
A fa ) for
com

Zhan
aCollege
bCompu

a r t

Article h
Receive
Receive
Accepte
Availab

Keywor
Online
Interest
Similar
Commu
Parallel

ning more frequently to electronic media for
und in online channels. Discovering the latent
the properties of a virtual social network. Tra-
ctural characteristics of a social organization,
antic information cannot be exploited. What

in millions, if not billions, of nodes and edges,
rge scale dense networks.
work model (Interest Network) in which links
iscussions about one or more topics/stories. In
similar interests. Then, the edges of the initial
ation of the connected ID pairs. For a given ID
he implicit orientations/attitudes of these two
. We use a simple statistical method to calcu-
0 and 1, and the higher value corresponds to a
s/IDs. The updated network is called Similar-
dularity optimization algorithm (FPMQA) that
UC is used to conduct community discovering.
ructures, its running time is essentially fast,
ation metric, which is based on the reliable
. In the experimental work, we evaluate our
th several previous methods; the results show
tential online communities.

� 2013 Elsevier B.V. All rights reserved.

1. Int

Rec
popul
For ex
millio
lion) a
which
are or
publis
comm

provides a platform for maintaining social
ers with similar interests, and locating
that has been contributed or endorsed by
e similar interests can join the same com-
compared to the rest of the network, dis-

0950-7
http://d

⇑ Cor
Univers

E-m
uab.edu
(J. Wan

Knowledge-Based Systems 50 (2013) 246–259

osys
st parallel modularity optimization algorithm (FPMQA
munity detection in online social network

Bu a,b,⇑, Chengcui Zhang b, Zhengyou Xia a, Jiandong Wang a

of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, China
ter and Information Sciences, The University of Alabama at Birmingham, USA

i c l e i n f o

istory:
d 7 December 2012
d in revised form 27 May 2013
d 19 June 2013
le online 28 June 2013

ds:
social network
Network

-View Network
nity detection

a b s t r a c t

As information technology has advanced, people are tur
communication, and social relationships are increasingly fo
communities therein is a useful way to better understand
ditional community-detection tasks only consider the stru
but more information about nodes and edges such as sem
is more, the typical size of virtual spaces is now counted
most existing algorithms are incapable to analyze such la
In this paper, we first introduce an interesting social net

between two IDs are built if they both participate to the d
this case, we say both of the connected two IDs have the
network are updated using the attitude consistency inform
pair i and j, they may together reply to some topics/IDs. T
IDs to their together-reply topics/IDs may not be the same
late the attitude consistency, the value of which is between
greater degree of consistency of the given ID pair to topic
View Network (SVN). In the second part, a fast parallel mo
performs the analogous greedy optimization as CNM and F
By using the parallel manner and sophisticated data st
Oðkmaxðkmax þ hki log kmaxÞÞ. Finally, we propose an evalu
ground truths, for online network community detection
method using real datasets and compare our approach wi
that our method is more effective and accurate in find po

roduction

ently, online social networks [17,15] have gained significant
arity and are now among the most popular sites on the Web.
ample, Tianya (over 32 million users), MySpace (over 190

resulting social network
relationships, finding us
content and knowledge
other users. Users with th
munity or group. When

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /kn
n), Google+ (over 400 million), and Facebook (over 800 mil-
re popular sites built on social networks. Unlike the Web,
is largely organized around content, online social networks
ganized around users [3]. Participating users join a network,
h their profile (optionally) and any content. And other users
ent on this content so as to continue the discussion. The

tinct communities or groups within networks can loosely be
defined as subsets of nodes which are more densely linked. Under-
standing the structure and dynamics of social groups is a natural
goal for network analysis, since such groups tend to be embedded
within larger social network structures.

A large number of researches have been devoted to the task of
defining and identifying communities in social and information
networks. Most previous papers on the subject of community
detection in large networks noted that it is a matter of common
experience that communities exist in such networks. These papers
then argued that, although there is no agreed-upon definition for a
community, a community should be thought of as a set of nodes
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that has more and/or better-connected edges between its members
than between its members and the remainder of the network.
These papers then apply a range of algorithmic techniques and
intuitions to extract subsets of nodes and then interpret these sub-
sets as meaningful communities. These algorithms focus on opti-
mizing an energy-based cost function that is always defined with
fixed parameters over possible community assignments of nodes.
A notable work proposed by Newman and Girvan [7] introduced
modularity as a posterior measure of network structure. This met-
ric has been influential in the community-detection literature and
has found success in many applications [28,19,25,29,26,1].

As members in the same online community may have common
hobbies, social functions, occupations, interests on some topics,
viewpoints, etc., they are more likely to appear in the same posts
or comment on the same topics with similar perspectives. Most
previous papers [28,19,25,29,2] on the subject of community
detection mainly focus on link analysis or topological structure of
the network; the relationship between two IDs is often directly
measured according to their interactive times. In fact, online social
network contains rich textual data which can be used to measure
the relationship between two connected IDs. For example, we
can learn the implicit orientation from one ID to the other by ana-
lyzing the emotional words appeared in their comments. Fig. 1(a)
shows a tree structure corresponding to a small thread of depth
4. Labels denote the user who writes the contribution and valid
comments are shown within the gray region. The post triggers
three responses from users A, C and D. At the second nesting level,
eight comments appear. At the third level, there are seven com-
ments and finally, there is one last comment from C. The attitude
of every comment can be represented using + or �, with + denoting
a user is supportive to the viewpoint and – otherwise. Fig. 1(b) is a
social network excavated from original thread of comments,
including seven nodes and nine edges. The nodes represent the
members involved in the social activities and the edges represent
the social relations of interactions or communications. The weight

attached to each edge represents the strength of connections
between the corresponding members. Fig. 1(c) shows the result
of discovered communities based on link analysis. We can see that
members within a community are connected, but their opinions
are different. In the left community of Fig. 1(c), user B is strongly
opposed to the viewpoints of user A, in reality, these two IDs
should not come from the same online community. Fig. 1(d) shows
an ideal result, the members within one community not only have
the same interests (comment to the same topics/IDs together), but
also have consistent perspectives to a certain topic. Existing studies
on the subject of community detection may confuse the meanings
of online community, which needs to improve.

