB
Endowment, September 2003, pp 802–813.

Samet H, Sankaranarayanan J, Alborzi H (2008) Scalable network distance browsing in spatial
databases. Proceedings of the 2008 ACM SIGMOD international conference on manage-
ment of data, June 2008, pp 43–54.

Sankaranarayanan J, Samet H, Alborzi H (2009) Path oracles for spatial networks. Proceedings
of the VLDB Endowment, 2(1): 1210–1221.

Shamos MI, Hoey D (1975) Closest point problems. Proceedings of 16th annual IEEE sympo-
sium on foundations of computer science, October 1975, pp 151–162.

Shekhar S, Liu DR (1997) CCAM: A connectivity-clustered access method for networks and
network computations. IEEE Transactions on Knowledge and Data Engineering, 9(1): 102–
119.

Tao Y, Sheng C, Pei J (2011) On k-skip shortest paths. Proceedings of the 2011 ACM SIGMOD
international conference on management of data, June 2011, pp 421–432.

Wesolowsky GO (1982) Location problems on a sphere. Regional Science and Urban Economics,
12(4): 495–508.

34 D. Yan et al

Wong RCW, Özsu MT, Yu PS, Fu AWC, Liu L (2009) Efficient method for maximizing bichro-
matic reverse nearest neighbor. Proceedings of the VLDB Endowment, 2(1): 1126–1137.

Xiao X, Yao B, Li F (2011) Optimal location queries in road network databases. IEEE 27th
international conference on data engineering (ICDE), April 2011, pp 804–815.

Xu Z, Jacobsen HA (2010). Processing proximity relations in road networks. Proceedings of
the 2010 ACM SIGMOD international conference on management of data, June 2010,
pp 243–254.

Yan D, Zhao Z, Ng W (2011a) Efficient algorithms for finding optimal meeting point on road
networks. Proceedings of the VLDB Endowment, 4(11).

Yan D, Wong RCW, Ng W (2011b). Efficient methods for finding influential locations with
adaptive grids. Proceedings of the 20th ACM international conference on Information and
knowledge management, October 2011, pp 1475–1484.

Yan D, Cheng J, Ng W, Liu S (2013) Finding distance-preserving subgraphs in large road
networks. IEEE 29th international conference on data engineering (ICDE), 2013, pp 625–
636.

Yiu ML, Mamoulis N, Papadias D (2005) Aggregate nearest neighbor queries in road networks.
IEEE Transactions on Knowledge and Data Engineering, 17(6): 820–833.

Author Biographies

Da Yan received his B.S. degree in Computer Science from Fudan
University, Shanghai, in 2009. He is currently a Ph.D. student in the
Department of Computer Science and Engineering, Hong Kong Uni-
versity of Science and Technology. His research interests include big
data, spatial data management, uncertain data management and data
mining.

Zhou Zhao received his B.S. degree in Computer Science from the
Hong Kong University of Science and Technology (HKUST), in 2010.
He is currently a Ph.D. student in the Department of Computer Sci-
ence and Engineering, HKUST. His research interests include data
cleansing and data mining.

Wilfred Ng received his MS.c. (Distinction) and Ph.D. in Com-
puter Science from the University of London. Currently he is
an Associate Professor of Computer Science and Engineering at
the Hong Kong University of Science and Technology, where he
is a member of the database research group. His research inter-
ests are in the areas of databases, data mining and information
Systems, which include Web data management and XML search-
ing. Further Information can be found at the following URL:
http://www.cs.ust.hk/faculty/wilfred/index.html .

Correspondence and offprint requests to: Da Yan, Department of Computer Science and Engi-

neering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong

Kong. Email: yanda@cse.ust.hk

 http://www.cs.ust.hk/faculty/wilfred/index.html

	Introduction
	Related Work
	Finding OMPs in Euclidean Space
	Problem Definition
	Gradient-Descent Framework
	Algorithms for Specific OMP Query Types

	Deriving OMP Candidates in Road Networks
	Split Points
	Deriving Min-sum OMP Candidates
	Deriving Min-Max OMP Candidates

	Algorithms for Answering OMP Queries in Road Networks
	Road Network Organization
	Baseline Algorithms
	Euclidean Distance Bound Based Approach
	Threshold Algorithm Based Approaches

	Experiments
	Performance of Answering OMP Queries in Euclidean Space
	Performance of Answering OMP Queries in Road Networks
	Impact of Outliers to the OMP Algorithms for Road Networks

	Conclusions
	References

