
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JANUARY 2007 1

Probabilistic Convex Hull Queries over
Uncertain Data

Da Yan1, Zhou Zhao2, Wilfred Ng3, and Steven Liu4

Abstract—The convex hull of a set of two-dimensional points, P , is the minimal convex polygon that contains all the points in P . Convex
hull is important in many applications such as GIS, statistical analysis and data mining. Due to the ubiquity of data uncertainty such as
location uncertainty in real-world applications, we study the concept of convex hull over uncertain data in 2D space. We propose the
Probabilistic Convex Hull (PCH) query and demonstrate its applications, such as Flickr landscape photo extraction and activity region
visualization, where location uncertainty is incurred by GPS devices or sensors. To tackle the problem of possible world explosion, we
develop an O(N3) algorithm based on geometric properties, where N is the data size. We further improve this algorithm with spatial
indices and effective pruning techniques, which prune the majority of data instances. To achieve better time complexity, we propose
another O(N2 logN) algorithm, by maintaining a probability oracle in the form of a circular array with nice properties. Finally, to support
applications that require fast response, we develop a Gibbs-sampling-based approximation algorithm which efficiently finds the PCH
with high accuracy. Extensive experiments are conducted to verify the efficiency of our algorithms for answering PCH queries.

Index Terms—Convex hull, uncertain data, Gibbs sampling.

F

1 INTRODUCTION

C ONVEX hull is a geometric concept that is fundamental
to a wide spectrum of applications, including pattern

recognition [2], cluster analysis [3] and linear optimization [4].
In 2D plane, the convex hull of a set of points, P , is the
minimal convex polygon that contains all the points in P .
Figure 1(a) illustrates the concept of convex hull, where solid
points are those on the convex hull and hollow ones are not. In
this work, we focus on objects with 2D location uncertainty,
which are common in geo-spatial applications [8].

pi

pj

p’

(a) Convex Hull

pi

pj
p’

(b) Minimum Bounding Rectangle

Fig. 1. Convex hull and MBR in 2D plane

Convex Hull in 2D Space. Let n be the number of points
in set P . We consider the non-degenerated case with n >
1. Referring to Figure 1(a) again, if we order the points on
the convex hull clockwise, then each point pi has a successor
succ(pi) = pj , or equivalently, each point pj has a predecessor
pred(pj) = pi. Notably, even though p′ is on segment pipj ,
it is not a point on the convex hull as it does not decide the
polygon shape.

• Da Yan, Zhou Zhao and Wilfred Ng are with the Department of Computer
Science and Engineering, The Hong Kong University of Science and
Technology, Clear Water Bay, Kowloon, Hong Kong. Steven Liu is with
the Department of Computer Science, Stony Brook University.
E-mails: {1yanda, 2zhaozhou, 3wilfred}@cse.ust.hk,
4kiliu@cs.stonybrook.edu

A lot of algorithms have been proposed for convex hull
computation, such as Andrew’s Monotone Chain algorithm [6],
which finds the convex hull of a set of 2D points in O(n log n)
time. Existing algorithms assume that data points are certain.
However, data collected in real applications may be imprecise
due to environment factors, device limitations and privacy
issues. This is especially true for those real-life applications
involving 2D location uncertainty. For example, in an RFID
indoor positioning and tracking system, RFID readers are
deployed at fixed indoor positions [29]. If a person walks
close to a reader, he/she will be detected by the reader
and the system decides that the person is at the location
near the reader. However, since the detection range of RFID
readers changes continuously with environment factors, the
person may also be detected by another reader a little bit
farther away, causing location uncertainty. Another example
is animal tracking [15], where sensors are deployed in the
wild, and animals are implanted with microchips indicating
their identities. An animal may be detected by several nearby
sensors at different locations within some time period, causing
location uncertainty.

Probabilistic Convex Hull. In this paper, we propose the
concept of probabilistic convex hull (or PCH) over a set
of objects that are specified by uncertain 2D coordinates,
and design efficient algorithms for PCH evaluation. We now
illustrate the concept of PCH using a set of six uncertain
objects A–F shown in Figure 2(a), where each object has
several location instances that represent its possible position.
For example, object A may occur at location a1, a2 or a3.
Each uncertain object has a certain probability to be on the
convex hull. For example, Figures 2(b) and (c) illustrate two
possible worlds of the uncertain object dataset presented in
Figure 2(a). In the first possible world, object A is not on
the convex hull and object D is on the convex hull; while in

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JANUARY 2007

O

object A

object B

object C

object D

object E

object F

a1

a2
a3

b1

b2

b3

c1

c2

d1

d2

e1

e2

d3

d4

f1

f2

f3

X

Y

(a) A Set of Uncertain Objects

O

a
3

b
1

c
2

d
1

e
2

f
1

X

Y

(b) Possible World 1

O

a
2

b
1

c
2

e
2

d
3

f
1

X

Y

(c) Possible World 2

Fig. 2. Uncertain Object DB & Two Possible Worlds

Fig. 3. Visualization of the Habitats of Two Species

the second possible world, object A is on the convex hull and
object D is not.

We study how to compute the probability that an object
o is on the convex hull, denoted as PrCH(o). Given a user-
specified probability threshold α, we also study how to find
all the objects with PrCH(o) ≥ α, which compose the PCH.

Motivations. As a fundamental geometric operation, com-
puting convex hull in the presence of data uncertainty is an im-
portant research problem in its own right. While this problem
is not well explored yet, many other fundamental geometric
operations have already been studied over uncertain data, such
as range queries [9], nearest neighbor (NN) queries [8], [9],
group nearest neighbor queries [10], reverse nearest neighbor
queries [11], skyline queries [1], [14], Voronoi diagram [12]
and clustering [31].

Besides, PCH query is especially useful for spatial ap-
plications involving 2D location uncertainty, since it finds
objects that are very likely to be on the boundary of an object
set. By posing PCH queries over objects satisfying different
constraints, we are able to visualize the spatial relationship be-
tween different sets of objects. We have developed a system for

O

object A

object B

object C

object D

a1
a2

a3

b1

b2 b3

c1

c2

d1

d2 d3

X

Y

c3

(a) Uncertain Object Database

O

a
c

X

Y

b
c

c
c

d
c

object A

object B

object C

object D

(b) Convex Hull of Centroids

Fig. 4. Problem with Centroid-Based Method

PCH visualization in the application of animal tracking [15],
where animals on PCHs are highlighted so that the boundary
of a region that a species spans becomes apparent.

Figure 3 shows two PCH results displayed by the animal
tracking system [15], for the animal tracking data of two
species, Pacific bluefin tuna and Northern elephant seal, col-
lected from GTOPP1. The locations of a tuna (or respec-
tively, a seal) are marked green (or respectively, blue) if
PrCH(o) = 0, and they are marked pink (or respectively,
yellow) if PrCH(o) > 0. As Figure 3 shows, the habitats of
both species exhibit a high spatial correlation. This observation
helps zoologists to explore the potential relationships between
the two species, such as the predator-prey relationship.

In the above example, the PCH nicely characterizes the
boundary of animal habitats. As a comparison, we also show
the minimum bounding rectangle (MBR) of all locations of the
tuna species (and respectively, the seal species) in Figure 3.
Apparently, MBR covers a much larger region than the actual
habitats, and is not sufficiently descriptive on the habitat shape.
Moreover, even without data uncertainty, there are at most four
points on the MBR boundary in most cases, one on each edge
of the MBR (see Figure 1(b)). When data uncertainty exists,
the MBR is even less expressive as the few points on the
MBR boundary are not even 100% certain. In our Flickr photo
filtering application, MBR finds at most four photos in most
case, and some of them may not be about natural landscapes.

Also note that the simple method of (1) finding the centroid
of the instances for each object, and then (2) computing the
convex hull of the centroids, cannot serve the same purpose as
PCH queries. We now show a counterexample using the object
set presented in Figure 4(a): no matter where the location of
D is (i.e. at d1, d2 or d3), it is always on the convex hull;
however, as shown in Figure 4(b), the instance centroid of
object D is not on the convex hull. Thus, probability plays
an important role in expressing the boundary of an uncertain
object set.

In addition to visualizing the spatial distribution of an object
set selected by non-spatial constraints, PCH queries can also
be employed to find useful non-spatial information from an
object set selected by spatial constraints. An example of such
an application is Flickr photo filtering, which we describe next.

Flickr Photo Filtering. Suppose that one wants to collect
some photos about the landscape of Hong Kong from the
Web. Searching by non-spatial constraints like keywords is
not very effective. For example, keywords “Hong Kong” may

1. http://gtopp.org

YAN ET AL.: PROBABILISTIC CONVEX HULL QUERIES OVER UNCERTAIN DATA 3

TABLE 1
Flickr Photo Tags on the Convex Hull

Prob. on Keywords in TagConvex Hull
100% alone, hiking, stairs
55% disney
45% butterfly, insect

42.7% flower, park
39.7% outlyingislands, weatherbug, sea, fishmen
34.6% bike
25% beach, sunrise

23.3% lantauisland, hiking, fruit

end up returning photos about stylish shopping malls, while
expanding the search by “landscape” may have a poor recall,
as many relevant photos are tagged by other words like
“hiking”.

