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ABSTRACT

We study the problem of place recognition. Given a photo,
we estimate its location by scene matching to a large database
of internet photos of known locations. Traditional strategies,
which involve a linear scan of the database to find match-
ing scenes, fail to scale. On the other hand, internet photos
contain a massive amount of noise and redundancy, which is
of little help for place recognition. By exploiting the scene
distribution of photos, we summarize the database by a set
of canonical views. The set of canonical views eliminates
the noise and redundancy in internet photos, and provides a
compact representation for the database. By restricting scene
matching to the set of canonical views, we observe a good
tradeoff between efficiency and recall: the average process-
ing time for a query photo is reduced by 97%, while the recall
rate for place recognition remains at 75%.

Index Terms— place recognition, canonical view, inter-
net photos

1. INTRODUCTION

Recent years have seen an explosion of internet photos. The
explosion was brought about by the vast popularity of photo
sharing sites such as Flickr [1]. Millions of internet users up-
load their personal photos online and share the photos with
the public. The volume of internet photos has grown to mul-
tiple billions, and it keeps growing at a staggering speed.

The explosion of internet photos inspires research on
place recognition — estimating the geographic location of a
photo based on its photographed scene. Location information
serves an important role in indexing and searching internet
photos [2]. Despite the recent popularity of GPS devices, the
portion of internet photos with GPS tags is relatively small:
by querying on Flickr using popular keywords and switching
the filter for GPS-tagged photos, we estimate that GPS-tagged
photos are fewer than 10% of all photos on Flickr.

Although small in relative number, the absolute number
of GPS-tagged photos is gigantic, in the order of hundreds
of millions. More over, the collection of GPS-tagged photos
provides an excellent coverage of the globe. Given a photo
of unknown location, it is very likely that there exist multiple
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GPS-tagged photos of the same scene. Therefore, recent liter-
ature often reduces place recognition to image retrieval: hav-
ing collected a database of photos of known locations, a query
photo is matched to the database to retrieve photos of match-
ing scenes; the locations of the matched database photos pro-
vide an estimate of the location of the query photo [3, 4].

However, traditional strategies for image retrieval, which
involve a linear scan of the database ([4]), lead to suboptimal
performance on internet photo collections. First of all, unlike
traditional image databases, which are often collected by a
few professionals, internet photos are contributed by millions
of internet users, and therefore contain a massive amount of
noise for the purpose of place recognition (e.g., photos fo-
cusing on people and showing only fragments of the back-
ground scene). Secondly, the scene distribution of internet
photos is highly non-uniform: a significant portion of photos
share redundant scenes of a small number of places (such as
landmarks), and there is a long tail of photos with little over-
lapping scene with others (such as random street corners).
During a linear scan of the database, much of the computa-
tion is wasted either on matching to noisy photos that reveal
little place information, or on matching to photos of redun-
dant scenes over and over again. Little previous work has
addressed the noise and redundancy issues.

In this paper, we minimize the impact of noise and redun-
dancy on place recognition by exploiting the scene distribu-
tion of database photos and computing an optimal order in
which database photos are matched to a query photo.

We leverage recent advances in the study of canonical
views. Given a photo collection, canonical views are a sub-
set of the photos that aim to summarize the important visual
elements in the photo collection. In order to convey a max-
imal amount of important visual elements by a minimal set
of photos, canonical views feature two characteristics: rep-
resentativeness — the scene of each canonical view should
represent many photos in the collection, and diversity — the
scenes among different canonical views should be diverse [5].
Canonical views offer a solution to minimize the noise and
redundancy in database photos, because (1) noisy photos are
mostly not representative and thus not included in the canon-
ical set, and (2) photos of redundant scenes will have at most
one representative in the canonical set. Intuitively, by summa-



rizing the database photos by canonical views and restricting
the scene matching of a query photo to the canonical views,
we can greatly improve the efficiency of query processing
with minimal loss in recall rate.

