
Under consideration for publication in Knowledge and Information Systems

Efficient Location-based Search of Trajectories
with Location Importance
Da Yan§1, James Cheng§2, Zhou Zhao†3 and Wilfred Ng†4

§Department of Computer Science and Engineering, the Chinese University of Hong Kong
{1yanda, 2jcheng}@cse.cuhk.edu.hk
†Department of Computer Science and Engineering, the Hong Kong University of Science and Technology
{3zhaozhou, 4wilfred}@cse.ust.hk

Abstract. Given a database of trajectories and a set of query locations, location-based trajectory
search finds trajectories in the database that are close to all the query locations. Location-based
trajectory search has many applications such as providing reference routes for travelers who are
planning a trip to multiple places of interest. However, previous studies only consider the spatial
aspect of trajectories, which is inadequate for real applications. For example, one may obtain
the reference route of a tourist who just passed by a place of interest without paying a visit. We
propose the k Important Connected Trajectories (k-ICT) query by associating trajectories with
location importance. For any query location, the result trajectories should contain an important
point close to it. We describe an effective method to infer the importance of trajectory points from
the temporal information. We also propose efficient R-tree based and grid-based algorithms to
answer k-ICT queries, and verify the efficiency of our algorithms through extensive experiments
on both real and synthetic datasets.

Keywords: Trajectory; location importance; threshold algorithm; Voronoi diagram

1. Introduction

With the popularity of location-acquisition technology, huge amounts of trajectory data
are being generated at an unprecedented scale. We differentiate two types of trajectory
data. The first type is simply a sequence of time-stamped locations, usually generated
by mobile devices such as cell phones and GPS receivers at a relatively high sampling
rate. The sample points in such trajectories have very little or no semantics, and many

Received Oct 23, 2013
Revised Jul 01, 2014
Accepted Aug 31, 2014

2 D. Yan et al

Airport Outlet A Outlet B Hotel

Customer Age

Tom 51

Mary 46

Peter 24

Alice 26

15 min

16 min

12 min

14 min

1 hr

1.5 hr

10 sec

6 sec

30 min

45 min

40 min

1 hr 2 hr

1.5 hr

7 sec

8 sec

Figure 1. Illustration of the weakness of the k-BCT query

recorded locations are not important. The second type of trajectory is a sequence of lo-
cations with semantics, where each recorded location is usually important. One example
of such a trajectory is a sequence of geo-tagged photos taken by a traveler in a trip. Nu-
merous such trajectories can be obtained from photo-sharing websites such as Flickr
(www.flickr.com), and people usually take photos at locations they like. Another
example of such a trajectory is a sequence of check-in records of some traveler at the
places he/she cares. Such trajectories are available from location-based social network
services such as FourSquare (foursquare.com).

The proliferation of trajectory data has spawned many novel applications. One ex-
ample is searching trajectories by locations (Chen et al, 2010; Shang et al, 2012; Zheng
et al, 2013). Location-based trajectory search was first proposed in Chen et al (2010)
as the k Best-Connected Trajectories (k-BCT) query. Given a few query locations, a
k-BCT query finds k trajectories that are close to all query points from a trajectory
database. Location-based trajectory search can benefit users in many real life applica-
tions. For example, it can help travelers who are planning a trip to multiple places of
interest in an unfamiliar city, by providing similar routes traveled by other people for
reference. Location-based trajectory search is also useful in human behavior analysis,
where the query locations can be tourist attractions (specified by a travel agency) or the
stops of a new metro line (specified by the transport department).

The k-BCT query, however, considers only the spatial aspect of trajectories, which is
inadequate for many real applications. Consider a travel agency that queries a database
of tourist trajectories for market analysis. Figure 1 shows a database with four trajec-
tories, each belonging to a different tourist. For simplicity, we assume the data space
to be 1D rather than 2D, and we only mark the relevant trajectory samples using △.
For example, Tom spent 15 minutes at the airport (for check-out), 1 hour at Outlet A
(for shopping), 8 seconds at Outlet B (just passing by), and 30 minutes at the hotel (for
check-in and taking a rest). From Figure 1, we can see that young people (e.g., Peter and
Alice) may usually go shopping at Outlet B on their way from the airport to the hotel,
while middle-aged people (e.g., Tom and Mary) would prefer to go shopping at Out-
let A. Unfortunately, a 2-BCT query over the database with query locations, {Airport,
Outlet B, Hotel}, would return the trajectories of Tom and Mary (who actually went
shopping at Outlet A), since the 5-th sample in the trajectories of Tom and Mary is
closer to Outlet B than any of the samples in the trajectories of Peter and Alice. As a
result, the travel agency may make a wrong arrangement: when a tourist bus picks up

Efficient Location-based Search of Trajectories with Location Importance 3

a group of middle-aged tourists at the airport and goes to the hotel, it would stop at
Outlet B for the tourists to go shopping.

This example demonstrates that it is necessary to take location importance into con-
sideration. Although Tom and Mary have a trajectory sample close to Outlet B, the
importance of the sample with respect to the whole trajectory is low since Tom and
Mary just passed by Outlet B. On the contrary, Peter and Alice went shopping at Out-
let B, though their trajectory samples are farther away from Outlet B (the samples were
probably recorded at a car park nearby).

In this paper, we propose a new type of location-based trajectory search called the
k Important Connected Trajectories (k-ICT) query, over a database of trajectories asso-
ciated with location importance. We discuss how to derive the importance of trajectory
sample points from their timestamps, and develop efficient algorithms for answering
k-ICT queries.

The main contributions of this paper are summarized as follows:

– We propose the k-ICT query over a database of trajectories with location impor-
tance, which returns trajectories of much higher utility compared with the k-BCT
query (Chen et al, 2010).

– We design a practical method for deriving the importance of trajectory sample points
from their timestamps.

– We propose two R-tree based algorithms for answering k-ICT queries, founded on
two variants of Threshold Algorithm (TA) for top-k queries.

– We further develop two grid-based algorithms, which process k-ICT queries using
our grid index built from the Multiplicatively Weighted Voronoi Diagram (MWVD)
of trajectories. The grid-based algorithms address the drawbacks of the R-tree based
algorithms. Experiments show that the grid-based algorithms are more efficient in
terms of both time and space.

The rest of this paper is organized as follows. Section 2 reviews the related work. In
Section 3, we formulate the k-ICT query. Section 4 discusses how to derive trajectory
location importance from raw GPS data. We present our R-tree based algorithms in
Section 5, and describe the grid-based algorithms in Section 6. We report experimental
results in Section 7 and conclude the paper in Section 8.

2. Related Work

Conventional Trajectory Search. Given a query trajectory, conventional trajectory
search finds k trajectories with the shortest distances to the query trajectory. Definitions
of the distance function include (Yi et al, 1998; Vlachos et al, 1998; Chen and Ng, 2004;
Chen et al, 2005). However, these definitions ignore the time dimension of the trajectory
samples, and thus may overrate insignificant trajectory samples.

Trajectory Search by Locations. Location-based trajectory search was first proposed
by Chen et al (2010), where the query input is a set of locations. Compared with search-
ing trajectories by a complete query trajectory, it is more practical to search trajectories
by locations of interest. Consider the example where a traveler is planning a trip to an
unfamiliar city. He/she can easily specify the places he/she intends to visit as the query
points, by clicking them on a digital map. On the other hand, it is difficult for a new
comer to specify a preferred route as the query trajectory. However, as we shall discuss
in Section 3, Chen et al (2010) adopts a distance measure that is undesirable. Instead,

4 D. Yan et al

Tang et al (2011) proposes to use the sum-of-distance measure which is more reason-
able in real life applications. Recent research starts to enhance location-based trajectory
search with keywords (Shang et al, 2012; Zheng et al, 2013).

The problem with these works is that they do not consider location importance and
thus queries may easily overrate insignificant trajectory samples, as illustrated by the
example described in Section 1.

Trajectory Search by Patterns. The location-based trajectory search mentioned above
does not allow users to specify any constraints other than a set of query location. This
kind of query is easy to specify and satisfies the requirement of many applications. For
example, a tourist to an unfamiliar city may have some famous scenic spots in mind, but
does not have a concrete plan yet. He/she may use the location-based trajectory search
to find some related trajectories for reference.

However, there are also cases where users would like to add more constraints to the
query. For example, a tourist in Seattle may want to visit the museums first as they only
open in the daytime, and then goes to the Space Needle which stays open at night. In
fact, the city view may be more beautiful at night. In this case, a user may formulate a
spatial-temporal pattern and find the trajectories that match the pattern for reference, as
is done in Vieira et al (2010) and in Hadjieleftheriou et al (2005).

Mining Important Locations from Trajectories. There are studies on how to mine
important locations from trajectory data, such as raw GPS data (Cao et al, 2010) and
Flickr data (Yang et al, 2011). These works measure location importance from all the
trajectories. Another work (Spaccapietra et al, 2008) finds important locations from a
single trajectory. The work models a trajectory by stops and moves, where a stop is a
semantically important part of the trajectory. They proposed the IB-SMoT algorithm
to generate stops: given a database of geographic objects, if a part of trajectory in-
tersects with the object, and the time span of the sub-trajectory is above a minimum
time threshold, then the sub-trajectory is identified as a stop. Later work uses density
based clustering of the trajectory samples to find stops, such as CB-SMoT (Tietbohl et
al, 2008) and DB-SMoT (Rocha et al, 2010). Conceptually, the samples of a stop are
important, while the samples of a move are immaterial. However, these methods do not
provide a concrete importance score for the samples (or stops), and thus it is impossible
to compare the importance of different samples (or stops).

Other Topic about Trajectory Processing. Sometimes the trajectory data are sampled
in a very low rate like every several minutes or even every several hours. In this case, the
behavior between two consecutive trajectory point is missing. Zheng et al (2012) studies
how to discover the top-k possible routes sequentially passing the queried locations
from such uncertain trajectories, where the road network information is used to reduce
the uncertainty caused by low sampling rate.

There are also works that use the trajectories to discover regions of different func-
tions in a city. For example, Yuan et al (2012) uses topic modeling to learn the rich
structure of different functional sections of Beijing, by using data sources such as points
of interest (POIs) and GPS readings collected from taxis.