What is more, the typical size of virtual spaces is now counted
in millions, if not billions, of nodes and edges. Most existing algo-
rithms [7,22,6,23,14,10,11,9] are incapable to analyze large-scale
dense networks. In our previous work [26], the fastest approxima-
tion algorithm for optimizing modularity on large networks (CNM
algorithm [7]) was applied to analyze various subsets of a com-
ment relationship network obtained from a bulletin board system
(BBS). CNM consists in recurrently merging communities that opti-
mize the production of modularity. It uses a clever data structure
to store and retrieve information required to update matrix Q. As
the community merge process is always serial, GNM runs well only
for a mid-scale subset of the network, it is incapable to analyze lar-
ger networks. In the case of a sample graph as shown in Fig. 2(a),
GNM begins with each node as a separate community in a network.
Then, it finds the pair of communities with the global maximum
DQ, and merges the pair into one community. For instance, in
the initial graph, the global maximum DQ is 0.051, which is con-
tributed by communities C0 and C1. We merge this community pair
into one community as C0

1, at the same time, the DQ on corre-
sponding community pairs will be updated. The CNM algorithm
continues the second step until the global maximum DQ is not po-
sitive any more, as shown in Fig. 2(d)–(f). In fact, in the first step of
CNM, we can also merge communities C4 and C5. The two merge

Fig. 1. An example to illustrate the practice meaning of online community.
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processes can be parallel performed as shown in Fig. 2(g). In the
second step, we can also parallel merge community pairs (C0

1, C3)
and (C4, C

0
5) (see Fig. 2(i)). It takes four steps for CNM to get the fi-

nal result. However, by taking parallel strategy, the algorithm
needs only two steps. Therefore, there is a great improvement
space for the initial CNM algorithm.

The third problem lies in community detection is the lack of
reliable ground truth. Currently the performances of community
detection methods are evaluated by manual inspection. For each
detected community an effort is made to interpret it as a ‘‘real”
community by identifying a common property or external attri-
bute shared by all the members of the community. For example, gi-
ven a scientific collaboration network we identify communities
based on the structure of the network and then find that these
communities correspond to real scientific organizations. Thus,
the goal of community detection is to identify sets of nodes with
a common (often external/latent) function based only the connec-
tivity structure of the network. A common function can be
common role, affiliation, or attribute [27]. In our scientific collabo-
ration network example above, such common function of nodes
would be ‘‘working in common areas of science”. However, such
anecdotal evaluation procedures require extensive manual effort,
are non-comprehensive and limited to small networks. What is
more, in online social networks, those common functions are likely

incomplete and missing. Not every user in online social networks is
willing to provide their true and complete personal information.
Therefore, we need a gold-standard metric to evaluate the accuracy
of detected communities.

The contributions of our work are threefold. We first introduce
an interesting social network model (Interest Network) in which
links between two IDs are built if they both have participated to
the discussions about one or more topics/users. In this case, we
say both of the connected two IDs have the similar interests. The
edges of the initial network were updated using the attitude con-
sistency of the connected ID pairs. For a given ID pair i and j, they
may together reply to some topics/users. The implicit orientations/
attitudes of these two IDs to their together-reply topics/users may
not be the same. We use a simple statistical method to calculate
the attitude consistency, the value of which is between 0 and 1,
and the higher value corresponds to a greater degree of consistency
of the given ID pair to topics/users. The updated network is called
Similar-View Network (SVN). Then, a fast parallel modularity
optimization algorithm (FPMQA) that performs the analogous
greedy optimization as CNM [7] and FUC [6] is used to conduct
community discovering. FPMQA begins with each node as a
separate community in a network. Then, in every step, it finds
the pairs of communities with the local maximum DQ, only if it
is positive, and parallel merges the corresponding community

Fig. 2. An example to illustrate the parallel strategy.
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pairs into one community. The FPMQA continues until there are no
more changes. By using the parallel manner and sophisti-
cated data structures, its running time is essentially fast,
Oðkmaxðkmax þ hki log kmaxÞÞ. Finally, we propose an evaluation
metric, which is based on the reliable ground truths, for online
network community detection. In the experimental work, we
evaluate our method using real datasets and compare our
approach with several previous methods using this metric; the
results show that our method is more effective and accurate in find
potential online communities.

The remainder of this paper is organized as follows. Section 2
introduces the motivation and dataset. The Interest Network (IN)
model and Similar-View Network (SVN) model are presented in
Section 3. In section 4, several characteristics of IN and SVN are
identified through statistical analysis. In Section 5, a fast parallel
modularity optimization algorithm (FPMQA) is particularly stud-
ied, followed by experiments in Section 6. Finally, we conclude
the paper in Section 7.

2. Motivation and dataset

In this section, the research motivation and the data we used
are introduced.

2.1. Motivation

Discovering the latent communities is a most important re-
search problem in the social network. However, traditional re-
searches on the subject of community detection in this field have
three shortcomings: (1) they confuse the meanings of the online
communities in social networks. Most of previous works (e.g.,
[28,19,25,29] focus on link analysis or topological structure of
the network; the relationship between two IDs is often directly
measured according to their interactive times. In fact, online social
network contains rich textual data which can be used to measure
the relationship between two connected IDs. (2) Most community
detection algorithms [7,22,6,23,14,10,11,9] are incapable to ana-
lyze large-scale dense networks. (3) Finally, there is short of the
reliable ground truth to evaluate the results of community detec-
tion. In this paper, we will propose some innovative technologies
to solve the above three problems.

2.2. Dataset

Our real world data used in this paper is download form Tianya
forum (http://focus.tianya.cn). It is a popular bulletin-board service
in China. It includes more than 300 boards, and the total number of
registered user identifications (IDs) is more than 32 million. Since
its introduction in 1999, it has become the leading social-network-
ing site in China due to its openness and freedom. We selected the
worldview board and collected data between July, 2003 and
December, 2011. The data includes 324,666 users, 99,753 topics
and 4,712,859 comments. We also use a number of test-case net-
works (e.g., Karate [30], Facebook [18], LiveJournal [27]) to evalu-
ate the effectiveness of our proposed fast parallel modularity
optimization algorithm.

3. Network model

We first review some related works on online community
detection, and then we propose an interesting network model
(Interest Network) in which links between two IDs are built if they
both have participated to the discussions about one or more topics/
stories. Finally, we apply sentiment analysis to every comment and
update the initial Interest Network using the attitude consistency

information of the connected ID pairs. The updated network is
called Similar-View Network.

3.1. Related work on online community detection

Online social network (e.g., Tianya, MySpace, Google+, and Face-
book) are an appealing way for members of such group to commu-
nicate because they are easily accessed from almost anywhere in
the world. Recent applications of data mining to online social net-
works have shown that increasing amounts of real data are net-
work structured [13,16]: the users in these networks (people, IP
addresses, etc.) are usually modeled by nodes of graphs; the con-
nection relations (trust or dependent relations) between members
are represented by the graph edges. Though such data often in-
volve massive relational information among objects, some
researchers attempt to find potential communities or groups in on-
line social networks [28,19,25,29,26].