We observe that natural landscapes are mostly found in the
outskirt of Hong Kong, and successfully find many landscape
photos using an PCH query over the geo-tagged photos
crawled from Flicker1. Specifically, we use Flickr API to
obtain the collection of geo-tagged photos in Hong Kong,
using a circular query window with Victoria Peak as the center
and a 25km radius.

Flickr users usually tag a collection of photos they take in
a trip with the same set of keywords. Moreover, the locations
geo-tagged by these photos exhibit spatial locality. Therefore,
we regard each tag as an uncertain object, and regard its cor-
responding geo-tagged photos as its instances. Our proposed
algorithm computes all those objects o with PrCH(o) > 0
in seconds. Table 1 illustrates some obtained objects in the
result. For example, the first tag has PrCH(o) = 100% and all
its corresponding photos are about mountain trails for hiking;
while the last tag has PrCH(o) = 23.3% and most of its
corresponding photos are about the landscapes in an island
called Lantau.

Contributions. We summarize our contributions as fol-
lows:

• We propose and formally define the concept of proba-
bilistic convex hull (PCH) over a set of uncertain objects.

• A polynomial-time algorithm is proposed to compute
PCH over an uncertain database of size N , whose time
complexity is O(N3). The algorithm is able to tackle the
problem of “possible world explosion”, and its efficiency
is further boosted by our effective pruning techniques.

• A batch-evaluation technique is developed that improves
the time complexity to O(N2 logN).

• To support fast response, we develop an approximation
algorithm based on Gibbs sampling, which efficiently
finds the PCH with reasonable accuracy.

Organization. The rest of the paper is organized as
follows: we review the related work in Section 2. Our uncertain
data model and the concept of PCH are formally defined in
Section 3. In Section 4, we present our baseline algorithm for
computing PCH. Then, several effective pruning techniques
are introduced in Section 5. Our batch-evaluation technique

1. http://www.flickr.com

is described in Section 6, and the Gibbs sampling method is
presented in Section 7. Finally, we report the experimental
results on efficiency in Section 8, and conclude our paper in
Section 9.

2 RELATED WORK

2.1 Queries over Uncertain Data

Recent research proposes to consider uncertainty as a “first-
class citizen” in a DBMS. Various probabilistic DBMSs
have already been developed to support the storage and
querying of these uncertain data, including MystiQ[18],
Trio[19], ORION[20], MayBMS[21]. Two models are popular
in representing uncertain data: tuple-level uncertainty model
where each database tuple has an occurrence probability, and
attribute-level uncertainty model where the value of each data
object is specified by a probability distribution. The data model
considered in this paper conforms to the attribute-level model,
where each data object o has a set of possible instance values
s ∈ o, each with occurrence probability p(s).

One of the most fundamental types of queries over uncertain
data are spatial queries, since location uncertainty is common
in real world applications. Consider, for example, the data
collected by GPS devices and sensors, where measurement
errors are inevitable. Existing spatial queries that are studied
in the context of uncertain data include range queries [9],
nearest neighbor (NN) queries [8], [9], group nearest neighbor
queries [10], reverse nearest neighbor queries [11], skyline
queries [1], [14], Voronoi diagram [12] and clustering [31].
Like in this paper, the data model of uncertain objects adopted
by those works are also defined in Euclidean space (often 2D
space), and the query semantics are also defined following
the possible world semantics. The work most related to this
paper is [13], which proposes to find the most likely convex
hull (MLCH). However, the most likely possible world is
sometimes not robust [23], in the sense that its occurrence
probability can still be very small as there are many possible
worlds. Our definition of PCH is more robust, since we require
that each object in the result has a reasonable amount of
probability to be on the convex hull.

Another important branch of queries over uncertain data are
top-k queries. Different semantics are proposed based on the
possible world model, such as U-Topk [22], PT-k [23], U-
popk [25] and PRF [24], where the interplay between high
score and high occurrence probability is defined differently.
Interestingly, U-Topk returns the most probable top-k tuples
that belong to a valid possible world, which is similar to the
idea of defining MLCH. In contrast, PT-k returns all tuples
whose probability values of being in the top-k answers in
possible worlds are above a threshold. The idea of imposing a
probability threshold is also adopted in our definition of PCH.

2.2 The R-Tree Index

Since our algorithms use the R-tree as a spatial index, we
briefly review the concept of R-tree [27].

Figure 5 shows a 2D point set P = {p1, p2, . . . , p12}
indexed by an R-tree assuming a capacity of three entries

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JANUARY 2007

(a) Points and Node Extent

p1

p2

p3 p4 p6

p5

p8

p7

p9

p10 p11

p12N
2

N
1

N
3

N
4

N
5

N
6

(b) The R-tree

N1N2

N3N4 N5N6

p1 p2 p3

p4 p5 p6

p7 p8 p9

p10 p11 p12

Fig. 5. R-Tree Illustration

per node. Points that are close in space (e.g., p1, p2, p3)
are clustered in the same leaf node (N3). Nodes are then
recursively grouped together with the same principle until the
top level, which consists of a single root. An intermediate
index entry contains the minimum bounding rectangle (MBR)
of its child node, together with a pointer to the node. A leaf
entry stores the coordinates of a data point.

3 PROBLEM DEFINITION

In this section, we present our uncertain data model and
formally define the concept of PCH based on the possible
world semantics.

Uncertain Data Model. We adopt the multi-instance data
model to represent the uncertain objects, which is also used
in previous studies such as [1]. We assume that a database is
composed of a set of uncertain objects O = {o1, o2, . . . , on},
and each object oi is represented by a set of mi instances,
which we denote as oi = {s(1)i , s

(2)
i , . . . , s

(mi)
i }. Since we

only consider 2D objects, each instance is represented by 2D
coordinates (x, y).

Each object instance si ∈ oi is associated with an occur-
rence probability p(si). To keep our presentation simple, we
assume that (1) the uncertain objects are independent of each
other, and that (2) for each uncertain object, its instances are
mutually exclusive and

∑mi

ℓ=1 p(s
(ℓ)
i) = 1.

The multi-instance data model is a popular representation of
real-world objects with uncertain attribute values. For example,
in the animal tracking application, an animal may be detected
by different sensors at different locations. This is because
the detection range of a sensor is sensitive to environmental
factors such as changes in temperature and humidity. In this
case, the animal is an object oi whose location attribute is
depicted by the locations s

(1)
i , s

(2)
i , . . . , s

(mi)
i of the sensors

that detect the animal. If we follow the idea of probabilistic
databases, and regard each object instance as a tuple, a dataset
that conforms to the multi-instance data model is actually
a block-independent-disjoint (BID) database [26]. For those
applications where the attribute values are modeled by a
continuous probability density function (pdf), our model is
still applicable: we can draw a certain number of samples (as
instances) for each object according to the pdf to approximate
the true distribution. These samples have the same occurrence
probability p(si) =

1
mi

.
From now on, we assume that for any two different objects

oi and oj , there do not exist two instances si ∈ oi and

sj ∈ oj referring to exactly the same location. This is because
convex hull is defined over points with different coordinates.
However, this may not hold in real world applications. For
example, different geo-tagged photos on Flickr may have the
same GPS coordinates. In this case, we perturb the location of
each instance by a very small random noise, which is chosen
independently for each instance from the same noise distribu-
tion such as Gaussian. Perturbation is a common technique in
computational geometry to handle degeneracies [6], and it is
unlikely to have two instances with the same location after the
pertubation. On the other hand, since the noise is very small,
its impact on the application semantics is negligible.

Query Semantics. We denote by PrCH(o) the probability
that object o occurs on the convex hull, and define the PCH
query as follows:

Definition 1: Given a set of objects O, the probabilistic
convex hull query with probability threshold α returns the set
of objects PCHα(O) = {o ∈ O|PrCH(o) ≥ α}.

PCH is a natural extension of traditional convex hull to the
context of uncertain data: when O is deterministic, PrCH(o)
is either 0 or 1, and thus PCHα(O) contains exactly those
objects on the convex hull of O for arbitrary α ∈ (0, 1].

One might have the concern that PCH does not capture
the geometric shape of convex hulls. However, the prob-
lem of finding all possible convex hulls, even without the
corresponding probabilities, is #P-hard. To circumvent this
high complexity, the work [13] opts to find the most likely
convex hull (MLCH). The problem with this approach is that,
the MLCH has very small occurrence probability and many
objects with large PrCH(o) may not appear in the MLCH.
In contrast, PCH computes, for each uncertain object, the
probability that the object is part of the convex hull, which
gives rise to a more robust result. Our definition of PCH
shares a similar spirit with the previous work in probabilistic
skyline [1], [14].

4 BASELINE ALGORITHM

In this section, we consider how to compute PrCH(o) for an
object o ∈ O. A naı̈ve approach is by evaluating

PrCH(o) =
∑
pw

PrCH(o|pw) · p(pw),

where pw is a possible world of O with occurrence probability
p(pw), and PrCH(o|pw) is the probability that o is on the
convex hull in pw. Note that PrCH(o|pw) is either 0 or 1.

However, this naı̈ve approach is intractable, since there
are

∏n
i=1 mi possible worlds. We develop a polynomial-time

algorithm to compute PCH, based on a simple observation
about 2D convex hull illustrated by Figure 1(a): each point
pi on the convex hull has a unique successor pj clockwise,
and any other point p′ is either on segment pipj or in the half
plane bounded by line pipj that makes ∠pipjp′ clockwise.

