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ABSTRACT 
 
Dynamic Cognitive Game (DCG) CAPTCHAs are a 
promising new generation of interactive CAPTCHAs aiming 
to provide improved security against automated and human-
solver relay attacks. Unlike existing CAPTCHAs, defeating 
DCG CAPTCHAs using pure automated attacks or pure 
relay attacks may be challenging in practice due to the 
fundamental limitations of computer algorithms (semantic 
gap) and synchronization issues with solvers. To overcome 
this barrier, we propose two hybrid attack frameworks, 
which carefully combine the strengths of an automated 
program and offline/online human intelligence. These 
hybrid attacks require maintaining the synchronization only 
between the game and the bot similar to a pure automated 
attack, while solving the static AI problem (i.e., bridging the 
semantic gap) behind the game challenge similar to a pure 
relay attack. As a crucial component of our framework, we 
design a new DCG object tracking algorithm, based on color 
code histogram, and show that it is simpler, more efficient 
and more robust compared to several known tracking 
approaches. We demonstrate that both frameworks can 
effectively defeat a wide range of DCG CAPTCHAs.  

Index Terms – CAPTCHA, web security, hybrid attack, 
visual processing, multi-object tracking 
 

1. INTRODUCTION 
 
Web-based services are vulnerable to different forms of 
attacks, including denial of service, registration of spam 
email accounts and password brute force. Such abuse or 
resource waste can be reduced through a commonly 
deployed defense mechanism, called “CAPTCHA”, which is 
a program of an AI problem that is relatively easy for 
human to solve but very difficult for a computer program 
[1]. An AI problem in a CAPTCHA can be represented in 
many ways, such as texts, image, audios, videos, and logical 
puzzles. Out of these, text-based CAPTCHA is widely used 
in many web-based industries. 

However, many real world CAPTCHAs have been 
broken using automated attacks with noticeable success 
rates in recent years (e.g., [2, 3]). They have also been 
subject to human-solver relay attacks [4] whereby the 
CAPTCHA challenge is outsourced to, and solved by, a 
third-party remote human-solver in real-time.  

These vulnerabilities provide a sound motivation to 
explore CAPTCHA alternatives. This paper focuses on a 
new generation of CAPTCHA, called Dynamic Cognitive 
Game (DCG) CAPTCHA [6]1, which challenges the user to 
perform a game-like cognitive task interacting with moving 
objects within a series of images in a static scene (see 
examples in Figure 1). “are you a human” [5] released a 
series of instances of such DCGs, named “PlayThru”.2 
DCGs provide several potential improvements in security 
compared with other existing CAPTCHAs. First, it is 
difficult for a computer to recognize moving objects and 
games through game instructions due to the semantic gap. 
Second, the dynamic nature requires synchronization 
between a user and a game, thereby making DCGs more 
resilient to relay attacks. Third, the user interaction with the 
game, such as the total number of drag-and-drop attempts 
and the error rate, can be utilized as a second layer defense 
to assess a user’s “human likeness.”  

In this paper, we show that all the above improvements 
in security could still be effectively challenged. We propose 
a novel and powerful hybrid attack framework that can 
bypass the security advantages offered by DCGs by 
carefully combining the strengths of automated algorithms 
and human intelligence. Our main contributions are: 
1. Two Novel Hybrid Attack Frameworks: We develop 
two novel hybrid attack frameworks (Section 4) that can 
effectively subvert DCGs by utilizing real-time object 
tracking and human-solver based offline/online learning. 
Both attack frameworks require maintaining the 
synchronization only between the game and the bot similar 
to a pure automated attack, while solving the static AI 
problem (i.e., bridging the semantic gap) behind the game 
similar to a pure relay attack.   
2. Efficient and Robust DCG Object Tracking: As a 
crucial component of the two framework models, we design 
a new object tracking algorithm, based on color code 
histogram (CCH), and demonstrate that it is simpler, more 
efficient and more robust compared to several known 
tracking algorithms for DCG object tracking  (Section 3).  
 

                                                
1  Henceforth, we use “DCG(s)” to denote “DCG CAPTCHA(s)”  
2 All images of the PlayThru challenges in this paper (Figure 2) are 
used for illustration only; these games were not attacked. 



