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Mining Probabilistically Frequent Sequential
Patterns in Large Uncertain Databases

Zhou Zhao, Da Yan and Wilfred Ng

Abstract—Data uncertainty is inherent in many real-world applications such as environmental surveillance and mobile tracking.
Mining sequential patterns from inaccurate data, such as those data arising from sensor readings and GPS trajectories, is
important for discovering hidden knowledge in such applications. In this paper, we propose to measure pattern frequentness
based on the possible world semantics. We establish two uncertain sequence data models abstracted from many real-life
applications involving uncertain sequence data, and formulate the problem of mining probabilistically frequent sequential patterns
(or p-FSPs) from data that conform to our models. However, the number of possible worlds is extremely large, which makes the
mining prohibitively expensive. Inspired by the famous PrefixSpan algorithm, we develop two new algorithms, collectively called
U-PrefixSpan, for p-FSP mining. U-PrefixSpan effectively avoids the problem of “possible worlds explosion”, and when combined
with our four pruning and validating methods, achieves even better performance. We also propose a fast validating method to
further speed up our U-PrefixSpan algorithm. The efficiency and effectiveness of U-PrefixSpan are verified through extensive
experiments on both real and synthetic datasets.

Index Terms—Frequent patterns, uncertain databases, approximate algorithm, possible world semantics.
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1 INTRODUCTION

Data uncertainty is inherent in many real-world applica-
tions such as sensor data monitoring [13], RFID localization
[12] and location-based services [11], due to environmental
factors, device limitations, privacy issues, etc. As a result,
uncertain data mining has attracted a lot of attention in
recent research [19].

The problem of mining Frequent Sequential Patterns
(FSPs) from deterministic databases has attracted a lot
of attention in the research community due to its wide
spectrum of real life applications [4], [5], [6], [7], [8]. For
example, in mobile tracking systems, FSPs can be used to
classify or cluster moving objects [2]; and in biological
research, FSP mining helps discover correlations among
gene sequences [3].

In this paper, we consider the problem of mining FSPs
in the context of uncertain sequence data. In contrast to
previous work that adopts expected support to measure
pattern frequentness, we propose to define pattern frequent-
ness based on the possible world semantics. This approach
leads to more effective mining of high quality patterns with
respect to a formal probabilistic data model. We develop
two uncertain sequence data models (sequence-level and
element-level models) abstracted from many real-life ap-
plications involving uncertain sequence data. Based on the
models we define the problem of mining probabilistically
frequent sequential patterns (or p-FSPs). We now introduce
our data models through the following examples.
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SID Sequence Instance Probability

s1 s11  = ABC 1

s2
s21 = AB

s22 = BC

0.9

0.1

(a)

Possible World Probability

pw1 = {s11, s21} 1 0.9 = 0.9

pw2 = {s11, s22} 1 0.1 = 0.1

(b)

Fig. 1. Sequence-Level Uncertain Data Model

Consider a wireless sensor network (WSN) system,
where each sensor continuously collects readings of en-
vironmental parameters, such as temperature and humidity,
within its detection range. In such a case, the readings are
inherently noisy, and can be associated with a confidence
value determined by, for example, the stability of the sensor.
Figure 1(a) shows a possible set of readings from a WSN
application that monitors temperature. Let us assume that
each sensor reports temperature ranges A,B and C, (for
instance reading A represents [5◦, 7◦), reading B represents
[7◦, 9◦), and reading C represents [9◦, 11◦)), and a new
reading is appended to the sequence of already reported
readings whenever the temperature range changes. We also
assume that each region is associated with a group of
sensors. For example, s11 is the reading sequence detected
by a sensor in one region within a time period, and s21
and s22 are the reading sequences detected by two different
sensors in another region within that time period.

In Figure 1(a), we assume that the reading sequences
detected by different sensors in a region are exclusive to
each other, e.g. the temperature sequence in the region
represented by s2 has 90% (or 5%) probability to be {A,B}
(or {B,C}). The remaining 5% probability is for the case
when there is no new readings reported in that region.
Besides, the reading sequences from different regions are
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SID Probabilistic Element

s1 s1[1] = {(A, 0.95)}, s1[2] = {(B, 0.95), (C, 0.05)}

s2 s2[1] = {(A, 1)}, s2[2] = {(B, 1)}

(a)

Possible World Probability

pw1 = {B, AB} (1 0.95) 0.95 1 1 = 0.0475

pw2 = {C, AB} (1 0.95) 0.05 1 1 = 0.0025

pw3 = {AB, AB} 0.95 0.95 1 1 = 0.9025

pw4 = {AC, AB} 0.95 0.05 1 1 = 0.0475

(b)

Fig. 2. Element-Level Uncertain Data Model

assumed to be independent. We call such a data model
the sequence-level uncertain model. Notably, probabilistic
sequences such as s1 and s2 are called x-tuples in the Trio
system [21].

Figure 1(b) shows the set of possible worlds derived
from the uncertain sequence data presented in Figure 1(a).
Since the occurrences of different probabilistic sequences
are mutually independent, the probability of a possible
world pw can be computed as the product of the occur-
rence probability of each sequence in pw. For example,
Pr(pw1) = Pr(s11)× Pr(s21) = 0.9 holds.

To measure the frequentness of patterns, existing studies
adopt the notion of expected support, such as frequent
itemsets [15], [18] and frequent subsequences [1]. Accord-
ingly, the expected support of a sequential pattern α in
an uncertain database can be evaluated as follows: for
a sequence-level probabilistic sequence s, if we denote
α ⊑ s to be the event that pattern α occurs in s, then
the expected support of α in database D is defined as
expSup(α) =

∑
s∈D Pr{α ⊑ s} according to the linearity

of expectation.
However, we argue that expected support fails to reflect

pattern frequentness in many cases. To illustrate the weak-
ness of expSup(α), we consider α = AB in the dataset
shown in Figure 1. The expected support of pattern AB is
Pr(s11) + Pr(s21) = 1.9, which is not considered as fre-
quent when the minimum support τsup = 2. Nevertheless,
pattern AB occurs twice in pw1, and once in both pw2 and
pw3. Thus, if we denote the support of AB in database D as
sup(AB), then Pr{sup(AB) ≥ τsup} = Pr(pw1) = 90%
when τsup = 2. Therefore, we miss the important sequential
pattern AB in this example.

While the sequence-level uncertain model is fundamental
in a lot of real-life applications, many applications follow a
different model. Consider the uncertain sequence database
shown in Figure 2(a), where sequences s1 and s2 record the
tracking paths of two users. Path s1 contains two uncertain
location elements, s1[1] and s1[2]. The uncertain location
s1[1] has 95% probability to be A and 5% probability
to be a misreading (i.e. does not occur), while location
s1[2] has 95% probability to be B and 5% probability to
be C. We call such a model the element-level uncertain
model, where each probabilistic sequence in the database
is composed of a sequence of uncertain elements that are

mutually independent, and each uncertain element is an x-
tuple.

Figure 2(b) shows the possible world space of the dataset
shown in Figure 2(a). We can easily compute the proba-
bilities of the possible worlds. For example, Pr(pw3) =
Pr{s1[1] = A} × Pr{s1[2] = B} × Pr{s2[1] = A} ×
Pr{s2[2] = B} = 0.9025.

Note that the expected support of AB is expSup(AB) =
Pr{s1 = AB}+ Pr{s2 = AB} = 0.95× 0.95 + 1× 1 =
1.9025, and thus AB is not considered as frequent when
τsup = 2. However, Pr{sup(AB) ≥ τsup} = Pr(pw3) =
90.25% when τsup = 2, which is very likely to be frequent
in the probabilistic sense.

The above example illustrates that expected support fails
again to identify some probabilistically frequent patterns.
In fact, using expected support may also give rise to some
probabilistically infrequent patterns as the result [16]. Intu-
itively, expected support does not capture the distribution of
support. A distribution may be centralized or relatively flat
but the expected support does not contain this information.
Therefore, we propose to evaluate the frequentness of a
sequential pattern by adhering to the probability theory.
This gives rise to the idea of probabilistic frequentness,
which is able to capture the intricate relationships between
uncertain sequences.

