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1. INTRODUCTION

Image segmentation is to simplify and/or change 
the representation of an image into something 
that is more meaningful and easier to analyze 
(Shapiro & Stockman, 2011). Pixels within a 
segment have high coherence with respect to 
certain features, such as color, texture, intensity, 
and spatial information, while pixels from dif-

ferent segments have significant difference in 
the same feature space or subspace of the space. 
Image segmentation has been widely applied in 
a wide spectrum of applications. For example, in 
the medical field, digital images of histological 
slides can be used to classify skin biopsies as 
either melanoma or nevi (Osborne, Gao, Chen, 
Andea & Zhang, 2011). Image segmentation as 
the first step is performed to recognize differ-
ent tissues in the slide. Another example is the 
Content-based Image Retrieval (CBIR). Users 
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ABSTRACT
An intuitive way of color image segmentation is through clustering in which each pixel in an image is treated 
as a data point in the feature space. A feature space is effective if it can provide high distinguishability among 
objects in images. Typically, in the preprocessing phase, various modalities or feature spaces are considered, 
such as color, texture, intensity, and spatial information. Feature selection or reduction can also be understood 
as transforming the original feature space into a more distinguishable space (or subspaces) for distinguishing 
different content in an image. Most clustering-based image segmentation algorithms work in the full feature 
space while considering the tradeoff between efficiency and effectiveness. The authors’ observation indicates 
that often time objects in images can be simply detected by applying clustering algorithms in subspaces. In 
this paper, they propose an image segmentation framework, named Hill-Climbing based Projective Clustering 
(HCPC), which utilizes EPCH (an efficient projective clustering technique by histogram construction) as 
the core framework and Hill-Climbing K-means (HC) for dense region detection, and thereby being able to 
distinguish image contents within subspaces of a given feature space. Moreover, a new feature space, named 
HSVrVgVb, is also explored which is derived from Hue, Saturation, and Value (HSV) color space. The scal-
ability of the proposed algorithm is linear to the dimensionality of the feature space, and our segmentation 
results outperform that of HC and other projective clustering-based algorithms.
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can submit a query based on an uploaded image, 
or further filter the results, which are returned 
by the keywords searching, according to their 
contents. Image segmentation partitions an im-
age into more meaningful contents as “visual 
keywords” to allow for more powerful queries.

Clustering (Everitt, 2012; Jain, Murty 
& Flynn, 1999) provides a good way for 
image segmentation since pixels within the 
same segment share some common charac-
teristics. The most well-known and classi-
cal partitioning algorithm is K-means (Han 
& Kamber, 2005; MacKay, 2003). Given a 
set of data points X = (X1, X2,…, Xn), where 
each data point is a d-dimensional vector. 
The goal of K-means is to partition the n 
data points into K groups (K ≤ n) G = (G1, 
G2, …, GK) so as to minimize the within-
cluster sum of squares (criterion function), 

namely  argmin
G i

K
x G j ij i
x m= ∈ −∑∑ 1

2
, 

where mi is the mean of cluster Gi. First, it 
randomly selects K data points as the initial 
means or centers of K clusters. Then, the rest 
of data points are assigned to the most similar 
clusters, based on a similarity measure (e.g., 
Euclidean distance) between data points and 
cluster means. The new mean (center) of each 
cluster is updated based on assigned data points 
to the cluster. This process iterates until the 
criterion function converges or is smaller than 

a threshold. Most clustering algorithms in im-
age segmentation domain work on the full 
feature space including single or multiple mo-
dalities. Spectral clustering (Ng, Jordan, & 
Weiss, 2001; Shi & Malik, 2000) starts from 
transforming the original data matrix into the 
eigenvectors of matrix, and then detects k well-
separated clusters on the surface of the k-sphere. 
Hill-climbing K-means algorithm (HC) (Ohashi, 
Aghbari & Makinouchi, 2003) initially dis-
cretizes the full feature space (e.g., LUV or 
HSV color space) in order to find the local 
maxima by using the hill-climbing technique 
(Russell & Norvig, 2003). Each local maximum 
is treated as one of the initial cluster seeds which 
are the input for the later K-means clustering. 
On one hand, HC can automatically determine 
the number of clusters, and effectively generate 
the segmentation result. On the other hand, HC 
is a global method, so it cannot find clusters 
that are best represented in subspaces as shown 
in Figure 1.