2. RELATION TO PREVIOUS WORK

With the proliferation of internet photos came a wave of work
on scalable image retrieval. The work of Sivic and Zisser-
man [6] brings text retrieval techniques to the image domain
by clustering SIFT features [7] to a finite number of states
(termed visual words). The performance of visual words is
improved by Nister and Stewenius [8] by clustering SIFT fea-
tures hierarchically in to a vocabulary tree. Each image is
converted to a bag of words by quantizing its SIFT features.
Text retrieval techniques such as inverted index are employed
to quickly select a small subset of database images as poten-
tial matches to a query image. Therefore the efficiency of
query processing is greatly improved. This class of work is
widely used for image retrieval in the large scale [3].

While previous work such as [6, 8] focuses on building an
efficient search structure across an entire database, our work
focuses on compressing a database into a compact representa-
tion, where noisy and redundant views are removed. The two
approaches are orthogonal to each other and therefore can be
combined, which is left for future work.

3. RELATED WORK

The work described in this paper leverages recent advances in
canonical view selection for efficient place recognition. We
briefly review the state of the art on both topics.

3.1. Canonical views

The study of canonical views has recently gained popularity
in the research community with the proliferation of internet
photos. In most literature, the selection of canonical views is
reduced to a clustering problem: group photos into visually
proximal clusters; the photos corresponding to cluster cen-
troids serve for good candidates for canonical views, because
each cluster centroid represents a frequently photographed
scene (representative), while different cluster centroids have
few features in common (diverse).

In [9], Simon et al. studies canonical view selection for
tourist attractions. Visual proximities among photos are mea-
sured by SIFT matches [7]. A photo collection is partitioned
into non-overlapping subsets among which no SIFT matches
exist. Within each subset, photos are clustered using greedy
k-means. The photos corresponding to cluster centroids are
chosen as canonical views. In [5], Kennedy et al. propose a
similar method, but leveraging both visual features and meta-
data for canonical view selection. The proposed method starts
by clustering photos of a landmark using k-means based on

global color and texture features of photos. A set of statis-
tics on both photo metadata and visual features is collected to
give an importance score to each cluster and all photos within
the cluster. Canonical views are selected as top-ranked photos
from top-ranked clusters.

A different approach to generating canonical views is to
compute a ranking for all photos in the collection, such that
the top k photos in the ranking approximate the k£ canonical
views for the photo collection. In [10], photos are clustered
hierarchically based on GPS tags. Several heuristics on the
metadata (such as the distributions of time and photographers)
are used to recursively score each sub-cluster in the hierarchy
and therefore rank all photos in the collection. In [11], Yang et
al. propose to compute a ranking of canonical views in two
phases. During the first phase, photos are ranked by represen-
tativeness, using an analogue to the PageRank algorithm [12]
applied to the image domain [13]. During the second phase,
adaptive non-maximal suppression [14] is used to demote re-
dundant views in the ranking, so that top-ranked photos are
both representative and diverse.

Unlike clustering-based approaches, which typically re-
quire the number of canonical views (clusters) to be fixed,
ranking-based approaches offer real-time canonical view se-
lection of various sizes, once the ranking is computed for all
photos in the collection.

3.2. Place recognition

Our work is most closely related to [3, 4]. In [3], Schindler et
al. propose a system for place recognition on the scale of
a city. They collect a database of 30K GPS-tagged street-
side photos of a city. SIFT features are extracted from all
database photos and organized by a vocabulary tree [8] for
efficient matching. The location of a query photo is given by
its top matched photo in the database using SIFT features. In
IM2GPS [4], Hays and Efros leverage a database of over 6
million GPS-tagged internet photos for place recognition on
the scale of the globe. A query photo is matched to each photo
in the database using a combination of visual features. Mean
shift is applied to the locations of the top k£ matched photos
in the database to find the modes (density centers) in their
geographic distribution. The locations of the density centers
serve as the estimated locations of the query photo. Our work
adopts the scene matching approach of [3, 4], but improves
the efficiency of query processing by computing an optimal
order in which database photos are matched to a query photo.