A framework for user activity analysis on an interactive website
is proposed by Zeng et al. in [28]. Their approach, modeling user
activity as a hidden Markov model (HMM), can be apply to user
interest computation and user activity analysis tasks. To discover
the discussion topics of social networks, McCallum et al. present
the Author–Recipient–Topic model [19]. The model builds on La-
tent Dirichlet Allocation (LDA) and the Author–Topic (AT) model,
adding the key attribute that distribution over topics is condi-
tioned distinctly on both the sender and recipient—steering the
discovery of topics according to the relationships between people.
Tian et al. propose OLAP-style aggregation strategies to partition
the graph according to attribute similarity, so that nodes within
one community share the same attribute values [25]. Zhang et al.
propose a topic oriented community detection approach which
combines both social objects clustering and link analysis [29]. They
first use a subspace clustering algorithm to group all the social ob-
jects into topics. Then they divide the members that are involved in
those social objects into topical clusters, each corresponding to a
distinct topic. In order to differentiate the strength of connections,
they perform a link analysis on each topical cluster to detect the
topical communities. In our most recent work [26], we learn the
implicit orientation from one ID to the other by analyzing the emo-
tional words appeared in their comments. Then, we build a seman-
tic network model using those learned orientation between two
users. Community detection on this semantic network performs
well in effective and speed.

The above methods aim to group members who frequently
communicate with each other into one community. However, they
confuse the meaning of online community. In reality, members in
one community may not need to communicate with each fre-
quently, but should have similar interests and consistent perspec-
tives to most topics they participate together. To address this
problem, we first introduce an interesting social network model
(Interest Network) in which links between two IDs are built if they
both have participated to the discussions about one or more topics/
stories. Then, we apply sentiment analysis to every comment and
update the initial Interest Network using the attitude consistency
information of the connected ID pairs.

3.2. Interest Network

In general, a network is built according to the implicit relations
between the author of a comment and the user who replies to it. To
improve the quality of the resulting network, some of the com-
ments need filtering according to the following criteria:

(1) Those self-replies should also be filtered.
(2) Anonymous comments will not be reserved.

Z. Bu et al. / Knowledge-Based Systems 50 (2013) 246–259 249
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In a social network, every registered user identification (ID) cor-
responds to a node i e V in a graph G = hV, Ei. An edge (i, j) e E rep-
resents a social relation between two users that results from their
comment activity. Let nij be the number of times that user iwrites a
comment to user j, an undirected edge exists between users i and j
if nip > 0 and njp > 0 where i– p, j– p. The weight on the edge (i, j)
is defined as wij ¼

P
p2Pij minðnip;njpÞ, where Pij is the set of users to

whom user i and j together comment. The network established
according to this way is called Interest Network (IN). Fig. 3 gives
a simple example to IN model. Take edge (A, E) as an example, user
A and user E comment to user D twice together. One time is in the
second nesting level, and the other is in the third level. As
nAD = nED = 2, the weight on the edge (A, E) is 2. This edge-build
process is repeated for each node pair, and the final Interest Net-
work is shown in Fig. 3(b).

3.3. Similar-View Network

We can infer that the connected users in Interest Network have
similar interests, because they comment to the same users to-
gether. However, their viewpoints to the same topics may not be
the same. Take the user pair (A, B) as an example, user A is support-
ive to the viewpoint of user C’s and opposes user D’s. While user B
takes the opposed action, s/he opposes user C and supports user D.
Their attitudes to the same topics/users are totally opposite. How-
ever, the weight on edge (A, B) is 2 in Interest Network, which is
very high. Therefore, there is a need to re-measure the weight of
edge in Interest Network.

Online comments serve as a simple and effective way for users
to interact with their readership. They are among the defining set
of weblog characteristics, and most posters identify comment
feedback as an important motivation for their writing. What’s
more, on examining every comment, we may find that most of
them have an implicit orientation that is mostly appraised by sev-
eral emotional words. Those emotional words basically include
two types: supportive and opposing. For example, phrases such
as ‘‘顶”, ‘‘经典” or ‘‘牛” are supportive, whereas words such as
‘‘NND”, ‘‘TM” or ‘‘白痴” are opposing. We count emotional
terms/phrases in the comment data, including both supportive
words and opposing ones; and select 50 items with maximum
frequency respectively; then every term/phrase is assigned with
a value between 0 and 1 according to their tone manually. A
higher value corresponds to a greater degree of support; if the
phrase is neutral, we assigned it a value of 0.5. Thus, every phrase
has an associated numerical ‘‘trust”. In Table 1 we roughly
identified several terms or phrases, with English version in

parentheses, from a public discussion on Tianya.com as either
supportive or opposing. Accordingly, every comment between
two users is analyzed and the ‘‘trust” value of every comment
is updated (if there are several emotional words in one comment,
we take the average). As shown in Fig. 3(a), the comment with
the ‘‘trust” value higher than 0.5 will be defined as positive com-
ment, the comment with the ‘‘trust” value lower than 0.5 will be
defined as negative one. In this paper, we do not consider those
neutral comments. Accordingly, the ‘‘trust” from user i to user p
about the topic t can be calculated as:

trusttip ¼
P

c2Ct
ip
turstðctipÞ
nt
ip

ð1Þ

where turstðctipÞ is the ‘‘trust” value of one comment from user i to
user p about the topic t, Ct

ip is the comment set which includes all
the comments from user i to user p about the topic t, and nt

ip is
the comment number from user i to user p about the topic t.

For every connected user pair in Interest Network, we introduce
a parameter to measure the attitude consistency to their together-
reply topics/users. The attitude consistency of user i and j, ACij is
defined as:

ACij ¼
P

t2Tij
P

p2Ptij dðtrust
t
ip; trust

t
jpÞP

t2Tij countðP
t
ijÞ

ð2Þ

where Tij is a topic set, it includes the topics which are together dis-
cussed by user i and j. Pt

ij is a user set, it includes the users to whom
user i and j together comment in the discussion of topic t. countðPt

ijÞ
is the size of the user set Pt

ij. And d(x, y) is a judgment function
determined by x and y, which obeys:

Fig. 3. An example to illustrate the Interest Network model.

Table 1
Emotional phrases with English version in parentheses associated with scores.

Phrases Core Orientation

1 顶/ding (Support) 1.0 Supportive
2 经典 (Classic) 0.8 Supportive
3 沙发 (First to reply) 0.7 Supportive
4 牛 (Fantastic) 0.7 Supportive
5 喜欢 (Like) 0.7 Supportive

� � � � � � � � � � � �
� � � � � � � � � � � �
46 NND/nnd (TNND) 0.25 Opposing
47 SB/sb (Shithead) 0.1 Opposing
48 TM/tm (Fuck) 0.25 Opposing
49 YY/yy (Psychosexuality) 0 Opposing
50 白痴 (Idiot) 0.2 Opposing
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dðx; yÞ ¼ 1 x > 0:5; y > 0:5 or x < 0:5; y < 0:5
0 otherwise

�

The range of ACij is between 0 and 1, and a higher value corre-
sponds to a greater degree of attitude consistency of the given user
pair to their together-reply topics/users. Then, we can update the
weight on every edge in Interest Network using this ACij, as shown
in Fig. 4(b). Take user pair (A, B) in Fig. 3(a) as an example. User A is
supportive to the viewpoint of user C, then

trusttAC ¼
P

c2Ct
AC

turstðctAC Þ
nt
AC

> 0:5. While user B opposes user C’s view-

point, trusttBC ¼
P

c2Ct
BC

turstðctBC Þ
ntBC

< 0:5. Similarly, we can get

trusttAD < 0:5 and trusttBD > 0:5. Therefore, the attitude consistency
of user A and B is calculated as:

ACAB ¼
P

t2TAB
P

p2PtAB dðtrust
t
Ap; trust

t
BpÞP

t2TAB countðP
t
ABÞ

¼ dðtrusttAC ; trusttBCÞ þ dðtrusttAD; trusttBDÞ
2

¼ 0þ 0
2

¼ 0 ð4Þ

This updating process is repeated for each edge in initial Inter-
est Network. Finally, we prune the edges on which ACij equals 0
(see Fig. 4(c)). The pruned IN can be called Similar-View Network
(SVN).