However, the problem of p-FSP mining is challenging,
since each uncertain sequence database D corresponds to
many possible deterministic database instances (or possible
worlds), the number of which is exponential to the number
of uncertain sequences in D. To tackle this problem,
we propose two new algorithms, collectively called U-
PrefixSpan, to mine p-FSPs from uncertain data that confor-
m to our two uncertain data models. U-PrefixSpan adopts
the prefix-projection recursion framework of the PrefixSpan
algorithm [4] in a new algorithmic setting, and effectively
avoids the problem of “possible worlds explosion”. Our
contributions are summarized as follows:

• To our knowledge, this is the first work that attempts to
solve the problem of p-FSP mining, the techniques of
which are successfully applied in an RFID application
for trajectory pattern mining.

• We consider two general uncertain sequence data
models that are abstracted from many real-life applica-
tions involving uncertain sequence data: the sequence-
level uncertain model, and the element-level uncertain
model.

• Based on the prefix-projection method of PrefixSpan,
we design two new U-PrefixSpan algorithms that mine
p-FSPs from uncertain data conforming to our models.

• Pruning techniques and a fast validating method are
developed to further improve the efficiency of U-
PrefixSpan, which is verified by extensive experiments.

The rest of the paper is organized as follows: Section 2
reviews the related work and introduces the PrefixSpan
algorithm. Then we provide some preliminaries on mining
p-FSPs in Section 3. The U-PrefixSpan algorithm for the
sequence-level model is presented in Section 4, and the
U-PrefixSpan algorithm for the element-level model is
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Fig. 3. Illustration of PrefixSpan

described in Section 5. In Section 6, we introduce the fast
validating method. In Section 7, we verify the efficiency
and effectiveness of U-PrefixSpan through extensive ex-
periments on both real and synthetic datasets. Finally, we
conclude our paper in Section 8.

2 RELATED WORK
A comprehensive survey of traditional data mining prob-

lems such as frequent pattern mining in the context of
uncertain data can be found in [19]. We only detail some
concepts and issues arising from traditional sequential
pattern mining and the mining of uncertain data.

2.1 Traditional Sequential Pattern Mining
The problem of sequential pattern mining has been well

studied in the literature in the context of deterministic data,
and many algorithms have been proposed to solve this prob-
lem, including PrefixSpan [4], SPADE [6], FreeSpan [7] and
GSP [8].

PrefixSpan is demonstrated to be superior to other se-
quence mining algorithms such as GSP and FreeSpan,
due to its prefix-projection technique [4]. It has been
used successfully in many applications such as trajectory
mining [2]. We now review the prefix-projection technique
of PrefixSpan, which is related to our proposed algorithms.

PrefixSpan. For ease of presentation, we denote αβ to
be the sequence resulted from appending sequence β with
sequence α. As mentioned in Section 1, α ⊑ s corresponds
to the event that sequence α occurs as a subsequence of
s. We now present some concepts that are necessarily for
understanding PrefixSpan.

Definition 1: Given a sequential pattern α and a se-
quence s, the α-projected sequence s|α is defined to be the
suffix γ of s such that s = βγ with β being the minimal
prefix of s satisfying α ⊑ s.

To highlight the fact that γ is a suffix, we write it as
“ γ”. As an illustration of Definition 1, when α = BC and
s = ABCBC, we have β = ABC and s|α = γ = BC.

Definition 2: Given a sequential pattern α and a se-
quence database D, the α-projected database D|α is defined
to be the set {s|α | s ∈ D ∧ α ⊑ s}.

Note that if α ̸⊑ s, then the minimal prefix β of s
satisfying α ⊑ β does not exist, and therefore s is not
considered in D|α.

Consider the sequence database D shown in Figure 3(a).
The projected databases D|A, D|AB and D|ABC are shown
in Figures 3(b), (c) and (d), respectively.

PrefixSpan finds the frequent patterns (with support of
at least τsup) by recursively checking the frequentness of

patterns with growing lengths. In each iteration, if the
current pattern α is found to be frequent, it will recurse on
all the possible patterns α′ constructed by appending one
more element to α. PrefixSpan checks whether a pattern
α is frequent using the projected database D|α, which
can be constructed from the projected database of the
previous iteration. Figure 3 presents one recursion path
when τsup = 2, where, for example, s1|ABC in D|ABC is
obtained by removing the element C (above the third arrow)
from s1|AB in D|AB . The bi-level projection technique of
PrefixSpan is a disk-based algorithm which reduces the IO
cost using S-matrix. In this paper, we focus on single-level
projection, since the advantage of bi-level projection may
not be significant when the pesudo-projected database is
stored in main memory.

2.2 Pattern Mining on Uncertain Data

Frequent itemset mining, graph pattern mining and se-
quential pattern mining are important pattern mining prob-
lems that have been studied in the context of uncertain
data. For the problem of frequent pattern mining, earlier
work commonly uses expected support to measure pattern
frequentness [15], [18], [10]. However, some have found
that the use of expected support may render important
patterns missing [16], [17]. As a result, recent research
focuses more on using probabilistic support, such as [17],
[14], [24], [25], [26], [27], [28]. The work mainly utilizes
algorithms based on dynamic programming and divide-and-
conquer in order to validate the probabilistic frequentness
of an itemset pattern or a subgraph pattern. However,
these techniques cannot be directly applied for checking
the probabilistic frequentness of a sequential pattern. This
is because the projection of a frequent sequential pattern
on uncertain databases is fundamentally different from the
projections of an frequent itemset or a frequent subgraph.

As for the problem of sequential pattern mining on
uncertain data, [1] is the only existing work we are aware
of. However, all the models proposed by [1] are merely
variations of the sequence-level model in essence, and
the work evaluates the frequentness of a pattern based
on its expected support. The problem of mining long
sequential patterns in a noisy environment has also been
studied in [20]. However, their compatibility matrix model
of uncertainty is very different from, and not as general as,
our uncertain sequence data models. It is worth mentioning
that models similarly to our probabilistic sequence models
have been used in studies concerning similarity join [22],
[23].
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3 PRELIMINARIES
In this section we discuss several fundamental concepts.
Presence Probability. The probability of the presence

of a pattern α in a probabilistic sequence s is given by

Pr{α ⊆ s} =
∑
α⊆si

Pr(pwi) (1)

where si is a deterministic instance of probabilistic se-
quence s in the possible word pwi. Pr(pwi) is the existence
probability of possible world pwi.

Expected Support. Formally, the concept of expected
support is as follows.

Definition 3 (Expected Support): The expected support
of a pattern α, denoted by expSup(α), is defined as the
sum of the expected probabilities of the presence of α in
each of the sequences in the databases.

The pattern α is said to be expectably frequent if
expSup(α) is greater than specified support threshold τsup.

Support as a random variable. We use sup(α) as a
random variable in the context of uncertain databases.
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Fig. 4. Probability Distribution of sup(AB)

Given a sequence-level or an element-level uncertain
sequence database D, we denote its possible world space
as PW = {pw1, pw2, . . . , pw|PW|}. We also denote by
supi(α) the support of pattern α in a possible world
pwi ∈ PW . Since pwi is a deterministic database instance,
supi(α) is simply a count that is equal to |{s ∈ pwi|α ⊑
s}|. Note that each possible world pwi is associated with
an occurrence probability Pr(pwi), and therefore, given a
pattern α, each possible world pwi corresponds to a pair
(supi(α), P r(pwi)). In the example presented in Figure 1,
given pattern AB, the possible worlds pw1, pw2 and
pw3 correspond to pairs (2, 0, 9), (1, 0.05) and (1, 0.05),
respectively. Therefore, we have

• Pr{sup(AB) = 2} = Pr(pw1) = 0.9;
• Pr{sup(AB) = 1} = Pr(pw2) + Pr(pw3) = 0.1;
• Pr{sup(AB) = 0} = 0.
Note that sup(AB) is a random variable whose proba-

bility distribution is depicted in Figure 4. Generally, for any
pattern α, its support sup(α) can be represented by (1) a
probability mass function (pmf), denoted as fα(c) where c
is a count, and (2) a cumulative distribution function (cdf),
denoted as Fα(c) =

∑c
i=0 fα(i). For a database with n

probabilistic sequences (i.e. |D| = n), sup(α) can be at
most n, and therefore the domain of c is {0, 1, . . . , n}.

