
GAMING THE GAME: DEFEATING A GAME CAPTCHA WITH
EFFICIENT AND ROBUST HYBRID ATTACKS

Song Gao, Manar Mohamed, Nitesh Saxena, and Chengcui Zhang

The University of Alabama at Birmingham, USA

{gaos, manar, saxena, zhang}@cis.uab.edu

ABSTRACT

Dynamic Cognitive Game (DCG) CAPTCHAs are a
promising new generation of interactive CAPTCHAs aiming
to provide improved security against automated and human-
solver relay attacks. Unlike existing CAPTCHAs, defeating
DCG CAPTCHAs using pure automated attacks or pure
relay attacks may be challenging in practice due to the
fundamental limitations of computer algorithms (semantic
gap) and synchronization issues with solvers. To overcome
this barrier, we propose two hybrid attack frameworks,
which carefully combine the strengths of an automated
program and offline/online human intelligence. These
hybrid attacks require maintaining the synchronization only
between the game and the bot similar to a pure automated
attack, while solving the static AI problem (i.e., bridging the
semantic gap) behind the game challenge similar to a pure
relay attack. As a crucial component of our framework, we
design a new DCG object tracking algorithm, based on color
code histogram, and show that it is simpler, more efficient
and more robust compared to several known tracking
approaches. We demonstrate that both frameworks can
effectively defeat a wide range of DCG CAPTCHAs.

Index Terms – CAPTCHA, web security, hybrid attack,
visual processing, multi-object tracking

1. INTRODUCTION

Web-based services are vulnerable to different forms of
attacks, including denial of service, registration of spam
email accounts and password brute force. Such abuse or
resource waste can be reduced through a commonly
deployed defense mechanism, called “CAPTCHA”, which is
a program of an AI problem that is relatively easy for
human to solve but very difficult for a computer program
[1]. An AI problem in a CAPTCHA can be represented in
many ways, such as texts, image, audios, videos, and logical
puzzles. Out of these, text-based CAPTCHA is widely used
in many web-based industries.

However, many real world CAPTCHAs have been
broken using automated attacks with noticeable success
rates in recent years (e.g., [2, 3]). They have also been
subject to human-solver relay attacks [4] whereby the
CAPTCHA challenge is outsourced to, and solved by, a
third-party remote human-solver in real-time.

These vulnerabilities provide a sound motivation to
explore CAPTCHA alternatives. This paper focuses on a
new generation of CAPTCHA, called Dynamic Cognitive
Game (DCG) CAPTCHA [6]1, which challenges the user to
perform a game-like cognitive task interacting with moving
objects within a series of images in a static scene (see
examples in Figure 1). “are you a human” [5] released a
series of instances of such DCGs, named “PlayThru”.2
DCGs provide several potential improvements in security
compared with other existing CAPTCHAs. First, it is
difficult for a computer to recognize moving objects and
games through game instructions due to the semantic gap.
Second, the dynamic nature requires synchronization
between a user and a game, thereby making DCGs more
resilient to relay attacks. Third, the user interaction with the
game, such as the total number of drag-and-drop attempts
and the error rate, can be utilized as a second layer defense
to assess a user’s “human likeness.”

In this paper, we show that all the above improvements
in security could still be effectively challenged. We propose
a novel and powerful hybrid attack framework that can
bypass the security advantages offered by DCGs by
carefully combining the strengths of automated algorithms
and human intelligence. Our main contributions are:
1. Two Novel Hybrid Attack Frameworks: We develop
two novel hybrid attack frameworks (Section 4) that can
effectively subvert DCGs by utilizing real-time object
tracking and human-solver based offline/online learning.
Both attack frameworks require maintaining the
synchronization only between the game and the bot similar
to a pure automated attack, while solving the static AI
problem (i.e., bridging the semantic gap) behind the game
similar to a pure relay attack.
2. Efficient and Robust DCG Object Tracking: As a
crucial component of the two framework models, we design
a new object tracking algorithm, based on color code
histogram (CCH), and demonstrate that it is simpler, more
efficient and more robust compared to several known
tracking algorithms for DCG object tracking (Section 3).