We now describe an O(N3)-time algorithm that computes
the PCH in 2D Euclidean space, where N =

∑n
i=1 mi.

YAN ET AL.: PROBABILISTIC CONVEX HULL QUERIES OVER UNCERTAIN DATA 5

4.1 Baseline Algorithm

To compute the PCH, we compute PrCH(o) for all o ∈ O,
which consists of three levels to be described next. We
will describe pruning rules that avoid unnecessary probability
computation in Section 5.

Level 1: oi-level. Let us denote by PrCH(si) the (condi-
tional) probability that instance si ∈ oi appears on the convex
hull, under the condition that oi occurs as si. By the law of
total probability, we obtain the following expression:

PrCH(oi) =
∑
si∈oi

PrCH(si) · p(si) $
1

mi

∑
si∈oi

PrCH(si),

(1)
where the expression after “$” refers to the following special
case: for any object, all its instances carry the same occurrence
probability. For each equation hereafter, we will show the
expression for the special case, right after the expression for
the general case that uses instance probabilities p(s) given by
the data.

Equation (1) decomposes the computation of PrCH(oi) into
the computation of PrCH(si) for all instances si ∈ oi, which
we describe next.

Level 2: si-level. We now consider how to compute
PrCH(si). Let us denote by PrCH(si → sj) the (condi-
tional) probability that sj ∈ oj occurs as the successor of
si ∈ oi clockwise on the convex hull, under the condition
that oi occurs as si and oj occurs as sj . Since the events
{si → sj | sj ∈ oj , oj ∈ O − {oi}} form a collectively
exhaustive and mutually exclusive partition of the event {oi
occurs as si ∧ si is on the convex hull}, we obtain

PrCH(si) = Pr(si → sj |oi = si)

=
∑

sj∈oj ,oj∈O−{oi}

PrCH(si → sj) · p(sj) (2)

$
∑

sj∈oj ,oj∈O−{oi}

1

mj
PrCH(si → sj). (3)

Equation (2) decomposes the computation of PrCH(si) into
the computation of PrCH(si → sj) for all sj ∈ oj , for all
oj ∈ O − {oi}.

We describe how to compute PrCH(si → sj) next.

Level 3: sj-level. Figure 6 illustrates how to compute
PrCH(si → sj). Here, si refers to instance a3 of object
oi = A, and sj refers to instance f3 of object oj = F .

For a3 → f3 to be true, it is obvious that objects B, C,
D and E cannot occur above line a3f3. Specifically, D can
only occur as d4 but not the other three instances, while there
is no requirement for B, C and E, since all their instances
are below line a3f3. Therefore, assume that for any object, all
its instances are equally likely to occur, we have PrCH(a3 →
f3) = 1× 1× 1

4 × 1 = 0.25.
We now formalize the above discussion and present the

equation for computing PrCH(si → sj) in O(N) time. We
first introduce the ccw indicator that decides the validity of an
instance given si → sj .

O

object A

object B

object C

object D

object E

object F

a1

a2
a3

b1

b2

b3

c1

c2

d1

d2

e1

e2

d3

d4

f1
f2

f3

X

Y

Fig. 6. Illustration of Computing PrCH(si → sj)

p2p1

p3

p'3

(a)

p2p1

(b)

a' b'

d' c'

a b

d c

p"3

a" b"

d" c"

Fig. 7. Illustration of CCW Indicator

Definition 2: Given three points p1 = (x1, y1), p2 =
(x2, y2) and p3 = (x3, y3), the ccw indicator of p1, p2 and p3
is defined as ccw(p1, p2, p3) = (x2 − x1) · (y3 − y1)− (x3 −
x1) · (y2 − y1).

The ccw indicator has the following property [6]:

Theorem 1: Given three points p1, p2 and p3, they are
in counter-clockwise order if ccw(p1, p2, p3) > 0, in clock-
wise order if ccw(p1, p2, p3) < 0, and on the same line if
ccw(p1, p2, p3) = 0.

Figure 7(a) illustrates the underlying idea of Theorem 1,
where line p1p2 divides the whole space into two half-planes.
For a point p3 in the upper half-plane, ccw(p1, p2, p3) > 0;
for a point p′3 in the lower half-plane, ccw(p1, p2, p′3) < 0; for
a point p′′3 on line p1p2, ccw(p1, p2, p′′3) = 0.

We also extend the concept of ccw indicator to deal with
the MBR of a set of points, which is used for R-tree [27] node
pruning.

Definition 3: Given two points p1 = (x1, y1) and p2 =
(x2, y2), and an MBR M with four vertices a, b, c and d, the
ccw indicator of p1, p2 and M is defined as follows:

• ccw(p1, p2,M) = 1, if ccw(p1, p2, v) > 0 for all v ∈
{a, b, c, d}.

• ccw(p1, p2,M) = −1, if ccw(p1, p2, v) < 0 for all v ∈
{a, b, c, d}.

• Otherwise, ccw(p1, p2,M) = 0.

Figure 7(b) illustrates the idea of Definition 3: for an MBR
M = �abcd which is totally contained in the upper half-plane,
ccw(p1, p2,M) = 1 > 0; for an MBR M = �a′b′c′d′ which
is totally contained in the lower half-plane, ccw(p1, p2,M) =
−1 < 0; for an MBR M = �a′′b′′c′′d′′ which intersects with
line p1p2, ccw(p1, p2,M) = 0.

Now, we are ready to present the computation of
PrCH(si → sj). Figure 8(a) shows all the three possible
cases for an object o ∈ O − {oi, oj , ok} when computing

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JANUARY 2007

O

si

X

Y

sj
ot os

or

(a) Different Cases

O

si

X

sj

st

sr

Y

(b) Special Cases

Fig. 8. Different Cases of PrCH(si → sj) Computation

PrCH(si → sj), where we temporarily ignore the possibility
that some object instance lies on line sisj .

Let us define the following set

V(si→sj)(o) = {s ∈ o|ccw(si, sj , s) < 0}, (4)

and accordingly, V(si→sj)(o) = {s ∈ o|ccw(si, sj , s) > 0}.
We omit the subscript si → sj and use lighter notations V (o)
and V (o) when si and sj are clear from the context.

Intuitively, V (o) is the set of instances s ∈ o below line
sisj in Figure 8(a), and V (o) is the set of instances s ∈ o
above the line.

We now analyze the three cases in Figure 8(a) as follows:
• If there exists an object ot ∈ O − {oi, oj}, such that
∀st ∈ ot, st ∈ V (ot), then PrCH(si → sj) = 0 since no
matter which instance of ot occurs, si → sj is impossible
as ∠stsisj forms a concave angle already. We define this
case as V (ot)-empty.

• If or ∈ O − {oi, oj} satisfies ∀sr ∈ or, sr ∈ V (or),
then no matter which instance of or occurs, it does not
contradict with the event si → sj . We define this case as
V (or)-full.

• If os ∈ O − {oi, oj} satisfies V (os) ̸= ∅ ∧ V (os) ̸= ∅,
then in order to make si → sj hold, os can only occur as
an instance in V (os). We define this case as V (os)-valid.

Now, let us take into consideration the special cases when
there exists some instance s ∈ o on line sisj . Figure 8(b)
illustrates such cases: instance sr is on segment sisj , and its
occurrence does not contradict si → sj ; on the other hand,
instance st occurs on line sisj , but outside of segment sisj ,
and its occurrence disqualifies si from being on the convex
hull. Let us define the predicate onSegp1p2

(p3) to indicate
whether p3 is on segment p1p2. Then, we extend the definition
of V (o) in Equation (4) to include the special cases as follows:

V (o) = { s ∈ o | ccw(si, sj , s) < 0 ∨ onSegsisj (s)}. (5)

Finally, under the condition that si and sj occur, we can
see that si → sj occurs iff ∀o ∈ O − {oi, oj}, o occurs as an
instance in V (o). As a result, we compute PrCH(si → sj) by
the following formula:

PrCH(si → sj) =
∏

ot∈O−{oi,oj}

Pr(st ∈ V (ot))

=
∏

ot∈O−{oi,oj}

 ∑
st∈V (ot)

p(st)

 (6)

$
∏

ot∈O−{oi,oj}

|V (ot)|
mt

. (7)

According to Equation (6), PrCH(si → sj) can be comput-
ed in O(N) time. Specifically, for each object ot with mt in-
stances, V (ot) can be obtained by checking each instance of ot
using Equation (5). Each checking takes O(1) time since both
ccw(.) and onSeg(.) operations in Equation (5) take constant
time. Therefore, in Equation (6), the summation in the paren-
theses takes O(mt) time (note that p(st) is given in the data).
As a result, Equation (6) requires computing the summation
for each object which takes

∑
t O(mt) = O(

∑
t mt) = O(N)

time, while computing the product of the summations of the
O(n) objects only requires O(n) multiplication operations.
Totally, the cost is O(N) +O(n) = O(N).

Complexity Analysis. According to Equation (1), comput-
ing PrCH(oi) requires computing PrCH(si) for mi times.
By Equation (2), computing PrCH(si) requires computing
PrCH(si → sj) for N times. Finally, by Equation (6),
computing each PrCH(si → sj) takes O(N) time. Thus, it
takes O(mi × N2) time to compute each PrCH(oi). Since
the computation of PCHα(O) requires computing PrCH(oi)
for at most all objects oi ∈ O, the time complexity is∑n

i=1 O(mi ·N2) = O(N3).