With the maturity of large-scale image-based modeling, a
wave of work adopts structure from motion (SfM) techniques
to reconstruct a 3D point cloud from the database of photos,
and uses the point cloud as a basis for place recognition [15,
16, 17]. By registering photos in 3D and reconstructing the
point cloud, various statistics can be accumulated such as the
view count for each 3D point. Therefore, the scene structure
can be exploited (e.g., which 3D points and associated 2D



views appear more frequently in the photos) to improve the
efficiency of query processing by prioritizing 3D points for
matching [17], compressing the 3D point cloud to a minimal
cover of the location [16], and building an iconic scene graph
for matching [15]. Our work is similar to this class of work in
that we also exploit the scene distribution of database photos,
but our work does not rely on SfM, which often entails more
requirements on the photos (such as EXIF tags with the focal
length information) and a higher computational cost.

4. CANONICAL VIEW RANKING

We use a modified algorithm of Yang ef al. [11] to summa-
rize database photos by a set of canonical views. We briefly
review the two phases of the algorithm, followed by our mod-
ifications to the algorithm.

4.1. Phase 1: ranking representative views

Database photos are encoded by SIFT [7] features and con-
verted to a visual similarity graph, where vertices are photos
and edges indicate SIFT matches among photos. The PageR-
ank algorithm [12] is applied to the visual similarity graph.
PageRank has gained enormous success in finding authority
webpages in a hyperlink network. It treats hyperlinks among
webpages as votes and iteratively casts votes among web-
pages to update their authority scores. Analogously, applying
PageRank to a visual similarity graph allows photos of match-
ing scenes to vote for each other (because visual similarities
are symmetric, each edge in a visual similarity graph is equiv-
alent to two hyperlinks of opposite directions in a hyperlink
network). Upon convergence, a photo of representative view
gains more votes and receives a higher PageRank score. Thus
the representativeness of photos are measured.

4.2. Phase 2: ranking canonical views

Ranking photos by representativeness leads to redundant
views — photos of the same scene have similar representative-
ness scores and appear in blocks in the ranking. During the
second phase, redundant views are demoted using adaptive
non-maximal suppression [14]: a suppression radius is deter-
mined for each photo by its minimum visual distance (nega-
tion of the visual similarity used in Section 4.1) to a more
representative photo; photos are re-scored and re-ranked by
the count of photos within their suppression radiuses.

The re-scoring/re-ranking effectively demotes redundant
views: of all photos of a same scene, only the most repre-
sentative one remains high-scored, while others are demoted
because their suppression radiuses are constrained by a more
representative one and therefore have a low count of photos
within their suppression radiuses. At the end of phase 2, the
top-ranked photos are both representative and diverse.

4.3. Modifications

While the original algorithm of Yang ef al. provides a sound
foundation for our work, we find several disadvantages in ap-
plying the original algorithm to place recognition. In the se-
quel we list the disadvantages along with our modifications to
the algorithm.

(1) Bias towards productive photographers. If a user takes
thousands of photos of a random street corner, then by the
original algorithm these photos will become representative
after phase 1, and the most representative one will become
canonical after phase 2, even though these photos only reflect
one person’s opinion. We make modifications to both phases
to remove the bias. In phase 1, we remove from the visual
similarity graph edges that connect photos of the same user, so
that votes for representativeness are only propagated among
photos of different users. In phase 2, we re-score photos by
counting the number of users, instead of photos, within their
suppression radiuses, so that a single user’s opinion is never
counted more than once. By applying these modifications, the
bias we observed in our early experiments was removed.

(2) Redundancy towards the middle of a canonical view
ranking. Top-ranked canonical views are usually diverse.
However, redundant views start appearing towards the middle
of a canonical view ranking. This is not surprising — the orig-
inal algorithm does not remove any redundant views; it only
demotes them in the canonical view ranking. For the pur-
pose of place recognition, redundant views bring little new
information to a database. In order to remove all redundant
views, we add a post-processing step to the algorithm: af-
ter the canonical view ranking is computed, we scan the list
of canonical views from top to bottom, removing any subse-
quent photo that have SIFT matches to the current one, until
the list is exhausted. No SIFT matches exist among the re-
maining canonical views.