1 Henceforth, we use “DCG(s)” to denote “DCG CAPTCHA(s)”
2 All images of the PlayThru challenges in this paper (Figure 2) are
used for illustration only; these games were not attacked.

3. Attack Implementation and Evaluation: We provide
an implementation of the two attack frameworks, and
evaluate their performance from the automated side (Section
5). The results indicate our attacks to be very efficient (< 4s
of computation time) and robust (100% accuracy) in
breaking current broad category of DCGs.

2. BACKGROUND

We first present a broad class of DCG prototypes we
designed for the purpose of our study. We then review our
recent prior work [6], which evaluated the usability of
DCGs, and the security of DCGs against pure auto-attacks
and pure relay attacks. This work [6] showed that DCGs are
very easy for legitimate users to solve, and suggested the
difficulty of pure auto-attacks and pure relay attacks against
DCGs. The latter challenge is addressed in this paper by
introducing novel hybrid attacks.

2.1. The DCG prototypes
The legal restriction on attacking commercial DCGs drives
us to design and implement four animation-based DCG
prototypes representing a broad class of DCGs, as shown in
Figure 1. The games have the dimension 130×360 pixels, so
they can easily fit into a web page. The components in a
frame image of a DCG challenge (as indicated in Figure 1)
include: (1) Answer object: a moving object (e.g., a ship)
that should be dragged to the corresponding target object
(e.g., sea) in order to pass the game. (2) Target object: an
object onto which the corresponding answer object is
dragged. (3) Activity area: the activity area of all moving
foreground objects. (4) Target area: part of the background
that includes the target object(s).

(a) Ship game (b) Parking game

(c) Shape game (d) Animal game

Fig. 1. Sample frame images of the four DCG prototypes

The general parameters in the four DCG prototypes
include: (1) Three frame rates (10, 20, or 40 frames per
second (fps)). (2) Three different numbers of moving
objects (4, 5, or 6). (3) Average moving distance per frame:
1.207 pixels per frame (ppf) (1 ppf for orthogonal directions,
i.e., N, S, E, and W, while 1.414 ppf for diagonal directions,
i.e., NE, NW, SE, and SW). In total, 4×3×3=36 game
challenges will be used in experiments. Each moving object
is initialized with a randomized location and an
orthogonal/diagonal moving direction. An object will move
to a new random direction when colliding with another

object or the game border. Generally, a DCG challenge has
a static background; all of its moving objects have a
constant speed; moving objects may overlap one another to
a small extent; moving objects will not move to the target
area unless they are dragged to.

2.2. Usability of DCGs
Three measurements, namely success rate, completion time,
and error rate per click, are used to evaluate the proposed
hybrid attacks compared with the performance of legitimate
human users in playing the game. Error rate per click is
defined as the ratio of the number of incorrect drag-and-
drop attempts to the total number of drag-and-drop attempts
in a game challenge.

The usability study of the above three measurements
from [6] show that: 1) Honest users can always complete
each challenge of the four game prototypes 100%
successfully in about 11 seconds at most. 2) Increasing the
number of moving object and/or frame rate may prolong the
completion time. 3) Although users complete the game with
100% success rate, they are likely to make mistakes (i.e.,
range of average error rate per click: 3-9%) in a game,
which requires the game server to have some tolerance on
the incorrect drag-and-drop attempts. Once the number of
incorrect attempts exceeds a certain threshold, the game
server may consider the player as a bot (not human). Thus,
the error rate per click is one of the key measurements to
evaluate whether a game can be completed successfully.

2.3. Pure auto attack and pure relay attack on DCGs
The work presented in [6] proposed a dictionary-based auto-
attack framework that consists of two phases, the online
learning phase and the attacking phase. The static
background of a game is detected based on the observation
that at each pixel in a game scene, the true background color
almost always appears as the most frequent color observed
for a pixel over a consecutive set of frames. Thereby,
foreground moving objects can be detected through
background subtraction. The target area is derived from the
remaining area after subtracting the activity area that is the
superimposition of MBRs (Minimum Bounding Rectangles)
of foreground objects collected from a set of consecutive
game frames. The learning phase repeatedly scans different
CAPTCHA challenges and continuously updates the
dictionary of game scenes and the answer objects.