3. Problem Formulation

We now formally define the k-ICT query. Let D be a database of trajectories, where
each trajectory T ∈ D is a sequence of points (p1, p2, . . . , pℓ). We assume that each
point pi is associated with a score w(pi) ≥ 0, which corresponds to the importance

Efficient Location-based Search of Trajectories with Location Importance 5

Museum

30 sec 30 sec 30 sec
1 hr

30 sec 30 sec

Car Park

v

v pi+1 pi

Figure 2. Intuition behind distance function in Eq. (2)

of pi in trajectory T . For raw GPS data, we can derive the importance score using
the time stamps of the trajectory samples, which we will further discuss in Section 4.
For trajectories obtained from Flickr photos, the location importance of a photo can be
derived using the number of page visits; the score can also be manually set by the photo
owner.

A k-ICT query, Q, is represented by a set of m locations (or points): Q = {q1, q2, . . . , qm}.
We first introduce the distance functions that define how a k-ICT query is to be evalu-
ated.

Distance Related to One Query Point. Let us first focus on a specific query point
qi ∈ Q. We define the weighted distance between query point qi and a trajectory point
pj as follows:

d(qi, pj) =
∥qipj∥
w(pj)

, (1)

where we use ∥pq∥ to denote the Euclidean distance between two points p and q. Note
that a larger importance score w(pj) makes pj closer to qi (since d(qi, pj) is smaller).

We define the weighted distance between query point qi and a trajectory T =
(p1, p2, . . . , pℓ) as the weighted distance between qi and its closest trajectory point in
T :

d(qi, T) = min
pj∈T
{d(qi, pj)}. (2)

We now illustrate the intuition behind the distance function in Equation (2). Con-
sider the vehicle GPS trajectory fragment shown in Figure 2, which is generated as
follows. A traveler rented a GPS-equipped car to travel around a city. He drove to a car
park near a museum, parked his car, stayed in the museum for an hour, and then drove
to the next destination. Since the car was turned off when it was parked, the on-board
GPS device was also off. As a result, no sample was generated during that one hour
when the car was parked, and pi ∈ T is the first sample after the traveler drove the car
away from the car park.

In this example, the query point q in question is the museum. Now assume that
w(p) is proportional to the time the car stopped at point p. Although ∥qpi+1∥ < ∥qpi∥,
it is obvious that w(pi+1) ≪ w(pi) and thus d(q, pi+1) > d(q, pi) according to Equa-
tion (1), i.e. pi is closer to q than pi+1. Therefore, d(qi, T) = d(q, pi) by Equation (2).
Note that d(q, pi) correctly estimates the confidence that the traveler of T visited the
museum, since he may instead visit an aquarium nearby after parking his car. In the
latter case, d(q, pi+1) overestimates the confidence that the traveler visited the museum
since he actually visited the aquarium nearby the point pi+1. Thus, d(q, pi) presents an
accurate estimate in this case.

Overall Distance Function. We now define the weighted distance between a query

6 D. Yan et al

Q and a trajectory T , by aggregating d(qi, T) for all query points qi ∈ Q. Since we
want to find trajectories close to all query points in Q, we define the overall weighted
distance as:

d(Q,T) =

m∑
i=1

d(qi, T). (3)

Intuitively, d(Q,T) is the total distance of traveling from the closest position of T to qi
for all qi ∈ Q.

In addition to the physical meaning described above, Equation (3) is also meaning-
ful from the probabilistic point of view, which we discuss next. Let us denote pni to be
the trajectory point of T closest to qi (in terms of weighted distance), then d(qi, T) =
d(qi, pni). We also denote p(qi, T) to be the probability that the owner of the trajec-
tory T visited qi, and a reasonable assumption is that p(qi, T) decays exponentially as
d(qi, pni) increases. Using the PDF (Probability Density Function) of the exponential
distribution, we have p(qi, T) = λe−λ·d(qi,T). Since we have no preference of one query
point over another, we use the same λ for all qi ∈ Q. Since we want a result trajectory
to be close to all query points, the probability that the owner of trajectory T visited all
qi ∈ Q is:

m∏
i=1

p(qi, T) ∝ e−λ
∑m

i=1 d(qi,T), (4)

where we assume that “whether the owner visited one query location” is independent of
“whether he visited another query location”.

Since we want to maximize the probability value of Equation (4), it is equivalent to
minimize d(Q,T) =

∑m
i=1 d(qi, T).

The k-BCT query (Chen et al, 2010) adopts a similarity function sim(Q,T) =∑m
i=1 e

−d(qi,T). If we fix λ = 1, then sim(Q,T) =
∑m

i=1 p(qi, T). Compared with
Equation (4), this similarity function is undesirable, since the similarity value is high
as long as one query point is close to T , even if all other query points are far from T .
Similar observation is mentioned in Tang et al (2011), which proposes to use a sum-of-
Euclidean-distance measure. In this paper, we use the sum-of-weighted-distance mea-
sure to incorporate object importance.

We define k-ICT querying as follows.

Definition 1 (k-ICT Querying). Given a database of trajectories D = {T1, . . . , Tn} (n ≥
k), a set of query locations Q, a k-ICT query is to find a set of k trajectories, R ⊆ D,
such that

d(Q,T) ≤ d(Q,T ′), ∀T ∈ R, ∀T ′ ∈ D −R.

Complexity Analysis. Let us denote the size of a trajectory T (i.e., the number
of trajectory points in T) by |T |, and the the database size (i.e. the total number of
trajectory points in D) by ∥D∥ =

∑
T∈D |T |. Note that ∥D∥ is different from the num-

ber of trajectories in D, which is given by n = |D|. Given a k-ICT with m query
locations, for each trajectory T , we may compute the closest point to each query lo-
cation in O(|T |) time, and thus compute the closest points to all query locations in
O(m|T |) time. We may then compute the sum-of-weighted-distance score for each tra-
jectory in O(|T |) time. Therefore, we may compute the scores for all trajectories in∑

T∈D O(m|T |) = O(m
∑

T∈D |T |) = O(m∥D∥) time. Given the trajectories scores,

Efficient Location-based Search of Trajectories with Location Importance 7

v

v

pi
v

v
pl

pr
v

v

pj

pi

pj+1

pr

(a) (b)

Figure 3. Illustration of the evaluation of location importance

we may then find the top-k trajectories in O(n log k) time using a priority queue of size
at most k. Therefore, the time complexity of a k-ICT is bounded by O(m∥D∥+n log k).
However, this brute force approach requires scanning the whole database once, as the
time complexity is linear to ∥D∥ and n. In the rest of this paper, we consider how to ac-
cess only a small fraction of the whole trajectory database to find the top-k trajectories.

4. Location Importance

In this section, we discuss how to compute the importance of trajectory samples from
raw GPS data.

Formulation. A GPS reading can be represented by a triplet (latitude, longitude, timestamp).
In order to manipulate the data in Euclidean space, we map the coordinates of all sample
points from the GPS coordinates (latitude, longitude) to Universal Transverse Merca-
tor (UTM) coordinates (easting, northing), or simply (x, y).

Given a trajectory T = (p1, p2, . . . , pℓ), where each sample point pi = (pi.x, pi.y, t(pi)),
we want to compute the importance w(pi) for all the sample points pi ∈ T .

We define the neighborhood of a sample point pi ∈ T , denoted by Cir(pi), to be
a circle centered at pi with radius r, where r is a user-specified parameter. Figure 3(a)
shows the circle Cir(pi) and the trajectory T . Let pl (or respectively, pr) be the first
location on T reaching the boundary of Cir(pi) when going backward (or respectively,
forward) from pi along T . Note that pl and pr may not be an existing trajectory sample,
but rather the intersection point between Cir(pi) and a segment pjpj+1 as shown in
Figure 3(b). In this case, we use linear interpolation to compute the location and time
stamp of pr (or pl). Another extreme case is that pl (or respectively, pr) may be the
first (or respectively, last) trajectory sample that is inside Cir(pi), since in this case we
cannot go backward (or respectively, forward) from pi along T .

We define the following measure using pl and pr:

∆t(pi) = max{t(pr)− t(pi), t(pi)− t(pl)}. (5)

Here, (t(pr) − t(pi)) is the time spent before the traveler left Cir(pi) from pi in
the forward direction, while (t(pi) − t(pl)) is the time spent before the traveler left
Cir(pi) from pi in the backward direction (or more intuitively, the time spent from

8 D. Yan et al

when the traveler stepped in Cir(pi) until he reached pi). Intuitively, ∆t(pi) is defined
such that as long as the traveler stopped near pi (no matter in the forward or backward
direction), the importance of pi is promoted. The greater ∆t(pi) is, the more important
the trajectory sample pi is.

This definition of ∆t(pi) has two benefits. First, even when the traveler is in an
important location (e.g., a marketplace), he may still be walking around and the accu-
mulated distance can be large. Using a neighborhood circle to cover the marketplace,
we can correctly identify that the locations in the marketplace are important. Second,
when a GPS-equipped car is turned off, so is the GPS device. Thus, we can only con-
sider the last few samples before the car stops, or the first few samples after the car starts
as important (these locations may still be inside the car park), which are better covered
using the neighborhood circle.

The next issue is how to compute w(pi) using ∆t(pi). Obviously, w(pi) should
increase fast with ∆t(pi) when ∆t(pi) is small, but increase slowly when ∆t(pi) is
large. For example, a 1-minute stop may not be important since it may be due to a red
traffic light, while a 10-minute stop is more likely to be important. On the other hand,
a 1-hour stop quite certainly implies an important location, and the score should not
increase too much even if ∆t(pi) becomes 2 hours.

When ∆t(pi) = 0, we want the importance w(pi) = 0. Furthermore, we want w(pi)
to be within [0, 1] so as to carry a probability meaning: the confidence that the traveler
of trajectory T stops at pi. As a result, we define our importance score as follows:

w(pi) = 1− e−α·∆t(pi), (6)

where α controls how fast w(pi) increases with ∆t(pi).

Computation Details. Next, we discuss the details of computing ∆t(pi). We first
describe how we compute pr (the computation of pl is similar) for the scenario in Fig-
ure 3(b), where pj ∈ T is inside Cir(pi) and the next sample pj+1 is outside of Cir(pi).

Instead of directly computing pr, we first compute segment length ∥pjpr∥. Accord-
ing to the Cosine Law, we can compute cos∠pipjpr as follows:

cos∠pipjpr =
∥pipj∥2 + ∥pjpj+1∥2 − ∥pipj+1∥2

2 · ∥pipj∥ · ∥pjpj+1∥
,

where ∥pipj∥, ∥pjpj+1∥ and ∥pipj+1∥ can be easily computed from the coordinates of
pi, pj and pj+1.