Projective clustering attempts to assign 
each point in the feature space to a unique 
cluster, but clusters may exist in different sub-
spaces. A projected cluster (Aggarwal & Yu, 
2000; Ng, Fu, & Wong, 2005) is defined as a 
set ε of vectors together with a set C of data 
points such that the points in C are closely 
clustered in the subspace defined by the vectors 
ε. The subspace defined by the vectors in ε may 

Figure 1. Optimal segmentation results from certain subspace of HSV by using HC algorithm
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have much lower dimensionality than the full 
dimensional space. PROCLUS (Aggarwal, 
Wolf, Yu, Procopiuc, & Park, 1999) can detect 
interesting patterns in subspaces with the spread 
direction parallel to the original axes, while 
ORCLUS (Aggarwal & Yu, 2000) is applicable 
in arbitrary spread direction. Both algorithms 
require the number of expected clusters as an 
input parameter. The average number of dimen-
sions for the clusters and the size of the subspace 
dimensionality are also required by PROCLUS 
and ORCLUS, respectively. In EPCH (Ng, Fu, 
& Wong, 2005), fixed bin width histograms are 
constructed to generate “signature,” where a 
signature corresponds to a set of dense regions 
in a set of subspaces, and signatures with regions 
covering a large enough number of data objects 
are identified as subspace clusters. Compared 
with the above two algorithms, EPCH requires 
less prior knowledge on the dataset. A general 
user only needs to provide the maximum num-
ber of clusters the user is interested to uncover. 
Some tuning parameters are configured with 
default values. REVBH (Relative Entropy on 
Variable Bin width Histogram) (Gao, Zhang, 
& Chen, 2010, 2011) utilizes variable bin width 
histograms to describe the local data distribution 
instead of using fixed bin width histograms, 
and uses relative entropy as a measure to detect 
dense regions in each subspace, consequently 
further improving the clustering quality. EPCH 
and REVBH are both scalable to dimensional-
ity of dataset. In this paper, we propose a 
projective clustering algorithm, HCPC (Hill-
Climbing based Projective Clustering), that 
combines the strength of both EPCH and HC 
to explore meaningful regions in subspaces of 
a low-level visual feature space. Our main 
contributions are summarized as follows:

1.  HCPC eliminates one important tuning 
parameter in EPCH, namely the upper 
bound f of the spread of a cluster in each 
projection domain that is used to adjust the 
global threshold for detecting dense regions 
in each subspace. However, the proportion 
of dense regions in different subspaces may 
be different. In HCPC, Hill-Climbing finds 

automatically the local maxima according 
to the local distribution.

2.  The works presented (Gao, Zhang, & Chen, 
2010, 2011; Ng, Fu, & Wong, 2005) are 
both histogram-based projective clustering 
algorithms. However, a too-fine histogram 
will incur expensive computations while a 
too-rough histogram fails to represent the 
data distribution. In contrast, K-means in 
HCPC avoids such problems by working 
directly on the data object level rather than 
the bin level.

3.  HC alone cannot detect clusters in sub-
spaces, while the framework of projec-
tive clustering in HCPC provides such a 
capability.

4.  We also propose a new feature space, named 
HSVrVgVb, derived from HSV color space. 
According to our observation, the new 
space is more suitable for subspace explora-
tion in the domain of image segmentation 
as many segments can be better detected 
in a subspace of this new space than that 
in the original HSV space.

In the meantime, we also realize the chal-
lenges in this research field. First, many existing 
segmentation algorithms use visual features 
from multiple modalities. Their main purpose 
is to increase the difference between segments 
by accumulating difference from different 
modalities. However, fusing information from 
different modalities is challenging in itself, be-
cause irrelevant or redundant features may have 
negative effect on clustering. Second, searching 
subspaces is one way to determine the optimal 
subset of features for a specific segment. It is 
time consuming if every subspace needs to be 
explored. The tradeoff between efficiency and 
effectiveness is always challenging. And the 
exploration of subspaces in a multimodality 
space adds another level of difficulty to the 
already challenging problem. Therefore, in 
this paper we focus on visual features from one 
single modality only – the color space.

The rest of this paper is organized as fol-
lows. A new color space, named HSVrVgVb, is 
introduced in Section 2. Section 3 includes the 
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introduction of EPCH and REVBH, and presents 
the improvement based on the framework of 
EPCH in our proposed algorithm. Experimental 
results are reported in Section 4. And the paper 
is concluded in Section 5.

2. HSVRVGVB COLOR SPACE

HSV color space, which stands for hue, satura-
tion and value, is equally converted from RGB 
color space. The V value which represents the 
lightness of each pixel in an image is calculated 
as the normalization of the maximum of R, G, 
and B values:

V R G B= ( )max , ,  (1)

However, the fact that only one of the three 
color channels contributes to the value of V is 
lost during conversion. Not only that, it dimin-
ishes the difference between two equal V values 
that are contributed by different color channels. 
Pixels from different objects may be able to be 
distinguished by adding such knowledge into 
the HSV feature space. Therefore, we redefine 
the HSV color space by further dividing V into 
three independent features, namely Vr, Vg, and 
Vb, in order to distinguish from which channel 
this V comes from. For each pixel, three Vs are 
calculated as:

V
V if i R G B

otherwise

i r

i
=

==






∈

, ( , , )

,
,

 argmax

          0

,, ,g b{ }
         (2)

If the maximum V value of a pixel corre-
sponds to multiple channels, it will be assigned 
to the first Vi channel in the order of {Vr, Vg, 
and Vb}.