The auto-attack framework applies a random guessing
for solving the semantic gap problem between the computer
understanding of the game and the game semantics, which is
not sufficient to collect enough knowledge before the
session expires, even though the attacking phase could work
effectively for a known game. Moreover, it also exposes a
set of serious weaknesses due to the semantic gap:
1. The auto-attack framework cannot detect the target

area that overlaps the activity area (e.g., Figure 2(a)).
2. Dragging and dropping a moving object always follows

a straight-line path, which does not work for more

Activity area Target areaTarget object Ans. object

complex paths (e.g., Figure 2(b)).
3. The auto-attack framework cannot detect dynamic

target objects (e.g., the butterfly net in Figure 2(c)).

Fig. 2. Complex games from “are you a human”2. (a) The target
area is in the activity area. (b) Obstacles (i.e., sand trap) on the
entry path to the target object (i.e., hole). (c) The movement of the
target object (i.e., net) is controlled by the mouse.

Similar to a pure relay attack on text-based CAPTCHAs,
a bot, faced with a DCG challenge, needs to relay the
challenge images to a human solver at a time and quickly
receive the response (i.e., locations of target objects and the
corresponding answer objects) in order to perform a correct
drag-and-drop. This process needs to be done back and forth
several times to break the game. However, there is a natural
loss of synchronization between the bot relaying the
challenge images and the human solver due to the dynamic
nature of DCGs, resulting in increased game completion
time as well as high error rate [6].

An alternative way for relay attack is to maintain the
synchronization between the DCG server and the remote
solver by employing a streaming approach that is similar to
cloud gaming [6]. However, such an approach will increase
the complexity on the bot side, which goes against the
inherent simplicity and practicality of a relay attack [6].

3. REAL-TIME OBJECT TRACKING

A key component in both of our proposed frameworks is
robust object tracking that preserves the synchronization
between the game and the bot. The tracking efficiency
affects whether a timely completion of a game could be
done like a human, thereby becoming one of the key factors
that determines the success rate. In this section, we
introduce a simple and efficient color code histogram based
tracker, and compare it with several existing tracking
algorithms in the context of DCG object tracking.

Based on the characteristics of DCG prototypes, i.e., (1)
the background is static, and (2) the moving object has
unchanging appearance, we propose a simple and efficient
tracking algorithm, named color code histogram based
tracker (CCH) that generates the foreground object mask by
utilizing the detected background, and associates the track to
the same object based on 6-bit color code features [7].
Moving objects as well as the game scene are represented as
a normalized 64-bin color code histogram. The tracking is
thereby simplified as a histogram matching task in the
subsequent frames by using histogram intersection [8] that is

known to be robust against scaling and rotation. To alleviate
the problem of object occlusion, CCH will abandon the
current foreground mask if fewer objects than the number of
tracks can be found. The extent of tolerance to partial
occlusion relies on tuning the similarity threshold in
histogram intersection.

Such a simple design also exposes two weaknesses: (1)
The quality of the foreground mask in each frame
completely relies on the quality of the detected background;
and (2) Tracking may become inaccurate when multiple
objects have similar color histograms. Future research may
consider other clues in matching, such as motion, to
alleviate this problem.

We also explore two representative tracking algorithms,
Kanade–Lucas–Tomasi tracking algorithm (KLT) [9] and
Kalman filter tracking algorithm (Kalman filter) [10] on
their applicability and performance for DCG object tracking.