Then, according to the Cosine Law, ∥pjpr∥ can be obtained by solving the following
quadratic equation:

∥pipr∥2 = ∥pipj∥2 + ∥pjpr∥2 −
2 · ∥pipj∥ · ∥pjpr∥ · cos∠pipjpr, (7)

where ∥pipj∥ is computed from the coordinates of pi and pj , and ∥pipr∥ = r. The roots

Efficient Location-based Search of Trajectories with Location Importance 9

of Equation (7) are:

∥pjpr∥(1) = ∥pipj∥ · cos∠pipjpr +√
∥pipj∥2 · cos2 ∠pipjpr − ∥pipj∥2 + r2,

(8)

∥pjpr∥(2) = ∥pipj∥ · cos∠pipjpr −√
∥pipj∥2 · cos2 ∠pipjpr − ∥pipj∥2 + r2.

(9)

However, the second root ∥pjpr∥(2) can be discarded since its value is negative. To
see this, recall that pj is inside Cir(pi), and hence ∥pipj∥ < r. Thus, we have√

∥pipj∥2 · cos2 ∠pipjpr − ∥pipj∥2 + r2

>
√
∥pipj∥2 · cos2 ∠pipjpr − r2 + r2

> ∥pipj∥ · cos∠pipjpr.

Therefore, ∥pjpr∥(2) < 0 according to Equation (9), and we conclude that the value of
∥pjpr∥ is given by Equation (8).

Algorithm 1 Computing (t(pr)− t(pi))

Input: Trajectory T = (p1, p2, . . . , pℓ)
Output: ∆t = t(pr)− t(pi)

1: ∆t← 0;
2: for pj := pi to pℓ−1 do
3: if pj+1 is inside Cir(pi) then
4: ∆t← ∆t+ (t(pj+1)− t(pj));
5: else
6: Compute ∥pjpr∥ by Equation (8);
7: ∆t← ∆t+

∥pjpr∥
∥pjpj+1∥ (t(pj+1)− t(pj));

8: return ∆t;
9: return ∆t;

Now we discuss how to compute (t(pr) − t(pi)). The value of (t(pi) − t(pl)) can
be computed similarly, and both of them are then used to compute ∆t(pi) according
to Equation (5). The algorithm is described in Algorithm 1. We check samples forward
along T starting from pi (Line 2). If the next sample pj+1 is inside Cir(pi), then the
whole segment pjpj+1 is inside Cir(pi) (due to the convexity of circles), and we ac-
cumulate the time spent on pjpj+1 to the result (Lines 3-4). Otherwise, we compute
pr and accumulate the time spent on pjpr to the result (Lines 5-7). Note that in the
latter case, we already reach the boundary of Cir(pi) and thus the accumulated time is
directly returned (Line 8).

Parameter Setting. We have two parameters: (1) radius r of Cir(pi), and (2) the
decay rate α in Equation (6). Typically, r is set as the diagonal length of a market place,
or the distance between a car park and the intended destination. While the parameter

10 D. Yan et al

choice is application-dependent, our experiments on several vehicle GPS datasets show
that our method always provides reasonable importance score (judged by human) when
r = 50m and α = 0.002. The details are omitted due to the space limitation.

5. R-Tree Based Algorithms

In this section, we introduce two R-tree based algorithms for answering k-ICT queries.
Before we present our algorithms, we first describe the Threshold Algorithm (TA) (Fagin
et al, 2001), since our algorithms adopt the TA framework for top-k query processing.

5.1. Threshold Algorithm and Its Variants

TA (Fagin et al, 2001) has been widely adopted for processing top-k queries, includ-
ing the k-BCT querying algorithm (Chen et al, 2010) and the keyword-aware vari-
ants (Shang et al, 2012; Zheng et al, 2013). In the setting of Fagin et al (2001), we are
given a database table D of n tuples, where the schema of the table is (A1, A2, . . . , Am).
For each attribute Ai, a list Li is built by sorting all the tuples in non-decreasing order
of the values of attribute Ai, and stored on disk. Each entry in Li is a pair (id, val),
where id is the id of the corresponding tuple, and val is the value of attribute Ai for
the tuple. We describe two algorithms that use the lists to find the top-k tuples, where
the ranking score of a tuple equals the summation of the values of all its m attributes (a
smaller score is preferred).

Fagin’s Algorithm (FA). FA finds the top-k tuples in three steps. Step 1: read a
(id, val) pair from each list in a round-robin manner, until there are k tuples whose id’s
have been seen from all the m lists. Step 2: for each tuple id seen (from any list), retrieve
the tuple from the table D if any of its attribute values are missing (random access to
D is needed). Step 3: compute the ranking score by summing the attribute values for
each tuple whose id has been seen, and return the k tuples with the smallest summation
values.

Threshold Algorithm (TA). Unlike the filter-and-refine framework of FA where
random access to D is only used in the refinement step, TA adopts a more aggressive
approach. TA also reads a (id, val) pair from each list in a round-robin manner, but
for each tuple id seen, TA immediately retrieves the tuple from D by random access,
computes the ranking score, and updates the current top-k tuples. Meanwhile, for each
list Li, TA maintains a variable τi equal to val of the last (id, val) pair read from Li.
The round-robin operation stops when the ranking score of the current top k-th tuple is
equal to or smaller than

∑m
i=1 τi.

In general, TA reads less pairs from the lists than FA, but performs more random
accesses to D than FA. While we focus on FA and TA when introducing our algorithms,
other variants of TA may also be adopted by our algorithm.

5.2. R-Tree Based Algorithms

We now present our R-tree based algorithms. We first describe a key operator used by
our algorithms: the incremental weighted nearest-neighbor (NN) algorithm.

Incremental Weighted NN Algorithm. Unlike Chen et al (2010), in our problem,

Efficient Location-based Search of Trajectories with Location Importance 11

each trajectory point pi is associated with an importance score w(pi), and its distance to
a query point q is evaluated as ∥qpi∥

w(pi)
using Equation (1). Thus, R-tree is no longer suf-

ficient for solving our problem. Instead, we index the trajectory points by an aggregate
R-tree (aR-tree) (Lazaridis and Mehrotra, 2001) with aggregate function MAX, called
MAX R-tree.

Compared with a traditional R-tree, each node entry e of a MAX R-tree maintains
the maximum importance score among all points indexed under e (i.e., indexed in the
subtree rooted at the node pointed to by e). Given an R-tree node entry e, we denote
its MAX aggregate value by w(e). We also denote the Minimum Bounding Rectangle
(MBR) of e by mbr(e). Then, for any trajectory point p indexed under e, its weighted
distance to query point q is given by:

d(q, p) =
∥qp∥
w(p)

≥ mindist(q,mbr(e))

w(e)
, (10)

where mindist(q,mbr(e)) is the distance from q to its closest point in mbr(e). The
inequality holds as mindist(q,mbr(e)) ≤ ∥qp∥ and w(e) ≥ w(p).

For simplicity, given an R-tree node entry e and a query point q, we define:

LB(q, e) =
mindist(q,mbr(e))

w(e)
. (11)

According to Equation (10), LB(q, e) lower bounds the weighted distance from any
point indexed under e to q.

Algorithm 2 Computing the Next Weighted NN of qi
Input: query location qi, priority queue min-heap, Max R-tree tree
Output: (d(qi, p), p) where p is the next NN of qi

1: while min-heap is not empty do
2: (LB(qi, e), e)←min-heap.dequeue();
3: if e is a leaf node entry then
4: p← the trajectory point pointed to by e;
5: return (LB(qi, e), p);
6: else
7: node← the R-tree node pointed to by e;
8: for each entry e′ of node do
9: Compute LB(qi, e

′);
10: min-heap.enqueue(LB(qi, e

′), e′);

Algorithm 2 describes our incremental weighted NN algorithm. When processing a
k-ICT query, we maintain a priority queue of R-tree node entries for each query point
qi, so that the next NN of qi can be incrementally obtained using Algorithm 2. Initially,
the priority queue min-heap contains only the root node of the Max R-tree tree, and
each call of Algorithm 2 updates min-heap and retrieves the next NN of qi.

We now explain Algorithm 2 in details. In each round, the entry e with the smallest
LB(qi, e) is dequeued from min-heap (Line 2). If e is an entry of a leaf node, then it
points to a trajectory point p and LB(qi, e) = d(qi, p). In this case, we can conclude that
p is the next NN (Line 5), since any unseen trajectory point p′ is indexed under some
node entry en in min-heap, and d(qi, p

′) ≥ LB(qi, en) ≥ LB(qi, e). Otherwise, e is

12 D. Yan et al

an entry of a non-leaf node node, and we enqueue all the entries of node into min-heap
(Lines 7-10).

R-Tree based FA and TA. We now introduce our two R-tree based algorithms for
answering k-ICT queries, one based on FA and the other based on TA. Both algorithms
use Algorithm 2 for sequentially accessing the next NN of each query point qi.

Algorithm 3 presents the R-tree based FA for answering k-ICT queries. Similar to
FA, Algorithm 3 has two phases: the filtering phase (Lines 3-15) and the refinement
phase (Lines 16-20).

Algorithm 3 R-tree based FA for Answering k-ICT Queries
Input: k, query set Q, trajectory database D, Max R-tree tree
Output: k-ICT (the top-k trajectories)

1: table← ∅, d← 1;
2: N ← number of trajectory points in D;
3: while d ≤ N do
4: for each qi ∈ Q do
5: Retrieve the d-th NN p of qi, together with the weighted distance d(qi, p),

using Algorithm 2;
6: T ← the trajectory that p belongs to;
7: if T ̸∈ table then
8: Insert T into table;
9: T [i]← d(qi, p); /∗ T [i] represents d(qi, T) ∗/

10: else
11: if T [i] is not yet assigned then
12: T [i]← d(qi, p);
13: if there are k trajectories in table whose attribute values are all assigned then
14: goto Line 16;
15: d← d+ 1;
16: for each T ∈ table do
17: Read T ;
18: For any T [i] not yet assigned: T [i]← d(qi, T);
19: Compute d(Q,T) =

∑m
i=1 T [i];

20: Update the top-k trajectories;
21: return the top-k trajectories;

In each round of the filtering phase, Algorithm 3 obtains the next NN of each qi
for processing (Line 4), i.e., the NNs of the query points are processed in a round-robin
manner. Since there are N trajectory points indexed by tree, there are at most N rounds
(Line 3). All the seen trajectories are maintained using a hash table table, where the hash
key is the trajectory id. If the trajectory of the obtained point p has not been seen yet, we
know that d(qi, T) = d(qi, p), and thus we insert T into table and record d(qi, p) as the
value of the i-th attribute, denoted by T [i] (Lines 7-9). Otherwise, T is already in table,
and we check whether T [i] has been assigned a value (Line 11). If T [i] has already been
assigned a value, we ignore the obtained point p since the point in T that is closest to
qi has already been processed before. Otherwise, p is the point in T closest to qi, and
we set T [i] to be d(qi, p). The filtering phase terminates once k tuples are seen with the
value of T [i] assigned for all qi ∈ Q, which is similar to the traditional FA.