(3) Long tail of canonical views. Top-ranked canonical
views usually have large user counts in their suppression ra-
diuses, but the user count drops sharply towards the middle
of a canonical view ranking. Towards the end of a canoni-
cal view ranking, there is a long tail of canonical views with
tiny user counts in their suppression radiuses, which indicates
only a handful of photos sharing a same scene. The popularity
of the scenes are so low that these canonical views are rarely
matched by query photos in place recognition. Therefore, we
treat the long tail of canonical views as noise and remove any
canonical view with a user count less than a certain threshold
t in its suppression radius. In our experiments, we empirically
set t = 2, which offers a good tradeoff between the compact-
ness and coverage of canonical views. The threshold indicates
that any canonical view must represent a minimum of 3 pho-
tos from distinct users (2 in the suppression radius plus 1 for
the canonical view itself).

Noise and redundancy abound in internet photos. The last
two modifications to the algorithm lead to about 96% com-



(a) Random views

(b) Canonical views

Fig. 1. Random views and canonical views for the database. Each row shows four random views and canonical views for a site
(from top down: Dubrovnik, Paris, Rome, Washing DC and Yosemite). The random views shed light on the amount of noise in
internet image collections and justify our approach of canonical views, in which little noise or redundancy is observed.

pression of a database in our experiments. The remaining 4%
of database photos are selected as canonical views and or-
dered by descending representativeness for place recognition.

5. PLACE RECOGNITION

Having a database of photos of known locations and an or-
dered list of canonical views, estimating the location for a
query photo is straightforward: we scan the list of canonical
views from top to bottom, matching each canonical view to
the query photo. If a matching scene is found, the scan is ter-
minated, and the location of the matching scene is reported
as the estimated location for the query photo. If we exhaust
the list of canonical views without a match, the query photo
is rejected as not at any location covered by the database.

Since query processing is terminated as soon as a match
is found, we aim for a low false positive rate during the scene
matching between canonical views and a query photo. We use
SIFT features to match photos, followed by a geometric veri-
fication using RANSAC [18] on the fundamental matrix [19].
After the geometric verification, if the number of remaining
SIFT matches exceeds a certain threshold (16 in our exper-
iments), the pair of photos is deemed to be a match. In a
robustness test where we match photos from different sites,
we observe zero false positives using the described procedure
and threshold (see Section 6).

Table 1. Statistics on database photos and canonical views.
The last two columns show the number of canonical views
after the second and third modifications are applied to the
canonical view ranking. Notice that a consistent 94 — 98%
reduction of photos is attained after both modifications.

Keyword(s) fimages | M2 | M3
Dubrovnik 9350 6059 | 520
Paris 11997 9854 | 407
Rome 11959 8951 | 433
Washington DC 11991 10528 | 295
Yosemite 5756 3923 | 257

6. EXPERIMENTS

We evaluate place recognition on five photo collections of dif-
ferent sites: Dubrovnik, Paris, Rome, Washington DC and
Yosemite National Park. The database consists of 51053
GPS-tagged photos downloaded from Flickr using keyword
searches of corresponding site names (see Table 1 for photo
statistics). All photos are downscaled to a maximum dimen-
sion of 640 pixels. The algorithm described in Section 4 is
applied to each photo collection to select a set of canonical
views for the corresponding site. The most time-consuming
step — pairwise image matching — is distributed across a clus-
ter of 120 CPUs, while the other steps of canonical view se-
lection are done on a single machine. For all photo collec-
tions, canonical view selection takes less than a day to finish.



The top-ranked canonical views are shown in Figure 1.

We keep track of the number of canonical views after the
second and third modifications are applied to the original al-
gorithm (See Section 4.3). As shown in Table 1, there is a
significant reduction in the number of canonical views after
each modification is applied. Together, a 96% reduction is at-
tained. By restricting query processing to this set of canonical
views, the maximum processing time for a query photo (pro-
portional to the number of scene matching operations) is also
reduced by about 96%.

The significant reduction in processing time leads to some
loss in recall rate: some photos that could have been matched
to the database may fail to do so because all the corresponding
database photos are missing from the canonical set. The loss
in recall rate is quantitatively measured by conducting place
recognition on a test set of photos against both the original
database and the canonical views.

The test set consists of 400 GPS-tagged photos for each
of the five sites, yielding 2000 query photos in total. The GPS
tags of query photos are only used for localization error anal-
ysis. Photos in the test set are downloaded and downscaled
in the same manner as database photos. However, a filtering
is applied to ensure that the database and the test set share no
photo/user in common.