Formally, fα(c) is given by the following formula:

fα(c) =
∑

pwi∈PW s.t. supi(α)=c

Pr(pwi).

Probabilistic frequentness. We now introduce the con-
cept of probabilistic frequentness (or simply (τsup, τprob)-
frequentness):

Definition 4 (Probabilistic Frequentness): Given a prob-
ability threshold τprob and a support threshold τsup, pattern
α is probabilistically frequent (or (τsup, τprob)-frequent) iff

Pr{sup(α) ≥ τsup} ≥ τprob. (2)

The L.H.S. of Equation 2 can be represented as

Pr{sup(α) ≥ τsup} =
n∑

c=τsup

fα(c) = 1− Fα(τsup − 1).

(3)
Pruning infrequent patterns. Next, we present our

three pruning rules for pruning probabilistically infrequent
patterns:

• R1 CntPrune. Let us define cnt(α) = |{s ∈
D |Pr{α ⊑ s} > 0}|, then pattern α is not
(τsup, τprob)-frequent if cnt(α) < τsup.

Proof: When cnt(α) < τsup, Pr{sup(α) ≥
τsup} ≤ Pr{sup(α) > cnt(α)} = 0.

• R2 MarkovPrune. Pattern α is not (τsup, τprob)-
frequent if expSup(α) < τsup × τprob.

Proof: According to Markov’s inequality,
expSup(α) < τsup × τprob implies
Pr{sup(α) ≥ τsup} ≤ expSup(α)

τsup
< τprob.

• R3 ExpPrune. Let µ = expSup(α) and δ =
τsup−µ−1

µ . When δ > 0, pattern α is not (τsup, τprob)-
frequent if{

δ ≥ 2e− 1, 2−δµ < τprob;

0 < δ < 2e− 1, e−
δ2µ
4 < τprob.

Proof: According to Chernoff Bound, we have

Pr{sup(α) > (1 + δ)µ} <

{
2−δµ, δ ≥ 2e− 1

e−
δ2µ
4 , 0 < δ < 2e− 1

,

and if we set δ =
τsup−µ−1

µ , i.e. (1+ δ)µ = τsup− 1,
we have Pr{sup(α) > (1 + δ)µ} = Pr{sup(α) ≥
τsup}

CntPrune and ExpPrune are also used in [14] to prune
infrequent itemsets. Note that these pruning rules only
require one pass of the database to determine whether a
pattern can be pruned.

Frequentness validating. If α cannot be pruned, we
have to check whether Equation (2) holds. According to
Equation (3), this is equivalent to computing fα(c).

In fact, evaluating fα(c) on α-projected (uncertain)
database D|α is equivalent to evaluating fα(c) on D,
since ∀s ̸∈ D|α, Pr{α ⊑ s} = 0. Thus, we always
compute fα(c) on the smaller projected database D|α.
We will discuss how to perform sequence projection in
our sequence-level (and element-level) uncertain model in
Section 4 (and Section 5).

We compute fα(c) on D|α by using the divide-and-
conquer strategy. Given a set S of probabilistic sequences,
we divide it into two partitions S1 and S2. Let fS

α (c) be the
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pmf of sup(α) on S. Then our ultimate goal is to compute
f
D|α
α (c).

We now consider how to obtain fS
α (c) from fS1

α (c)
and fS2

α (c). Let us denote supS(α) to be the support
of α on S. Note that supS(α) is a random variable,
and supS1(α) and supS2(α) are independent. Obviously,
supS(α) = supS1(α) + supS2(α), and fS

α (c) can be
computed by the following formula:

fS
α (c) =

c∑
i=0

fS1
α (i)× fS2

α (c− i). (4)

According to Equation (4), fS
α is the convolution of fS1

α

and fS2
α . Thus, fS

α can be computed from fS1
α and fS2

α in
O(n log n) time using the Fast Fourier Transform (FFT)
algorithm, where n = |S|. When S is large, this approach
is much better than naı̈vely evaluating Equation (4) for all
c, which takes O(n2) time.

Theorem 1 (Early Validating): Suppose that pattern α is
(τsup, τprob)-frequent in S′ ⊆ S, then α is also (τsup, τprob)-
frequent in S.

Proof: Suppose that probabilistic sequence set S is
divided into two partitions S1 and S2. It is sufficient to
prove that, when α is (τsup, τprob)-frequent in S1, it is also
(τsup, τprob)-frequent in S.

When α is (τsup, τprob)-frequent in S1, according to
Equation (3), we have

1− FS1
α (τsup − 1) = Pr{supS1(α) ≥ τsup} ≥ τprob. (5)

According to Equation (5), FS1
α (τsup − 1) ≤ 1 − τprob.

If we can prove FS
α (τsup − 1) ≤ FS1

α (τsup − 1), then we
are done since this implies FS

α (τsup − 1) ≤ FS1
α (τsup −

1) ≤ 1 − τprob, or equivalently, Pr{supS(α) ≥ τsup} =
1− FS

α (τsup − 1) ≥ τprob.
We now prove FS

α (τsup − 1) ≤ FS1
α (τsup − 1). Let us

denote τ ′sup = τsup − 1. Then, we obtain

FS
α (τ ′sup) =

τ ′
sup∑

i+j=0

fS1
α (i)× fS2

α (j)

=

τ ′
sup∑
i=0

τ ′
sup−i∑
j=0

fS1
α (i)× fS2

α (j)

=

τ ′
sup∑
i=0

fS1
α (i)×

τ ′
sup−i∑
j=0

fS2
α (j)

=

τ ′
sup∑
i=0

fS1
α (i)× FS2

α (τ ′sup − i)

≤
τ ′
sup∑
i=0

fS1
α (i) = FS1

α (τ ′sup).

Algorithm 1 shows our divide-and-conquer algo-
rithm (PMFCheck) which determines the (τsup, τprob)-
frequentness of pattern α in an uncertain sequence set
S = {s1, s2, . . . , sn}. The input to PMFCheck is a vector
vecα where each element vecα[i] = Pr{α ⊑ si}.

Algorithm 1 PMFCheck(vecα)
Input: probability vector: vecα
Output: mark of frequentness: tag; pmf: fα

1: if |vecα|=1 then
2: fα(0)← 1− vecα[1], fα(1)← vecα[1]
3: return (1− Fα(τsup − 1) ≥ τprob, fα)
4: Partition vecα into vec1α and vec2α, where |vec1α| = ⌊n2 ⌋

and |vec2α| = ⌈n2 ⌉
5: (tag1, f1

α)←PMFCheck(vec1α)
6: if tag1 =TRUE then
7: return (TRUE, ∅)
8: (tag2, f2

α)←PMFCheck(vec2α)
9: if tag2 =TRUE then

10: return (TRUE, ∅)
11: fα ←convolution(f1

α, f2
α)

12: return (1− Fα(τsup − 1) ≥ τprob, fα)

PMFCheck partitions vecα into two halves: vec1α and
vec2α respectively as the first half S1 and the second
half S2 of S (Line 4). If α is found to be (τsup, τprob)-
frequent in either half (Lines 6 and 9), PMFCheck returns
TRUE directly (which is propagated upwards through the
recursions in Lines 5 and 8). Otherwise, PMFCheck uses
the pmfs obtained from recursion in S1 and S2 (i.e. f1

α

and f2
α), to compute the pmf of α in S in Line 11. After

obtaining fα, we can check whether α is (τsup, τprob)-
frequent in S by Equations (2) and (3) (Line 12).

The degenerated case of S = {s1} is handled in Lines 1–
3, where fα(0) = Pr{sup(α) = 0} = Pr{α ̸⊑ s1} and
fα(1) = Pr(sup(α) = 1) = Pr(α ⊑ s1).

Complexity Analysis: Let T (n) be the running time of
PMFCheck on input vecα with |vecα| = n. Then the time
costs in Lines 5 and 8 are both T (n/2). Since Line 11 can
be done in O(n log n) time, we have T (n) = 2T (n/2) +
O(n log n), which yields T (n) = O(n log2 n).