In the refinement phase, we first compute d(qi, T) for any T [i] whose value has not

Efficient Location-based Search of Trajectories with Location Importance 13

Algorithm 4 R-tree based TA for Answering k-ICT Queries
Input: k, query set Q, trajectory database D, Max R-tree tree
Output: k-ICT (the top-k trajectories)

1: table← ∅, d← 1;
2: N ← number of trajectory points in D;
3: max-heap← ∅;
4: while d ≤ N do
5: τ ← 0;
6: for each qi ∈ Q do
7: Retrieve the d-th NN p of qi, together with the weighted distance d(qi, p),

using Algorithm 2;
8: T ← the trajectory that p belongs to;
9: if T ̸∈ table then

10: T [i]← d(qi, p);
11: ∀j ̸= i, compute T [j] = d(qj , T) by accessing T ;
12: Insert T into table;
13: Compute d(Q,T) =

∑m
i=1 T [i];

14: max-heap.enqueue(d(Q,T), T);
15: If max-heap.size() > k: max-heap.dequeue();
16: τ ← τ + d(qi, p);
17: if max-heap.size() = k and max-heap.top() ≤ τ then
18: goto Line 20;
19: d← d+ 1;
20: return the k trajectories in max-heap;

yet been assigned (a more efficient method of obtaining T [i] is actually used, which we
will discuss in Section 6.2). Then, for all the seen trajectories T ∈ table, d(Q,T) is
computed and the k tuples with the smallest values of d(Q,T) are returned.

Algorithm 4 presents the R-tree based TA for answering k-ICT queries. Recall that
the conventional TA maintains a variable τi for each list Li, whose value equals the
attribute value of the last accessed entry. TA stops when the ranking score of the current
top k-th tuple is equal to or smaller than

∑m
i=1 τi. In our problem, τi = d(qi, p) where

p is last accessed NN of qi. We set τ to 0 at the beginning of a round-robin processing
round (Line 5), and add τi = d(qi, p) to τ for each query point qi (Line 16). Therefore,
at the end of the round-robin processing round, τ =

∑m
i=1 τi is exactly the pruning

threshold, which is then compared with the top k-th trajectory in Line 17 to determine
the stopping condition.

In Lines 9-15, we only process the trajectory T of the current point p if T is not in
table, by accessing T to assign T [i] (a more efficient method discussed in Section 6.2
is actually used here), computing d(Q,T) and updating the top-k results. Note that if T
is in table, then T [i] must have been assigned for all i = 1, . . . ,m (Lines 10-12), and
hence we can ignore T .

Finally, we note that the correctness of both Algorithms 3 and 4 is easy to see by
following the correctness of FA and TA (Fagin et al, 2001). We thus omit the details
here.

Limitations of R-Tree Based Algorithms. We identify the following limitations of
using an R-tree index built over all the trajectory points in the database, which motivates
our grid-based algorithm to be introduced in Section 6.

14 D. Yan et al

Firstly, the incremental NN search for each query qi is done over an R-tree that
contains all the trajectory samples. However, if we know qi beforehand, then only one
sample per trajectory requires examining (i.e., the sample with the shortest weighted
distance to qi), and there are totally n = |D| such samples, much less than the number
of all samples in D. Therefore, there is huge room for improvement in terms of sample
candidate pruning.

Secondly, much of the computation done by the R-tree based algorithms could be
wasteful. This is because consecutive samples of a trajectory are close in space, and
are very likely indexed under the same R-tree node. As a result, in consecutive calls of
Algorithm 2 for retrieving the NNs of a query point qi, many returned NNs may come
from the same trajectory.

Finally, we use the maximum importance w(e) of an R-tree node entry to compute
the lower bound in Equation (11), which is not tight. As long as there is one point
indexed under e with a large weight, the whole entry e has to be accessed early even if
all the other points have very low weight, resulting in the addition of all its child nodes
into the priority queue.

6. Grid-Based Algorithms

In this section, we present the grid-based algorithms.

Overview. We first give an overview of how our grid-based algorithms address all the
three drawbacks of the R-tree based algorithms mentioned in Section 5.2.

Firstly, to avoid doing NN search over all trajectory points, we divide the data space
by a grid, so that each grid cell covers a small region. We observe that only a small
fraction of samples per trajectory have the chance to be the NN of some location in a
cell. Thus, if a query point locates in a grid cell, we only need to check the samples
relevant to the cell.

Secondly, to avoid checking a lot of samples of a trajectory that do not contribute
to the top-k answers, we propose to pre-compute the Multiplicatively Weighted Voronoi
Diagram (MWVD) of the points of each trajectory. Note that a sample pi is the weighted
NN of q if and only if q locates inside the Voronoi cell of pi.

Finally, to avoid the interference of samples from different trajectories, we treat
trajectories as the first-class citizen (while the R-tree index treats the trajectory points as
the first-class citizen). Given a grid cell, we group all its relevant samples by trajectories,
and the NN search is done in the unit of trajectories rather than trajectory points.

We discuss these ideas in details in the following subsections.

6.1. Trajectory Preprocessing by MWVD

For each trajectory T = (p1, p2, . . . , pℓ), we pre-compute the MWVD (OKabe et al,
2009) of its points, which is then used to build our grid index. We first briefly review
the MWVD and then show how we use it in our solution.

Let U be the data domain. Given two samples p and p′, the dominant region of p
over p′ is defined as:

Rp|p′ = {q ∈ U | d(q, p) ≤ d(q, p′)}.

We now consider the shape of Rp|p′ . Let us first assume that w(p) < w(p′), then
Rp|p′ is characterized by the region within circle Cp|p′ , whose center c and radius r are

Efficient Location-based Search of Trajectories with Location Importance 15

p p' c

r

x
x

l r

Figure 4. Illustration of dominant regions

given as follows:

c =

(
w2(p′) · p.x− w2(p) · p′.x

w2(p′)− w2(p)
,
w2(p′) · p.y − w2(p) · p′.y

w2(p′)− w2(p)

)
r =

w(p) · w(p′) · ∥pp′∥
w2(p′)− w2(p)

.

Figure 4 illustrates the concept of dominant region with circle Cp|p′ . In fact, Cp|p′

is an Apollonius circle, since for any point x on its boundary, ∥px∥
∥p′x∥ = w(p)

w(p′) .
When w(p) > w(p′), Rp|p′ is characterized by the region outside of circle Cp|p′ .

For example, in Figure 4 where w(p′) > w(p), Rp′|p = U − Cp|p′ . Finally, when
w(p) = w(p′), the perpendicular bisector of pp′ divides the space into two half planes,
and Rp|p′ corresponds to the half plane that contains p, denoted by Hp|p′ .

The Voronoi cell of a trajectory point p ∈ T is given by:

V C(p) =
∩

p′∈T−{p}

Rp|p′ , (12)

since any point in V C(p) should be in Rp|p′ for any p′ ∈ T − {p}. Given a sample
p ∈ T , we divide the other samples in T into three sets: T+ contains all samples p′

with w(p′) > w(p), T− contains all samples p′ with w(p′) < w(p), and T 0 contains all
samples p′ with w(p′) = w(p).

Equation (12) implies that V C(p) may be represented by ℓ − 1 circles or lines in
the worst case. In fact, not all circles/lines contribute to the final shape of V C(p) and
many of them can be pruned by the six pruning rules presented in Wu et al (2011). We
adopt the best-first search algorithm of Wu et al (2011) for MWVD computation, but the
computation is done in memory since the number of points in each trajectory is usually
not large.

6.2. Grid Index

Next, we describe two indices used in our grid-based algorithms. In our problem, we
assume that there exists a rectangular data space U , such that all trajectory points and

16 D. Yan et al

query points locate inside U . For example, U can be the bounding box of a city region.
Our grid-based approach divides U by an N ×N grid, denoted by G.

For each trajectory T , we build a random access index, denoted by RAI[T], which
returns d(q, T) given a query point q; while for each grid cell G[i, j], we build a sequen-
tial access index, denoted by SAI[i, j], which returns trajectories in non-decreasing
order of d(q, T) for a query point q falling in G[i, j].

Random Access Index (RAI). We now describe how we build RAI[T]. First, we
compute V C(p) for all p ∈ T , where V C(p) is represented by a set of pairs (p′, Rp|p′).
We say that p′ is related to V P (p) if (p′, Rp|p′) ∈ V C(p). Then, for each grid cell
G[i, j], we compute the set of Voronoi cells overlapping with the rectangular region R
that G[i, j] represents. We denote the set by S(R) = {V CR(pi1), V CR(pi2), . . . , V CR(pis))}.
Note that a Voronoi cell V CR(p) may contain less pairs of (p′, Rp|p′) than the origi-
nal V C(p), since we only need to characterize its shape within R. If V C(p) does not
overlap with R, p cannot be the weighted NN of any location in R, and is thus pruned.

We now consider how to compute V CR(p) from the original V C(p). We divide
the trajectory points p′ related to V C(p) into three sets S+, S− and S0, according to
whether p′ belongs to T+, T− and T 0, respectively. We check each (p′, Rp|p′) ∈ V C(p)
in turn for the following:

– Cell Pruning: if Rp|p′ does not overlap with R, we prune V CR(p) immediately since
V C(p) ∩Rp|p′ = ∅;

– Pair Pruning: if Rp|p′ contains R, then p′ has no contribution to the shape of V CR(p),
and thus (p′, Rp|p′) is not included in V CR(p);

– Otherwise, (p′, Rp|p′) is added to V CR(p).

Figure 5 lists the conditions for Cell Pruning and Pair Pruning when p′ ∈ S+, S− and
S0.