The effects of the number of objects and the object
moving speed on the efficiency and effectiveness of each
tracking algorithm (without attacking) are evaluated by
applying each tracking algorithm on 9 cases of the Ship
game initialized as described in Section 2.1. Each test case
includes 200 consecutive frames sampled with a fixed
interval (e.g., 0.1s). Therefore, a higher frame rate results in
longer moving distance of the same object between two
consecutive sampled frames. The background of the Ship
game is learned in advance. Based on the average moving
speed, i.e., 1.207 ppf, the average object moving speed in
pixels-per-second (pps) unit under each frame rate (i.e., 10,
20, and 40 fps) are:

• 1x: 12.07 pps = 1.207 ppf × 10 fps
• 2x: 24.14 pps = 1.207 ppf × 20 fps
• 4x: 48.28 pps = 1.207 ppf × 40 fps
Figures 3 and 4 exhibit the tracking completion times of

the 9 test cases of each tracking algorithm from two
different viewpoints. One group has fixed number of
moving objects while another group has fixed object moving
speed. Both results indicate that: (1) Compared with KLT,
the efficiencies of Kalman filter and CCH remain relatively
stable with the variation of the two parameters; and (2) CCH
achieves the best efficiency due to the fact that it is based on
direct object-level matching between two consecutive
frames instead of time-consuming pixel-level feature based
iterative local search, so it does not need to spend time on
reviewing the previous states (like Kalman filter), while
KLT is always the most time-consuming tracker.

In terms of effectiveness (robustness), only KLT loses
track(s) (Figure 5) quickly when increasing the number of
objects or the object moving speed (e.g., in average, 11.07s
for 2x moving speed, and 4.41s for 4x speed.) It is possible
that the corner points on the boundary of an object are
misclassified as the corner points of another object by KLT
tracker when the two objects overlap with each other. This
may happen frequently due to the small game window size,
and KLT tracker gradually loses tracking points (i.e., corner
points) of some objects, and finally lose track of them.

(a) (b)

(c)

Entry path
Activity area Target area
Target obj.
Obstacles
Dynamic target object

Key point

Fig. 3. Effect of the object moving speed on efficiency of the three
tracking algorithms with fixed number of objects.

Fig. 4. Effect of the number of objects on efficiency of the three
tracking algorithms with a fixed object moving speed

Fig. 5. KLT tracking. (a) Initial corner points on the moving
objects; (b) KLT loses tracks on the “white ship” after 30s (10 fps).

In summary, the proposed CCH approach outperforms
the other two approaches in efficiency and effectiveness. In
light of this result, only the CCH approach has been
integrated with our proposed hybrid attack frameworks
discussed next. In addition, latest tracking methods may
achieve similar or better (though not necessarily more
efficient) results. Our main focus is to have a tracking
method that satisfies efficiency and accuracy requirements
for real-time response. Any tracking method that satisfies
those requirements can be applied. On the other hand, more
complex countermeasures, such as animated
background/foreground and object occlusion, may disable
the current tracking. However, the goal here is on
developing a generalized attack model rather than testing all
possible countermeasures. Moreover, more complex
countermeasures may compromise the usability as well.

4. HYBRID ATTACK MODELS

4.1. Auto-attack with offline learning
Model I of our proposed hybrid attack framework (Figure
6), Auto-attack with Offline human Learning (AOffL),
attacks a known game with the help of real-time tracking
and offline knowledge.

In the learning phase of AOffL, the necessary
knowledge related to a game scene is learned in advance
from a remote human solver. In the first step, the bot starts a

new game and keeps scanning frame images from the
server. In the second step, called initial analysis, the bot
detects the game background, moving objects and potential
target areas, and keeps tracking the moving objects.

Fig. 6. Hybrid attack model I: Auto-attack with Offline human
Learning (AOffL).

(a) (b)

Fig. 7. (a) Interactive GUI for offline learning. Red lines indicate
the solver’s hand-drawn paths. (b) Extracted knowledge from the
solver’s response displayed in the foreground mask.