3. Attack Implementation and Evaluation: We provide 
an implementation of the two attack frameworks, and 
evaluate their performance from the automated side (Section 
5). The results indicate our attacks to be very efficient (< 4s 
of computation time) and robust (100% accuracy) in 
breaking current broad category of DCGs.  

 
2. BACKGROUND 

 
We first present a broad class of DCG prototypes we 
designed for the purpose of our study. We then review our 
recent prior work [6], which evaluated the usability of 
DCGs, and the security of DCGs against pure auto-attacks 
and pure relay attacks. This work [6] showed that DCGs are 
very easy for legitimate users to solve, and suggested the 
difficulty of pure auto-attacks and pure relay attacks against 
DCGs. The latter challenge is addressed in this paper by 
introducing novel hybrid attacks. 
 
2.1. The DCG prototypes 
The legal restriction on attacking commercial DCGs drives 
us to design and implement four animation-based DCG 
prototypes representing a broad class of DCGs, as shown in 
Figure 1. The games have the dimension 130×360 pixels, so 
they can easily fit into a web page. The components in a 
frame image of a DCG challenge (as indicated in Figure 1) 
include: (1) Answer object: a moving object (e.g., a ship) 
that should be dragged to the corresponding target object 
(e.g., sea) in order to pass the game. (2) Target object: an 
object onto which the corresponding answer object is 
dragged. (3) Activity area: the activity area of all moving 
foreground objects. (4) Target area: part of the background 
that includes the target object(s). 
 

  
(a) Ship game (b) Parking game 

  
(c) Shape game (d) Animal game 

 
Fig. 1. Sample frame images of the four DCG prototypes  

The general parameters in the four DCG prototypes 
include: (1) Three frame rates (10, 20, or 40 frames per 
second (fps)). (2) Three different numbers of moving 
objects (4, 5, or 6). (3) Average moving distance per frame: 
1.207 pixels per frame (ppf) (1 ppf for orthogonal directions, 
i.e., N, S, E, and W, while 1.414 ppf for diagonal directions, 
i.e., NE, NW, SE, and SW). In total, 4×3×3=36 game 
challenges will be used in experiments. Each moving object 
is initialized with a randomized location and an 
orthogonal/diagonal moving direction. An object will move 
to a new random direction when colliding with another 

object or the game border. Generally, a DCG challenge has 
a static background; all of its moving objects have a 
constant speed; moving objects may overlap one another to 
a small extent; moving objects will not move to the target 
area unless they are dragged to. 

 
2.2. Usability of DCGs 
Three measurements, namely success rate, completion time, 
and error rate per click, are used to evaluate the proposed 
hybrid attacks compared with the performance of legitimate 
human users in playing the game. Error rate per click is 
defined as the ratio of the number of incorrect drag-and-
drop attempts to the total number of drag-and-drop attempts 
in a game challenge. 

The usability study of the above three measurements 
from [6] show that: 1) Honest users can always complete 
each challenge of the four game prototypes 100% 
successfully in about 11 seconds at most. 2) Increasing the 
number of moving object and/or frame rate may prolong the 
completion time. 3) Although users complete the game with 
100% success rate, they are likely to make mistakes (i.e., 
range of average error rate per click: 3-9%) in a game, 
which requires the game server to have some tolerance on 
the incorrect drag-and-drop attempts. Once the number of 
incorrect attempts exceeds a certain threshold, the game 
server may consider the player as a bot (not human). Thus, 
the error rate per click is one of the key measurements to 
evaluate whether a game can be completed successfully. 
 
2.3. Pure auto attack and pure relay attack on DCGs 
The work presented in [6] proposed a dictionary-based auto-
attack framework that consists of two phases, the online 
learning phase and the attacking phase. The static 
background of a game is detected based on the observation 
that at each pixel in a game scene, the true background color 
almost always appears as the most frequent color observed 
for a pixel over a consecutive set of frames. Thereby, 
foreground moving objects can be detected through 
background subtraction. The target area is derived from the 
remaining area after subtracting the activity area that is the 
superimposition of MBRs (Minimum Bounding Rectangles) 
of foreground objects collected from a set of consecutive 
game frames. The learning phase repeatedly scans different 
CAPTCHA challenges and continuously updates the 
dictionary of game scenes and the answer objects. 