In our implementation, we do not compute S(R) for each grid G[i, j] with region R
directly from the original Voronoi set. Instead, we perform the computation by building
a quadtree qtree whose leaf nodes correspond to the grid cells. By specifying the height
of the quadtree as h, we obtain a 2h × 2h grid (i.e., N = 2h).

Algorithm 5 Computing Quadtree Node node

Input: Current node node, Parent node par, current level level

1: S(node.R)← ∅;
2: for each V Cpar.R(p) ∈ S(par.R) do
3: Compute V Cnode.R(p) by checking the pairs in V Cpar.R(p), and do the pruning

listed in Figure 5;
4: If V Cnode.R(p) is not pruned, add it to S(node.R);
5: if level < h and |S(node.R)| > 1 then
6: Split node.R into four equal quadrants, Ri, i = 1, 2, 3, 4;
7: Create child nodes chi, i = 1, 2, 3, 4 with chi.R = Ri;
8: Recurse over each child node;

Each quadtree node, node, is associated with a region node.R and a set of the
Voronoi cells overlapping with node.R, i.e., S(node.R). Algorithm 5 shows how we
compute S(node.R) for each quadtree node node in a recursive manner. Let the quadtree

Efficient Location-based Search of Trajectories with Location Importance 17

Condition 1 Condition 2 Action

p' S+ G[i, j] is outside of Cp | p'
 Prune VC(p)

p' S+ Cp | p‘ contains G[i, j] Prune (p’, Rp | p')

p' S-- Cp’ | p contains G[i, j] Prune VC(p)

p' S-- G[i, j] is outside of Cp’ | p
 Prune (p’, Rp | p')

p' S0 Hp’ | p contains G[i, j] Prune VC(p)

p' S0 Hp | p‘ contains G[i, j] Prune (p’, Rp | p')

 (a) p' S+

 Cell Pruning

 Pair Pruning

U

 (b) p' S--

 Cell Pruning

 Pair Pruning

U

(c) p' S0

 Cell Pruning

 Pair Pruning

Figure 5. Cell Pruning & Pair Pruning

root be root with root.R = U and S(root.R) = {V C(p1), · · · , V C(pℓ)}, the recur-
sion is initiated over each child node of root with level = 1. For each node, we com-
pute its Voronoi cell set only from that of its parent (Line 3). If the set contains only
one Voronoi cell Vnode.R(p), then for any location in node.R, p is its weighted NN. We
stop recursion in that case (Line 5). Otherwise, if the current level is not the leaf level,
we continue to split node and construct its four children (Lines 6-8).

After the quadtree qtree is constructed, for all its nodes node, S(node.R) is al-
ready computed. Then, for each grid cell G[i, j] with region R, we compute the set of
trajectory points whose Voronoi cells overlap with R, denoted by CT [i, j]. We compute
CT [i, j] by finding the leaf node, leaf , that contains the center of R using qtree; and
for each V Cleaf.R(p) ∈ S(leaf.R), we add the corresponding trajectory point p into
CT [i, j].

It is easy to see that, for any query location in R, its weighted NN must be some
trajectory point in CT [i, j]. We call CT [i, j] as the candidate set of G[i, j] from now on.
For each trajectory T , we store CT , which is an N × N array of trajectory point lists,
on disk as the random access index RAI[T].

Given a query point q, we identify the grid cell G[i, j] that q locates in, load the list
CT [i, j] into memory, and compute d(q, T) as follows:

d(q, T) = min
p∈CT [i,j]

{d(q, p)}. (13)

Compared with loading the whole trajectory T in memory, it is more efficient to
obtain d(q, T) using this random access index, since |CT [i, j]| is much smaller than
the trajectory length ℓ. Therefore, in our implementation, we use this index to compute

18 D. Yan et al

d(q, T) instead of accessing T directly (recall Lines 17-18 of Algorithm 3 and Line 11
of Algorithm 4).

Sequential Access Index (SAI). For each grid cell G[i, j], we also build a list L[i, j]
for retrieving trajectories T in non-decreasing order of d(q, T), where query point q
locates in G[i, j]. Since q can be any location in G[i, j], the value of d(q, T) is not fixed
beforehand. We compute the lower bound of d(q, T) instead, denoted by LB(q, T),
which is given by:

LB(q, T) = min
p∈CT [i,j]

{
mindist(p,R)

w(p)

}
, (14)

where R is the region of G[i, j].
Each trajectory T has an entry in L[i, j], represented by en(T) = (T,CT [i, j], LB(q, T)).

The list L[i, j] is constructed by sorting the entries in non-decreasing order of LB(q, T).
We store the N ×N list array L on disk.

Given a query point q that falls in G[i, j], in order to retrieve trajectories in non-
decreasing order of d(q, T) using L[i, j], we maintain a priority queue min-heap in
main memory. We get the next trajectory T with the smallest value of d(q, T) in two
steps:

– We read the next entry en(T) from L[i, j], evaluate d(q, T) using Equation (13),
and add (T, d(q, T)) into min-heap. The process is repeated until the value d(q, T ′),
where T ′ = min-heap.top(), is smaller than the LB(q, T) of the last accessed entry
en(T). Note that all subsequent entries have lower bound values larger than d(q, T ′).

– We return T ′ = min-heap.top() as the next NN, and remove it from min-heap.

The priority queue min-heap is a memory buffer that reorders the trajectories in
L[i, j] by d(q, T), and we call it as the sequential access index of G[i, j], denoted by
SAI[i, j].

Grid-based Algorithms. Our two grid-based algorithms also follow the FA and TA
frameworks, respectively, but use the grid index (i.e., the RAI and SAI) in replace of the
R-tree index.

The grid-based FA differs from Algorithm 3 in the following aspects:

– Line 2 now becomes “N ← n”, where n = |D|;
– Line 5 is now replaced by “retrieve the d-th NN of qi using SAI[j, k], where qi falls

in G[j, k]”;
– Line 6 is no longer necessary since SAI[j, k] directly returns the trajectory T along

with d(qi, T);
– Lines 9 and 12 now become “T [i]← d(qi, T)”;
– We no longer need to do the checking in Line 11, since each T will be accessed only

once for each query point qi.

The grid-based TA differs from Algorithm 4 in the following aspects:

– Line 2 now becomes “N ← n”;
– Line 7 is now replaced by “retrieve the d-th NN of qi using SAI[j, k], where qi falls

in G[j, k]”;
– Line 8 is no longer necessary;
– Line 10 now becomes “T [i]← d(qi, T)”;

Efficient Location-based Search of Trajectories with Location Importance 19

Extension to Skewed Trajectory Distribution. Our current algorithm uses a uniform
grid to partition the rectangular data space U . Our experiments show that our algorithm
works quite well on the datasets with trajectories relatively uniformly distributed over
U . However, it is not the best choice when the trajectory distribution is skewed.

Although the road network of most regions occupies the majority of the region’s
bounding box U (e.g., Colorado), it is not always true. For example, in the bounding
box of Florida, most regions correspond to the ocean where no trajectory can exist, and
it is meaningless to divide such regions into grid cells. Furthermore, there are usually
much more trajectory points in city centers than in outskirts, and thus dense regions
should be divided into finer granularity.

We proposes a heuristics to handle data skewness. Specifically, we first build a linear
quadtree index over all the trajectory points. Then, we build our RAI and SAI indices
over the leaf nodes of the linear quadtree. We have conducted experiments to compare
the performance of using uniform grid with that of using linear quadtree over skewed
trajectory data, and found that the latter is an order of magnitude faster than the former,
and achieves similar performance compared with using uniform grid over relatively
uniform trajectory data.

7. Experimental Results

In this section, we evaluate the performance of our algorithms: RTree-TA, RTree-FA,
Grid-TA, and Grid-FA. We implemented our algorithms in JAVA. All the experiments
were run on a public Linux server with eight 3GHz Intel CPU and 32GB memory.

7.1. Datasets and Query-sets

We first describe the datasets and query-sets used in our experiments.

Datasets. We evaluate the efficiency of our algorithms and the quality of the result
trajectories using four real trajectory datasets that are publicly available:

– Trucks1: This dataset consists of 276 trajectories of 50 trucks delivering concrete to
several construction places around Athens metropolitan area in Greece for 33 distinct
days.

– SchoolBuses2: This dataset consists of 145 trajectories of 2 school buses collecting
(and delivering) students around Athens metropolitan area in Greece for 108 distinct
days.

– Geolife3: This GPS trajectory dataset was collected in MSRA Geolife project by 182
users in a period of over five years (from April 2007 to August 2012).

– T-Drive4: This dataset contains the GPS trajectories of 10,357 taxis during the period
of Feb. 2 to Feb. 8, 2008 within Beijing.

For the two small datasets Trucks and SchoolBuses, the length of the trajectories is
in the order of hundreds. We choose these datasets for empirical evaluation since there

1 http://www.chorochronos.org/?q=node/5
2 http://www.chorochronos.org/?q=node/6
3 http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/default.aspx
4 http://research.microsoft.com/apps/pubs/?id=152883

20 D. Yan et al

exists some important locations in their underlying applications, such as construction
places and schools.

Unlike the Trucks and SchoolBuses datasets where most trajectories have a sampling
rate of every 30 seconds, the sampling rate of the large datasets (i.e., Geolife and T-
Drive) varies a lot. Specifically, the Geolife dataset contains 10,373 trajectories recorded
by different GPS loggers and GPS phones with a variety of sampling rates, where 91.5%
of the trajecotries are logged in a dense representation, like every 1–5 seconds or every
5–10 meters per trajectory point. As a result, the length of the trajectories is in the order
of thousands to tens of thousands. For the T-Drive dataset, the sampling rate is much
lower, with the average sampling interval being about 177 seconds with a distance of
about 623 meters. The length of the trajectories in T-Drive is in the order of thousands.

The dense sampling rate of Geolife is not useful, since two consecutive trajectory
points that are 1 second or 1 meter apart usually refer to the same Point of Interest (POI).
Therefore, we re-sample the trajectories as follows:

– We always sample the first trajectory point;

– If the next trajectory point is less than 30 seconds or 1 meter apart from the last
sampled trajectory point, we skip the trajectory point.

We also do the trajectory re-sampling over T-Drive despite its low sampling rate,
because we find that T-Drive records a lot of samples for a taxi even when it stops, and
we want to remove the redundant samples that refer to the same stop locations. After
the re-sampling process, the length of the trajectories in both datasets becomes shorter,
in the order of thousands.