4. Statistical analysis of the Similar-View Network

In this section, the statistical properties of the Similar-View
Network are analyzed, and we compare the results with some
existing models to characterize how they differ or resemble one
another.

4.1. Global properties

Here, we discuss network characteristics from a global perspec-
tive. The detailed statistics of the Similar-View Network are listed
in Table 2 along with those of the other three networks. The con-
nectivity of the network (row 3) is the ratio of actual links m to
the potential number of links O(n2) (The number of the edges of
a complete graph.) As shown in Table 2, SVN is highly dense com-
pared to the others. In SVN, the ‘‘giant component” comprises
86.13% of the users. In SVN, hki is high, meaning that users in this
network have a relatively large circle of friends and resemble each
other in their interests. The maximum degrees of the four networks
are shown in row 6. The clustering coefficient of a node i is defined

as c0i ¼ 2ei
kiðki�1Þ ¼

P
j;m

aijajmami

kiðki�1Þ , where ajm = 1 for two neighbors j and m

of node i. The clustering coefficient of the whole network is the
average of the individual c0i. We observed that, for SVN, c is much
higher than the randomized counterpart which is defined as
crand = hki/N. The average shortest path length is small for SVN, sug-
gesting that it is a ‘‘small-world” network. The diameter D of this
social network is also very small. This has also been seen in other
traditional social networks. Another statistic of social networks is
the degree correlation, or mixing coefficient, that indicates
whether highly connected users are preferentially linked to other

highly connected users. Table 2 shows the correlation coefficient r
[20,21] (also called the Pearson correlation coefficient) for our four
networks. Like traditional social networks, SVN exhibits significant
assortative mixing.

4.2. Degree distribution and others

The degree ki of a user i, which is the number of users with
whom s/he is connected, is distributed according to a power law
followed by an exponential cutoff, namely, P(k) � akb, as shown
in Fig. 5(a). The cumulative distribution function (cdf) of the de-
grees is shown in Fig. 5(b). As expected, these distributions are
all heavy-tailed, indicating a high heterogeneity between the users.
The clustering function c(k) is defined as the average of c0i overall
vertices with a given degree k. For the Similar-View Network and
the Interest Network, c(k) decays as akb, with a > 0, which is not
consistent with previous reports [24]. While for the Und. Dense
Network and the Semantic Network, c(k) decays as a � ln(k) + b,
with a < 0. As shown in Fig. 5(c), the trends of the Similar-View
Network and Interest Network are nearly identical. The average
nearest-neighbor degree function knn(k) [4,5], which is defined
as the average degree of the neighbors of vertices of degree k, fol-
lows a logarithmic distribution, knn(k)�a � ln(k) + b, for all these
networks. As shown in Fig. 5(d), knn(k) exhibits a slight upward
curvature for the Similar-View Network. The average shortest-path
degree function l(k), which is defined by the average shortest path
from vertices of degree k to other vertices in the ‘‘giant compo-
nent”, obeys a logarithmic distribution, l(k)�a � ln(k) + b, with
a < 0, meaning that hub members are more likely to be acquainted
with other people. The detailed parameters of the Similar-View
Network are listed in Table 3 along with those of the other three
networks.

5. Community detection

Similar-View Network has vertices in a group structure, where
the vertices within the group have a higher edge density, and the
vertices between groups have a lower edge density. This kind of
structure is called a community, which is an important network
property and can reveal many hidden features of a given network.
Users belonging to the same community are likely to have proper-
ties in common. Monitoring the aggregate trends and opinions
revealed by these communities provides valuable insight into a
number of social applications, such as criminal investigation and
rumor-spreading investigations. Hence, community identification
is a fundamental step not only for discovering what causes entities
to form but also for understanding the overall structural and func-
tional properties of a network. However, the typical size of virtual
spaces is now counted in millions, if not billions, of nodes, most
existing algorithms are incapable to analyze very larger dense
networks. In this section, we first introduce some existing
community-detection algorithms; then, we propose a fast parallelFig. 4. An example to illustrate the Similar-View Network model.

Table 2
Statistics of the Tianya social networks. Und. Dense Netowrk (Und. DN), [13];
Semantic Network (SN), [26].

SVN IN Und. DN SN

n 154,651 318,715 323,745 162,747
m 15,323,876 40,436,642 2,987,953 678,189
Connectivity (%) 0.13 0.08 0.0057 0.0051
Maxclust (%) 86.13 90.31 75.93 69.26
hki 198.17 253.75 18.46 8.33
kmax 3209 5918 6505 3504
c 0.1378 0.2912 0.0712 0.0086
l 2.56 2.81 3.7781 4.2119
D 8 9 10 11
r 0.2101 0.1931 �0.0899 �0.0760
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modularity optimization algorithm (FPMQA), which can detect
communities on very large dense network. Finally, we compare it
with some existing algorithms, such as CNM [7], PL [22], FUC [6],
and LPA [23].

5.1. Existing community-detection algorithms

A common formulation of the problem of community detection
is to find a partitioning C = {C1,C2, . . . ,Cj} of disjoint subsets of ver-
tices of the graph G = hV, Ei representing the network, in a mean-
ingful manner. Several algorithms have therefore been proposed
to find reasonably good partitions in a reasonably fast way. It is
common to differentiate by their angles, which creates the notions
of division-based, agglomeration-based, optimization-based, and
label-based algorithms:

(a) Divisive algorithms detect inter-community links and
remove them from the network. For example, GN algorithm
[14] uses edge betweenness as a metric to identify the
boundaries of communities. Though it has been applied very
successfully to small-scale networks, including E-mail net-
work [10], musician network [11], and metabolic network
[8], it makes heavy demands on computational resources,
running in O(n3) time on a sparse network with n nodes.
The cubic complexity algorithm may not be scalable enough
for the size of Online Social Networks. Some other works
with this notion can be referenced, such as [12,9].