5 FOUR-CORNER PRUNING & BOUNDING

In this section, we first present our spatial indices on the
data. Then, we present our four-corner pruning techniques that
prune objects and instances with zero probability to occur on
the convex hull. The techniques can be employed to prune the
majority of the search space. Finally, we propose our four-
corner upper bounding technique to derive the upper bounds
of PrCH(si) and PrCH(oi), which is effective in search space
pruning when computing PCHα(O).

5.1 Spatial Indices

We first build main-memory spatial indices on the dataset,
to support efficient spatial operations used in our algorithms.
Besides R-tree, we also use aggregate R-tree (aR-tree) [7],
which we describe next. An aR-tree is an R-tree extended
with a specific aggregate function (e.g. MAX, SUM, COUNT).
Each node N of an aR-tree maintains the aggregated value
computed over all the data indexed under N .

To support efficient PCH evaluation, we build the following
spatial indices on the data:

• Object R-tree TO. Let us denote the MBR of all the
instances s ∈ o as o.M . The global object R-tree TO is
bulk-loaded over o.M for all o ∈ O.

• Instance aR-tree aRo. For each object o ∈ O, we bulk-
load an aggregate R-tree aRo on all the instances s ∈ o,
where the aggregate function on node N is

∑
s∈N p(s).

When the instances of any object are equally likely to occur,
we use COUNT as the aggregate function of aRo instead. We
choose aR-trees to index object instances, since the computa-
tion of PrCH(si → sj) in Equation (6) (or (7)) requires the
value of

∑
st∈V (ot)

p(st) (or |V (ot)|), and therefore, if we
know that all instances in node N belong to V (ot), we can
use the aggregate value without accessing the children of N .

YAN ET AL.: PROBABILISTIC CONVEX HULL QUERIES OVER UNCERTAIN DATA 7

We now discuss how to compute PrCH(si → sj) efficiently
using our spatial indices. The algorithm is composed of three
steps:

1) Traverse TO to obtain a candidate object set C contain-
ing all objects ot ∈ O − {oi, oj} such that V (ot)-valid
holds. If we ever find an object ot such that V (ot)-
empty holds, we set PrCH(si → sj) = 0 directly and
terminate.

2) For each ot ∈ C, traverse aRot to compute∑
st∈V (ot)

p(st) (or |V (ot)|).
3) Compute PrCH(si → sj) using the following formula:

PrCH(si → sj) =
∏
ot∈C

 ∑
st∈V (ot)

p(st)

 (8)

$
∏
ot∈C

|V (ot)|
mt

. (9)

Equations (8) and (9) are derived from Equations (6)
and (7). Specifically, Step 1 guarantees that for any object
ot ∈ O − {oi, oj}, V (ot)-empty does not hold. If V (ot)-
full holds, we have

∑
st∈V (ot)

p(st) = 1 (and |V (ot)|
mt

= 1)
and thus, the term can be omitted in the product evaluation
in Equations (6) and (7). Otherwise, V (ot)-valid holds and
ot ∈ C, which is counted in Equations (8) and (9).

5.2 Four-Corner Pruning
We now present our four-corner pruning techniques that are
used to prune objects and instances with zero probability to
occur on the convex hull. The effectiveness of the pruning
techniques are established by the following two observations:

• If PrCH(ol) = 0 (l = i, j), then PrCH(si → sj) = 0 for
any sl ∈ ol;

• If PrCH(sl) = 0 (l = i, j), then PrCH(si → sj) = 0.
This is because, if either si or sj is not on the convex

hull, then si → sj is impossible. As a result, if we define
Õ = {o ∈ O|PrCH(o) > 0} and õ = {s ∈ o|PrCH(s) > 0},
then Equation (1) can be reformulated as

PrCH(oi) =
∑
si∈õi

PrCH(si) · p(si) $
1

mi

∑
si∈õi

PrCH(si),

(10)
and Equations (2) and (3) can be reformulated as

PrCH(si) =
∑

sj∈õj ,oj∈Õ−{oi}

PrCH(si → sj) · p(sj) (11)

$
∑

sj∈õj ,oj∈Õ−{oi}

1

mj
PrCH(si → sj). (12)

In a nutshell, we only need to consider the objects and
instances with non-zero probability to occur on the convex hull
when computing PrCH(oi) and PrCH(si). Moreover, those
objects o with PrCH(o) = 0 does not belong to PCHα(O)
for any α > 0, and can thus be safely ignored when computing
PCHα(O).

Four-Corner Pruning Rules. Given a rectangle with
lower-left corner (x1, y1) and upper-right corner (x2, y2), we
define four regions determined by its four corners as follows:

O

a
1

a
2 a

3

b
1

b
2

b
3

c
1

c
2

d
1

d
2

e
1

e
2

d
3

d
4

f
1

f
2

f
3

X

Y I II

III IV

(a) Object-Level Pruning

O

object A
object B
object C

object D
object E

object F

a1

a2
a3

b1

b2

b3

c1

c2

d1

d2

e1

e2

d3

d4

f1
f2
f3

X

Y I II

III IV

(b) Instance-Level Pruning

Fig. 9. Object/Instance-Level Four-Corner Pruning

O
X

Y

I

II

III

IV

s
1

s
2

s
3

s
4

s

a

b

c
 d

Fig. 10. Proof of Theorem 2

• Region I = {p ∈ R2 | p.x ≤ x1 ∧ p.y ≥ y2};
• Region II = {p ∈ R2 | p.x ≥ x2 ∧ p.y ≥ y2};
• Region III = {p ∈ R2 | p.x ≤ x1 ∧ p.y ≤ y1};
• Region IV = {p ∈ R2 | p.x ≥ x2 ∧ p.y ≤ y1}.
We allow the degenerated case where the rectangle becomes

a point. Figure 9(a) (and Figure 9(b)) illustrates the idea
of object-level (and instance-level) four-corner pruning. In
Figure 9(a) the MBR of object E (denoted E.M) is shown
along with the four regions determined by it. It is clear that
A.M , F.M , B.M and C.M are totally contained in Regions I,
II, III and IV, respectively, and thus any point within the
region of E.M cannot be on the convex hull. This implies that
PrCH(E) = 0. Similar reasoning for the instance case shown
in Figure 9(b) leads to the conclusion that PrCH(d4) = 0.

These observations are formalized by Theorem 2 below:

Theorem 2: Given an object o (or respectively, an instance
s ∈ o), if for each of the four regions determined by o.M
(or respectively, s), there exists an object o′ ̸= o such that
o′.M is totally contained in the region, then PrCH(o) = 0 (or
respectively, PrCH(s) = 0).

Proof: Given an object o, its MBR o.M determines four
regions as shown in Figure 10. Suppose that there exist four
objects o1, o2, o3 and o4, such that o1.M , o2.M , o3.M
and o4.M are totally contained in Regions I, II, III and IV,
respectively. Then, in any possible world pw, s1, s2, s3 and s4
are totally contained in Regions I, II, III and IV, respectively.

We now prove that the convex hull in pw is a polygon
that contains o.M , so that any instance s ∈ o is not on the
convex hull. Due to the arbitrariness of pw, we would have
PrCH(o) = 0.

Let us define O′ = {o1, o2, o3, o4, o}. Since O′ ⊆ O, the
convex hull of O′ in pw is a polygon that is contained in the
polygon defined by the convex hull of O in pw. Therefore, it
is sufficient to prove that the polygon defined by the convex
hull of O′ in pw contains o.M .

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JANUARY 2007

Algorithm 1 Preprocessing by Four-Corner Pruning
1: for each object o ∈ O do
2: o.pruned←FourCornerPrune(o)
3: if o.pruned = FALSE then
4: for each instance s ∈ o do
5: s.pruned←FourCornerPrune(s)

We now prove that the convex hull of O′ in pw, i.e. polygon
s1s2s3s4 in Figure 10, contains o.M , i.e. rectangle abcd in
Figure 10. Without loss of generality, we only need to prove
that polygon edge s1s2 is above o.M , or equivalently, above
rectangle edge ab. This holds because both s1.y and s2.y are
at least y2, which accomplishes the proof.

The case of instance-level four-corner pruning can be sim-
ilarly proved.

Our four-corner pruning operation is based on four range
queries on the object R-tree TO. We call such range queries
as the containment queries, which return whether there exists
an object whose MBR is totally contained in the query region.
As long as one of the four containment queries gives a
negative answer (“no contained object”), we return a negative
answer (“cannot prune”) immediately without evaluating the
remaining queries.

In our implementation, four-corner pruning is designed as a
preprocessing step executed only once for each dataset O, the
algorithm of which is shown in Algorithm 1. Our experiments
show that Algorithm 1 is able to prune the majority of the
objects and instances.