The auto-attack framework applies a random guessing 
for solving the semantic gap problem between the computer 
understanding of the game and the game semantics, which is 
not sufficient to collect enough knowledge before the 
session expires, even though the attacking phase could work 
effectively for a known game. Moreover, it also exposes a 
set of serious weaknesses due to the semantic gap: 
1. The auto-attack framework cannot detect the target 

area that overlaps the activity area (e.g., Figure 2(a)). 
2. Dragging and dropping a moving object always follows 

a straight-line path, which does not work for more 

Activity area Target areaTarget object Ans. object



complex paths (e.g., Figure 2(b)). 
3. The auto-attack framework cannot detect dynamic 

target objects (e.g., the butterfly net in Figure 2(c)). 
 

   

 
 

Fig. 2. Complex games from “are you a human”2. (a) The target 
area is in the activity area. (b) Obstacles (i.e., sand trap) on the 
entry path to the target object (i.e., hole). (c) The movement of the 
target object (i.e., net) is controlled by the mouse. 

Similar to a pure relay attack on text-based CAPTCHAs, 
a bot, faced with a DCG challenge, needs to relay the 
challenge images to a human solver at a time and quickly 
receive the response (i.e., locations of target objects and the 
corresponding answer objects) in order to perform a correct 
drag-and-drop. This process needs to be done back and forth 
several times to break the game. However, there is a natural 
loss of synchronization between the bot relaying the 
challenge images and the human solver due to the dynamic 
nature of DCGs, resulting in increased game completion 
time as well as high error rate [6]. 

An alternative way for relay attack is to maintain the 
synchronization between the DCG server and the remote 
solver by employing a streaming approach that is similar to 
cloud gaming [6]. However, such an approach will increase 
the complexity on the bot side, which goes against the 
inherent simplicity and practicality of a relay attack [6]. 
 

3. REAL-TIME OBJECT TRACKING 
 
A key component in both of our proposed frameworks is 
robust object tracking that preserves the synchronization 
between the game and the bot. The tracking efficiency 
affects whether a timely completion of a game could be 
done like a human, thereby becoming one of the key factors 
that determines the success rate. In this section, we 
introduce a simple and efficient color code histogram based 
tracker, and compare it with several existing tracking 
algorithms in the context of DCG object tracking. 

Based on the characteristics of DCG prototypes, i.e., (1) 
the background is static, and (2) the moving object has 
unchanging appearance, we propose a simple and efficient 
tracking algorithm, named color code histogram based 
tracker (CCH) that generates the foreground object mask by 
utilizing the detected background, and associates the track to 
the same object based on 6-bit color code features [7]. 
Moving objects as well as the game scene are represented as 
a normalized 64-bin color code histogram. The tracking is 
thereby simplified as a histogram matching task in the 
subsequent frames by using histogram intersection [8] that is 

known to be robust against scaling and rotation. To alleviate 
the problem of object occlusion, CCH will abandon the 
current foreground mask if fewer objects than the number of 
tracks can be found. The extent of tolerance to partial 
occlusion relies on tuning the similarity threshold in 
histogram intersection. 

Such a simple design also exposes two weaknesses: (1) 
The quality of the foreground mask in each frame 
completely relies on the quality of the detected background; 
and (2) Tracking may become inaccurate when multiple 
objects have similar color histograms. Future research may 
consider other clues in matching, such as motion, to 
alleviate this problem. 

We also explore two representative tracking algorithms, 
Kanade–Lucas–Tomasi tracking algorithm (KLT) [9] and 
Kalman filter tracking algorithm (Kalman filter) [10] on 
their applicability and performance for DCG object tracking.  