Pattern anti-monotonicity. Finally, we present the pat-
tern anti-monotonicity property that allows us to use the
PrefixSpan-style pattern-growth method for mining p-FSPs:

Property 1 (Pattern Anti-Monotonicity): If a pattern α is
not (τsup, τprob)-frequent, then any pattern β satisfying α ⊑
β is not (τsup, τprob)-frequent.

The proof follows from the fact that in any possible world
pw where β is frequent, α must also be frequent, since for
each sequence s ∈ pw, β ⊑ s implies α ⊑ s.

According to Property 1, we can stop growing α, once
we find that α is probabilistically infrequent.

4 SEQUENCE-LEVEL U-PREFIXSPAN

In this section, we address the problem of p-FSP mining
on data that conform to the sequence-level uncertain mod-
el. We propose a pattern-growth algorithm, called SeqU-
PrefixSpan, to tackle this problem. Compared with PrefixS-
pan, the SeqU-PrefixSpan algorithm needs to address the
following additional issues arising from the sequence-level
uncertain model.
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Fig. 5. Sequence Projection in Sequence-Level Model

Sequence Projection. Given a sequence-level proba-
bilistic sequence si and a pattern α, we now discuss how
to obtain the α-projected probabilistic sequence si|α.

Figure 5(a) shows a sequence-level probabilistic se-
quence si with four sequence instances, and Figures 5(b)
and (c) present the projected sequences si|A and si|AB ,
respectively. In general, si|α is obtained by projecting each
deterministic sequence instance sij of sequence si (denoted
sij ∈ si) onto sij |α, excluding those instances that cannot
be projected (due to α ̸⊑ sij), such as si4 in Figure 5.

In order to achieve high space utility, we do not store
sij |α as a suffix sequence of sij . In fact, it is sufficient
to represent sij |α with a pointer to sij and the starting
position of suffix sij |α in sij . In our algorithm, each
projected sequence instance sij |α is represented as a pair
<pos, sij>, where pos denotes the position before the
starting position of suffix sij |α in sij . Besides, each si|α is
represented as a list of pairs, where each pair corresponds
to an instance sij and the format (sij |α, P r(sij)). We
illustrate our representation in Figure 5(c), which shows
that si|AB = {(si1|AB, 0.3), (si2|AB , 0.2), (si3|AB , 0.4)}
where, for example, si1|AB =<2, si1>.

Conceptually, the α-projected database D|α is construct-
ed by projecting each probabilistic sequence si ∈ D onto
si|α.

Pattern Frequentness Checking. Recall that given
a projected database D|α, we check the (τsup, τprob)-
frequentness of pattern α by (1) computing vecα[i] =
Pr{α ⊑ si} for each projected probabilistic sequence
si|α ∈ D|α, and then (2) determining the result by invoking
PMFCheck(vecα) (Algorithm 1).

Thus, the key to checking pattern frequentness is the
computation of Pr{α ⊑ si}. According to the law of
total probability, we can compute Pr{α ⊑ si} using the
following formula:

Pr{α ⊑ si}
=

∑
sij∈si

Pr{α ⊑ sij | si occurs as sij} × Pr(sij)

=
∑

sij |α ∈ si|α

Pr(sij). (6)

In a nutshell, Pr{α ⊑ si} is equal to the sum of the
occurrence probabilities of all sequence instances whose
α-projected instances belong to si|α. For example, we can
check that in Figure 5(c), Pr{AB ⊑ si} = Pr(si1) +
Pr(si2) + Pr(si3) = 0.9.

Algorithm 2 Prune(T |α, D|αe)
Input: element table T |α, projected probabilistic database
D|αe Output: element table T |αe

1: T |αe ← ∅
2: for each element ℓ ∈ T |α do
3: Check CntPrune with pattern ℓ on D|αe
4: if ℓ is not pruned then
5: Check MarkovPrune with pattern ℓ on D|αe
6: if ℓ is not pruned then
7: Check ExpPrune with pattern ℓ on D|αe
8: if ℓ is not pruned then
9: T |αe ← T |αe ∪ {ℓ}

Candidate Elements for Pattern Growth. Given a
pattern α, we need to examine whether another pattern β
grown from α such that α ⊑ β is (τsup, τprob)-frequent.

Recall that in PrefixSpan, in each recursive iteration, if
the current pattern α is frequent, we grow α by appending
to it one element e to obtain a new pattern αe, and
then recursively checking the frequentness of αe. To keep
the number of such new patterns small in each growing
step, we maintain an element table T |α that stores only
those elements e that still have a chance of making αe
(τsup, τprob)-frequent.

We now present an important property of T |α:
Property 2: If β is grown from α, T |β ⊆ T |α.

Proof: Let β = αγ. For any element e ̸∈ T |α, αe is
not (τsup, τprob)-frequent, and since αe ⊑ αγe = βe, βe
is also not (τsup, τprob)-frequent according to pattern anti-
monotonicity, which implies e ̸∈ T |β .

As a special case of Property 2, we have T |αe ⊆ T |α.
Property 2 guarantees that an element pruned from T |α
does not need to be considered when checking a pattern
grown from α later.

We construct T |αe from T |α during the pattern growth
in Algorithm 2. Note that checking our three pruning rules
with element ℓ on D|αe is equivalent to checking them
with pattern αeℓ on D, since for any probabilistic sequence
si whose αe-projected sequence does not exist in D|αe,
Pr{αeℓ ⊑ si} = 0.

SeqU-PrefixSpan Algorithm. We now present Al-
gorithm 3 for growing patterns. Given a sequence-level
probabilistic database D = {s1, . . . , sn}, we grow patterns
starting from α = ∅. Thus, our projected sequence/instance
is D|∅ = {s1|∅, s2|∅, . . . , sn|∅}, where for each sequence
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si|∅, its instance sij |∅ = <0, P r(sij)>. Here the “pos”
field is the one before the first position, which is 0. Let
T0 be the table of all possible elements in D. The mining
algorithm begins by invoking the following functions:

• T |∅ ←Prune(T0, D|∅);
• For each element e ∈ T |∅, call SeqU-

PrefixSpan(e,D|∅, T |∅).
Essentially, SeqU-PrefixSpan recursively performs pat-

tern growth from the previous pattern α to the current
β = αe, by appending an element e ∈ T |α. In Lines 2–12,
we construct the current projected probabilistic database
D|β using the previous projected probabilistic database
D|α. Specifically, for each projected probabilistic sequence
si|α ∈ D|α, we compute Pr{β ⊑ si} as pr(si|αe) in
Lines 3–9, and if Pr{β ⊑ si} > 0, we add si|β (con-
structed from si|α) into D|β and append this probability to
vecβ (Lines 10–12), which is used to determine whether β
is (τsup, τprob)-frequent by invoking PMFCheck(vecβ) in
Line 13.

To compute Pr{β ⊑ si} using Equation (6), we first
initialize pr(si|αe) to 0 (Line 3). Whenever we find that
sij ∈ si|αe, which can be checked by examining whether
e is in the suffix sij |α in Line 6, we add Pr(sij) to
pr(si|αe), and construct the new projected instance of sij ,
i.e. sij |β , for the new projected probabilistic sequence si|β
in Lines 8–9.

If β is found to be (τsup, τprob)-frequent (Lines 13
and 14), we first output β in Line 15 and use Algorithm 2
to prune the candidate elements in the previous element
table T |α, in order to obtain the current truncated element
table T |β . Finally, we check the patterns grown from β by
running the recursion on D|β and T |β in Lines 17–18.

5 ELEMENT-LEVEL U-PREFIXSPAN

In this section, we present our ElemU-PrefixSpan al-
gorithm which mines p-FSPs from data conforming to
the element-level uncertain model. Compared with SeqU-
PrefixSpan discussed in the previous section, we need to
consider additional issues arising from sequence projection.

An interesting observation is that the possible world
space of si is exactly the sequence-level representation
of si. Therefore, a naı̈ve method to implement ElemU-
PrefixSpan is to expand each element-level probabilistic se-
quence in database D into its sequence-level representation,
and then solve the problem by SeqU-PrefixSpan. However,
this approach is intractable due to the following fact:

“Each element-level probabilistic sequence of length ℓ
has many sequence instances, the number of which is
exponential to ℓ.”