In order to examine the influence of the 
new feature space on the segmentation result, 
we performed HC on the full space of HSV 
and HSVrVgVb, respectively, on 300 natural 
scene images. Three users participated in the 
evaluation of these two groups of segmentation 

results. In average, similar/comparable segmen-
tation results are observed for 75 images, which 
could be good or bad, from both feature spaces. 
Among the remaining 225 images, HSVrVgVb 
outperforms HSV on 134 images, while HSV 
yields a better segmentation result on 91 images 
on average. Some segmentation results from the 
two spaces are shown in Figure 2a.

We also performed HC on each subspace 
of HSV and HSVrVgVb, respectively, on a small 
set of 120 color images, attempting to find out 
whether the optimal segmentation results can 
be obtained from certain subspace (or the full 
space) of HSVrVgVb compared with certain 
subspace (or the full space) in HSV. 47% of 
images, including 42% both good and 5% both 
bad results, yielded comparable segmentation 
results between the two spaces, while 43% of 
images yielded better segmentation results in 
certain subspace of the new feature space HS-
VrVgVb. Only for 10% of all the images HSV 
outperformed HSVrVgVb on subspace segmen-
tation.

Since the new feature space is modified 
from HSV, the value of H channel still ranges 
from 0° to 360°. However, this characteristic is 
not taken into full consideration when H value 
is involved in calculating the Euclidean distance 
between two data points. Namely, the red color 
(0°) and its neighbors (nearly-red, a little less 
than 360°) are far from each other with respect 
to Euclidean distance measure, but actually they 
are close if calculating the distance by modulus. 
A good example of this problem is shown in 
the third row of Figure 2b: the nearly-red stripe 
and the orange (nearly-yellow) stripe belong to 
different clusters in both HSV and HSVrVgVb 
feature spaces, because in the original hue space, 
the distance between nearly-red and nearly-
yellow almost covers the whole range. However, 
these two colors are visually similar. Another 
problem caused by separating V channel is that 
when the V value is too low in a region, or V 
value is too high while S value is too low, the 
region is relatively “dark” or “bright,” and the 
hue (H) values of those pixels in that region 
tend to be randomly distributed. Those pixels 
could be clustered into one group if V is not 
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split into three channels, while three separate 
Vs just make the distribution of those pixels in 
the feature space even sparser. Figure 2b lists 
some examples that manifest the mentioned two 
problems. For example, in the second image of 
the last row, the segments with orange and khaki 
colors, respectively, should belong to the same 
cluster since most pixels from both of them 
represent the white background. However, the 
mean values from each channel of these two 
segments are [0.1751, 0.0475, 0.8344] in the 
orange segment, and [0.0023, 0.0020, 0.8779] 
in the khaki segment, respectively. Both seg-
ments have similar high V values, and low S 
values, but obviously different H values, and 
thereby resulting in different segments by using 
HC algorithm.

3. PROJECTIVE CLUSTERING

As discussed in Section 1, some best segmen-
tation results may exist in subspaces of HSV 
or HSVrVgVb. Therefore, our goal is to utilize 
projective clustering to detect segments in 
subspaces, in which a better representation of 
segments of an image can be obtained compared 
with that in full dimensional space, as well as 
achieving high scalability so that the proposed 
algorithm scales well up to high dimensional 
feature spaces.

3.1. EPCH Algorithm

Given a dataset X = (X1, X2,…, Xn), in which 
each data point is a D dimensional vector, 

Figure 2. (a) Sample segmentation results by applying HC on HSV and on HSVrVgVb, respectively, 
(b) Segmentation examples that manifest the problems in HSV and HSVrVgVb
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namely Xi = (xi1, xi2,…, xiD). In order to reduce 
the computational cost in exploring the full 
dimensional space, each data point is repre-
sented by a signature with each entry as the 
dense region ID in a k dimensional subspace (
k D≤ ). After such discretization, the complex-
ity of calculating the similarity between two 
signatures is relatively lower compared with 
calculating the Euclidean distance between two 
points. The total number of all possible k di-
mensional subspaces is. When a very small k 
is considered (e.g., k = 1), detected dense regions 
may hide the existence of noises, sparseness 
and/or even small dense regions in higher di-
mensional spaces. This happens because of 
possible overlap of data points when projected 
onto lower dimensional spaces. This hidden 
information can be exposed in a higher dimen-
sional space, such as in a 2D space, but again 
that is not always true. Moreover, the higher 
the k is, the more expensive the computation 
is. EPCH enables us to trade a small amount of 
quality for much higher efficiency.