Another issue with the large datasets (i.e., Geolife and T-Drive) is that, the spatial
distribution of the trajectory points is highly skewed. For Geolife, the majority of the
data was created in Beijing, China. However, some trajectory points may locate in other
cities like those in the USA and Europe. If we use our grid-based indexing approach,
the majority of trajectory points in Beijing are clustered in only a small number of grids
while many grids are empty. Moreover, a traveler usually use the k-ICT query to find
some reference trajectories for planning a trip to multiple POIs in an unfamiliar city
such as Beijing, and it is unlikely that the trajectory points abroad are of any interest.
Therefore, for Geolife, we only use the 8,726 trajectories that are totally in the 5-th
ring road of Beijing, which account for 85.75% of the trajectories in the dataset. As
for T-Drive, we eliminate the skewed spatial distribution of trajectory points similarly,
by using only the 7,450 trajectories that are totally inside Beijing, which account for
71.93% of the trajectories in the dataset.

Query-sets. We do not generate query locations randomly, since trajectories usually
follow the underlying road network. Moreover, a query location in a sparse region not
covered by the road network is meaningless in real applications.

We generate a meaningful query-set containing m query locations in the following
way: (1) randomly pick a trajectory from the trajectory dataset to query over; (2) pick
the top-10% points of the trajectory in terms of importance; (3) randomly select m
locations from these points without replacement; (4) shift these locations in a random
direction by a small randomly generated distance (within 200m), and add them to the
query-set.

In this way, we are generating meaningful query locations which are important and
correlated for at least one trajectory in the dataset.

Efficient Location-based Search of Trajectories with Location Importance 21

7.2. Evaluation Measures

The k-ICT query has two query parameters: (1) the number of query points, m; and (2)
the number of trajectories, k, that the user wants the query to return. These parameters
are usually small in real applications. We also have a parameter for the dataset, which
is the number of trajectories, n.

We measure the following four costs of our algorithms when the above parameters
change: (1) CPU time; (2) number of blocks accessed by sequential index (the Max R-
tree, or the grid index SAI); (3) number of blocks accessed by random index (the grid
index RAI); (4) number of priority queue entries in main memory.

Since our algorithms are I/O bound, the number of blocks accessed by sequen-
tial/random indices are the most important performance criteria. When using the grid
index SAI[i, j] for a query point locating in G[i, j], we maintain a main memory buffer
of one block which is refilled from L[i, j] whenever it is used up. Therefore, we can
use the number of blocks accessed to evaluate the I/O cost. As for R-tree, the nodes are
loaded in blocks, and thus the number of blocks accessed can be measured.

The smaller memory a query requires, the more queries a server can handle simulta-
neously. Therefore, we also measure the memory cost of our algorithms. For the R-tree
based algorithms, the memory cost is dominated by the priority queue min-heap used
for NN search (see Algorithm 2), while for grid-based ones, the memory cost is dom-
inated by the priority queue of SAI[i, j] for reordering L[i, j] (see Section 6.2). The
total number of memory entries equals the sum of the entries in the priority queue for
each query point qi, and we report the maximum number among all the round-robin
iterations.

For the Trucks and SchoolBuses datasets, we manually mark the points of some tra-
jectories with human-specified importance values, and then find the values of r and α
that best fits these marked data using Equation (6). We find that the choice of r = 50
m and α = 0.002 effectively distinguishes between the important and unimportant tra-
jectories points, and we use these parameter values when generating sample importance
by the method discussed in Section 4.

The trajectories in the Geolife dataset have various speed, as they records different
outdoor movements such as walking, biking, or driving. Therefore, we fix r = 50 m
but use various values of α for different trajectories. Note that if we fix α = 0.002
which is appropriate for a vehicle trajectory, the importance scores of most trajectory
points in the trajectory of a walking person are close to 1, although many of them are
not important. We use the following approach to set α of a trajectory, which is observed
to well characterize the location importance of the trajectories: in Equation (6), we set
α such that when ∆t(pi) (when r = 50 m) equals the longest one among all points pi
in the trajectory, the score w(pi) = 0.99.

As for the T-Drive dataset, the sampling rate is very low and thus a radius of r = 50
m is not able to cover a sufficient number samples around the current trajectory point.
We set the parameters as follows, which is observed to well characterize the location
importance of the trajectories: r is fixed to 500 m and we set α such that when ∆t(pi) =
500 s (when r = 500 m), the score w(pi) = 0.99.

Throughout the experiments, we fix the size of a block as 512 bytes. We generate
1000 queries in each experiment, and all results are averaged over the 1000 runs.

22 D. Yan et al

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 1 2 3 4 5 6 7 8 9 10

C
PU

 T
im

e
(m

s)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(a) CPU Time

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10#
of

 B
lo

ck
s

(S
eq

ue
nt

ia
l)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(b) I/O (Sequential)

 0
 200
 400
 600
 800

 1000
 1200

 1 2 3 4 5 6 7 8 9 10

of

 B
lo

ck
s

(R
an

do
m

)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(c) I/O (Random)

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10#
of

 M
ai

n
M

em
or

y
E

nt
ri

es

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(d) Memory Entries

Figure 6. Effect of m using the Trucks dataset

7.3. Effect of Query Parameters

We first study the performance of our algorithms with respect to the query parameters m
and k. For the relatively small Trucks and SchoolBuses datasets, we build grid indices by
constructing a quadtree of height h = 5. Accordingly, the grid we use is of size 32×32.
For the large datasets Geolife and T-Drive, we build a grid index by constructing a
quadtree of height h = 7. Accordingly, the grid we use is of size 128× 128.

To study the effect of m, we fix k as 5 and process queries with m = 1, 2, . . . , 10.
On the other hand, to study the effect of k, we fix m as 3 and process queries with
k = 1, 2, . . . , 10.

Figure 6 reports the performance of our algorithms for processing k-ICT queries
over the Trucks dataset when k = 5 and the number of query points m increases from 1
to 10.

Figure 6(a) shows that the CPU time of RTree-FA is much larger than the other three
algorithms, while the grid-based algorithms record the shortest CPU time.

Since all our algorithms are I/O bound, the results reported in Figure 6(b) and (c)
dominate the overall performance of query processing. According to Figure 6(b), RTree-
FA requires reading a lot of blocks (or R-tree nodes) for the incremental NN search,
and both of the R-tree based algorithms read significantly more blocks for sequential
access than the grid-based algorithms. For example, when m = 5, RTree-FA reads
over 1844 blocks while Grid-FA reads only 87 blocks. For random access, Figure 6(c)
shows that Grid-FA (or respectively, Grid-TA) also reads fewer blocks than RTree-FA (or
respectively, RTree-TA), though the difference is not as big as in the case of sequential
access.

Overall, Grid-TA is around 1.3 times faster than Grid-FA, several times faster than
RTree-TA, and an order of magnitude faster than RTree-FA.

Efficient Location-based Search of Trajectories with Location Importance 23

 0
 5

 10
 15
 20
 25
 30
 35

 1 2 3 4 5 6 7 8 9 10

C
PU

 T
im

e
(m

s)

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(a) CPU Time

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10#
of

 B
lo

ck
s

(S
eq

ue
nt

ia
l)

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(b) I/O (Sequential)

 600
 650
 700
 750
 800
 850
 900
 950

 1000
 1050
 1100
 1150

 1 2 3 4 5 6 7 8 9 10

of

 B
lo

ck
s

(R
an

do
m

)

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(c) I/O (Random)

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10#
of

 M
ai

n
M

em
or

y
E

nt
ri

es

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(d) Memory Entries

Figure 7. Effect of k using the Trucks dataset

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 1 2 3 4 5 6 7 8 9 10

C
PU

 T
im

e
(m

s)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(a) CPU Time

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10#
of

 B
lo

ck
s

(S
eq

ue
nt

ia
l)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(b) I/O (Sequential)

 0
 100
 200
 300
 400
 500
 600
 700

 1 2 3 4 5 6 7 8 9 10

of

 B
lo

ck
s

(R
an

do
m

)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(c) I/O (Random)

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10#
of

 M
ai

n
M

em
or

y
E

nt
ri

es

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(d) Memory Entries

Figure 8. Effect of m using the SchoolBuses dataset

24 D. Yan et al

 0
 10
 20
 30
 40
 50
 60

 1 2 3 4 5 6 7 8 9 10

C
PU

 T
im

e
(m

s)

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(a) CPU Time

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10#
of

 B
lo

ck
s

(S
eq

ue
nt

ia
l)

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(b) I/O (Sequential)

 300
 350
 400
 450
 500
 550
 600
 650
 700
 750

 1 2 3 4 5 6 7 8 9 10

of

 B
lo

ck
s

(R
an

do
m

)

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(c) I/O (Random)

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10#
of

 M
ai

n
M

em
or

y
E

nt
ri

es

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(d) Memory Entries

Figure 9. Effect of k using the SchoolBuses dataset

Figure 6(d) shows that the number of data entries maintained in memory by RTree-
TA and by RTree-FA is from several times to tens of times larger than that by both of
the grid-based algorithms. Given the fact that the size of an entry maintained by the
grid index is much smaller than an R-tree node entry (which contains MBR and weight
besides the node pointer), the grid-based algorithms are much more memory-efficient
than the R-tree based ones.

Figure 7 reports the performance of our algorithms over the Trucks dataset when
m = 3 and k increases from 1 to 10. The results are similar to that of increasing m we
just discussed, except for the I/O cost of random access. As shown in Figure 7(c), the
two FA-based algorithms, RTree-FA and Grid-FA, read fewer blocks when k increases,
while the two TA-based algorithms, RTree-TA and Grid-TA, read more blocks when
k increases. This is because FA adopts a filter(sequential access)-and-refine(random
access) approach. A larger k requires that FA do more sequential accesses, and since
more trajectories are accessed, the need for random access is reduced.

As for the SchoolBuses dataset, Figure 8 reports the performance of our algorithms
when m changes, and Figure 9 reports the performance of our algorithms when k
changes. It can be observed that the performance trend of the algorithms is similar to
that of the Trucks dataset discussed above (we thus omit the details).