Instead of using the full-expansion approach mentioned
above, we only expand the probabilistic sequence when it is
necessary. For example, for pattern BA in the probabilistic
sequence si in Figure 6, the expansion related to C is
completely unnecessary, since whether C occurs in si or
not has no influence on Pr{BA ⊑ si}.

The differences between ElemU-PrefixSpan and SeqU-
PrefixSpan mainly lie in two aspects: (1) sequence pro-

Algorithm 3 SeqU-PrefixSpan(αe,D|α, T |α)
Input: current pattern αe, projected probabilistic database
D|α, element table T |α

1: vecαe ← ∅
2: for each projected sequence si|α ∈ D|α do
3: pr(si|αe)← 0
4: for each instance sij |α = <pos, Pr(sij)> ∈ si|α

do
5: Find its corresponding sequence sij ∈ D
6: if e ∈ sij [pos+ 1, . . . , len(sij)] then
7: pr(si|αe)← pr(si|αe) + Pr(sij)
8: c′ ← minc≥pos+1{sij [c] = e}
9: Append (c′, pr(sij)) to si|αe

10: if pr(si|αe) > 0 then
11: Append si|αe to D|αe
12: Append pr(si|αe) to vecαe
13: (tag, fαe) ← PMFCheck(vecαe)
14: if tag =TRUE then
15: output αe
16: T |αe ←Prune(T |α, D|αe)
17: for each element ℓ ∈ T |αe do
18: SeqU-PrefixSpan(αeℓ,D|αe, T |αe)

jection from si onto si|α, and (2) the computation of
Pr{α ⊑ si}. We discuss them next.

Sequence Projection. Given an element-level proba-
bilistic sequence si and a pattern α, we now explain how
to obtain the projected probabilistic sequence si|α.

Definition 5: Event epos(si, α) = {α ⊑ si[1, . . . , pos] ∧
α ̸⊑ si[1, . . . , pos− 1]}.

In Definition 5, si[1, . . . , pos] is the minimal prefix of si
that contains pattern α. Event epos(si, α) can be recursively
constructed in the following way:

(1) Base Case. When pattern α = ∅, we have
Pr(e0(si, α)) = 1 and Pr(epos(si, α)) = 0 for any
pos > 0. This is because α ⊑ ∅, or equivalently, the
minimal prefix si[1, . . . , pos] in Definition 5 should be ∅,
which implies pos = |si[1, . . . , pos]| = |∅| = 0.

(2) Recursive Rule. When β = αe,

epos(si, β) =
∪

k<pos

{ ek(si, α) ∧ si[pos] = e

∧ si[j] ̸= e, ∀k < j < pos }. (7)

The above method works because si[1, . . . , pos] is the
minimal prefix containing β = αe, iff (1) si[1, . . . , k] is
the minimal prefix containing α for some k < pos, (2)
si[pos] = e, and (3) si[j] ̸= e for all positions j between
k and pos.

The events ek(si, α) on the R.H.S. of Equation (7)
with different k values are disjoint due to the minimality
requirement stated in Definition 5. Note that the events
involved in the UNION operator of Equation (7) are subsets
of the events ek(si, α) (due to the AND operator), and thus
they are also disjoint.

As a result, we can use the principle of additivity to
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Probabilistic Element

si [1] = {(A, 0.7), (B, 0.3)}

si [2] = {(B, 0.2), (C, 0.8)}

si [3] = {(C, 0.4), (A, 0.6)}

si [4] = {(B, 0.1), (A, 0.9)}

(a) si

Seq. Instance Prob. Seq. Instance Prob. Seq. Instance Prob. Seq. Instance Prob.

pw1(si ) = ABCB

pw2(si ) = ABCA

pw3(si ) = ABAB

pw4(si ) = ABAA

0.0056

0.0504

0.0084

0.0756

pw5(si ) = ACCB

pw6(si ) = ACCA

pw7(si ) = ACAB

pw8(si ) = ACAA

0.0224

0.2016

0.0336

0.3024

pw9(si ) = BBCB

pw10(si ) = BBCA

pw11(si ) = BBAB

pw12(si ) = BBAA

0.0024

0.0216

0.0036

0.0324

pw13(si ) = BCCB

pw14(si ) = BCCA

pw15(si ) = BCAB

pw16(si ) = BCAA

0.0096

0.0864

0.0144

0.1296

(b) Possible Instance Space of si

si
B

pos Disjoint Event e Pr(e)

1 _si [2]si [3]si[4] 1 0.3 = 0.3

2 _si [3]si [4] 1 (1 – 0.3) 0.2= 0.14

4 _ 1 (1 – 0.3) (1 – 0.2) 0.1= 0.056

(c) Projection

si
Ø

pos Disjoint Event e Pr(e)

0 _si [1]si [2]si [3]si [4] 1

B

A

pos Disjoint Event e Pr(e)

3 _si[4] 0.3 0.6 = 0.18

pos Disjoint Event e Pr(e)

4 _ 0.3 (1 – 0.6) 0.9= 0.108

A

pos Disjoint Event e Pr(e)

3 _si[4] 0.14 0.6 = 0.084

pos Disjoint Event e Pr(e)

4 _ 0.14 (1 – 0.6) 0.9= 0.0504

Merge

A

si
BA

pos Disjoint Event e Pr(e)

3 _si[4] 0.18 + 0.084 = 0.264

4 _ 0.108 + 0.0504 = 0.1584

Fig. 6. Illustration of ElemU-PrefixSpan

compute Pr(epos(si, X)) according to Equation (7):

Pr(epos(si, αe))

=
∑

k<pos

[ Pr(ek(si, α))× Pr{si[pos] = e}

×
∏

k<j<pos

(1− Pr{si[j] = e}) ]. (8)

Equation (8) is a recursive formula where the com-
putation of Pr(epos(si, αe)) requires the values of
Pr(ek(si, α)) for all k < pos.

Recall that in the prefix-projection method of PrefixSpan,
the projected sequence s|α of a deterministic sequence s is
obtained by removing from s its minimal prefix containing
α. Therefore, the projected sequence si|α of an element-
level probabilistic sequence si can be represented by a set
of disjoint events ek(si, α), 0 < k ≤ len(si), where len(si)
is the number of probabilistic elements in si. The first (top)
table in Figure 6(c) gives the event representation of si|∅
for the probabilistic sequence si shown in Figure 6(a).

Next, let us consider the case when α grows from ∅ to
B. For ease of presentation, we use si|epos(si,α) to denote
the suffix of si given event epos(si, α). Since si|e0(si,∅) =
si[1]si[2]si[3]si[4], and B can occur in any of si[1], si[2]
and si[4], we can derive from e0(si, ∅) altogether three
disjoint events that correspond to B occurring in si|e0(si,∅),
as shown in the second (middle) table in Figure 6(c):

• e1(si, B) = {si[1] = B}. In this case,
Pr(e1(si, B)) = Pr(e0(si, ∅)) × Pr{si[1] = B} =
0.3.

• e2(si, B) = {si[1] ̸= B ∧ si[2] = B}. In this case,
Pr(e2(si, B)) = Pr(e0(si, ∅)) × (1 − Pr{si[1] =
B})× Pr{si[2] = B} = 0.14.

• e4(si, B) = {si[1] ̸= B ∧ si[2] ̸= B ∧ si[4] = B}.
In this case, Pr(e4(si, B)) = Pr(e0(si, ∅)) × (1 −
Pr{si[1] = B})× (1−Pr{si[2] = B})×Pr{si[4] =
B} = 0.0056.

For the case when α grows from B to BA, we focus on
the event e2(si, B) of si|B . Since si|e2(si,B) = si[3]si[4],
and A may occur in either si[3] or si[4], we can derive
two sub-events from e2(si, B) as shown in Figure 6(c).
For example, the probability of the sub-event at the bottom
on the right of Figure 6(c) is computed as Pr(e2(si, B))×
(1− Pr{si[3] = A})× Pr{si[4] = A} = 0.0504.