Notice that the ground-truth recall rate will not be 100%.
Since the query photos are just as noisy as database photos,
a majority of them cannot be matched even by a full scan
of the database. Since we are interested in the loss of recall
caused by canonical views, our ground-truth recall rate is the
one where query photos are matched to the entire database.

For each query photo, we match it against all database
photos in random order. This provides ground truth data.
Then we apply the method described in Section 5 to match
the query photo against the canonical views for all sites — not
only the canonical views of the same site, but those of the
other sites as well — to test the robustness of place recogni-
tion.

Out of 2000 query photos, 280 have at least one match to
the original database, and 206 have at least one match to the
canonical views. We now analyze efficiency, precision, recall,
and localization error in more depth.

Efficiency. Efficiency is measured by the average num-
ber of scene matching operations per query. A comparison of
efficiency is shown in Table 2, where the method with canon-
ical views saves as much as 97% of scene matching opera-
tions. Notice that the canonical views are ordered by descend-
ing representativeness. This means that a majority of query
photos are expected to match to the top fraction of canon-
ical views, which results in extremely efficient processing.
Figure 2 plots the growth of matched query photos as more
canonical views are scanned.

Precision. Precision of scene matching is measured by
the percentage of correctly matched query photos among all
matched query photos. For each matched query photo, we

Table 2. Comparison of efficiency, precision, and recall. GT
refers to the ground-truth method; CV refers to the method
with canonical views. Efficiency is measured by the average
number of scene matching operations per query.

GT Ccv CV gain
efficiency (£ ops) 2540.76 | 65.216 | 97.43%
GT Ccv CV gain
precision (% correct) 98.21% | 100% 1.79%
GT CV CV loss
recall (f correct matches) 275 206 25.09%
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Fig. 2. Scene matching using random views and canonical
views. The number of matched query photos is plotted against
the number of scene matching operations required by using
random views and canonical views. Notice that a majority
of query photos are matched by the top fraction of canonical
views, which results in extremely efficient query processing.

manually inspect its first match to both the entire database
and the canonical views (if any) and determine if the matched
photos indeed share the same view of the same place with
the query photo. Of the 280 matches to the entire database,
5 query photos are matched on indoor objects or street signs
of different places, causing incorrect estimates of their geo-
graphic locations. Therefore the precision of scene match-
ing to the entire database is 98.21%. In comparison, all 206
matches to the canonical view database share the same view
of the same place as the query photo: that is, CV scene match-
ing has 100% precision, thanks to the strict procedure of SIFT
matching and geometric verification.

Recall. As discussed before, we are interested in the rel-
ative recall — among all query photos that can be matched by
the entire database, the percentage that are matched by the
canonical views. The recalls are shown in Table 2, where the
method with canonical views suffers a 25% loss. By inspect-
ing the query photos corresponding to the loss, we find that



Fig. 3. Samples of difficult query photos. 16 random sam-
ples are shown of query photos having < 2 matches in the
database, which indicate rarely photographed scenes.

more than 95% of these photos have < 2 matches in the en-
tire database, which indicate rarely photographed scenes (see
Figure 3). Place recognition for rarely photographed scenes is
inherently a difficult problem. A small change in the database
may result in different match/reject decisions. Therefore, we
believe it is worth making a sacrifice on such photos in ex-
change for a significant improvement in efficiency.

Localization error. Each matched query photo has two
GPS tags: one of its own (treated as ground truth) and the
other predicted by a matched database photo. Localization
error is measured by the great-circle distance between the
two GPS tags. Among all matched query photos, the me-
dian localization error is 30.82m, which is promising given
that the typical precision of civilian GPS devices is about
20m [20]. The lower and upper quartiles of localization er-
rors are 14.57m and 103.98m respectively. Only a few pre-
dicted GPS tags are far off their ground truth (up to 6km), all
of which are caused by incorrect GPS-tagging of either the
query photo or the matched database photo.

7. CONCLUSIONS

We present an efficient method for place recognition. The
principal novelty of the method is in compressing a database
of photos into a compact representation by canonical views.
The use of canonical views eliminates noise and redundancy
in the database, and enables efficient place recognition with a
high recall rate.
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