In the third step, similar to the static relay attack against
a text-based CAPTCHA, only one frame image is sent from
the bot to the solver, thereby avoiding the complexity of
running as a game-streaming server. The interactive area of
the AOffL GUI for the remote solver is shown in Figure
7(a). The bot-detected moving objects and the operational
instruction are also provided to the remote solver. Through
this GUI, the solver only needs to perform a very simple
task of drawing line(s) from the answer object(s) to the
corresponding target object(s), similar to what a legitimate
user has to perform. These lines provide several clues for
completing this game: (1) The start and the end points of
each line label the locations of the answer object and the
target object at that moment, respectively (Figure 7(b), red
and blue squares); (2) They provide dragging path
candidates such that in the attack phase, we can at least drag
the same answer object to the starting point of the
corresponding path, and follow the same path to the target
object if the same game is seen (The same game means that
a game challenge has the same game scene (background)
and answer object(s).) The end portion of each line (e.g., the

40 6.66 3.65 2.93 4.41

28

30

32

34

36

38

1x 2x 4x

T
im

e
(s

)

Avg. obj. moving speed (pps)

KLT_4
KLT_5
KLT_6
Kalman filter_4
Kalman filter_5
Kalman filter_6
CCH_4
CCH_5
CCH_6

28

30

32

34

36

38

4 5 6

T
im

e
(s

)

Number of objects

KLT_1x
KLT_2x
KLT_4x
Kalman filter_1x
Kalman filter_2x
Kalman filter_4x
CCH_1x
CCH_2x
CCH_4x

(a) (b)

Knowledge)base

Server Bot

Human
Solver

Frame stream of a DCG challenge

Attack the game automatically

D
etected

foreground &
 background

T
he solution for com

pleting
the gam

e if available

Hand-drawn dragging paths

A frame image

2

1

3

3

Online Operations
Offline Operations

4

4

Learning Steps

Attacking Steps

Learning/Attacking Steps

Real-time tracking

portion connected to the target object) can also be used as
the basic entry path to the target object if straight-line paths
are workable in this game. For example, 40% of each hand-
drawn dragging path (starting from the end point) is treated
as the basic entry path as shown in Figure 7(b) indicated by
the yellow dots. Therefore, an answer object can always be
dragged to the start point of the entry path first, and follow
the entry path to the target finally. If a more complex path,
such as the one in Figure 2(b), is required, a curvature
threshold could be defined to identify those critical turning
points with curvatures larger than the threshold, which finds
the key points that must be passed in turn in a new path
(Figure 2(b)).

In the fourth and final step, the above clues together
with the initial analysis, i.e., background and foreground
detection, will be recorded in the knowledge base. Answer
objects as well as the background are represented in color
code histograms. A continuous learning from the game
server is required to build an up-to-date dictionary.

As shown in Figure 6, the attacking phase consists of
the following steps. The initial analysis is performed (Step
1) followed by submitting a query to the knowledge base
(Step 2). If a match can be found, the bot will drag an
answer object from its current location provided by the real-
time tracking to the corresponding target object (Step 3).
The drag-and-drop attempt iterates until completing a game
(success) or time out (failure) (Step 4). If a match cannot be
found, which indicates that the game or answer objects are
completely new, the framework will learn the game as the
dictionary based auto-attack framework mentioned in
Section 2.3. Moreover, the attacking phase is converted into
offline learning just in case that brute-force based learning
cannot work out the puzzle.

Our paper did not consider attacking the complex DCG
games that involve dynamic target objects controlled by the
mouse (e.g., game shown in Figure 2(c)). However, our
framework can still be used to attack this game by making
the following changes to the learning and attacking phases:
(1) In the initial analysis, the background of the complex
game is detected twice by putting the mouse (i.e., target
object) in two different locations of the game window,
respectively. If there is an obvious difference between these
two backgrounds, the game has a dynamic target object. The
target object can also be easily obtained from both
backgrounds based on the mouse’s location, eliminating
unnecessary tracking of the target object. (2) The attacking
phase is simplified as moving the mouse (e.g., moving the
net) to the answer objects (e.g., butterfly) that are learned
from the solver’s response as usual.

4.2. Auto-attack with online learning
Model II of our hybrid attack framework (Figure 8), Auto-
attack with Online human Learning (AOnL), attacks any
game, seen or unseen, with the help of real-time tracking
and online knowledge. Compared with AOffL, a human
solver must be available when the game starts, similar to

what is required in a static relay attack. Moreover, there is
no knowledge base for future attacking as the remote solver
provides the required knowledge in real-time.