Note that we do not obtain any sequence containing
pattern BA from e4(si, B). After all the sub-events are
obtained, we merge those with the same pos value into
epos(si, BA), where Pr(epos(si, BA)) is computed as the
summation of the probabilities of the sub-events (see the
bottom table in Figure 6(c)), which is based on Equa-
tion (8).

Algorithm 4 shows our algorithm which constructs D|β
(β = αe) from the old projected database D|α. For each
projected probabilistic sequence s|α, we project it onto a
new projected sequence s|β ∈ D|β in Lines 2–19. In our
algorithm, each projected probabilistic sequence represents
a set of events (recall Figure 6(c)), and each event r =
epos(si, α) represents a pair <posr, P r(r)>, where posr =
pos and Pr(r) = Pr(epos(si, α)).

To obtain β = αe, we need to find element e from the
suffix of s starting from posr + 1 (Line 4), i.e. s|r. We
also attach a variable accumr to each event r to record the
value of the product term on the R.H.S. of Equation (8)
and the term is initialized to 1.

To construct s|β from s|α, we check all the events
r =<posr, P r(r)> of s|α, and in each iteration, we pick
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Algorithm 4 Project(D|α, e)
Input: projected probabilistic database D|α, element e
Output: D|αe

1: for each projected sequence s|α ∈ D|α do
2: Find its corresponding sequence s ∈ D
3: for each event r = (posr, prr) ∈ s|α do
4: pivotr ← posr + 1
5: accumr ← 1
6: s|αe ← ∅
7: while ∃r, pivotr < len(s) do
8: r′ ← argminr pivotr
9: if Pr{s[pivotr′ ] = e} > 0 then

10: {∃ probabilistic element (e, pe) ∈ s[pivotr′ ]}
11: ∆← prr′ × accumr′ × pe
12: accumr′ ← accumr′ × (1− pe)
13: (poslast, prlast)←the last element in s|αe
14: if poslast = pivotr′ then
15: prlast ← prlast +∆
16: else
17: Append (pivotr′ ,∆) to s|αe
18: pivotr′ ← pivotr′ + 1
19: Append s|αe to D|αe
20: return D|αe

the event with the minimum position value pivotr to be
scanned next (Line 8) and denote this event of r′. If the
probabilistic element in the current position pivotr′ can
take value e with probability pe (Line 9), then we can
compute the probability of the sub-event derived from
r′ as ∆ using Equation (8) (Line 11), and update the
product value accumr in Line 12 to reflect the event that
{s[pivotr′ ] ̸= e}, since pos > pivotr′ for later sub-events.

Since we choose the event with the minimum position
value in each iteration, the sub-events are constructed with
the non-decreasing values of pos. According to Equa-
tion (8), we can sum the probabilities of the sub-events
with the same new value of pos. Therefore, if the newly
constructed sub-event has the same value of pos as the last
sub-event already constructed, we simply add its probability
∆ to that of the last sub-event (Lines 14–15). Otherwise,
we create a new event for s|αe with the new value of pos,
and the probability is initialized to ∆ (Lines 16–17).

When s|α has k events, and each event ei has suffix of
length ℓi, then it takes O(k ×

∑
i ℓi) time to construct s|β

from s|α. This is because, in each iteration of the while
loop, Line 8 takes O(k) time, and there are O(

∑
i ℓi)

iterations (see Lines 7 and 18).
Recall that each element-level projected sequence is

represented by a set of events, and each value of pos
corresponds to one event. Thus, we have the following
interesting observation:

“Each element-level projected probabilistic sequence s|α
of length ℓ can have no more than ℓ events.”

The correctness of this statement is established by the
fact that there are at most ℓ values for pos. This result

Algorithm 5 ElemProb(s, pos, e)
Input: probabilistic sequence s, position pos, element e
Output: Pr{ e ∈ s[ pos+ 1, len(s) ] }

1: accum ← 1
2: for each k ∈ [ pos+ 1, len(s) ] do
3: if (e, Pr{s[k] = e}) ∈ s[k] then
4: accum← accum · (1− Pr{s[k] = e})
5: Pr{ e ∈ s[ pos+ 1, len(s) ] } ← 1− accum
6: return Pr{ e ∈ s[ pos+ 1, len(s) ] }

can be utilized to solve the problem arising from the full-
expansion approach, in which each s|α is expanded to
many sequence instances and the number of such instances
number is exponential to ℓ.

Computation of Pr{α ⊑ si}. Consider pattern β = αe.
Suppose that the projected probabilistic sequence si|α has
k events epos(si, α), pos = i1, i2, . . . , ik. Then, for each
event epos(si, α) which implies α ⊑ si, it follows that
β ̸⊑ si if and only if e does not occur in any of the elements
in the suffix si[pos+1, . . . , len(si)] (i.e. si|epos(si,α)). Thus,
it follows that

Pr{β ̸⊑ si}
=

∑
pos

Pr{β ̸⊑ si|epos(si, α)} × Pr(epos(si, α))

=
∑
pos

Pr{si[j] ̸= e, ∀j > pos} × Pr(epos(si, α))

=
∑
pos

Pr(epos(si, α))×
∏

i>pos

(1− Pr{si[pos] = e})

 .(9)

So we now have

Pr{β ⊑ si} = 1− Pr{β ̸⊑ si}

=

(∑
pos

Pr(epos(si, α))

)
− Pr{β ̸⊑ si}

=
∑
pos

[
Pr(epos(si, α))×1−
∏

i>pos

(1− Pr{si[pos] = e})

 .(10)

Algorithm 5 shows how we compute the factor in the
last line of Equation (10). Algorithm 6 shows our ElemU-
PrefixSpan algorithm, where Line 6 computes Equation (10)
as accum using Algorithm 5. After obtaining Pr{β ⊑ si}
for all si|β ∈ D|β , we check the (τsup, τprob)-frequentness
of β and prune the element table similarly to Algorithm 3.

6 FAST VALIDATING METHOD

In this section, we present a fast validation method
that further speeds up the U-PrefixSpan algorithm. The
method involves two approximation techniques that check
the probabilistic frequentness of patterns, reducing the time
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Algorithm 6 ElemU-PrefixSpan(αe, D|α, T |α)
Input: pattern αe, projected probabilistic database D|α,
element table T |α

1: vecα ← ∅
2: for each projected sequence s|α ∈ D|α do
3: Find its corresponding sequence s ∈ D
4: accum← 0
5: for each (pos, pr) ∈ s|α do
6: accum← accum+ pr×ElemProb(s, pos, e)
7: Append accum to vecαe
8: (tag, fαe)←PMFCheck(vecαe)
9: if tag =TRUE then

10: output αe
11: D|αe ← Project(D|α, e)
12: T |αe ←Prune(T |α, D|αe)
13: for each element ℓ ∈ T |αe do
14: ElemU-PrefixSpan(αeℓ,D|αe, T |αe)
15: Free D|αe and T |αe from memory

complexity from O(n log2 n) to O(n). The underlying idea
of our method is to approximate the probabilistic frequent-
ness of patterns by applying some probability model (e.g.
a Poisson or Normal distribution), so that p-FSPs can be
verified quickly.

Given an uncertain database of size n, each sequential
pattern α is associated with n probabilities Pr{α ⊑
si} (i = 1, . . . , n), where each probability Pr{α ⊑ si}
conforms to an independent Bernoulli distribution repre-
senting the existence of pattern α in si. Since the sequences
si (i = 1, . . . , n) are independent of each other, the events
{α ⊑ si} represent n Poisson trials.Therefore, the random
variable sup(α) follows a Poisson-binomial distribution.
In both the sequence-level and element-level models, the
verification of probabilistic frequentness of α is given by

Pr{sup(α) ≥ τsup} = 1−Pr{sup(α) ≤ τsup−1}, (11)

where Pr{sup(α) ≤ τsup − 1} is a Poisson-binomial
cumulative distribution of random variable sup(α). The
Poisson binomial distribution can be approximated by the
Poisson distribution and the performance has been validated
in [27].