(b) Agglomerative algorithms merge similar nodes/communi-
ties recursively. Pons and Latapy propose a measure of sim-
ilarities between vertices based on randomwalks, which can
be used in an agglomerative algorithm to compute
efficiently the community structure of a network [22]. The
computational complexity of the Pons–Latapy algorithm is
O(n2logn) and space O(n2) in most real-world cases.

(c) Optimization methods are based on the maximization of an
objective function. The most famous optimization method is
in literature [7], which begins with nodes in n different com-
munities and group together communities which has the
greatest contribution to the modularity measure Q. In effect,
[7] reduce the time complexity of the algorithm to O
(mdlogn), wherem is the number of edges and d is the depth
of the dendrogram obtained. FUC [6] is another heuristic
method that finds partitions of a given network by maximiz-
ing the modularity measure. It iteratively repeated two
phases until to no increase of modularity is possible: one
where modularity is optimized by allowing only local
changes of communities; one where the communities found
are aggregated in order to build a new network of communi-
ties. Its complexity is linear on typical and sparse data.

(d) LPA (Label Propagation Algorithm) [23] uses only the net-
work structure as its guide, is optimized for large-scale net-
works, does not follows any a priori defined objective
function and does not require any prior information about
the communities. In addition, this technique does not need
to define in advance the number of communities present
into the network or their size. Labels represent unique iden-
tifiers, assigned to each vertex of the network. Its function-
ing is reported as described in [23]. It also takes a near-
linear time for the algorithm to run to its completion.

The quality of the partitions resulting from above methods is of-
ten measured by the so-called modularity, which the fraction of
edges that fall within communities, minus the expected value of
the same quantity if edges fall at random without regard for the
community structure. One form is given by Newman, which is de-
fined as [7]

Fig. 5. P(k), cdf, c(k), knn(k), l(k) of the four networks.

Table 3
Descriptive coefficients.

SVN IN Und. DN SN

aP(k) 0.579 0.015 0.417 0.528
bP(k) �1.275 �0.716 �1.617 �1.788
ac(k) 73.052 53.305 �0.014 �0.002
bc(k) �0.998 �0.879 0.122 0.157
aknn(k) �23.7 �35.7 �66.0 �18.8
bknn(k) 528.7 670.4 797.0 202.3
al(k) �0.238 �0.223 �0.199 �0.200
bl(k) 3.761 3.770 4.060 4.299
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Q ¼
X
i

ðeii � a2i Þ ¼ TrE� jjE2jj ð5Þ

where E is a N � N symmetric matrix whose element eij is the frac-
tion of all edges in the network that link vertices in community Ci to
vertices in community Cj, and ||E2|| indicates the sum of the ele-
ments of the matrix E2. The trace of this matrix TrE =

P
ieii is the

fraction of edges in the network that connect vertices in the same
community, while the row (or column) sums ai =

P
jeij give the frac-

tion of edges that connect to vertices in community Ci. If the net-
work is such that the probability to have an edge between two
sites is the same regardless of their eventual belonging to the same
community, one would have eij = aiaj.

5.2. Fast parallel modularity optimization algorithm (FPMQA)

The main idea behind our parallel clustering algorithm is fol-
lowing. Assume that we start with a network of n nodes. First,
we assign a different community to each node of the network
and initialize every community/node with unique labels. Suppose

that a community Ci has neighbors C
i
1;C

i
2; . . . ;C

i
ki
, we define the ‘‘lo-

cal area” of community Ci as LocalCi
¼ fCi;C

i
1;C

i
2; . . . ;C

i
ki
g. Then, we

evaluate the gain of modularity that would take place by merging
any community pair in LocalCi

. The community pair with the
maximum gain of modularity will be joined as one community
(the label of one community will be replaced by the other), but
only if this gain is positive. If there is no positive gain, all the
community pairs in the ‘‘local area” of community Ci remain un-
changed. As every merging will result the gain of modularity
changing in the ‘‘local areas” of the two corresponding communi-
ties. We make use of a balanced binary tree as in [7] to keep track
the maximum gain of modularity for every community. A similar
work proposed by [6] indicates that the ordering of the nodes does
not have a significant influence on the modularity that is obtained,
while it may affect the computation time. Therefore, in this paper,
we parallel apply this process for all communities and the first pass
is then complete. One should also note that by taking parallel pro-
cessing, the gain of modularity updating may exist access conflict.
For example, for community Ci, the maximum gain of modularity
in its ‘‘local area” are contributed by communities Ci and Cj. While
for community Cj, the maximum gain of modularity may be con-
tributed by community pair (Cj, Ck). We cannot merge community
pairs (Ci, Cj) and (Cj, Ck) simultaneously. To address this problem,
we use a mark array, which stores the current state (busy or free)
of every community. To merge a given community pair Ci and Cj,
we should first check their current labels and states. Only if their
labels are different and all the communities in their ‘‘local areas”
are free, we can take the next process. When this community pair
acquires the authorization, we should then mark all the communi-
ties in the ‘‘local areas” of Ci and Cj’s as busy. By the end of merging,
the corresponding communities will be marked as free. We
perform this process interactively until there are no more changes
and a maximum of modularity is attained (see karate graph in
Fig. 6). By construction, the number of meta-communities
decreases at each pass, therefore most of the computing time is
used in the first passes.

As described above, we start off with each vertex being the sole
member of a community of one. The four data structures used in
our approach are described as follow:

(1) A balanced binary tree Ti for each community Ci, which
stores the gain of modularity DQij for each community pair
in the ‘‘local areas” of Ci. So that elements can be found or
inserted in Oðlogðki þ cikiðki � 1Þ=2ÞÞ � Oðlog kiÞ time, where
c0i is the clustering coefficient of community Ci as defined in
Section 3.1.

(2) An ordinary vector array with elements ai.
(3) An label vector array with elements li.
(4) An state vector array with elements si.

Thus, we initially set

DQij ¼ 1=2m� kikj=ð2mÞ2; if Cj is the neighbor of Ci ð6Þ

ai ¼ ki=2m ð7Þ

li ¼ i ð8Þ

si ¼ free ð9Þ
for each community Ci. (The weighted are a simple generalization
[27].)