The effects of the number of objects and the object 
moving speed on the efficiency and effectiveness of each 
tracking algorithm (without attacking) are evaluated by 
applying each tracking algorithm on 9 cases of the Ship 
game initialized as described in Section 2.1. Each test case 
includes 200 consecutive frames sampled with a fixed 
interval (e.g., 0.1s). Therefore, a higher frame rate results in 
longer moving distance of the same object between two 
consecutive sampled frames. The background of the Ship 
game is learned in advance. Based on the average moving 
speed, i.e., 1.207 ppf, the average object moving speed in 
pixels-per-second (pps) unit under each frame rate (i.e., 10, 
20, and 40 fps) are: 

• 1x: 12.07 pps = 1.207 ppf × 10 fps 
• 2x: 24.14 pps = 1.207 ppf × 20 fps 
• 4x: 48.28 pps = 1.207 ppf × 40 fps 
Figures 3 and 4 exhibit the tracking completion times of 

the 9 test cases of each tracking algorithm from two 
different viewpoints. One group has fixed number of 
moving objects while another group has fixed object moving 
speed. Both results indicate that: (1) Compared with KLT, 
the efficiencies of Kalman filter and CCH remain relatively 
stable with the variation of the two parameters; and (2) CCH 
achieves the best efficiency due to the fact that it is based on 
direct object-level matching between two consecutive 
frames instead of time-consuming pixel-level feature based 
iterative local search, so it does not need to spend time on 
reviewing the previous states (like Kalman filter), while 
KLT is always the most time-consuming tracker. 

In terms of effectiveness (robustness), only KLT loses 
track(s) (Figure 5) quickly when increasing the number of 
objects or the object moving speed (e.g., in average, 11.07s 
for 2x moving speed, and 4.41s for 4x speed.) It is possible 
that the corner points on the boundary of an object are 
misclassified as the corner points of another object by KLT 
tracker when the two objects overlap with each other. This 
may happen frequently due to the small game window size, 
and KLT tracker gradually loses tracking points (i.e., corner 
points) of some objects, and finally lose track of them. 

(a) (b)

(c)

Entry path
Activity area Target area
Target obj.
Obstacles
Dynamic target object

Key point



  
Fig. 3. Effect of the object moving speed on efficiency of the three 
tracking algorithms with fixed number of objects. 

 

 
Fig. 4. Effect of the number of objects on efficiency of the three 
tracking algorithms with a fixed object moving speed 

 

  
Fig. 5. KLT tracking. (a) Initial corner points on the moving 
objects; (b) KLT loses tracks on the “white ship” after 30s (10 fps).  

In summary, the proposed CCH approach outperforms 
the other two approaches in efficiency and effectiveness. In 
light of this result, only the CCH approach has been 
integrated with our proposed hybrid attack frameworks 
discussed next. In addition, latest tracking methods may 
achieve similar or better (though not necessarily more 
efficient) results. Our main focus is to have a tracking 
method that satisfies efficiency and accuracy requirements 
for real-time response. Any tracking method that satisfies 
those requirements can be applied. On the other hand, more 
complex countermeasures, such as animated 
background/foreground and object occlusion, may disable 
the current tracking. However, the goal here is on 
developing a generalized attack model rather than testing all 
possible countermeasures. Moreover, more complex 
countermeasures may compromise the usability as well. 
 

4. HYBRID ATTACK MODELS 
 

4.1. Auto-attack with offline learning 
Model I of our proposed hybrid attack framework (Figure 
6), Auto-attack with Offline human Learning (AOffL), 
attacks a known game with the help of real-time tracking 
and offline knowledge.  

In the learning phase of AOffL, the necessary 
knowledge related to a game scene is learned in advance 
from a remote human solver. In the first step, the bot starts a 

new game and keeps scanning frame images from the 
server. In the second step, called initial analysis, the bot 
detects the game background, moving objects and potential 
target areas, and keeps tracking the moving objects. 

 
Fig. 6. Hybrid attack model I: Auto-attack with Offline human 
Learning (AOffL).  
 

  
(a) (b) 

Fig. 7. (a) Interactive GUI for offline learning. Red lines indicate 
the solver’s hand-drawn paths. (b) Extracted knowledge from the 
solver’s response displayed in the foreground mask. 