Let us denote the Possion distribution by f(k, λ) =
λke−λ

k! , and denote its cumulative distribution by F (k, λ).
We propose an approximation algorithm (i.e. PA) based
on Possion cumulative distribution F (µ, τsup − 1). This
algorithm checks α in the projection database by

Pr{sup(α) ≥ τsup} ≈ 1− F (µ, τsup − 1) ≥τprob, (12)

where F (µ, τsup − 1) monotonically decreases w.r.t. µ, as
shown in [27] and µ is the expected support of α given by

µ =

nα∑
i=1

Pr{α ⊑ si}, (13)

with nα being the size of D|α.

Based on the property of F (µ, τsup−1) and Equation 12,
the value of α estimated by PA monotonically increases
w.r.t µ. We compute the minimum expected support thresh-
old µm by

1− F (µm, τsup − 1) =τprob. (14)

The underlying idea of Equation 14 is to use numerical
methods and grows the patterns whose expected support µ
is greater than µm.

The PA method utilizes the expected support to approx-
imate the probabilistic frequentness of patterns. However,
the PA method only works well when the expected support
of α (i.e. expSup(α)) is very small, as stated in [31].

As a result, we propose another method, Normal approx-
imation (i.e. NA), to check the probabilistic frequentness of
patterns based on the Central Limiting Theorem. The NA
method is more robust, since it verifies the probabilistic
frequentness of pattern using both the expected support and
the standard variance. The computation of standard variance
δ of α in its projected database is given by

δ =

√√√√ nα∑
i=1

Pr{α ⊑ si}(1− Pr{α ⊑ si}), (15)

and, therefore the NA approximation of the probabilistic
frequentness of α is given by

Pr{sup(α) ≥ τsup} ≈ 1−G(
τsup − 1

2 − µ

δ
) (16)

where G(t) =
∫ t

−∞ e−
x2

2 dx and τsup− 1
2−µ

δ is the nor-
malization of the parameter for the probability distribution
G(t). The NA method has a good approximate ratio whose
upper error bound [30] is given by

supτsup

{
|Pr{sup(α) ≤ τsup−1}−G(

τsup − 1
2 − µ

δ
))|
}
≤ cδ−2,

(17)
where c is a constant and its proof can be found in [30].
The approximate ratio of NA method is tighter for larger
uncertain databases.

The formula of the NA method is monotonically decreas-
ing as t increases, since we have the following derivation

∂

∂t
(1−G(t)) = − ∂

∂t
G(t)

= − ∂

∂t

∫ t

−∞
e−

x2

2 dx

= −e− t2

2

≤ 0,

where t is the parameter of Normal distribution (i.e. t =
τsup− 1

2−µ

δ ). We compute the maximum t (i.e. tm) as the
verification threshold for the p-FSP, and the formula is
given by

1−G(tm) = τprob. (18)

We compute tm by numerical methods. We also compute
µ and δ by scanning the projected database D|α and grow
the pattern α when t =

τsup− 1
2−µ

δ ≤ tm.
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TABLE 1
APPROXIMATE PRECISION ON SEQUENCE-LEVEL UNCERTAIN MODEL

n PA NA m PA NA l PA NA d PA NA τsup PA NA τprob PA NA
10 0.86 0.95 5 0.98 0.99 22 0.99 0.99 10 1 1 70 0.99 0.99 0.2 0.67 0.99
20 1 1 10 0.99 0.99 24 1 1 20 1 1 80 0.99 0.998 0.25 0.78 0.99
30 1 1 15 0.99 0.99 26 1 1 30 0.989 0.999 90 0.98 0.99 0.3 0.83 0.99
40 1 1 20 1 0.99 28 1 1 40 1 1 100 0.991 0.998 0.35 0.92 0.99
50 1 1 25 1 1 30 1 1 50 1 1 110 0.98 0.99 0.4 0.95 0.99

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 10  15  20  25  30  35  40  45  50

E
xe

c 
T

im
e 

(s
ec

)

n (x 10k)

BL
SeqU’
SeqU

PA-SeqU
NA-SeqU

(a) Effect of n

 0

 5000

 10000

 15000

 20000

 25000

 5  10  15  20  25

E
xe

c 
T

im
e 

(s
ec

)

m

BL
SeqU’
SeqU

PA-SeqU
NA-SeqU

(b) Effect of m

 0

 5000

 10000

 15000

 20000

 25000

 30000

 22  23  24  25  26  27  28  29  30

E
xe

c 
T

im
e 

(s
ec

)

l

BL
SeqU’
SeqU

PA-SeqU
NA-SeqU

(c) Effect of ℓ

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 10  15  20  25  30  35  40  45  50

E
xe

c 
T

im
e 

(s
ec

)

d

SeqU’
SeqU

PA-SeqU
NA-SeqU

(d) Effect of d

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 70  80  90  100  110  120

E
xe

c 
T

im
e 

(s
ec

)

τsup

SeqU’
SeqU

PA-SeqU
NA-SeqU

(e) Effect of τsup on Time

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000

 70  80  90  100  110  120

N
um

be
r 

of
 P

at
te

rn
s

τsup

SeqU

(f) Effect of τsup on No. of Result

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000
 5500
 6000

 0.2  0.25  0.3  0.35  0.4

E
xe

c 
T

im
e 

(s
ec

)

τprob

SeqU’
SeqU

PA-SeqU
NA-SeqU

(g) Effect of τprob on Time

 30000

 32000

 34000

 36000

 38000

 40000

 0.2  0.25  0.3  0.35  0.4

N
um

be
r 

of
 P

at
te

rn
s

τprob

SeqU

(h) Effect of τprob on No. of Result

Fig. 7. Scalability Results on Sequence-Level Uncertain Model

7 EXPERIMENTS
In this section, we study the performance of our two U-

PrefixSpan algorithms using both real and synthetic data-
sets. Specifically, we test the performance of U-PrefixSpan
algorithms and their approximation algorithms , using large
synthetic datasets in Sections 7.1 and 7.2. We define recall
and precision to measure the accuracy of the approximation
methods as

precision =
|FSPapp

∩
FSP |

|FSPapp|
, (19)

recall =
|FSPapp

∩
FSP |

|FSP |
, (20)

where FSP is the set of patterns obtained by U-PrefixSpan
algorithms, the patterns in FSP are taken as the ground
truth, and FSPapp is the set of patterns obtained by the
approximation methods. For brevity, we only report the
approximate precision in this paper, since the approximate
recall reaches 1 in all cases. In Section 7.3, we compare
ElemU-PrefixSpan with the full expansion approach for
mining data that conform to the element-level uncertain
model, where the results show that ElemU-PrefixSpan ef-
fectively avoids the problem of “possible world explosion”.
Finally, in Section 7.4, we successfully apply ElemU-
PrefixSpan in an RFID application for trajectory pattern
mining, and the result validates the performance of the
approximation algorithms.

All the experiments were run on a computer with Intel(R)
Core(TM) i5 CPU and 4GB memory. The algorithms were

implemented in C++, and run in Eclipse on Windows 7
Enterprise.

7.1 SeqU-PrefixSpan Experimental Results
Synthetic Data Generation. To test the performance of

SeqU-PrefixSpan, we implement a data generator to gener-
ate datasets that conform to the sequence-level uncertain
model. Given the configuration (n,m, ℓ, d), our generator
generates n probabilistic sequences. For each probabilistic
sequence, the number of sequence instances is randomly
chosen from the range [1,m].The length of a sequence
instance is randomly chosen from the range [1, ℓ], and each
element in the sequence instance is randomly picked from
an element table with d elements.

Experimental Setting. In addition to the four dataset
configuration parameters n, m, ℓ and d, we also have two
threshold parameters: the support threshold τsup and the
probability threshold τprob.