The sketch of EPCH can be described in 
five steps: (1) constructing k-d histograms for 
all possible k-d subspaces; (2) detecting dense 
regions in each histogram; (3) converting each 

data point into a signature; (4) generating cluster 
candidates by merging same/similar signatures; 
and (5) associating data points to correspond-
ing clusters. Each step is briefly illustrated in 
Figure 3.

Assume each point in the 3D feature space 
(e.g., HSV or Lab) represents a pixel of an im-
age. All values are normalized in the preprocess-
ing phase. First, fixed bin width histograms are 
built for subspaces XY, XZ, and YZ. Each dimen-
sion has the same number of bins calculated by 
using Strurges’ rule (Scott, 1992):

N log N
H
= +1

2
 (3)

where NH is the number of bins along one di-
mension, N is the total number of data points.

Assume that dense regions which usually 
have normal distribution are surrounded by 
sparse regions which have near-uniform distri-
bution. In Step 2, dense bins in each histogram 
are detected if the bin height is larger than cer-
tain threshold which is defined in Equation 4.

t c c f= + < −� , /µ σ 1 1  (4)

Figure 3. The sketch of EPCH algorithm
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where µ and σ represents the mean and the 
standard deviation of bins, respectively, in the 
current 2D histogram. As mentioned before, f is 
the proportion of dense bins in each histogram, 
which is configured as a global parameter, 
thereby is c as well. The new µ, σ, and the 
threshold in each histogram are updated after 
removing dense bins from the histogram. This 
process iterates until no more bin’s height is 
larger than the threshold.

In Step 3, a signature is generated for each 
data point. Each entry of a signature represents 
the ID of a dense region in a 2D histogram to 
which the data point is projected. If the data 
point drops into a non-dense region in a histo-
gram, the corresponding entry value is 0. In 
(Ng, Fu & Wong, 2005), given subspaces S1, 
S2,…,SL (where C L

D
k = ), a signature Qi for 

data object Xi is defined as an ordered list of L 
entries, where the j-th entry represents the dense 
region, if any, where the data object is located 
in subspace Sj. Specifically, Qi=[Qi1, Qi2, …, 
QiL] where

Q

X S

r

ij

i j

=

0,

,

  projects into a nondense region in subspace 

   projects into the  dense region in subspace X r S
i

th
j







. (5)

Same and similar signatures are merged 
successively in Step 4 in order to form the 
description of cluster candidates. First, each 
signature is assigned an initial weight 1. Then, 
identical signatures are merged, and the total 
number of data points with the signature is as-
signed as the new weight of this signature. All 
distinct signatures are sorted in the descending 
order of their weights. The higher the weight, 
the more data points are in the corresponding 
subspace described by the signature. Merging 
similar signature is constrained by a similarity 
threshold Tsimilarity defined in Equation 6.

T
commondenseregions

distinctdenseregionssimilarity
=

| |

| |
.       (6)

The merging starts by checking the sig-
nature with the highest weight in the signature 
list. If the similarity between that and one of the 
subsequent signatures is larger than a thresh-
old, the two are merged. The signature with a 
higher weight serves as the merged signature, 
and another signature is removed from the list. 
Then, the next merging iteration proceeds until 
no more signatures in the list can be merged. 
There is an upper limit for the number of ex-
pected clusters, which is determined as a user 
input parameter, named “max_no_cluster.” 
Only the top max_no_cluster cluster candidates 
are kept in the signature list as the projective 
descriptions of clusters. Because of the use 
of one single global threshold f (or c) in each 
histogram, even though two adjacent regions 
are both above the threshold, and one is rela-
tively denser than the other, EPCH will treat 
them as one dense region. In other words, using 
one single global threshold is not sufficient to 
distinguish adjacent dense regions.

In the end, each data point is associated 
with one cluster with which it has the highest 
similarity. The similarity is calculated between 
the signature of a data point and the signature 
of a cluster. Data objects that do not belong to 
any cluster (the similarity is below a threshold) 
are treated as outliers. In image segmentation, 
only those data points that have similarity 0 
with all clusters are treated as outliers, and they 
will be grouped as one “cluster.” Similarity 0 
with all clusters could happen because some 
signatures are removed from the signature list 
that is constrained by the “max_no_cluster.”