Fig. 8. Hybrid attack model II: Auto-attack with Online human
Learning (AOnL).

As indicated in Figure 8, when attacking a game
challenge, the bot keeps receiving frames from the server
(Step 1), and performs initial analysis (i.e., detect
background and foreground) on the game without drag-and-
drop attempts (Step 2). Meanwhile, it sends one frame
image to the solver once the game starts (Step 3). The solver
performs the same operation as the learning phase in AOffL
(Step 4). Once the solver submits his/her responses, the bot
can learn the answer objects and the dragging paths for this
particular challenge based on the initial analysis and the
solver’s response (Step 5), and complete the game
automatically with the help of real-time tracking (Step 6).
The interactive area of the GUI for the online solver is the
same as the one in Figure 7(a). One concern in AOnL is that
the success rate for completing an unseen game relies
heavily on correctness and efficiency of the solver’s
response (the same concern underlies the relay attack on
text-based CAPTCHA.) However, the usability study of
DCG games indicates that honest users hardly make
mistakes in playing these games. As we mentioned before,
the drawing operation is very similar to the drag-and-drop in
the real game. In fact, the task for the solver is likely even
simpler due to the presence of a static image (rather than
moving objects in frames). Therefore, it is fair to assume
that the solver will perform the task very efficiently and
without error most of the times.

5. IMPLEMENTATION & EXPERIMENTS

In this section, we evaluate the performance of our AOffL
and AOnL attack models, both of which integrated with the
CCH tracker. In AOffL, the time delay introduced by the
remote human-solver does not have any impact on
successfully attacking a game challenge that has been seen

5

3

4

162

Server

Bot
Human
Solver

Real-time
tracking

Detected foreground
& background

Generate online solution

Fram
e stream

 of
a D

C
G

 challenge

A
ttack the gam

e
autom

atically

A frame image

Bot operations

 Hand-drawn
dragging paths

before. Similarly, in AOnL, we can assume that
involvement of a real-time human-solver will not degrade
the attack performance (time delay and accuracy) because
the solver’s task is very similar to playing the original game
itself, and the usability study of such games [6] shows that
humans easily solve the game quickly and accurately. As a
result, in our experiments, we mainly focus on the
performance of the automatic attack module in both models,
given that the game has been seen before.

The attack module is tested on a Mac Air laptop with
hardware configuration: 2 GHz Intel Core i7, 8GB
1600MHz DDR3, and 250G SSD; and software
configuration: OS X 10.8.5, MATLAB R2012b. Each game
prototype has 9 challenges as mentioned in Section 2.1.
Each game challenge is tested three times, and the average
measurement is taken as the final result.

Table 1. Completion time for the four games

The auto-attack module in both models, implementing

our CCH algorithm, can achieve 100% success rate and 0%
error rate per click for each game given that correct
online/offline responses from human solvers are available.
The experiment results shown in Table 1 indicate that, in
general (as indicated by the diagonal cells in each table), the
time cost of auto-attack module increases along with the
increase of the number of moving objects and object moving
speed. However, all tested game challenges can be
completed successfully within 4 seconds, which indicates
that with availability of game semantics (learned via AOffL
or AOnL), auto-attack is faster than that of honest users (i.e.,
4s vs. 11s). AOffL can utilize more time for extra
computation in different tasks, such as processing extra
tracking features besides color, and more complex but more
robust tracking algorithms. In contrast, AOnL has more
tolerance on the response delay caused by the network
communication, or by the solver through offsetting the delay
with the saving time in auto-attack model.

The two models of the hybrid attack framework have
their respective advantages. AOffL can complete a known
game efficiently and effectively, but it requires continuously

updating the knowledge base for unseen games or answer
objects. The delay issue in the manual learning phase is not
a problem in AOffL due to its offline nature. Therefore,
AOffL is a significant threat to DCGs that do not have a
large database (e.g., manually extended database), but has a
low tolerance on completion time. On the other hand, AOnL
is insensitive to the database size. That is, it is possible for
AOnL to complete a game challenge even if the game has
never been seen before, largely attributed to the instant
solution provided by the solver. However, response delay
from the solver may be a bit of a bottleneck for AOnL.
Therefore, AOnL could be a significant threat to those
DCGs that has a relatively high tolerance on playing time.