In the third step, similar to the static relay attack against 
a text-based CAPTCHA, only one frame image is sent from 
the bot to the solver, thereby avoiding the complexity of 
running as a game-streaming server. The interactive area of 
the AOffL GUI for the remote solver is shown in Figure 
7(a). The bot-detected moving objects and the operational 
instruction are also provided to the remote solver. Through 
this GUI, the solver only needs to perform a very simple 
task of drawing line(s) from the answer object(s) to the 
corresponding target object(s), similar to what a legitimate 
user has to perform. These lines provide several clues for 
completing this game: (1) The start and the end points of 
each line label the locations of the answer object and the 
target object at that moment, respectively (Figure 7(b), red 
and blue squares); (2) They provide dragging path 
candidates such that in the attack phase, we can at least drag 
the same answer object to the starting point of the 
corresponding path, and follow the same path to the target 
object if the same game is seen (The same game means that 
a game challenge has the same game scene (background) 
and answer object(s).) The end portion of each line (e.g., the 
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portion connected to the target object) can also be used as 
the basic entry path to the target object if straight-line paths 
are workable in this game. For example, 40% of each hand-
drawn dragging path (starting from the end point) is treated 
as the basic entry path as shown in Figure 7(b) indicated by 
the yellow dots. Therefore, an answer object can always be 
dragged to the start point of the entry path first, and follow 
the entry path to the target finally. If a more complex path, 
such as the one in Figure 2(b), is required, a curvature 
threshold could be defined to identify those critical turning 
points with curvatures larger than the threshold, which finds 
the key points that must be passed in turn in a new path 
(Figure 2(b)).  

In the fourth and final step, the above clues together 
with the initial analysis, i.e., background and foreground 
detection, will be recorded in the knowledge base. Answer 
objects as well as the background are represented in color 
code histograms. A continuous learning from the game 
server is required to build an up-to-date dictionary. 

As shown in Figure 6, the attacking phase consists of 
the following steps. The initial analysis is performed (Step 
1) followed by submitting a query to the knowledge base 
(Step 2). If a match can be found, the bot will drag an 
answer object from its current location provided by the real-
time tracking to the corresponding target object (Step 3). 
The drag-and-drop attempt iterates until completing a game 
(success) or time out (failure) (Step 4). If a match cannot be 
found, which indicates that the game or answer objects are 
completely new, the framework will learn the game as the 
dictionary based auto-attack framework mentioned in 
Section 2.3. Moreover, the attacking phase is converted into 
offline learning just in case that brute-force based learning 
cannot work out the puzzle.  

Our paper did not consider attacking the complex DCG 
games that involve dynamic target objects controlled by the 
mouse (e.g., game shown in Figure 2(c)). However, our 
framework can still be used to attack this game by making 
the following changes to the learning and attacking phases: 
(1) In the initial analysis, the background of the complex 
game is detected twice by putting the mouse (i.e., target 
object) in two different locations of the game window, 
respectively. If there is an obvious difference between these 
two backgrounds, the game has a dynamic target object. The 
target object can also be easily obtained from both 
backgrounds based on the mouse’s location, eliminating 
unnecessary tracking of the target object. (2) The attacking 
phase is simplified as moving the mouse (e.g., moving the 
net) to the answer objects (e.g., butterfly) that are learned 
from the solver’s response as usual. 

 
4.2. Auto-attack with online learning 
Model II of our hybrid attack framework (Figure 8), Auto-
attack with Online human Learning (AOnL), attacks any 
game, seen or unseen, with the help of real-time tracking 
and online knowledge. Compared with AOffL, a human 
solver must be available when the game starts, similar to 

what is required in a static relay attack. Moreover, there is 
no knowledge base for future attacking as the remote solver 
provides the required knowledge in real-time. 

 
Fig. 8. Hybrid attack model II: Auto-attack with Online human 
Learning (AOnL). 

As indicated in Figure 8, when attacking a game 
challenge, the bot keeps receiving frames from the server 
(Step 1), and performs initial analysis (i.e., detect 
background and foreground) on the game without drag-and-
drop attempts (Step 2). Meanwhile, it sends one frame 
image to the solver once the game starts (Step 3). The solver 
performs the same operation as the learning phase in AOffL 
(Step 4). Once the solver submits his/her responses, the bot 
can learn the answer objects and the dragging paths for this 
particular challenge based on the initial analysis and the 
solver’s response (Step 5), and complete the game 
automatically with the help of real-time tracking (Step 6). 
The interactive area of the GUI for the online solver is the 
same as the one in Figure 7(a). One concern in AOnL is that 
the success rate for completing an unseen game relies 
heavily on correctness and efficiency of the solver’s 
response (the same concern underlies the relay attack on 
text-based CAPTCHA.) However, the usability study of 
DCG games indicates that honest users hardly make 
mistakes in playing these games. As we mentioned before, 
the drawing operation is very similar to the drag-and-drop in 
the real game. In fact, the task for the solver is likely even 
simpler due to the presence of a static image (rather than 
moving objects in frames). Therefore, it is fair to assume 
that the solver will perform the task very efficiently and 
without error most of the times. 
 