5.3 Four-Corner Upper Bounding
For those non-pruned objects o (or instances s), we can
still bound PrCH(o) (or PrCH(s)) by using the four-corner
technique. Let us first consider how to compute the upper
bound of PrCH(s) for instance s ∈ o. Given the four regions
defined by an instance s ∈ o, we assume that (1) for each
t ∈ {I, II, III, IV}, there exists an object ot with nt of its
mt instances in Region t, that (2) oI, oII, oIII and oIV are
different from each other, and that (3) none of them is o.
Then, instance s is not on the convex hull as long as ot is
contained in Region t (we denote this fact by ot ∈ Region t)
for all t ∈ {I, II, III, IV}. Therefore, we have:

PrCH(s) = 1− PrCH(s)

≤ 1−
∏

t∈{I, II, III, IV}

Pr(ot ∈ Region t) (13)

= 1−
∏

t∈{I, II, III, IV}

 ∑
st∈Region t

p(st)

 (14)

$ 1− nI

mI
× nII

mII
× nIII

mIII
× nIV

mIV
. (15)

Equations (14) and (15) give the upper bound of PrCH(s),
which we denote by UBCH(s). In order to make UBCH(s)
tight, for each Region t ∈ {I, II, III, IV}, we choose objects ot
to maximize

∑
st∈Region t p(st) (or nt/mt). We do not choose

an object that has been chosen before.

Algorithm 2 Evaluation of PrCH(oi) for Object oi ∈ Õ

1: PrCH(oi)← 0, bound← UBCH(oi)
2: for each non-pruned instance si ∈ õi do
3: Compute PrCH(si) using Equations (8) and (11)
4: PrCH(oi)← PrCH(oi) + p(si) · PrCH(si)
5: bound← bound− p(si) · UBCH(si)
6: if bound+ PrCH(oi) < α then
7: return oi ̸∈ PCHα(O)
8: Add ⟨oi,PrCH(oi)⟩ to PCHα(O)

object A

object B

object C

object D

object E

object F

O

a1

a2
a3

b1

b2

b3

c1

c2

d1

d2

e1

e2

d3

d4

f1

f2

f3

X

Y

(a) Ordering Elements for Circular Array Ad

8

0

1 2

3

4

5

6

7

9

10

11

12

Fig. 11. Oracle Ad3

Once UBCH(si) is computed for all si ∈ oi, according to
Equation (1), we compute the upper bound of PrCH(oi) as:

UBCH(oi) =
∑
si∈oi

UBCH(si) · p(si) $
1

mi

∑
si∈oi

UBCH(si).

(16)
We call the process of computing UBCH(o) for all o ∈ Õ

using Equation (16) as four-corner upper bounding, which is
also implemented as a preprocessing step, executed immedi-
ately after four-corner pruning (cf. Algorithm 1).

Baseline Algorithm for Computing PCHα(O). After
four-corner pruning & upper bounding are performed, for
each non-pruned object oi ∈ Õ with UBCH(oi) ≥ α, we
use Algorithm 2 to compute PrCH(oi) and check whether
oi ∈ PCHα(O). In Algorithm 2, we compute PrCH(oi)
by accumulating the results of PrCH(si) for all si ∈ õi in
Line 4, which is according to Equation (10). We also use
UBCH(oi) and UBCH(si) to prune oi in Lines 6–7 whenever
PrCH(oi) < α holds.

6 BATCH EVALUATION TECHNIQUE

In Section 4, we introduced our baseline algorithm that com-
putes PrCH(si) by computing PrCH(si → sj) for O(N)
times, each time requiring O(N) time. In this section, we show
how to compute PrCH(si) in totally O(N) time rather than
O(N2), which implies that the amortized cost of computing
PrCH(si → sj) is O(1).

Assume hereafter that si is fixed. Suppose that we have an
oracle Asi that returns PrCH(si → sj) in O(1) time given
sj , then according to Equations (2) and (3), we can obtain
PrCH(si) in O(N) time. We now consider how to construct
and maintain the oracle.

YAN ET AL.: PROBABILISTIC CONVEX HULL QUERIES OVER UNCERTAIN DATA 9

Oracle Construction. Given si, its oracle is actually a
circular array Asi which contains all the instances s ∈ o for
all the objects o ∈ O−{oi}. All the O(N) instance elements
s are radially ordered such that line sis rotates clockwise
around si. As an example, Figure 11 illustrates the element
ordering in circular array Ad3 . Note that Ad3 does not contain
the instances of object D.

The key to the construction of Asi is to radially sort the
instance elements clockwise. To achieve this, we divide the
whole 2D space into two half-planes using line y = si.y.
The instance elements of Asi are divided into two sets:
those in the upper half-plane Hu and those in the lower
half-plane Hℓ. Referring to Figure 11 again, the instance
elements of Ad3 are divided into two sets {a2, a1, f1, f2} and
{f3, e2, c1, c2, e1, b2, b3, b1, a3}. In each half plane, we define
a strict total order among the instance elements of Asi :

Definition 4: ∀sr, st ∈ Hu (or Hℓ), sr ≺ st iff
ccw(sr, si, st) > 0 ∨ onSegsist(sr).

Definition 4 actually defines the clockwise radial order for
all the instance elements in each half-plane. For example,
in Figure 11, a1 is before f1 clockwise in Hu because
ccw(a1, d3, f1) > 0.

After the instance elements in both half-planes are radially
sorted, they are concatenated to form Asi . Thus, the time
complexity of constructing Asi is O(N logN). In Figure 11,
we mark the ID of each instance in array Ad3 besides that
instance.

Active Domain V (ot). To compute PrCH(si → sj) for
all sj , we iterate sj from Asi [0] to Asi [|Asi | − 1]. We denote
by ptsj the ID of the current sj in Asi .

Given si and sj = Asi [ptsj], for any object ot ∈ O −
{oi, oj}, its instance st is in Vsi→sj (ot) iff ccw(si, sj , st) <
0 ∨ onSegsisj (st). Let us iterate Asi from ptsj clockwise
until reaching the last instance slast = Asi [ptlast] with
ccw(si, sj , slast) < 0∨onSegsisj (slast). Then, st ∈ V (ot) iff
st is within the range wiping from sisj clockwise to sislast.
For example, in Figure 11, when sj = f1, we have slast = b1
and ptlast = 11.

Initialization of ptlast. Initially, ptsj = 0 and we
find the corresponding ptlast using binary search over
Asi [0, · · · , |Asi | − 1]. Specifically, in each iteration, we find
the two clockwise consecutive elements sm1

and sm2
in the

middle, and check ccw1 = ccw(si, sj , sm1) and ccw2 =
ccw(si, sj , sm2

) as follows: (1) if both values are negative, we
rule out the elements before sm2 ; (2) if both values are non-
negative, we rule out the elements after sm1 ; and (3) otherwise,
we set slast = sm1 . Therefore, it takes O(logN) time to find
ptlast.

If slast is not found, we know that no instance is within
V (ot) (even for Asi [1]). In this case, PrCH(si → sj) = 0
and we set ptlast = 0.

In later computation, as ptsj moves clockwise, ptlast also
moves clockwise and we need no more binary search.

Product. Let us temporarily assume that |V (ot)| > 0 for

all ot ∈ O − {oi, oj}. If we define

P =
∏
t ̸=i

 ∑
st∈V (ot)

p(st)

 $
∏
t ̸=i

|V (ot)|
mt

, (17)

then according to Equations (6) and (7), we have

PrCH(si → sj) = P/
∑

sj∈V (oj)

p(sj) $ P/
|V (oj)|
mj

. (18)

In other words, we can obtain PrCH(si → sj) in O(1)
time if P is always available. However, in reality, an object
ot may exists such that V (ot)-empty holds. In this case, by
Equation (17) we have P = 0 and Equation (18) is no longer
valid. We circumvent this problem by maintaining all objects
with V (ot) = ∅ in a set S0, and redefine P as the product of∑

st∈V (ot)
p(st) for those objects that are not V (ot)-empty:

P =
∏

ot∈O−{oi}:|V (ot)|>0

 ∑
st∈V (ot)

p(st)

 (19)

$
∏

ot∈O−{oi}:|V (ot)|>0

|V (ot)|
mt

, (20)

Main Algorithm. To compute PrCH(si → sj) for the
next sj , we move ptsj clockwise by setting ptsj ← (ptsj +1)
mod |Asi |. In this case, the old sj exits the active domain.

After the new sj = Asi [ptsj] is updated, we need to set
the corresponding ptlast properly. We achieve this by moving
the old ptlast clockwise one position at a time. Let ptnext =
(ptlast+1) mod |Asi | and snext = Asi [ptnext], then we stop
moving ptlast if ccw(si, sj , snext) < 0 ∨ onSegsjsnext(si).
Whenever we update ptlast, the new slast enters the active
domain.

Obtaining Probability. Suppose S0 and P are up-to-date,
we obtain PrCH(si → sj) as follows. Case (1): if |S0| >
1, PrCH(si → sj) = 0 since there exists an object ot ̸=
oj such that V (ot)-empty holds. Case (2): if S0 = {oj},
PrCH(si → sj) = P which involves all objects other than oj
and oi. Case (3): if S0 = {ot} but ot ̸= oj , PrCH(si → sj) =
0 since V (ot)-empty holds. Case (4): if S0 = ∅, compute
PrCH(si → sj) using Equation (18).

Active Domain Maintenance. We now present how to
maintain S0 and P up-to-date. Specifically, we maintain an
array V such that V [t] =

∑
st∈V (ot)

p(st). We initialize V by
scanning through Asi starting from ptsj = 0.

When an instance sj exits the active domain, we update
V [oj] ← V [oj] − p(sj). (1) if V [oj] = 0, we add oj
to S0 and set P ← P/p(sj) to rule out the old factor∑

sj′∈V (oj)
p(sj′) = p(sj) from P. (2) otherwise, we first rule

out the old factor of oj by setting P ← P/(V [oj] + p(sj)),
and then incorporate the new factor by setting P← P · V [oj].