3.2. REVBH Algorithm

REVBH improves EPCH in three aspects. 
First, variable bin-width histogram is used as 
the tradeoff between computational cost and 
accurate description of a data distribution. 
On one hand, even though a fine bin-width 
histogram can well describe the underlying 
distribution of a given dataset, the computation 
on such histogram is costly because of the large 
number of bins. On the other hand, a rough 
bin-width histogram with fewer bins may hide 
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the existence of multiple dense regions, and 
thereby degrading the clustering quality. In the 
meantime, the computational cost with fewer 
bins should be lower. As a tradeoff, a variable 
bin-width histogram has a relatively finer bin-
width setting in the dense region, and uses bins 
with rougher bin-width to cover sparse regions. 
A binary tree structure, named dimension tree 
as shown in Figure 4, is used to record the 
division of sub-ranges in each dimension. For 
each dimension tree Ti, a tree node TNij records 
the bin information of the j-th sub-range in the 
i-th dimension, including the number of bins 
(binNum), the minValue and maxValue of that 
subrange, the left and the right pointers to the 
left/right sub-ranges (ptrLeft and ptrRight). The 
bin width of current sub-range can be calculated 
based on the above information. Initially, the 
whole data range on one dimension is divided 
into three sub-ranges with respect to the first 
quartile q1 and the third quartile q3. The bin 
width mBinWidth of the middle sub-range is 
calculated by using Freedman and Diaconis’s 
rule (Freedman & Diaconis, 1981), as detailed 
in the following. The bin numbers of the left 

sub-range and the right sub-range are estimated, 
respectively, with respect to mBinWidth (esti-
mated under fixed bin width histograms). If the 
estimated bin number of the current sub-range 
is greater than the bin number of the middle 
sub-range, a new division is performed on the 
current sub-range. The above operations are 
iteratively performed until no more sub-ranges 
can be generated.

Second, Freedman and Diaconis’s rule 
(Freedman & Diaconis, 1981) as shown in 
Equation 7 is applied for calculating bin-width 
instead of Sturges’ rule (Equation 3) which does 
not work well on large dataset (Scott, 2009).

bw IQR n= × × −2 1 3/  (7)

where IQR represents the sample interquartile 
range, and n is the number of samples.

Third, relative entropy (Gao, Zhang, & 
Chen, 2010; Kullback & Leibler, 1951) which 
has its own origin in probability theory and 
information theory is used as a measure instead 
of Equation 4 to detect dense bins in each his-

Figure 4. A sample dimension tree structure for a 1d variable bin-width histogram
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togram. It is a non-symmetric measure of the 
difference between two probability distributions 
P and Q. In general, P represents the real distri-
bution of a given dataset in a feature space, while 
Q is the expected distribution of the same dataset 
in the same space. As we mentioned in Section 
3.1, dense regions are usually surrounded by 
sparse regions with near-uniform distribution. 
Therefore, uniform distribution is the expected 
distribution in each 2D subspace if there is no 
dense region, i.e., the density in each bin is 
almost identical. During the iterative detection 
of dense bins, relative entropy of a histogram 
describes the extent to which the distribution of 
current bins approaches the uniform distribu-
tion. The closer a real distribution approaches 
the uniform distribution, the closer the relative 
entropy approaches zero. Equations related to 
calculating relative entropy of a histogram are 
shown as follows:

RE X p x log p x q x

X N
h i

N

i i i

b

b( ) = ( ) ( ) ( )( )
=

=∑ 1 2
/ ,

 

(8)
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RE x p x log N p x x X
b i i b i i
( ) ,= ( ) × ( )( ) ∈

2
 

(11)

In Equation 8, REh(X) is the relative en-
tropy of a histogram; X is the set of remaining 
bins of a histogram; Nb is the total number of 
remaining bins; p(xi) represents the normalized 
density of the i-th bin under real distribution; and 

q(xi) represents the normalized density of the 
i-th bin by assuming all samples are uniformly 
distributed. In Equation 9, ni is the number of 
data points that are projected into the i-th bin. 
Since 2D histograms (for dimensions j and k) 
are used, bwi = bwi

j × bwi
k represents the vol-

ume of the i-th bin which is related to the j-th 
and the k-th dimensions. Basically, q(xi) is a 
constant which is the reciprocal of the number 
of remaining bins in the current histogram. 
REb(xi) in Equation 11 is the relative entropy 
of the i-th bin. In each iteration, the remaining 
bins with REb larger than (1/Nb) × REh(X) are 
deemed dense and removed from the current 
histogram. Then, the new REb(xi), REh, and Nb 
are calculated based on the remaining bins.