Our algorithm can now be defined as follow:

Algorithm 1. Fast parallel modularity optimization
algorithm (FPMQA)

1: V: a set of vertices
2: E: a set of edges
3: G� hV, Ei
4: C� {Ci = {vi}|vi e G(V)}
5: S� {si = free|vi e G(V)}
6: L� {li = i|vi e G(V)}
7: T� {Ti|insert DQxy in the ‘‘local area” of Ci to its balanced

binary tree Ti}
8: while true do
9: Merge_time=0;
10: for Ck e C do
11: Merge_process(Ck)
12: end for
13: if Merge_time==0 then
14: break
15: end if
16: end while

The operating of Merge_process(Ck)

17: while true do
18: find max DQxy from Tk
19: if sj ==free, Cj 2 LocalCx [ LocalCx then
20: if lx == ly then
21: Ending Merge_process(Ck)
22: end if
23: Merge_time= Merge_time+1
24: a0x ¼ ax þ ay
25: l0x ¼ ly þ ly
26: sj ¼ busy, if Cj 2 LocalCx [ LocalCx

27: C0
x ( Cx [ Cy

28: C ( C � Cx � Cy þ C0
x

29: N0
x ( fCkjCk 2 LocalCx [ LocalCyg

30: for Ck 2 N0
x do

31: DQ 0
xk ¼ DQ 0

kx ( QðG;C � Cx � Cy þ C0
xÞ � QðG;CÞ

32: sk = free
33: end for
34: else
35: wait till sj ==free, if Cj 2 LocalCx [ LocalCy

36: end if
37: end while

The modularity updating is the as in [7]. If we join communities
Cx and Cy, the degrees (the numbers of neighboring communities)
of Cx and Cy can be denoted as kx and ky. If kx > ky, we label the
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combined community x, and y otherwise. The updating rules are as
follows. If community Ck is connected to both Cx and Cy, then

DQ 0
xk ¼ DQ 0

kx ¼ DQxk þ DQyk ð10aÞ
If Ck is connected to Cx but not to Cy, then

DQ 0
xk ¼ DQ 0

kx ¼ DQxk � 2ayak ð10bÞ
If Ck is connected to Cy but not to Cx, then

DQ 0
xk ¼ DQ 0

kx ¼ DQyk � 2axak ð10cÞ

5.3. Algorithm analysis

We take the similar method as [7] to analyze the computational
complexity of FPMQA. Take community Ci as an example. First, we
need to select the community pair (Cx, Cy) with the maximum gain
of modularity from Ci’s balanced binary tree Ti, it will take O(1)
time. Then, we need to join the two communities as one. At the
same time, we need update corresponding balanced binary trees.
We will take a heuristic method to update the balanced binary tree
Tx: (1) For every element in Tx, we give them a same decrement
(�2ayak) without changing the tree structure to complete Eq.
(10b) first. And it will take O(kx) time. (2) To implement Eq.
(10a), we insert the elements of Ty into Tx, summing them wher-
ever an community connects to both Cx and Cy. It is worth noting
that we should also add a same increment (2ayak) to those ele-
ments, as we additionally subtract it in Step (1). Each of this
count(Nx \ Ny) insertions takes O(logkx) time. (3) We then update
the other elements of Tx, of which there are at most count
(Ny � Nx \ Ny), according to Eq. (10c). The total operate time for
Tx is O(kx + kylogkx). In the balanced binary trees Tk, we will update
a single element, taking O(logkk) times, and there are at most
kx + ky trees for us to update. Finally, the updates a0

x ¼ ax þ ay and
l0x ¼ lx þ ly is trivial and can be done in constant time.

By construction, the modularity updating (Steps 30–33 in
FPMQA) can be also applied in parallel way. After Tk has been up-
dated, we free the corresponding community Ck, then other com-
munities may have the chance take the merge operating. For the
pth pass, FPMQA takes Oðkmax

p ðkmax
p þ hkpi log kmax

p ÞÞ time, where
kmax
p and hkpi are the maximum degree and the average degree of

the network in the pth pass. The total time of FPMQA is

O
Pd

p¼1k
max
p ðkmax

p þ hkpi log kmax
p Þ

� �
, where d is the number of passes.

From our experiments, we found that the main computational time
comes from the first pass and 95% of the nodes or more are classi-
fied correctly by the end of the sixth pass. It is agreed with the
well-known ‘‘six degree of separation” theory. However, the math-
ematical convergence is hard to prove. Therefore, FPMQA has a
running time of O(kmax(kmax +hkilogkmax)). Consider a star-shaped
network with the center node x and leaf nodes yi. Its average de-
gree is about 1, and the maximum degree is n. Once a community
takes the center node x to merge, we join it into x (because its de-
gree is lower than x’s). By using our heuristic method, every join
will take n time as x is connected to all yi. As every merge process
will employ all node resources, other nodes will wait for the merg-
ing nodes to release resources, our method will change into a serial
way. Then the overall computational time is O(n2). For a complete
graph, the average degree and the maximum degree are both n, our
method will also degenerate to the serial way. As every join takes
n + nlogn time, the overall time will be O(n2logn). While for other
trivial sparse networks, FPMQA has a running time of O((kmax)2).

5.4. Comparison with other algorithms

Our algorithm also belongs to modularity optimization method.
It combines the advantages of CNM [7] and FUC’s [6] and has sev-
eral unique features. First, it is intuitive and easy to implement,
and the outcome is unsupervised. Moreover, by using clever data
structures and parallel strategies, it is extremely efficient.

CNM finds the pair of communities with the ‘‘global” maximum
DQ, however, finding this ‘‘global” maximum DQ is time consum-
ing. The time complexity of CNM is O(md logn), it only runs well
for a mid-scale network. Our method select the ‘‘local” maximum
DQ as FUC does, but the definitions of the ‘‘local area” of every
community are different. For each community Ci, FUC only consid-
ers the community pair between Ci and its neighboring communi-
ties. That may bring the final modularity declination in some cases.
Take the graph in Fig. 7 as an example. Apparently, the graph has
two communities which are {0,1,2,3} and {4,5,6}. FUC takes the
nodes in a natural to start the algorithm, if we first consider node
0, its ‘‘local area” includes {e01, e02, e03, e04}. The gains of modularity
on those four edges are same and equal 0.02. Then we will select a
community pair randomly from its ‘‘local area”. If we choose

Fig. 6. Visualization of the steps of our algorithm on karate network [30]. Each pass is made of parallel merge the community pair (Ci, Cj) with the maximum gain of
modularity in the ‘‘local area” of every community Ci.
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community pair (0,4), we merge them as one community and up-
date the corresponding DQij. The gains of modularity of DQ01, DQ02

and DQ03 will be updated to �0.025 according to Eq. (10), and
those of DQ45 and DQ46 will be updated to �0.005. In the end of
first pass, there will be only three communities left, and the algo-
rithm will terminal as shown in Fig. 7(a). The detected communi-
ties are not same as we expect. While for our algorithm, we take
the parallel strategy. Assume node 0 first acquires the needed re-
sources, the merge process for node 0 will begin. Its ‘‘local area” in-
cludes edges between any two communities of node 0 and its
neighbors, which are {e01, e02, e03, e04, e12, e13, e23}. The maximum
gain of modularity on those seven edges is 0.0275, which comes
from (1,2), (1,3) or (2,3). Assume we choose community pair
(1,2) to merge and update the corresponding DQij. The gains of
modularity of DQ01, DQ02, DQ13 and DQ23 will be updated to
0.04, 0.04, 0.055 and 0.055 separately. Next, we free the corre-
sponding resources and start to consider node 1. In the end of
the first pass, we detect two communities as shown in Fig. 7(b),
which is our expect result. What’s more, FUC considers all the
nodes repeatedly and sequentially until no further improvement
can be achieved. While our algorithm takes the parallel strategy,
which should be faster than FUC.