When an instance st enters the active domain, we update
V [ot] ← V [ot] + p(st). (1) if ot ∈ S0, we remove ot from
S0 and set P← P · p(st). (2) otherwise, we first rule out the
old factor of ot by setting P ← P/(V [ot] − p(st)), and then
incorporate the new factor by setting P← P · V [ot].

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JANUARY 2007

Complexity Analysis. We organize S0 as a balanced binary
search tree. As a result, each enter (or exit) operation takes
at most O(logN) time. Since ptsj (or ptlast) moves for at
most N times, there are at most N exit (or enter) operations,
and thus O(N logN) time in total. For each value of ptsj ,
we obtain the probability PrCH(si → sj) once which takes
O(1) time (in Case (4) we compute P/V [oj]), and O(N)
time in total. Finally, constructing Asi takes O(N logN) time.
Therefore, we can compute PrCH(si) in totally O(N logN)
time using Equations (2) and (3), and thus PCHα(O) in
O(N2 logN) time. Note that we only need to construct oracles
for non-pruned instances.

7 GIBBS SAMPLING METHOD

Different applications have different requirements on the per-
formance of PCH computation. For Flickr photo filtering, the
quality of the photos is more important than the response time.
On the other hand, for animal tracking, short response time is
critical since the readings are collected continuously, and the
PCH should be kept up to date. To support fast response, we
propose to estimate PrCH(o) for all objects o ∈ O using Gibbs
sampling [16], which usually takes only several minutes.

Gibbs Sampling. Gibbs sampling is a Markov chain
Monte Carlo (MCMC) algorithm for obtaining a sequence of
random samples from a multivariate probability distribution
p(o1, o2, . . . , on). The samples can be used to approximate the
joint distribution. Suppose that we aim to obtain k samples.
Gibbs sampling works as follows, where we denote by o

(i)
j

the value of variable oj in the i-th sample.

1) We randomly determine the initial values for all vari-
ables: O(0) = {o(0)1 , o

(0)
2 , . . . , o

(0)
n };

2) The i-th sample is obtained by sampling o
(i)
j from the

conditional distribution p(o
(i)
j |o

(i−1)
1 , . . . , o

(i−1)
j−1 , o

(i−1)
j+1 ,

. . . , o
(i−1)
n) for j = i mod n, and set o(i)ℓ = o

(i−1)
ℓ for

all ℓ ̸= j. This is repeated until k samples are obtained.

Our Algorithm. In our data model, each variable oi is now
an uncertain object associated with a probability mass function
(pmf): Pr{oi = si} = p(si). Furthermore, since objects
are independent of each other, the conditional distribution
p(o

(i)
j |o

(i−1)
1 , . . . , o

(i−1)
j−1 , o

(i−1)
j+1 , . . . , o

(i−1)
n) = p(o

(i)
j).

As a result, we obtain a simple Gibbs sampler as follows.
The i-th sample is obtained by sampling the instance of oj
using its pmf for j = i mod n, while the instances of the
other objects remain unchanged.

To estimate PrCH(o) for all objects o ∈ O, we maintain a
counter cnt(o) for each object o. Whenever we obtain a new
sample O(i), we compute its convex hull and increase the
counters of all the objects on the convex hull by one. When
k samples are obtained, we estimate PrCH(o) as cnt(o)/k.

However, it is not efficient to compute the convex hull of
each sample from scratch. Since a new sample O(i) is obtained
from the previous sample O(i−1), by deleting point o

(i−1)
j

and inserting point o
(i)
j for j = i mod n, we propose to

dynamically maintain the convex hull. We adopt the R-tree

based approach proposed in [17] for convex hull maintenance1.

Accuracy Estimation. While cnt(o)/k is an unbiased
estimator of PrCH(o), the accuracy depends on the variance
of the estimation. Clearly, the larger the number of samples k
is, the smaller the variance. One method of variance estimation
is described in [28], which applies the theory of time series.
However, the method requires computing an estimate of lag-
k autocovariance, which is not only expensive to compute,
but also requires storing previously sampled dataset instances.
We adopt a much faster convergence check as follows. We
sample 10 non-pruned objects o and compute their exact value
of PrCH(o). This takes just several seconds. Then, during
Gibbs sampling, we periodically (every 1M samples) check
the median of the 10 estimation errors of PrCH(o) for those
samples. Sampling terminates once the estimated average error
is smaller than a user-specified error threshold τ .

8 EXPERIMENTS
In this section, we evaluate the performance of our algorithms
for computing PCHα(O) using synthetic datasets.

For those applications where the datasets O do not change
frequently, such as Flickr photo filtering, it is desirable to pre-
compute PrCH(o) for all non-pruned objects o ∈ O, so that
PCHα(O) can be efficiently obtained for arbitrary α later
on. This problem is equivalent to setting α as the infinitesimal
positive number ε, since PCHε(O) = {o ∈ O|PrCH(o) ≥
ε} = {o ∈ O|PrCH(o) > 0}. A similar problem was already
studied in the context of skyline [14].

Since we find that the performance of our algorithms is
insensitive to instance weights, in all our experiments, we
simply assume that for any object, all its instances have
equal occurrence probability. All our programs were written
in JAVA, and run on a computer with a 2.13GHz Intel CPU
and 2GB memory.

Data Generator. To test the scalability of our algorithms,
we designed a data generator with parameters (n,m, c), sim-
ilar to the one used in [1]:

1) For each of the n objects oi ∈ O to generate, we first
uniformly pick a center c(oi) in an area of [0, 1]× [0, 1].

2) Then, a rectangular region R(oi) centered at c(oi) is
generated where the instances of oi appear. The length
of each edge of R(oi) is generated from the Guassian
distribution with µ = c/2 and σ = c/8, and if
the generated length falls out of [0, c], we repeat its
generation until it falls in [0, c].

3) Finally, we generate mi instances uniformly in R(o),
where mi is picked uniformly from {1, 2, . . . ,m}.

The expected number of instances for each object is m/2,
and the expected size N =

∑n
i=1 mi of the generated data

is nm/2. The parameters (n,m, c) of our data generator are
summarized as follows: (1) n specifies the number of uncertain
objects, (2) m specifies the average number of instances per
object, and (3) c specifies how scattered the instances of an
object are over the space.

1. We remark that Algorithm 3 in [17] is not correct unless the “if” branch
in Line 11 is expanded with an “else” branch: else minV distui = 0

YAN ET AL.: PROBABILISTIC CONVEX HULL QUERIES OVER UNCERTAIN DATA 11

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 1 2 3 4 5 6 7 8 9 10

Pr
ep

ro
ce

ss
 T

im
e

(s
ec

)

n (× 10k)

Preprocess

(a) Preprocessing Time

 0
 2
 4
 6
 8

 10
 12
 14

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(×
 1

k
 s

ec
)

n (× 10k)

BL
CA

(b) Runtime

 70
 75
 80
 85
 90
 95

 100
 105

 1 2 3 4 5 6 7 8 9 10

Pr
un

in
g

R
at

io
 (

%
)

n (× 10k)

Object-level
Instance-level

(c) Pruning Percentage

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 1 2 3 4 5 6 7 8 9 10

B
L

/C
A

 R
at

io

n (× 10k)

BL/CA Ratio

(d) BL v.s. CA

Fig. 12. Experimental Results with Varying n

To eliminate the bias of each generated dataset, we generate
10 datasets for each parameter configuration (n,m, c) in our
experiments, and all the results are reported based on the
average of the 10 runs.

8.1 Performance of Exact Algorithms
From now on, we call Algorithm 2 the Baseline (BL) algorith-
m, whose time complexity is O(mi ·N2). By replacing Line 3
of Algorithm 2 with “Compute PrCH(si) using the batch
evaluation technique”, we obtain our algorithm that computes
PrCH(oi) in O(mi ·N logN) time, which we call the Circular
Array (CA) algorithm.

Measures. For each data configuration (n,m, c, α), we
evaluate the following measures.

1) Preprocessing time for R-tree (aR-tree) bulk-loading and
four-corner pruning & upper bounding.

2) Runtime of both BL and CA for evaluating PCHε(O).
3) Percentage of objects pruned.
4) Percentage of instances pruned over the instances of all

the non-pruned objects.
5) The runtime ratio of BL to CA.

Effect of n on scalability. In this set of experiments, we
fix (m, c, α) = (20, 0.2, ε) and study the scalability of BL
and CA as n increases, the results of which is shown in
Figure 12. Figure 12(a) shows the preprocessing time for R-
tree (aR-tree) bulk-loading and four-corner pruning & upper
bounding, and Figure 12(b) shows the runtime of BL and CA
for evaluating PCHε(O). From these figures we can see that
the preprocessing time is negligible compared with the time
of evaluating PCHε(O), which verifies the efficiency of our
four-corner pruning & upper bounding techniques.

From Figure 12(b), we see that BL is much faster than CA
despite the fact that CA has lower time complexity. This is
because our setting (m, c) = (20, 0.2) is favorable to R-tree
pruning. Specifically, c is small and thus the instances of an
object tends to cluster together. Furthermore, as m is small,
the chance of generating a biased sample is small. Therefore,
object MBRs are small and R-tree pruning is very effective
in this case. On the other hand, when CA processes a non-
pruned instance, it requires a pass over each object instance
in the circular array no matter whether it is pruned or not.
Therefore, CA does not fully utilize the pruning power of our
R-tree index.