3.3. Hill-Climbing based 
Projective Clustering (HCPC)

As mentioned, REVBH avoids using global 
parameters, such as c and f, in EPCH. How-
ever, REVBH as a histogram-based projective 
clustering algorithm still inherits some of the 
problems of EPCH. For example, adjacent 
dense regions which may represent different 
objects in an image may be detected as one 
dense region if the bin width is not properly 
selected. And REVBH also requires the user 
to input the maximum number of expected 
clusters. In order to avoid these problems and 
to reduce the need for a priori knowledge on 
the dataset, we propose a new algorithm, named 
Hill-Climbing based Projective Clustering 
(HCPC), which uses the HC algorithm instead 
of histogram-based methods for detecting dense 
regions directly applied to data points (pixels) 
in each 2D subspace. Because of the usage of 
hill-climbing technique that can automatically 
determine the initial number of clusters in each 
2D subspace, there is less a need for a priori 
knowledge on the distribution of the dataset in 
the current subspace. The new algorithm also 
eliminates the need to manually configure the 
processes of creating histograms and detecting 
dense regions.

The main differences between HCPC and 
EPCH/REVBH are listed as follows:
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• Since K-means clustering is applied in 
the detection of dense regions, each data 
point in a 2D subspace will always belong 
to one dense region. Therefore, initially, a 
signature of a data point consists of detected 
cluster IDs from different 2D subspaces 
where this object belongs to. In EPCH/
REVBH, a data point may drop into a 
non-dense region which has a signature 
entry as 0.

• K-means also generates the centroid for 
each dense region, therefore a centroid 
vector is defined for each signature as fol-
lows: given a signature Qi = [Qi1, Qi2,…, 
QiL], its corresponding centroid vector is 
Ci = [CQi1, CQi2,…, CQiL], where CQij = (xQij, 
yQij) is a coordinate pair that represents 
the centroid location of the correspond-
ing dense region in the j-th 2D subspace. 
The purpose for defining such a structure 
is that when one signature has identical 
similarity with multiple signatures, it 
will merge with the “closest” one. Such 
closeness is measured by the approximate 
distance, which represents the maximum 
2D projected Euclidean distance between 
two centroid vectors. As shown in Figure 
5, two data points O1 (O1x, O1y) and O2 
(O2x, O2y) live in a 2D space. The projected 
distance between two data points on each 

dimension cannot accurately reflect their 
real distance in the full feature space. How-
ever, a larger projected distance in general 
better approximates the real distance than 
that of a smaller projected distance (e.g., 
||O1x, O2x|| versus ||O1y, O2y||). Equation 12 is 
used to calculate the approximate distance 
between two data points O1 and O2. Even 
though calculating the distance between 
data points and dense region centers in 
HC is computationally more expensive 
than that of directly detecting dense bins 
from histograms in EPCH/REVBH, the 
performance does not drop too much when 
the dimensionality is low (e.g., k=2). In 
EPCH/REVBH, the strategy for merging 
similar signatures in the above case is not 
available.

dist Q Q Eu dist C C
j L Q j Q j1 2 1 1 2

, max _ ( , )( ) = ≤ ≤
 

(12)

• EPCH/REVBH uses an input parameter to 
determine the maximum number of ex-
pected clusters, which is not always avail-
able as a priori knowledge, because it is 
difficult in image segmentation to specify 
a fixed number of clusters due to vastly 
different scenes present in image databases. 

Figure 5. Distance between two objects in a 2D space versus their projected distance on each 
1D space
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In HCPC, we try to avoid using this pa-
rameter. First, the hill-climbing technique 
can automatically determine the initial 
number of dense regions in each 2D sub-
space. Second, a weight threshold is used 
to further removing signatures that contain 
too few data points from the list. The weight 
threshold can be defined as an absolute 
threshold (e.g., weight > 200 (data points/
pixels)), or a relative threshold (e.g., weight 
> 0.1*max_weight). max_weight is defined 
as the maximum weight of all signatures 
in the current signature list. After merging 
identical signatures, among the remaining 
signatures, those with weight 1 are consid-
ered trivial and removed from the signature 
list prior to the merging of similar signature. 
In next step, a post-processing is performed 
to re-assign each trivial signature (contain-
ing one data point) to one cluster candidate 
that best matches the data point, and the 
weight of that cluster candidate in the 
signature list is updated accordingly. Then, 
signatures with weight less than the weight 
threshold are removed from the signature 
list. Finally, each data point is compared 
with each remaining signature again, and 
re-assigned to the one with maximum 
similarity. Compared with EPCH, one more 
round of association between data points 
and clusters are performed with the pro-
posed algorithm.
HC works more efficiently than HCPC in 