To study the effectiveness of our three pruning rules (C-
ntPrune, MarkovPrune and ExpPrune) and early validating
method (cf. Theorem 1), we also carry out experiments
on the algorithm version without them. This serves as the
baseline. From now on, we abbreviate our SeqU-PrefixSpan
algorithm to SeqU, our ElemU-PrefixSpan algorithm to
ElemU, and their baseline algorithm version without the
pruning and validating methods for BL. We also name the
algorithm version that uses only the pruning methods by
appending an apostrophe to the original algorithm names,
e.g. SeqU becomes SeqU’. The SeqU-PrefixSpan algorithms
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TABLE 2
APPROXIMATION RESULTS ON ELEMENT-LEVEL UNCERTAIN MODEL

n PA NA m PA NA l PA NA d PA NA τsup PA NA τprob PA NA
10 0.86 0.95 6 0.80 0.927 22 0.942 0.973 10 1 1 15 1 1 0.2 0.506 0.889
20 1 1 7 0.74 0.904 24 1 1 20 1 1 18 1 1 0.25 0.536 0.881
30 1 1 8 0.71 0.881 26 1 1 30 0.86 0.95 21 1 1 0.3 0.659 0.894
40 1 1 9 0.685 0.85 28 1 1 40 1 1 24 1 1 0.35 0.809 0.92
50 1 1 10 0.663 0.849 30 1 1 50 1 1 27 1 1 0.4 0.865 0.962
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Fig. 8. Scalability Results on Element-Level Uncertain Model

based on Poisson approximation and Normal approximation
are called PA-SeqU and NA-SeqU, respectively.

Effect of n, m, ℓ and d on Execution Time. The exper-
imental results are presented in Figures 7(a) to 7(d). From
these results, we summarize some interesting observations
as follows:

• In all the experiments, BL is around 2 to 3 times
slower than SeqU’, which verifies the effectiveness of
the pruning methods. SeqU’ is around 10% to 20%
slower than SeqU, which verifies the effectiveness of
the validating method.

• The running time of all the algorithms increase as n,
m and ℓ increase. In particular, the running time of all
the algorithms increases almost linearly with n.

• The running time of SeqU and SeqU’ decreases as d
increases. This can be explained as follows. When the
data size is fixed, a larger pool of elements implies that
the length of the patterns found by SeqU-PrefixSpan
tends to be smaller, which further shows that SeqU-
PrefixSpan does not have to recurse to deep levels.

• PA-SeqU and NA-SeqU are more efficient than Seq-U.
They increase linearly as n, m and l increase, as shown
in Figures 7(a) to 7(c). The performance of PA-SeqU
and NA-SeqU is far better than that of SeqU when the
uncertainty of data is high, as shown in Figure 7(b).
We also find that their precision is very high, almost
reaching 1 in all the configurations in Table 1.

Effect of τsup and τprob on Execution Time and
Number of Results. The experimental results are presented

in Figures 7(e) to 7(h). From these figures, we observe that
both PA-SeqU and NA-SeqU algorithms have good approx-
imate precision on τsup varies. The NA-SeqU algorithm has
good approximate precision on τtau varies while the PA-
SeqU does not have high precision, as shown in Table 1.
The NA-SeqU algorithm is more robust than PA-SeqU
on estimating Poisson-binomial cumulative distribution of
random variable sup(α) of pattern α.

7.2 ElemU-PrefixSpan Experimental Results

Synthetic Data Generation. Similarly to the study
of SeqU-PrefixSpan, we generate datasets that conform to
the element-level uncertain model to test the scalability
of ElemU-PrefixSpan. Using the configuration (n,m, ℓ, d),
our generator generates n probabilistic sequences.In each
probabilistic sequence, 20% of the elements are sampled to
be uncertain. We generate a value wij following uniform
distribution in the range (0, 1) for each instance j of a
probabilistic element i, then normalize the value as its
probability.

Similarly to the sequence-level case presented in Section
7.1, we have altogether six parameters of n, m, ℓ, d,
τsup and τprob. For each dataset configuration, we generate
five datasets and the results are averaged on the five runs
before they are reported. The experimental results are in
Figures 8(a) to 8(g).

The trends observed from these results are similar to
those observed from the scalability test of SeqU-PrefixSpan
in Section 7.1, and thus a similar analysis can also be



13

applied. The precision of PA-ElemU and NA-ElemU can
be found in Table 2.

7.3 ElemU-PrefixSpan v.s. Full Expansion
Recall from Section 5 that a naı̈ve method to mine p-

FSPs from data that conform to the element-level uncertain
model, is to first expand each element-level probabilistic
sequence into all its possible sequence instances, and then
mine p-FSPs from the expanded sequences using SeqU-
PrefixSpan.

In this subsection, we empirically compare this naı̈ve
method with our ElemU-PrefixSpan algorithm. We use the
same data generator as the one described in Section 7.2
to generate experimental data, with the default setting
(n,m, ℓ, d) = (10k, 5, 20, 30). Figures 9(a) to 9(d) show
the running time of both algorithms with mining parameters
τsup = 16 and τprob = 0.7, where one data parameter is
varied and the other three are fixed to the default values.
Note that for the naı̈ve method, we do not include the time
required for sequence expansion (i.e. We only count the
mining time of SeqU-PrefixSpan).

In Figures 9(a), 9(c) and 9(d), ElemU-PrefixSpan is
around 20 to 50 times faster than the naı̈ve method, and
this performance ratio is relatively insensitive to parameters
n, ℓ and d. On the other hand, as shown in Figure 9(b),
the performance ratio increases sharply as m increases: 2.6
times when m = 2, 22 times when m = 5 and 119 times
when m = 6. This trend is intuitive, since m controls the
number of element instances in a probabilistic element,
which has a big influence on the number of expanded
sequence instances. All results show that ElemU-PrefixSpan
effectively avoids the problem of “possible world explo-
sion” associated with the naı̈ve method.

7.4 A Case Study of RFID Trajectory Mining
In this subsection, we evaluate the effectiveness of

ElemU-Prefix-Span by using the real RFID datasets ob-
tained from the Lahar project [32]. The data were collected
in an RFID deployment with nearly 150 RFID antennae
spread throughout the hallways of all six floors of a
building. These antennae detect RFID tags that pass by, and
log the sightings along with their timestamp in a database.
In our experiment, we use a database of 213 probabilistic
sequences with an average of 10 instances.

We test the performance of our approximation methods
on τsup and τprob. We find that the approximation methods
NA-ElemU and PA-ElemU are an order of magnitude faster
than ElemU as shown in Figures 10(a) and 10(b). This result
shows that the approximation methods NA-ElemU and PA-
ElemU perform better for more uncertain datasets. The
underlying reason is that the size of possible projections
of some pattern α becomes larger as the uncertainty of
the data (i.e. m) grows. Compared with the approximation
methods, the ElemU algorithm needs more time to validate
the patterns, as shown in the time complexity analysis.
We also conclude that NA-ElemU performs better than PA-
ElemU, since NA-ElemU is more robust in probabilistic
frequentness estimation, as shown in Table 3.

TABLE 3
APPROXIMATION RESULTS ON REAL DATASET

τsup PA NA τprob PA NA
20 0.924138 1 0.45 0.924138 0.943662
18 0.854911 0.994805 0.4 0.85623 0.924138
16 0.995868 0.995868 0.35 0.748603 0.884488
14 0.911961 0.99867 0.3 0.598214 0.848101
12 0.870491 0.989465 0.25 0.467714 0.752809
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Fig. 10. Scalability Results on Real Dataset

Figure 11 shows a sample result trajectory pattern with
support threshold equal to 3, whose probability of being
frequent is 91.4%. The blue lines correspond to the con-
nectivity graph, the red rectangles correspond to the RFID
antennae, and the green points correspond to the locations
in the trajectory pattern, the orders of which are marked
by the numbers near them. We also compute the expected
support of this sample trajectory pattern, which is 2.95.
Thus, this pattern cannot be found if expected support is
adopted to measure pattern frequentness.

8 CONCLUSIONS

In this paper, we study the problem of mining probabilis-
tically frequent sequential patterns (p-FSPs) in uncertain
databases. Our study is founded on two uncertain sequence
data models that are fundamental to many real-life ap-
plications. We propose two new U-PrefixSpan algorithms
to mine p-FSPs from data that conform to our sequence-
level and element-level uncertain sequence models. We also
design three pruning rules and one early validating method
to speed up pattern frequentness checking. These rules are
able to improve the mining efficiency. To further enhance
the algorithmic efficiency, we devise two approximation
methods to verify the probabilistic frequentness of the
patterns based on Poisson and Normal distributions. The
experiments conducted on synthetic and real datasets show
that our two U-PrefixSpan algorithms effectively avoid the
problem of “possible world explosion” and the approxima-
tion methods PA and NA are very efficient and accurate.
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