Figures 12(c) shows the pruning effectiveness of our object-
level & instance-level four-corner pruning techniques, where
usually 88%–97% objects and 70%–85% instances are pruned.

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300
 320

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
un

tim
e

(s
ec

)

α

BL
CA

(a) Runtime

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N
um

be
r

of
 R

es
ul

ts

α

Size

(b) Result Size

Fig. 15. Experimental Results with Varying α

Both object-level and instance-level pruning ratios increase as
n increases, since more objects provide more chances for four-
corner pruning.

Figures 12(d) shows the runtime ratio of BL to CA, which
decreases as n increases. This indicates that the advantage of
BL over CA is more prominent for large n. This is because
more objects provide more chance for four-corner pruning.

Effect of m on scalability. In this set of experiments, we fix
(n, c, α) = (103, 0.2, ε) and study the scalability of BL and
CA as m increases, the results of which is shown in Figure 13.
Since the values of m are much larger now, the runtime is no
longer favorable to BL. As Figure 13(b) shows, the runtime
of BL is now longer than that of CA, and the better time
complexity of CA becomes visible. In fact, as Figure 13(d)
shows, the runtime ratio of BL to CA increases as m increases,
which indicates that the advantage of CA over BL is more
prominent for large m.

Figures 12(c) shows the pruning effectiveness of our object-
level & instance-level four-corner pruning techniques, where
usually 63%–70% objects and 47%–51% instances are pruned.
Both object-level and instance-level pruning ratios decrease
as m increases, since more instances per object imply larger
object MBRs, which in turn imply less chance for four-corner
pruning.

Effect of c on scalability. In this set of experiments, we fix
(n,m, α) = (104, 40, ε) and study the scalability of BL and
CA as c increases, the results of which is shown in Figure 14.
Since the values of c are much larger now, the runtime is no
longer favorable to BL. As Figure 14(b) shows, the runtime of
BL is now much longer than that of CA, and the better time
complexity of CA becomes quite prominent. In fact, CA does
not change too much as c increases, but BL changes sharply.
This becomes clearer in Figure 14(d), where the runtime ratio
of BL to CA increases quickly as C increases. This indicates
that the advantage of CA over BL is prominent for large c.

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JANUARY 2007

 0
 2
 4
 6
 8

 10
 12
 14

 5 10 15 20 25 30 35 40 45 50Pr
ep

ro
ce

ss
 T

im
e

(s
ec

)

m (× 10)

Preprocess

(a) Preprocessing Time

 0
 5

 10
 15
 20
 25
 30
 35

 5 10 15 20 25 30 35 40 45 50

R
un

tim
e

(×
 1

k
 s

ec
)

m (× 10)

BL
CA

(b) Runtime

 40
 45
 50
 55
 60
 65
 70
 75
 80

 5 10 15 20 25 30 35 40 45 50

Pr
un

in
g

R
at

io
 (

%
)

m (× 10)

Object-level
Instance-level

(c) Pruning Percentage

 0.8
 1

 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 5 10 15 20 25 30 35 40 45 50

B
L

/C
A

 R
at

io

m (× 10)

BL/CA Ratio

(d) BL v.s. CA

Fig. 13. Experimental Results with Varying m

 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 0.2 0.4 0.6 0.8 1

Pr
ep

ro
ce

ss
 T

im
e

(s
ec

)

c

Preprocess

(a) Preprocessing Time

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 0.2 0.4 0.6 0.8 1

R
un

tim
e

(×
 1

k
 s

ec
)

c

BL
CA

(b) Runtime

 50
 55
 60
 65
 70
 75
 80
 85
 90

 0.2 0.4 0.6 0.8 1

Pr
un

in
g

R
at

io
 (

%
)

c

Object-level
Instance-level

(c) Pruning Percentage

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 0.2 0.4 0.6 0.8 1

B
L

/C
A

 R
at

io

c

BL/CA Ratio

(d) BL v.s. CA

Fig. 14. Experimental Results with Varying c

Figures 14(c) shows the pruning effectiveness of our object-
level & instance-level four-corner pruning techniques, where
usually 58%–85% objects and 70%–85% instances are pruned.
Interestingly, while the object-level pruning ratio decreases as
c increases due to larger object MBRs, the instance-level one
increases. This is because, for larger c, an instance of a non-
pruned object has more chance to fall in the central region of
the data space, which increases the chance of its pruning. This
positive effect outweighs the negative one caused by larger
object MBRs.

The datasets in our experiments are already reasonably
large. In particular, the largest dataset in the first set of
experiments has expected size nm/2 = 100k × 20/2 = 1M .
From the figures, we can see that evaluating PCHε(O) on
large datasets may take hours. However, these cases involve
quite large m and c that are rare in real life applications, and
in our Flickr photo filtering example, PCHε(O) is computed
in less than two seconds. Exact evaluation is acceptable if the
data do not change frequently, such as in the Flickr photo
filtering application.

Effect of α on performance. We also studied the effect of
the threshold parameter α, by fixing (n,m, c) = (104, 20, 0.2)
and varying α. Figure 15(a) shows the runtime of BL and CA
for evaluating PCHα(O), and Figure 15(b) shows the number
of objects in the result. Both measures decrease superlinearly
as α increases, which demonstrates that there are more low-
probability objects than high-probability ones. Besides, the
runtime shown in Figure 15(a) is relatively short, which shows
the effectiveness of our four-corner upper bounding technique
and the practicality of CI for reasonably large threshold
values. In fact, we find that most non-pruned objects have
very small occurrence probabilities (in the order of 10−10 or
even 10−20). Besides, Figure 15(a) also shows that BL and
CA have similar performance for reasonably large threshold
values.

8.2 Performance of the Gibbs Sampling Algorithm
We now study the performance of our Gibbs sampling algo-
rithms. We set α = ε in all the subsequent experiments. We
consider two stop conditions for Gibbs sampling. The first one
fixes the number of samples to k, and the second one adopts
the error estimation approach described at the end of Section 7
using the error threshold τ = 5%.

We define the following metrics to evaluate the accuracy
of Gibbs sampling. Let ̂PrCH(o) be the value of PrCH(o)
estimated by our Gibbs sampling method, the relative error is
given by

| ̂PrCH(o)− PrCH(o)| / max{PrCH(o), δ}. (21)

Note that if PrCH(o) ≥ δ, Equation (21) is exactly the
relative error in traditional sense. Our definition of relative
error reduces the influence of objects with very small PrCH(o)
in error evaluation. For example, consider an object o with
PrCH(o) = 10−10, and suppose that it happens to appear
on the convex hull in one sample of totally k = 107 samples.
Then, the traditional relative error is (10−7−10−10)/10−10 ≈
103 which is quite large. However, this is due to the small
sample problem (e.g. only one occurrence) and an object with
PrCH(o) as small as 10−10 is usually not interesting. By using
Equation (21) and setting δ = 0.1%, the error contribution of
that object is mitigated as (10−7−10−10)/10−3 ≈ 10−4. This
definition of relative error is widely used in existing work such
as [30].

In all the experiments, we set δ = 0.1% (i.e., we are
only interested in objects o with PrCH(o) ≥ 0.1%), and the
reported relative error is averaged over all non-pruned objects.
We do not incorporate pruned objects since PrCH(o) = 0
anyway, and thus, no such sample will be obtained. For those
objects that have 100% accuracy, incorporating them into the
averaged relative error will significantly decrease the error
value.

Clearly, the relative error decreases as more samples are
considered. To show the trend of error decrement with the

YAN ET AL.: PROBABILISTIC CONVEX HULL QUERIES OVER UNCERTAIN DATA 13

 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0 2 4 6 8 10 12 14 16 18 20

R
el

at
iv

e
E

rr
or

Number of Samples (× 1M)

Gibbs

Fig. 16. Number of Samples v.s. Relative Error

 1000

 10000

 100000

 1e+006

 1e+007

 1 2 3 4 5 6 7 8 9 10

R
un

tim
e

(s
ec

on
ds

)

n (× 1k)

From-Scratch
Incremental

Fig. 17. Comparison of Gibbs Sampling Algorithms

number of samples, we generate a dataset with (m, c, k) =
(20, 0.2, 104) and compute the average relative error after
every 1M samples are obtained. Figure 16 presents the results,
where we can see that the relative error decreases quickly as
the number of samples increases and it is already below 5%
when 19M samples are obtained.

Next, we compare the performance of our sampling ap-
proach that maintains the convex hull incrementally, with the
naı̈ve approach that computes the convex hull of each sample
from scratch. Specifically, we generate datasets with m = 20
and c = 0.2, and vary n from 103 to 104. In this set of
experiments, we fix the number of samples to 20M, and 10
datasets are generated for each setting of (n,m, c). Figure 17
shows the runtime of both algorithms, which are averaged over
the 10 datasets generated. As the figure shows, our algorithm
that dynamically maintains the convex hull is consistently 2 to
3 orders of magnitude faster than the naı̈ve approach. In the
rest of this subsection, we only consider the algorithm that
dynamically maintains the convex hull when referring to our
Gibbs sampling algorithm.