lower dimensional feature spaces, such as HSV 
and Lab. For example, if each dimension of the 
HSV color space is equally partitioned into 10 
sub-ranges, totally 1000 bins in the 3D histo-
gram need to be explored by HC to determine 
the initial seeds. It is known that the time com-
plexity of K-means is O(nDK+1log(n)), where K 
is the number of clusters and D is the number 
of dimensions. When the dimensionality of the 
feature space grows, the time complexity of 
HC algorithm will increase exponentially, be-
cause hill-climbing algorithm searches the local 
maxima in the full dimensional grid, and K-
means clustering also calculates the distance 
between points and seeds in the full dimen-

sional space. Therefore, HC algorithm is not 
suitable for processing high dimensional data-
set. On the contrary, HC in HCPC only works 
in each lower dimensional k-d subspace (e.g., 
k = 2), so the time complexity of HCPC in-
creases linearly. When the dimensionality in-
creases from D to D+1, the number of 2D 
subspaces for K-means in HCPC increases by
�C D
D
1 = , and the time complexity for K-means 

increases by O(Dn2K+1log(n)). Moreover, the 
total number of entries in the signature list 
increases by nD.

4. EXPERIMENTS ON 
HSVRVGVB FEATURE SPACE

300 Corel (http://www.cs.princeton.edu/cass/
benchmark/) color images of natural scenes with 
dimensions 192×128 or 128×192 are collected 
as the experimental dataset. All experiments are 
performed on a PC with Intel(R) Core(TM)2 
CPU E7400 2.8GHz, 4GB RAM, Windows 7. 
The source code is implemented in MATLAB. 
The default similarity threshold and weight 
threshold are 0.6 and (0.1*max_weight), re-
spectively, in our experiments.

The criterion used to evaluate the segmen-
tation quality during the comparison is defined 
as follows:

Acceptable Segmentation Quality: If the 
majority of each salient object in the image can 
be discovered and represented by a non-trivial 
segment in the segmentation map, such a result 
is acceptable. Otherwise, it is not.

We compare the segmentation results of 
our proposed algorithm with the results from 
REVBH and HC in the new feature space HS-
VrVgVb, respectively, using two performance 
measures:

Measure	1: The number of images for which 
one algorithm outperforms the other on 
the segmentation quality. If there is no 
clear winner, the comparison result is thus 
‘comparable.’ This measure is for the com-
parison of relative segmentation quality.
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Measure	2: The number of images for which the 
segmentation results are acceptable. The 
results produced by the two algorithms in 
comparison could be both acceptable while 
one could outperform the other. This is a 
measure of absolute segmentation quality.

Since the performance measures are subjec-
tive, for fair comparison, a website is created for 
blind evaluation. Therefore, the user does not 
know which algorithm generates the result. The 
final results are summarized from the evaluation 
results of multiple general users.

First, HCPC and REVBH are performed 
on the new feature space for the 300 images. 
Table 1a indicates that even though there are 
86 images (28.67%) for which both algorithms 
produce comparable segmentation results, 
HCPC has an obvious advantage (181 images 
vs. 33 images) in segmentation quality with 
respect to Measure 1. That is because REVBH 
is a histogram-based algorithm which is not suf-
ficient to differentiate adjacent dense regions. 
On the contrary, HCPC performs clustering 
(i.e., K-means) in the pixel level when detecting 
dense regions in each subspace. Therefore, it is 
more suitable for detecting objects in an image. 
Measure 2 focuses on absolute segmentation 
quality (acceptable/not) rather than relative 
segmentation quality, and thereby some images 
that yield better segmentation results in HCPC 
or REVBH according to Measure 1 now become 

acceptable with both algorithms, resulting in 
169 images for which both algorithms produce 
satisfactory results. However, the performance 
of HCPC still outperforms that of REVBH with 
respect to Measure 2.

As indicated in Table 1b, although HCPC 
clearly outperforms HC in the relative segmen-
tation quality, it does not have an obvious ad-
vantage in the absolute segmentation quality 
over HC in the new feature space, since both 
algorithms perform clustering in the pixel 
level. However, HCPC extends HC with the 
capability to process high dimensional dataset 
in a more efficient way, because it describes 
high dimensional dense regions with a set of 
dense regions in lower dimensional subspaces.