We also analyze the label propagation algorithms, such as LPA
in [23]. LPA initializes every node with unique labels and let the la-
bels propagate through the network. It assumes that each node in
the network chooses to join the community to which the maxi-
mum number of labels of its neighbors belongs to, with ties broken
uniformly randomly. At the end of the propagation process, nodes

having the same labels are grouped together as one community.
Each iteration of LPA takes linear time in the number of edges O
(m). However, when the algorithm terminates, it is possible that
two or more disconnected groups of nodes have the same label.
This happens when two or more neighbors of a node receive its la-
bel and pass the labels in different directions, which ultimately
lead to different communities adopting the same label. In such
cases, in the end of LPA, one should run a simple breadth-first
search on the sub-networks of each individual group to separate
the disconnected communities with the computational time of O
(m + n). Therefore, the overall running time of LPA is O(m + n).
LPA performs better than FPMQA in those centralized networks,
such as the star-shaped network, the complete network, and the
networks with the maximum degree closed to n. While for other
trivial networks, FPMQA is more competitive (see Table 4).

6. Experiments and evaluation metrics

In this section, the performance of FPMQA is first presented.
Then, we compare the community structure of the four networks
derived from Tianya data. Finally, two metrics, one based on the
attitude consistency, the other based on the interest consistency,
are introduced to evaluate the accuracy of our approach.

6.1. The performance of FPMQA

In order to verity the effectiveness of FPMQA, we have applied it
on a number of test-case networks and compared it with four other
community detection algorithms. The networks that we consider
include a small social network (Karate), four subsets of online so-
cial networks (Facebook, Twitter, Gplus and Orkut), a free on-line
blogging community (LiveJournal), and an on-line gaming network
(Friendster). For every dataset, we first implemented FPMQA in a
server with one core (in this case, FPMQA degenerates to a serial
algorithm). Then we added the number of core to observe the
changes of CUP time. Fig. 8 shows the CUP times and the speedup
for all the test datasets. By taking the parallel strategy, FPMQA runs
faster than the general serial one. One interesting finding is that
the speedup of FPMQA changes with the structure of the given net-
work. Namely, the speedup is high when we run FPMQA in a sparse
network. In the case of a dense network the opposite applies. We
compared FPMQA with other algorithms, the results are listed in
Table 4. In all test-case networks, one can observe that the rapidity
and the large values of the modularity that are obtained. FPMQA
outperforms nearly all the other methods to which it compared,
expect for Gplus. That is because the maximum degree of Gplus
network is very high, FPMQAmay degenerate to serial one. We also
have applied FPMQA on the four networks derived from Tianya
data. As shown in the last four rows of Table 4, even for those very

Fig. 7. Comparison of FUC and FPMQA.

Table 4
The performances of the algorithm of PL [22], CNM [7], FUC [6], LPA [23], and our algorithm for community detection in networks of various sizes. Most of the data we used are
downloaded from Stanford Large Network Dataset Collection (http://snap.stanford.edu/data/). For each method/network, the table displays the modularity that is achieved and
the running time. Our method clearly performs better in terms of modularity and running time.

Nodes/edges hki/kmax PL CNM FUC LPA FPMQA

Karate [30] 34/77 4.5/16 0.42/0 s 0.38/0 s 0.42/0 s 0.38/0 s 0.42/0 s
Facebook [18] 4k/88k 43.7/518 0.76/27.9 s 0.72/22 s 0.82/3.1 s 0.75/0 s 0.84/0 s
Twitter [18] 81k/1.8M 43.5/875 0.70/733 s 0.71/818 s 0.73/20.3 s 0.69/3.1 s 0.72/1.3 s
Gplus [18] 108k/13.7M 254.1/5126 0.66/3657 s 0.62/3321 s 0.69/69.5 s 0.65/33.8 s 0.71/45.7 s
LiveJournal [27] 4M/34.9M 17.3/1087 _/_ _/_ 0.14/152.4 s 0.12/60.3 s 0.15/22.3 s
Orkut [27] 3M/117M 76.2/3295 _/_ _/_ 0.19/437.4 s 0.18/203 s 0.20/68.9 s
Friendster [27] 117M/2.6B 44.4/2768 _/_ _/_ _/_ 0.22/165 mn 0.24/923.3 s
SVN 155k/15.3M 198.2/3209 0.33/8275 s 0.35/7833 s 0.36/183.2 s 0.34/46.3 s 0.36/32.7 s
IN 319k/40.4M 253.8/5918 _/_ 0.36/6.5 h 0.35/287.3 s 0.34/109.6 s 0.35/89.3 s
Und. DN [13] 324k/3.0M 18.5/6505 _/_ 0.49/1731 s 0.50/163.2 s 0.50/10.2 s 0.50/72.8 s
SN [26] 163k/678k 8.3/3504 0.58/7535 s 0.60/350 s 0.62/49.4 s 0.58/5.2 s 0.62/21.2 s

Empty cells correspond to a running time over 24 h. The figures in bold means better performance among the five methods.
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dense networks (SVN and IN), FPMQA performs very well (32.7 s
and 89.3 s, respectively). More community properties of these four
networks will be given next. In the above examples, the number of
passes is always smaller than 6.

6.2. The community structures of four networks

Fig. 9 shows the community structures of the four networks de-
rived from our Tianya data. On the Similar-View Network, our
community detection algorithm has run 5 passes. At the end of
the fifth pass, we detect 1195 communities that have more than
100 users as shown in Fig. 9(a). These communities account for
about 89% of all users in SVN. The modularity of this partition is
0.36, which is not very high. That is because our SVN is a dense net-
work, the community characteristic in a dense graph is always
unobvious. Our algorithm allows us to analyze more closely the
only community that has a equilibrate distribution of users. As
shown in Fig. 9(a), we consider the sub-communities provided by
FPMQA in the fourth pass. These sub-communities are closely con-
nected to each other and are themselves composed of heteroge-
neous groups of users. These groups of users might have

different interests or different viewpoints to the same topics. On
the Interest Network, our algorithm has also run 5 passes. We to-
tally detect 1847 communities as shown in Fig. 9(b). The average
of IN is 253.78, it is still a dense network. The modularity of the fi-
nal partition is only 0.35, which means the community character-
istic is not obvious in IN. While for the Und. Dense Network and the
Semantic Network, the situations have changed. We detect 1617
communities with the modularity of 0.50 in the end of forth pass.
The community characteristic of UDN is more obvious than those
in SVN and IN. Users in the same community might communicate
with each other very frequently. And in the Semantic Network, we
get the highest modularity (0.62) in the end of sixth pass. The de-
tected 1187 communities are strongly segregated with each other,
as shown in Fig. 9(d).