For the Geolife dataset, Figure 10 reports the performance of our algorithms when
m changes, and Figure 11 reports the performance of our algorithms when k changes.
The performance trend of the algorithms is mostly similar to that of the Trucks and
SchoolBuses datasets discussed above, except for the random IO cost shown in Fig-
ure 10(c) and Figure 11(c), where we can see that the FA-based algorithms incur much
more random IO cost than the TA-based algorithms. This shows that the effectiveness of
TA over FA is more prominent for a larger trajectory dataset. Also, Figure 11(c) shows
that the random IO cost of the FA-based algorithms read more blocks when k increases,

Efficient Location-based Search of Trajectories with Location Importance 25

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

C
PU

 T
im

e
(m

s)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(a) CPU Time

 10

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10#
of

 B
lo

ck
s

(S
eq

ue
nt

ia
l)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(b) I/O (Sequential)

 0
 1000
 2000
 3000
 4000
 5000
 6000

 1 2 3 4 5 6 7 8 9 10

of

 B
lo

ck
s

(R
an

do
m

)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(c) I/O (Random)

 100

 1000

 10000

 100000

 1e+006

 1 2 3 4 5 6 7 8 9 10#
of

 M
ai

n
M

em
or

y
E

nt
ri

es

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(d) Memory Entries

Figure 10. Effect of m using the Geolife dataset

 0
 20
 40
 60
 80

 100
 120

 1 2 3 4 5 6 7 8 9 10

C
PU

 T
im

e
(m

s)

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(a) CPU Time

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8 9 10#
of

 B
lo

ck
s

(S
eq

ue
nt

ia
l)

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(b) I/O (Sequential)

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

 1 2 3 4 5 6 7 8 9 10

of

 B
lo

ck
s

(R
an

do
m

)

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(c) I/O (Random)

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10#
of

 M
ai

n
M

em
or

y
E

nt
ri

es

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(d) Memory Entries

Figure 11. Effect of k using the Geolife dataset

26 D. Yan et al

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 1 2 3 4 5 6 7 8 9 10

C
PU

 T
im

e
(m

s)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(a) CPU Time

 10

 100

 1000

 10000

 100000

 1e+006

 1 2 3 4 5 6 7 8 9 10#
of

 B
lo

ck
s

(S
eq

ue
nt

ia
l)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(b) I/O (Sequential)

 0
 5000

 10000
 15000
 20000
 25000
 30000

 1 2 3 4 5 6 7 8 9 10

of

 B
lo

ck
s

(R
an

do
m

)

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(c) I/O (Random)

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1 2 3 4 5 6 7 8 9 10#
of

 M
ai

n
M

em
or

y
E

nt
ri

es

Number of Query Locations

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(d) Memory Entries

Figure 12. Effect of m using the T-Drive dataset

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 1 2 3 4 5 6 7 8 9 10

C
PU

 T
im

e
(m

s)

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(a) CPU Time

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10#
of

 B
lo

ck
s

(S
eq

ue
nt

ia
l)

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(b) I/O (Sequential)

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

 1 2 3 4 5 6 7 8 9 10

of

 B
lo

ck
s

(R
an

do
m

)

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(c) I/O (Random)

 1000

 10000

 100000

 1e+006

 1 2 3 4 5 6 7 8 9 10#
of

 M
ai

n
M

em
or

y
E

nt
ri

es

k

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(d) Memory Entries

Figure 13. Effect of k using the T-Drive dataset

Efficient Location-based Search of Trajectories with Location Importance 27

 0
 200
 400
 600
 800

 1000
 1200
 1400

 1 2 3 4 5 6 7 8 9 10

C
PU

 T
im

e
(m

s)

Number of Trajectories (× 10k)

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(a) CPU Time

 100

 1000

 10000

 100000

 1 2 3 4 5 6 7 8 9 10#
of

 B
lo

ck
s

(S
eq

ue
nt

ia
l)

Number of Trajectories (× 10k)

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(b) I/O (Sequential)

 0

 5000

 10000

 15000

 20000

 25000

 1 2 3 4 5 6 7 8 9 10

of

 B
lo

ck
s

(R
an

do
m

)

Number of Trajectories (× 10k)

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(c) I/O (Random)

 1000

 10000

 100000

 1e+006

 1 2 3 4 5 6 7 8 9 10#
of

 M
ai

n
M

em
or

y
E

nt
ri

es

Number of Trajectories (× 10k)

RTree-TA
RTree-FA

Grid-TA
Grid-FA

(d) Memory Entries

Figure 14. Scalability results

which is different from that observed from Figure 7(c) and Figure 9(c). This is because
the filtering phase of FA is not as effective on Geolife as on the other two datasets, and
thus, the refinement phase still requires more random accesses as k increases. Over-
all, Grid-TA is around twice faster than Grid-FA, 3–19 times faster than RTree-TA and
20–70 times faster than RTree-FA.

As for the T-Drive dataset, Figure 12 reports the performance of our algorithms
when m changes, and Figure 13 reports the performance of our algorithms when k
changes. It can be observed that the performance trend of the algorithms is similar to
that of the Geolife dataset discussed above. Overall, Grid-TA is around 1.3 times faster
than Grid-FA, 3–13 times faster than RTree-TA and 10–50 times faster than RTree-FA.

7.4. Results of Scalability Test

To study the scalability of our algorithms when the number of trajectories increases,
we generate synthetic datasets based on the Trucks dataset. Specifically, to generate a
dataset with n trajectories, we repeat the following operations n times: (1) randomly
pick a trajectory from the Trucks dataset; (2) shift it in a random direction by a small
randomly generated distance (within 200m); (3) insert the new trajectory into the syn-
thetic dataset. We generate synthetic datasets from a real dataset since we want the
generated trajectories to exhibit the properties of real trajectories.

We generate synthetic datasets D with |D| = 10k, 20k, · · · , 100k, and process
queries with m = 3 and k = 5. The grid indices are built by constructing a quadtree of
height h = 6, and accordingly, the grid is of size 64× 64.

Figure 14 shows the scalability of our algorithms when the number of trajectories
increases. We can see from Figure 14(c) that when the data size is large, FA-based
algorithms require reading many more blocks using random access than TA-based al-

28 D. Yan et al

Traj ID
Weighted

Distance Sum

Distance

Sum

 t(pi)

q1's Match q2's Match q3's Match

Top-1 231 1155.21 107.90 m 15709.34 s 3097.60 s 3761.37 s

Top-2 24 1737.65 208.38 m 695.38 s 2086.14 s 1469.69 s

Top-3 214 2612.54 270.07 m 8913.50 s 1643.62 s 57.59 s

Top-4 89 3031.17 202.23 m 2226.35 s 790.20 s 2275.79 s

Top-5 274 3189.64 2086.82 m 3382.07 s 916.64 s 63.22 s

Traj ID
Weighted

Distance Sum

Distance

Sum

 t(pi)

q1's Match q2's Match q3's Match

Top-1 231 1155.21 107.90 m 4.46 s 3097.60 s 3761.37 s

Top-2 89 3031.17 202.23 m 3.28 s 30.53 s 27.53 s

Top-3 24 1737.65 208.38 m 4.47 s 63.99 s 12.94 s

Top-4 83 3355.39 236.52 m 3.49 s 63.22 s 5.36 s

Top-5 269 3680.68 242.84 m 3.78 s 31.61 s 7.36 s

(a) Top-5 Trajectories Found by Sum-of-Weighted-Distance

(b) Top-5 Trajectories Found by Sum-of-Distance

Figure 15. Top-5 Result Trajectories

gorithms do. Otherwise, the performance trend is quite consistent with the results on the
Trucks dataset reported in Section 7.3.

Overall, our algorithms scale well with the data size. Grid-TA is slightly (less than
10%) faster than Grid-FA, 2.7–3 times faster than RTree-TA and 13–18.5 times faster
than RTree-FA.

7.5. Quality of Trajectory Answers

So far, we have only studied the performance of our algorithms. In this subsection, we
compare the quality of the trajectories found by our sum-of-weighted-distance mea-
sure with that of the traditional sum-of-Euclidean-distance (or simply, sum-of-distance)
measure. We use the Trucks dataset for quality evaluation, since it only contains the
trajectories of trucks, and thus, the result trajectories exhibit similar characterizations.

We now report the result when m = 3 and k = 5. Figure 15(a) shows the top-5
trajectories found by our sum-of-weighted-distance measure (i.e., a 5-ICT query), for
a randomly generated query-set with three query locations. For each result trajectory
in Figure 15(a), we show its trajectory ID, the values of sum-of-weighted-distance and
sum-of-distance. Let us define the match of a query point qj in trajectory T as the
point pi ∈ T closest to qj in terms of weighted distance. Then, for each trajectory in
Figure 15(a), we also show ∆t(pi) of the match pi of each of the three query locations
qj . Obviously, the top-1 trajectory is of high quality, since (1)the sum-of-distance is
only 107.90 meters, which means that the trajectory is physically close to each query
location, and (2)∆t(pi) is long for the match pi of each query location qj , which means
that the truck spent a while in the 50-meter-radius neighborhood Cir(pi) and thus pi
is important. Similarly, the other four trajectories shown in Figure 15(a) have relatively
high quality and is likely to be helpful to the user.

For the same query locations, we also find the top-5 trajectories found by the tra-

Efficient Location-based Search of Trajectories with Location Importance 29

Top-1 Top-2 Top-3 Top-4 Top-5

Weighted

Distance Sum
6552.83 s 6609.30 s 6963.46 s 7034.18 s 7276.55 s

Distance Sum 1064.17 s 905.08 s 1002.74 s 759.88 s 802.34 s

Figure 16. Avg Sum-of-∆t(pi) of Top-k Trajectories on Truck

m 1 2 3 4 5

Weighted

Distance Sum
1675.23 s 6907.76 s 6416.46 s 5468.21 s 10525.52 s

Distance Sum 3.30 s 3460.82 s 24.82 s 3398.88 s 4239.07 s

Figure 17. Avg Sum-of-∆t(pi) of Top-1 Trajectories on Truck with Different Query
Parameter m

ditional sum-of-distance measure, which are shown in Figure 15(b). In Figure 15(b),
we define the match of a query point qj in trajectory T as the point pi ∈ T closest to
qj in terms of Euclidean distance. We can see that most matching trajectory points pi
has a small value of ∆t(pi), which means that these locations are not very important.
The sum-of-distance measure fails to find important trajectories like Trajectory 214, and
even though it finds some important trajectories like Trajectory 89, the matches of the
query locations are of low quality.