6. CONCLUSION AND FUTURE WORK

We demonstrated a significant threat to broad classes of
DCGs by proposing two novel hybrid attack frameworks,
the Auto-attack with Offline human Learning (AOffL) and
the Auto-attack with Online human Learning (AOnL),
which provide a sweet spot between pure auto and pure
relay attacks, in terms of computational efficiency, time
synchronization and human-solver work-load. The
experiment results indicate the robustness and effectiveness
of the proposed models in significantly undermining the
security of DCGs. In future research, the learning/attacking
method on complex games involving dynamic target object
as described in Section 5.1 may be explored. In addition,
new categories of DCGs may be designed that could resist
the current hybrid attack framework.

7. REFERENCES
[1] L. V. Ahn, et. al, "CAPTCHA: Using hard AI problems for

security," Advances in Cryptology—EUROCRYPT 2003.
[2] S. Prasad, "Google’s CAPTCHA busted in recent spammer

tactics," Websens, 2008.
http://web.archive.org/web/20080822032312/http://securit
ylabs.websense.com/content/Blogs/2919.aspx: .

[3] G. Keizer, "Spammers' bot cracks Microsoft's CAPTCHA:
Bot beats Windows Live Mail's registration test 30% to
35% of the time, says Websense," Computerworld, 2008.

[4] J. Yan, "Bot, cyborg and automated turing test," Security
Protocols, 2009.

[5] are you a human. http://areyouahuman.com/
[6] M. Mohamed et. al, " A Three-Way Investigation of a

Game-CAPTCHA: Automated Attacks, Relay Attacks and
Usability", ACM Symposium on Information, Computer
and Communications Security (AsiaCCS), 2014.

[7] C. Zhang, et. al, "A multimodal data mining framework for
revealing common sources of spam images," J. of
Multimedia, vol. 4, 2009.

[8] M. J. Swain and D. H. Ballard, "Indexing via color
histograms," in Active Perception and Robot Vision, 1992 .

[9] B. D. Lucas and T. Kanade, "An iterative image
registration technique with an application to stereo vision,"
in Intl. Joint Conf. on Artificial Intelligence (IJCAI), 1981.

[10] G. Welch and G. Bishop, "An introduction to the Kalman
filter," UNC at Chapel Hill, 1995.

Moving Speed
1x
2x
4x

4 (2)
2.53 (0.02)
2.56 (0.02)
2.61 (0.12)

2.71 (0.17)
2.53 (0.09)

2.53 (0.01)
5 (2) 6 (3)

3.25 (0.03)
3.34 (0.06)
3.28 (0.04)

of Moving Obj. (# of Answer Obj.)
Mean Completion Time (s) (std dev)

Pa
rk

in
g

G
am

e
Sh

ip
G

am
e

Moving Speed
1x
2x
4x

4 (1)
2.27 (0.11)
2.38 (0.58)
2.22 (0.11)

2.28 (0.17)
2.18 (0.16)

2.13 (0.04)
5 (1) 6 (1)

2.39 (0.16)
2.34 (0.34)
2.23 (0.24)

Moving Speed
1x
2x
4x

4 (2)
2.57 (0.03)
2.62 (0.01)
2.67 (0.06)

2.62 (0.03)
2.71 (0.02)

2.58 (0.00)
5 (2) 6 (2)

2.73 (0.03)
2.66 (0.02)
2.58 (0.01)

Moving Speed
1x
2x
4x

4 (3)
3.61 (0.05)
3.68 (0.12)
3.78 (0.18)

3.84 (0.04)
3.99 (0.02)

3.64 (0.04)
5 (3) 6 (3)

3.95 (0.10)
3.90 (0.07)
3.74 (0.07)

Sh
ap

e
G

am
e

A
ni

m
al

G
am

e