6.3. Evaluation metric

Currently the performance of community detection methods is
evaluated by manual inspection. For each detected community an
effort is made to interpret it as a ‘‘real” community by identifying a
common property or external attribute shared by all the members

Fig. 8. CUP times and speedup for the test datasets.

Fig. 9. Community structures of the four networks derived from Tianya data.
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of the community. As in online social network of Tianya, we iden-
tify communities based on the structure of the network and then
find that these communities correspond to groups of users with
common hobbies, social functions, occupations, interests on some
topics, viewpoints, etc. Some of those common properties and
external attributes can be found on user profiles, which are pro-
vided by users themselves. However, not every user on Tianya is
willing to provide their true and complete personal information.
There exist multiple structural definitions of network communi-
ties, the lack of reliable ground truth makes it is hard to interpret
and evaluate the results of community detection.

To address the above problems, we propose an evaluation met-
ric only according to users’ behaviors. In Section 3.3, we define a
parameter ACij to measure the attitude consistency to together-re-
ply topics/users of two connected users i and j. We can also use this
parameter to measure the attitude consistency of community Ck,
which is defined as follow:

ACk ¼ Avg
ði;jÞ2Ck

ðACijÞ ¼
P

ði;jÞ2Ck
ACij

mk
ð11Þ

where mk is the number of edges included in community Ck. Then
the attitude consistency of the whole network is defined as

ACC ¼ Avg
Ck2C

ðACkÞ ¼
P

Ck2C ACk

j
ð12Þ

where j is the number of communities.
In addition, we define the interest consistency of two users i and

j as follow:

ICij ¼ countðTijÞ
MaxðcountðTiÞ; countðTjÞÞ ð13Þ

where Tij is the topic set includes the topics which are together dis-
cussed by user i and j as defined in Section 2.3. Ti is the topic set in-
cludes the topics which are discussed by user i. The range of ICij is
also between 0 and 1, and a higher value corresponds to a greater
degree of interest consistency of the given user pair. Similarly, the
interest consistency of community Ck and the whole network are
defined as

ICk ¼ Avg
ði;jÞ2Ck

ðICijÞ ¼
P

ði;jÞ2Ck
ICij

mk
ð14Þ

ICC ¼ Avg
Ck2C

ðICkÞ ¼
P

Ck2C ICk

j
ð15Þ

A good division of our network should be thought of as a set of
users that has high ACij and ICij values on edges between its mem-
bers. ACij and ICij tell the interactive behaviors of users i and j. They
are the ground truths, because users’ behaviors are real existence.
Therefore, ACC and ICC can be used as the metrics to evaluate the
accuracy of the results of community detection.

Fig. 10 shows the attitude consistencies (ACCs) and the inter-
est consistencies (ICCs) of the four networks. In the Similar-View
Network, the average attitude consistency of the network is 0.68,
which implies most users in the same community have similar
viewpoints to their together-reply topics/users. The average
interest consistency of the network is 0.29, which is not high.
That is because every user on Tianya might have many hobbies,
their interests may not completely overlap. The same evolution
manipulation is deduced to the Interest Network, Und. Dense
Network and the Semantic Network. The average attitude consis-
tency of the Interest Network is 0.49, which is significantly be-
low that of the Similar-View Network. That means even two
persons have similar interests, they do not necessarily have to
become good friends. ACCs of the Und. Dense Network and the
Semantic Network are 0.25 and 0.20 separately, the values of
which are very low. That is because even two IDs communicate
very frequently and friendly based on a given topic, they do not
necessarily have to become good friends either. The average
interest consistencies of the three networks are 0.29, 020 and
0.15. As expect, those networks are built according to the actual
interactions of users. It is difficult to centralize users with com-
pletely overlapping interests together only according to the net-
work topology. Therefore, the interest consistency of the
network is high if ICC researches 0.2. Our method based on
the Similar-View Network is better than other models in finding
communities in online social network.

Fig. 10. The attitude consistency (ACC) and the interest consistency (ICC) of the detected communities in the four networks derived from Tianya data.
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7. Summary and conclusion

The overall detection approach is summarized as Algorithm 2.

Algorithm 2. Online community detection based on
Similar-View Network model and FPMQA

Input: Social network data set (One theme discussion or
More),

Output: Online communities identified
1: Construct the Interest Network using given social network

data set;
2: Mine the semantic information and update the Interest

Network using the attitude consistence value;
3: Call the fast parallel modularity optimization algorithm

(FPMQA);
4: Return: Online communities identified

Compared to traditional methods, our approach has three
advantages: (1) it conforms to the practical meanings of online
community; (2) by taking the parallel strategy, it reduces the run-
ning time of community detection; and (3) using the reliable
ground truths to evaluate detected communities, which proves
the high effective of our method.

As shown in Fig. 11, we assume that the real groups have been
known and labeled in Fig. 11(a). That is, IDs A, C, E and F are from
group G1, IDs B, D and G are from group G2. We notice in Fig. 11(a)
that, IDs from the same group often reply to the same topic or com-
ment. For instance, IDs B, D and G together comment to ID A twice.

To grasp this property, we build the Interest Network as shown in
Fig. 11(b). Then, we detect the attitude consistence of two con-
nected IDs in IN, and update original network. Fig. 11(c) shows
the Similar-View Network in which connected IDs have the same
viewpoints to their together-reply topics/users. For example, IDs
B, D and G’s attitudes are same to ID A. Finally, we apply the fast
parallel modularity optimization algorithm, and get communities
we expect as shown in Fig. 11(d). IDs belonging to the same com-
munity have properties in common: similar interests, consistent
viewpoint to certain topics/users. It conforms to the practical
meanings of online community.

Another advantage of our approach is the running time of com-
munity detection task. It combines the advantages of CNM [7] and
FUC’s [6] and has several unique features. CNM finds the pair of
communities with the ‘‘global” maximum DQ, however, finding
this ‘‘global” maximum DQ is time consuming. Our method select
the ‘‘local” maximum DQ as FUC does, but the definition of the ‘‘lo-
cal area” of every community is more reasonable. FUC only consid-
ers the community pair between Ci and its neighboring
communities. That may bring the final modularity declination in
some cases, as stated in Section 5.3. What’s more, our algorithm
takes the parallel strategy, it has a running time of O(kmax(k-
max + hki > logkmax)). It can be applied to the community detection
task in a large scale dense network, if the maximum degree of the
network is not very high.

Finally, we propose two reliable metrics to evaluate the de-
tected communities, which are the average attitude consistency
ACC and the average interest consistency ICC. We do not need to
spend extensive manual effort to distinguish the real true
information from others in users’ profiles. We only need to

Fig. 11. An example to illustrate the advantages of our approach.
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consider interactive behaviors of users i and j, which is ACij and ICij.
Those ground truths are real existence, and prove that our method
based on the Similar-View Network is better than other models in
finding communities in online social network.
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