5. IMPLEMENTATION & EXPERIMENTS 
 
In this section, we evaluate the performance of our AOffL 
and AOnL attack models, both of which integrated with the 
CCH tracker. In AOffL, the time delay introduced by the 
remote human-solver does not have any impact on 
successfully attacking a game challenge that has been seen 
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before. Similarly, in AOnL, we can assume that 
involvement of a real-time human-solver will not degrade 
the attack performance (time delay and accuracy) because 
the solver’s task is very similar to playing the original game 
itself, and the usability study of such games [6] shows that 
humans easily solve the game quickly and accurately. As a 
result, in our experiments, we mainly focus on the 
performance of the automatic attack module in both models, 
given that the game has been seen before.  

The attack module is tested on a Mac Air laptop with 
hardware configuration: 2 GHz Intel Core i7, 8GB 
1600MHz DDR3, and 250G SSD; and software 
configuration: OS X 10.8.5, MATLAB R2012b. Each game 
prototype has 9 challenges as mentioned in Section 2.1. 
Each game challenge is tested three times, and the average 
measurement is taken as the final result. 

Table 1. Completion time for the four games 

 
 
The auto-attack module in both models, implementing 

our CCH algorithm, can achieve 100% success rate and 0% 
error rate per click for each game given that correct 
online/offline responses from human solvers are available. 
The experiment results shown in Table 1 indicate that, in 
general (as indicated by the diagonal cells in each table), the 
time cost of auto-attack module increases along with the 
increase of the number of moving objects and object moving 
speed. However, all tested game challenges can be 
completed successfully within 4 seconds, which indicates 
that with availability of game semantics (learned via AOffL 
or AOnL), auto-attack is faster than that of honest users (i.e., 
4s vs. 11s). AOffL can utilize more time for extra 
computation in different tasks, such as processing extra 
tracking features besides color, and more complex but more 
robust tracking algorithms. In contrast, AOnL has more 
tolerance on the response delay caused by the network 
communication, or by the solver through offsetting the delay 
with the saving time in auto-attack model. 

The two models of the hybrid attack framework have 
their respective advantages. AOffL can complete a known 
game efficiently and effectively, but it requires continuously 

updating the knowledge base for unseen games or answer 
objects. The delay issue in the manual learning phase is not 
a problem in AOffL due to its offline nature. Therefore, 
AOffL is a significant threat to DCGs that do not have a 
large database (e.g., manually extended database), but has a 
low tolerance on completion time. On the other hand, AOnL 
is insensitive to the database size. That is, it is possible for 
AOnL to complete a game challenge even if the game has 
never been seen before, largely attributed to the instant 
solution provided by the solver. However, response delay 
from the solver may be a bit of a bottleneck for AOnL. 
Therefore, AOnL could be a significant threat to those 
DCGs that has a relatively high tolerance on playing time. 
 

6. CONCLUSION AND FUTURE WORK 
 

We demonstrated a significant threat to broad classes of 
DCGs by proposing two novel hybrid attack frameworks, 
the Auto-attack with Offline human Learning (AOffL) and 
the Auto-attack with Online human Learning (AOnL), 
which provide a sweet spot between pure auto and pure 
relay attacks, in terms of computational efficiency, time 
synchronization and human-solver work-load. The 
experiment results indicate the robustness and effectiveness 
of the proposed models in significantly undermining the 
security of DCGs. In future research, the learning/attacking 
method on complex games involving dynamic target object 
as described in Section 5.1 may be explored. In addition, 
new categories of DCGs may be designed that could resist 
the current hybrid attack framework. 
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