We now show that sum-of-weighted-distance is superior to sum-of-distance in gen-
eral, by randomly generating 1000 queries and report the quality measures averaged
over the 1000 query results. We define the quality of a trajectory as the sum of ∆t(pi)
for all matches pi of the query locations qj , and a larger value implies a higher qual-
ity. Intuitively, sum-of-∆t(pi) represents the total time spent by the trajectory at the
locations of interest. Figure 16 shows the average sum-of-∆t(pi) of the top-ith tra-
jectory found by sum-of-weighted-distance and by sum-of-distance, where we set the
query parameter m = 3. The figure clearly shows that trajectories found by sum-of-
weighted-distance have higher quality. We also test the average sum-of-∆t(pi) of the
top-1 trajectory found by sum-of-weighted-distance and by sum-of-distance, by vary-
ing the query parameter m. The result is shown in Figure 17, which also confirms that
trajectories found by sum-of-weighted-distance have higher quality.

We also compare the quality of the trajectories found by our sum-of-weighted-
distance measure with that of the sum-of-distance measure on the T-Drive dataset.
Figure 18 shows the average sum-of-∆t(pi) of the top-ith trajectory found by sum-
of-weighted-distance and by sum-of-distance, where the query parameter m = 3. Fig-
ure 19 shows the average sum-of-∆t(pi) of the top-1 trajectory found by sum-of-weighted-

Top-1 Top-2 Top-3 Top-4 Top-5

Weighted

Distance Sum
1734.40 s 1936.08 s 1782.64 s 1776.27 s 1750.20 s

Distance Sum 209.22 s 40.92 s 92.89 s 43.21 s 62.21s

Figure 18. Avg Sum-of-∆t(pi) of Top-k Trajectories on T-Drive

30 D. Yan et al

m 1 2 3 4 5

Weighted

Distance Sum
551.11 s 973.96 s 1634.67 s 2582.91 s 4131.28 s

Distance Sum 63.14 s 181.73 s 217.65 s 283.85 s 463.04 s

Figure 19. Avg Sum-of-∆t(pi) of Top-1 Trajectories on T-Drive with Different Query
Parameter m

distance and by sum-of-distance, by varying the query parameter m. Both figures con-
firm that trajectories found by sum-of-weighted-distance have higher quality.

7.6. Summary of Experimental Results

To sum up, we have the following observations: (1) the grid-based algorithms are sig-
nificantly more efficient than the R-tree based algorithms; (2) the TA-based algorithms
are more efficient than the FA-based algorithms; and (3) Grid-TA is much faster than
the other three algorithms on large datasets.

8. Conclusions

We proposed the new problem of k Important Connected Trajectories (k-ICT) query
processing over trajectories with location importance. We designed effective methods
to infer the importance of trajectory locations from the temporal information, and devel-
oped four algorithms to answer the queries: two based on the R-tree index, and the other
two based on an efficient grid index. The R-tree index based algorithms are adaptations
of the algorithms in Chen et al (2010) to querying trajectories with location importance.
However, the R-tree index only captures the spatial aspects of the trajectory points, and
location weights are only considered during R-tree querying. On the other hand, our
grid index includes the location weights as first-class citizen, and is thus more suitable
for querying trajectories with location importance.

We showed by experiments on both real and synthetic datasets that our algorithms
are efficient for answering k-ICT queries. The grid index based algorithms are espe-
cially efficient in terms of both time and space: they incur one to two orders of mag-
nitude less sequential IO cost and computational overhead compared with R-tree index
based algorithms, due to the more effective pruning power of the grid index. As for
trajectory traversal, TA is more effective than FA since the aggressive strategy of TA
tightens the pruning threshold much faster. Overall, the combination of TA with grid
index offers the best performance.

Acknowledgements. We thank the reviewers for giving us many constructive comments, with
which we have significantly improved our paper. This research is supported in part by GRF grant
HKUST 617610, SHIAE Grant No. 8115048 and MSRA Grant No. 6903555.

References

Chen Z, Shen HT, Zhou X, Zheng Y and Xie X (2010) Searching trajectories by locations - an efficiency study.
Proceedings of the 2010 ACM SIGMOD international conference on management of data (SIGMOD),
June 2010, pp 255–266.

Efficient Location-based Search of Trajectories with Location Importance 31

Yi BK, Jagadish H and Faloutsos C (1998) Efficient retrieval of similar time sequences under time warping.
Proceedings of the 14th IEEE International Conference on Data Engineering (ICDE), February 1998,
pp 201–208.

Vlachos M, Kollios G and Gunopulos D (2002) Discovering similar multidimensional trajectories. Proceed-
ings of the 18th IEEE International Conference on Data Engineering (ICDE), February 2002, pp 673–684.

Chen L and Ng R (2004) On the marriage of lp-norms and edit distance. Proceedings of the 30th International
Conference on Very Large Data Bases (VLDB), August 2004, pp 792–803.

Chen L, Özsu MT and Oria V (2005) Robust and fast similarity search for moving object trajectories. Pro-
ceedings of the 2005 ACM SIGMOD international conference on management of data (SIGMOD), June
2005, pp 491–502.

Shang S, Ding R, Yuan B, Xie K, Zheng K and Kalnis P (2012) User oriented trajectory search for trip
recommendation. Proceedings of the 15th International Conference on Extending Database Technology
(EDBT), March 2012, pp 156–167.

Zheng K, Shang S, Yuan NJ and Yang Y (2013) Towards efficient search for activity trajectories. Proceedings
of the 29th IEEE International Conference on Data Engineering (ICDE), April 2013, pp 230–241.

Cao X, Cong G and Jensen CS (2010) Mining significant semantic locations from GPS data. Proceedings of
the 36th International Conference on Very Large Data Bases (VLDB), September 2010, pp 1009–1020.

Cao X, Cong G and Jensen CS (2010) Mining significant semantic locations from GPS data. Proceedings of
the 36th International Conference on Very Large Data Bases (VLDB), September 2010, pp 1009–1020.

Yang Y, Gong Z and U LH (2011) Identifying points of interest by self-tuning clustering. Proceeding of
the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR), July 2011, pp 1009–1020.

Spaccapietra S, Parent C, Damiani ML, de Macêdo JA, Porto F and Vangenot C (2008) A conceptual view on
trajectories. Data & Knowledge Engineering (DKE), 65(1): 126–146.

Tietbohl A, Bogorny V, Kuijpers B and Alvares LO (2008) A clustering-based approach for discovering in-
teresting places in trajectories. Proceedings of the 2008 ACM Symposium on Applied Computing (SAC),
March 2008, pp 863–868.

Rocha JAMR, Oliveira G and Bogorny V (2010) DB-SMoT: a direction-based spatio-temporal clustering
method. 5th IEEE International Conference on Intelligent Systems (IS), July 2010, pp 114–119.

Fagin R, Lotem A and Naor M (2001) Optimal aggregation algorithms for middleware. Proceedings of the
20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS), May
2001.

Lazaridis I and Mehrotra S (2001) Progressive approximate aggregate queries with a multi-resolution tree
structure. Proceedings of the 2001 ACM SIGMOD international conference on management of data (SIG-
MOD), May 2001, pp 401–412.

OKabe A, Boots B, Sugihara K and Chiu SN (2009) Spatial tessellations, concepts and applications of Voronoi
diagrams. Vol. 501. John Wiley & Sons, 2009.

Wu D, Yiu ML, Jensen CS and Cong G (2011) Efficient continuously moving top-k spatial keyword query
processing. Proceedings of the 27th IEEE International Conference on Data Engineering (ICDE), April
2011, pp 541–552.

Tang LA, Zheng Y, Xie X, Yuan J, Yu X and Han J (2011) Retrieving k-nearest neighboring trajectories by
a set of point locations. Advances in Spatial and Temporal Databases - 12th International Symposium
(SSTD), August 2011, pp 223–241.

Vieira MR, Bakalov P and Tsotras VJ (2011) Querying trajectories using flexible patterns. Proceedings of the
13th International Conference on Extending Database Technology (EDBT), March 2010, pp 406–417.

Hadjieleftheriou M, Kollios G and Bakalov P (2005) Complex spatio-temporal pattern queries. Proceedings
of the 31th International Conference on Very Large Data Bases (VLDB), September 2005, pp 877–888.

Zheng K, Zheng Y, Xie X and Zhou X (2012) Reducing uncertainty of low-sampling-rate trajectories. Pro-
ceedings of the 28th IEEE International Conference on Data Engineering (ICDE), April 2012, pp 1144–
1155.

Yuan J, Zheng Y and Xie X (2012) Discovering regions of different functions in a city using human mobility
and POIs. The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), August 2012, pp 186–194.

Author Biographies

32 D. Yan et al

Da Yan received his Ph.D. degree in Computer Science from the Hong Kong Uni-
versity of Science and Technology, Kowloon, Hong Kong, in 2014; and received
his B.S. degree in Computer Science from Fudan University, Shanghai, in 2009.
He is currently a postdoctoral fellow in the Department of Computer Science and
Engineering, the Chinese University of Hong Kong. His research interests include
distributed graph computing systems, cloud computing and big data, spatial data
management, uncertain data management and data mining.

James Cheng is currently an Assistant Professor with the Department of Com-
puter Science and Engineering at the Chinese University of Hong Kong (CUHK).
Dr. Cheng received his Ph.D., M.Phil., and B.Eng. (First Class Honors) degrees
in Computer Science from the Hong Kong University of Science and Technol-
ogy in August 2008, 2004, and 2003, respectively. Before he joined CUHK, he
was an Assistant Professor with the School of Computer Engineering at Nanyang
Technological University, Singapore, from May 2009 to Dec 2012. His research
focuses on large scale data analytics and distributed computing systems.

Zhou Zhao received his B.S. degree in Computer Science from the Hong Kong
University of Science and Technology (HKUST), in 2010. He is currently a Ph.D.
student in the Department of Computer Science and Engineering, HKUST. His
research interests include data cleansing and data mining.

Wilfred Ng received his MS.c. (Distinction) and Ph.D. in Computer Sci-
ence from the University of London. Currently he is an Associate Pro-
fessor of Computer Science and Engineering at the Hong Kong Univer-
sity of Science and Technology, where he is a member of the database
research group. His research interests are in the areas of databases, data
mining and information Systems, which include Web data management and
XML searching. Further Information can be found at the following URL:
http://www.cs.ust.hk/faculty/wilfred/index.html.

Correspondence and offprint requests to: Da Yan, Department of Computer Science and Engineering, the
Chinese University of Hong Kong, Shatin, N.T., Hong Kong. Email: yanda@cse.cuhk.edu.hk