We now evaluate the effectiveness of different definitions
of convex hull over uncertain data, i.e. PCH defined by us
and MLCH defined in [13] (cf. Section 3). To achieve this
goal, we first generate an uncertain dataset with (n,m, c) =
(104, 20, 0.2), and sample a deterministic object set from it
as the ground truth. We also compute the PCH and MLCH
of this dataset, and then compute the precision, recall and
F-measure of them over the ground truth (i.e. objects on
the PCH or MLCH v.s. objecs on the convex hull of the
ground truth data), which are shown in Figures 18(a)–(c),
respectively. For PCH, we consider PCHα(O) for different
values of α computed from both our exact algorithm and our
Gibbs sampling algorithm. On the other hand, MLCH has no
concept of α and is thus a constant in the figures. As we can

 0.2
 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Pr
ec

is
io

n

Probability Threshold

MLCH
PCH

Gibbs

(a) Precision

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

R
ec

al
l

Probability Threshold

MLCH
PCH

Gibbs

(b) Recall

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F-
M

ea
su

re
Probability Threshold

MLCH
PCH

Gibbs

(c) F-Measure

Fig. 18. Accuracy of PCH and MLCH

see from Figure 18(a), PCH generally has a better precision
than MLCH. Moreover, as Figure 18(b) shows, PCH achieves
a recall much higher than 80% for α < 0.15, more than twice
that of MLCH. We remark that a high recall is critical in
real life applications as more objects of interest are covered
by the result. Figure 18(c) shows that PCH achieves a much
higher F-measure than MLCH when α < 0.25, which further
verifies that PCH is more effective than MLCH in terms of
both precision and recall.

We also studied the scalability of our Gibbs sampling
algorithm with parameters n, m and c, where we fix the
number of samples k to 20M. We put the experiments in our
online appendix1 due to the space limitation. Our results show
that the algorithm is up to tens of times faster than the exact
algorithm, and it achieves small relative error for all objects o
with non-negligible PrCH(o) (e.g. PrCH(o) > 0.1%). Also,
when the number of samples is fixed, the relative error does not
change much with varying m and c, while the error increases
almost linearly with n.

9 CONCLUSION

In this paper, we studied the concept of convex hull over
uncertain data, and proposed the probabilistic convex hull
query. We presented a baseline algorithm with O(N3) time
complexity to answer the query, and developed the four-corner

1. http://www.cse.ust.hk/∼wilfred/Gibbs/gibbs appendix.pdf

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 1, JANUARY 2007

pruning & upper bounding techniques that prune the majority
of the search space. We further improved the time complexity
to O(N2 logN) using a batch evaluation technique. Experi-
ments show that the baseline algorithm is favorable when n
is large and m and c are small, while the batch evaluation
technique is more efficient when m and c becomes large.
Finally, we presented our Gibbs sampling algorithm which
dynamically maintains the convex hull, and demonstrated that
it achieves small relative error for all objects o with non-
negligible PrCH(o) (i.e. PrCH(o) > 0.1%). The algorithm
is able to answer PCH queries of various settings in just a
couple of minutes, which is a reasonable enough response time
to support many real-life applications.

REFERENCES

[1] J. Pei, B. Jiang, X. Lin and Y. Yuan. “Probabilistic Skylines on Uncertain
Data”. In VLDB, 2007.

[2] S. G. Akl and G. T. Toussaint. “Efficient Convex Hull Algorithms
for Pattern Recognition Applications”. In Int. Joint Conf. on Pattern
Recognition, 1978.

[3] J. Sander, M. Ester, H.-P. Kriegel and X. Xu. “Density-Based Clustering
in Spatial Databases: The Algorithm GDBSCAN and its Aplications”.
Data Mining and Knowledge Discovery, Vol. 2, No. 2, 1998.

[4] Y.-C. Chang, L. D. Bergman, V. Castelli, C.-S. Li, M.-L. Lo and J.
R. Smith. “The Onion Technique: Indexing for Linear Optimization
Queries”. In SIGMOD, 2000.

[5] S. Borzsony, D. Kossmann and K. Stocker. “The Skyline Operator”. In
ICDE, 2001.

[6] F. P. Preparata and M. I. Shamos. “Computational Geometry: An
Introduction”. Springer-Verlag, 1985.

[7] I. Lazaridis and S. Mehrotra. “Progressive Approximate Aggregate
Queries with a Multi-Resolution Tree Structure”. In SIGMOD, 2001.

[8] R. Cheng, D. V. Kalashnikov and S. Prabhakar. “Querying Imprecise
Data in Moving Object Environments”. In TKDE, 2004.

[9] R. Cheng, D. V. Kalashnikov and S. Prabhakar. “Evaluating Probabilistic
Queries over Imprecise Data”. In SIGMOD, 2003.

[10] X. Lian and L. Chen. “Probabilistic Group Nearest Neighbor Queries
in Uncertain Databases”. In TKDE, 2008.

[11] X. Lian and L. Chen. “Effcient Processing of Probabilistic Reverse
Nearest Neighbor Queries over Uncertain Data”. VLDB Journal, 2009.

[12] R. Cheng, X. Xie, M. L. Yiu, J. Chen and L. Sun. “UV-Diagram: A
Voronoi Diagram for Uncertain Data”. In ICDE, 2010.

[13] S. Suri, K. Verbeek and H. Yıldız. “On the Most Likely Convex Hull
of Uncertain Points”. In ESA, 2013.

[14] M. Atallah and Y. Qi. “Computing All Skyline Probabilities for Uncer-
tain Data”. In PODS, 2009.

[15] Z. Zhao, D. Yan and W. Ng. “A Probabilistic Convex Hull Query Tool
for Animal Tracking”. In EDBT, 2012.

[16] C. M. Bishop. “Pattern Recognition and Machine Learning”. Springer
New York, 2006.

[17] B. Yao, F. Li, P. Kumar. “Reverse Furthest Neighbors in Spatial
Databases”. In ICDE, 2009.

[18] N. Dalvi and D. Suciu. “Efficient Query Evaluation on Probabilistic
Databases”. VLDB Journal, vol. 16, no. 4, pp. 523–544, 2007.

[19] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth, S. Nabar, T.
Sugihara and J. Widom. “Trio: A System for Data, Uncertainty, and
Lineage”. in VLDB, 2006.

[20] R. Cheng, D. Kalashnikov and S. Prabhakar. “Evaluating Probabilistic
Queries over Imprecise Data”. In SIGMOD, 2003.

[21] L. Antova, C. Koch and D. Olteanu. “From Complete to Incomplete
Information and Back”. In SIGMOD, 2007.

[22] M. A. Soliman, I. F. Ilyas and K. C.-C. Chang. “Top-k Query Processing
in Uncertain Databases”. In ICDE, 2007.

[23] M. Hua, J. Pei, W. Zhang and X. Lin. “Ranking Queries on Uncertain
Data: A Probabilistic Threshold Approach”. In SIGMOD, 2008.

[24] J. Li, B. Saha and A. Deshpande. “A Unified Approach to Ranking in
Probabilistic Databases”. In VLDB, 2009.

[25] D. Yan and W. Ng. “Robust Ranking of Uncertain Data”. In DASFAA,
2011.

[26] D. Suciu, D. Olteanu, C. Ré and C. Koch. “Probabilistic Databases”.
Synthesis Lectures on Data Management. Morgan & Claypool Publish-
ers, 2011.

[27] A. Guttman. “R-Trees: A Dynamic Index Structure for Spatial Search-
ing”. In SIGMOD, 1984.

[28] B. Walsh. “Markov Chain Monte Carlo and Gibbs Sampling”. Lecture
Notes for EEB 581, 2004.

[29] D. Yan, Z. Zhao and W. Ng. “Leveraging Read Rates of Passive RFID
Tags for Real-Time Indoor Location Tracking”. In CIKM, 2012.

[30] X. Xiao, G. Bender, M. Hay and J. Gehrke. “iReduct: Differential
Privacy with Reduced Relative Errors”. In SIGMOD, 2011.

[31] W. K. Ngai, B. Kao, C. K. Chun, R. Cheng, M. Chau and K. Y. Yip.
“Efficient Clustering of Uncertain Data”. In ICDM, 2006.

Da Yan received his B.S. degree in Computer
Science from Fudan University, Shanghai, in
2009; and received his Ph.D. degree in Com-
puter Science from the Hong Kong University of
Science and Technology. He is currently a post-
doctoral fellow in the Department of Computer
Science and Engineering, the Chinese Universi-
ty of Hong Kong. His research interests include
big data, spatial data management, uncertain
data management and data mining.

Zhou Zhao received his B.S. degree in Com-
puter Science from the Hong Kong University of
Science and Technology (HKUST), in 2010. He
is currently a Ph.D. student in the Department
of Computer Science and Engineering, HKUST.
His research interests include data cleansing
and data mining.

Wilfred Ng received his MS.c. (Distinction) and
Ph.D. in Computer Science from the University
of London. Currently he is an Associate Pro-
fessor of Computer Science and Engineering at
the Hong Kong University of Science and Tech-
nology, where he is a member of the database
research group. His research interests are in the
areas of databases, data mining and information
Systems, which include Web data management
and XML searching. Further Information can be
found at the following URL: http://www.cs.ust.hk/

faculty/wilfred/index.html.

Steven Liu received his B.Eng degree in Com-
puter Science from the Hong Kong University of
Science and Technology, in 2012. He is currently
a Ph.D. student in the Department of Computer
Science, Stony Brook University. His research
interests include wireless sensor network and
computational topology.