In order to measure the time cost with vary-
ing dimensionality of feature space among these 
three algorithms, we transform a color image 
with size 192×128 into three datasets with {3, 
4, 5} features, respectively. The 3D dataset 
includes H, S, and V values of each pixel. To 
construct the 4D dataset, we select H, S, and 
another two features of {Vr, Vg, Vb}, which have 
the most non-zeros values among the three V 
channels. The 5D dataset is generated in the 
HSVrVgVb feature space. As we mentioned 
before, the time complexity of HC increases 
exponentially when the dimensionality of the 
feature space grows. This fact is reflected in 
Figure 6a, which also indicates that K-means 
clustering cannot effectively handle the problem 

Table 1. (a) Experimental comparison between HCPC and REVBH in HSVrVgVb space; (b) 
Experimental comparison between HCPC and HC in HSVrVgVb space 

(a)

Measure	
1

HCPC	wins REVBH	wins Comparable

181 33 86

Measure	
2

HCPC	is	acceptable	
but	REVBH	is	not

REVBH	is	acceptable	
but	HCPC	is	not

Both	
acceptable

Both	
unacceptable

88 16 169 27

(b)

Measure	
1

HCPC	wins HC	wins Comparable

133 62 105

Measure	
2

HCPC	is	acceptable	
but	HC	is	not

HC	is	acceptable	but	
HCPC	is	not

Both	
acceptable

Both	
unacceptable

61 25 211 3
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of curse of dimensionality (Hinneburg & Keim, 
1999). In the domain of image segmentation, it 
is not uncommon to use more than 10 features 
during segmentation, especially when textures 
and edges (Duvenaud, 2010; Farabet, Couprie, 
Najman, & LeCun, 2012) are considered, which 
could easily make HC practically infeasible. 
On the contrary, the time cost in REVBH and 
HCPC increases linearly, making them more 
practical for efficient processing.

We further test the effect of image size on 
the time cost when the dimensionality of feature 
space is fixed (k=3). An image with size 
192×128 is enlarged into 4×-, 9×-, and 16×-, 
respectively. All test images are converted into 
a 3D dataset in the HSV space. As shown in 
Figure 6b, when the image size increases, HCPC 
and REVBH are computationally more costly 
than that of HC. The signature set in HCPC/
REVBH has the same size as that of HSV da-

Figure 6. (a) Time cost comparison among HC, REVBH, and HCPC with varying dimensionality 
of feature spaces, (b) Time cost comparison among HC, REVBH, and HCPC in HSV (3D) space 
with varying image sizes, (c) Time cost comparison among HC, REVBH, and HCPC in HSVrVgVb 
(5D) space with varying image sizes
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taset in HC (3 entries in a signature vs. 3 chan-
nels in HSV), but HCPC has to perform HC in 
each 2D subspace, and there is also additional 
cost associated with the signature merging. On 
the contrary, HC is only applied once on the 
HSV dataset, making it much more efficient in 
processing lower dimensional dataset.

However, when more features are extracted 
from an image, the performance of HC degrades 
dramatically as shown in Figure 6c. We sum-

marize that HC is suitable for processing large 
images in low dimensional spaces, while HCPC 
is good at processing relatively small image in 
high dimensional feature space. Figure 7 illus-
trates some segmentation results produced by 
HC, REVBH, and HCPC, respectively.

Figure 7. Segmentation results generated by HC, REVBH, and HCPC in HSVrVgVb space
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5. CONCLUSION AND FUTURE 
WORK

In this paper, we propose a new projective 
clustering algorithm Hill-Climbing based 
Projective Clustering (HCPC) for color image 
segmentation. It combines the framework of a 
histogram-based projective clustering algorithm 
EPCH which uses a set of dense regions detected 
from a lower-dimensional space to approximate 
dense regions in the high-dimensional space, 
and the idea of hill-climbing K-means algorithm 
for dense region detection. HCPC not only 
avoids using histogram to estimate the local 
data distribution in histogram based algorithm, 
but also extend HC with the capability for pro-
cessing high dimensional data. Because HCPC 
processes images in pixel (data point) level, it 
has a better segmentation quality compared 
with histogram-based algorithms. The time 
complexity of HCPC increases linearly when 
the dimensionality of feature space becomes 
higher, and thereby HCPC is more scalable 
than the original HC algorithm.

There is still a lot of room in this algorithm 
to improve. First, similarity threshold and 
weight threshold are simply set as default pa-
rameters with constant values. How to determine 
their values automatically or avoid using such 
parameters should be considered in the future 
work. Second, one cluster may contain multiple 
spatially disconnected segments. Therefore, 
removing trivial segments is more meaningful 
than removing trivial clusters. Third, processing 
images in pixel level is not an efficient way. 
Some more abstract and meaningful represen-
tation of an image, such as superpixel (http://
www.cs.sfu.ca/~mori/research/superpixels/) 
(Kim, Lee, & Lee, 2010; Li, Wu, & Chang, 
2012; Mori, 2005; Mori, Ren, Efros & Malik, 
2004; Ren & Malik, 2003), could be used in 
our algorithm for both efficiency and effective-
ness purposes.
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