
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 1, JANUARY 2015 3

Automatic Construction of 3-D Building Model
From Airborne LIDAR Data Through

2-D Snake Algorithm
Jianhua Yan, Keqi Zhang, Chengcui Zhang, Member, IEEE,

Shu-Ching Chen, Senior Member, IEEE, and Giri Narasimhan

Abstract—The snake algorithm has been proposed to solve many
remote sensing and computer vision problems such as object seg-
mentation, surface reconstruction, and object tracking. This paper
introduces a framework for 3-D building model construction from
LIDAR data based on the snake algorithm. It consists of nonter-
rain object identification, building and tree separation, building
topology extraction, and adjustment by the snake algorithm. The
challenging task in applying the snake algorithm to building topol-
ogy adjustment is to find the global minima of energy functions
derived for 2-D building topology. The traditional snake algorithm
uses dynamic programming for computing the global minima of
energy functions which is limited to snake problems with 1-D
topology (i.e., a contour) and cannot handle problems with 2-D
topology. In this paper, we have extended the dynamic program-
ming method to address the snake problems with a 2-D planar
topology using a novel graph reduction technique. Given a planar
snake, a set of reduction operations is defined and used to simplify
the graph of the planar snake into a set of isolated vertices while
retaining the minimal energy of the graph. Another challenging
task for 3-D building model reconstruction is how to enforce
different kinds of geometric constraints during building topology
refinement. This framework proposed two energy functions, devia-
tion and direction energy functions, to enforce multiple geometric
constraints on 2-D topology refinement naturally and efficiently.
To examine the effectiveness of the framework, the framework
has been applied on different data sets to construct 3-D building
models from airborne LIDAR data. The results demonstrate that
the proposed snake algorithm successfully found the global optima
in polynomial time for all of the building topologies and generated
satisfactory 3-D models for most of the buildings in the study areas.

Index Terms—Light detection and ranging (LIDAR), snake
algorithm, topology.

Manuscript received June 12, 2012; revised November 28, 2012, May 2,
2013, and October 10, 2013; accepted January 14, 2014. This work was
supported by the Florida Hurricane Alliance Research Program sponsored by
the National Oceanic and Atmospheric Administration.

J. Yan is with Amazon.com, Inc., Seattle, WA 98144-2734 USA (e-mail:
yjhsjtu@google.com).

K. Zhang is with the Department of Environmental Studies and International
Hurricane Research Center, Florida International University, Miami, FL 33199
USA (e-mail: zhangk@fiu.edu).

C. Zhang is with the Department of Computer and Information Sciences,
The University of Alabama at Birmingham, Birmingham, AL 35294 USA
(e-mail: zhang@cis.uab.edu).

S.-C. Chen is with the Distributed Multimedia Information System Labo-
ratory, School of Computing and Information Sciences, Florida International
University, Miami, FL 33199 USA (e-mail: chens@cs.fiu.edu).

G. Narasimhan is with the School of Computing and Information Sciences,
Florida International University, Miami, FL 33199 USA (e-mail: giri@cs.
fiu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2014.2312393

I. INTRODUCTION

THREE-dimensional building models are of fundamental
importance to many applications such as constructing

virtual city models, creating urban landscape models, and
assessing urban heat island effects [1]. High-resolution data
for extracting 3-D building models often come from LIDAR
measurements, aerial photographs, and high-resolution satellite
images [2]. Airborne LIDAR systems generate voluminous
and irregularly spaced 3-D point measurements of buildings
scanned by the laser beneath the aircraft. Airborne LIDAR mea-
surements are particularly useful for reconstruction of building
models because the LIDAR technology provides direct mea-
surements of horizontal coordinates (x and y) and elevations
(z) of a building and avoids the shadow and relief distortions
seen in aerial photographs and satellite images.

Many algorithms have been developed to automatically ex-
tract 3-D building models from the LIDAR measurements [3]
in the past decade. Schwalbe [4] categorized these methods as
model-driven and data-driven ones. Model-driven methods fit
some primitive building models into the LIDAR measurements.
In the model-driven method, building models are identified by
fitting predefined models into the LIDAR measurements. For
example, Maas and Vosselman [5] estimated parameters for
primitive building models based on the invariant moment anal-
ysis. Brenner [6] extended this method to complex buildings
by splitting a building into simple primitives first and then
fitting individual primitives using point clouds. You and Lin [7]
constructed building models and analyzed the quality of models
by integrating LIDAR data and topographic maps. However,
data sources like building models or topographic maps for a
study area are not always available in advance, which limits the
application of the model-driven method.

Some of data-driven methods construct building models by
integrating LIDAR data and other data sources. For example,
Awrangjeb et al. [8] generated building models based on masks
obtained from LIDAR and multispectral imagery. Xiao et al.
[9] applied image matching techniques to reconstruct building
models from LIDAR data and oblique airborne imagery. The
application of these methods is limited since data sources
other than LIDAR are not always available. Other data-driven
methods grouped building measurements first for different roof
planes. Then, the raw 2-D topology of each building separating
neighboring facets is derived. Raw 3-D building models can
be directly created from the raw 2-D topologies and identified

0196-2892 © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

4 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 1, JANUARY 2015

roof planes. For example, Sampath and Shan [10] separated
roof facets using surface normal of each roof point. Kim and
Shan [11] selected level sets for roof facet segmentation. Both
of these two methods construct building models based on
segmented roof facets directly. However, the quality of such
building models may be poor because a 2-D topology is often
noisy due to irregularly spaced LIDAR measurements. A refine-
ment of 2-D topology and roof plane parameters is often needed
before high-quality building models can be derived. Many geo-
metric constraints have been proposed to regularize and refine
the 2-D topology. Zhang et al. [2] proposed some operations to
adjust and enforce parallelism on building footprints. However,
this method cannot be extended to 2-D topology. Gruen and
Wang [12] enforced seven constraints by using least-square
adjustments with manual grouping involved, which limits the
application of this method. Other methods realized the diffi-
culty in enforcing multiple constraints simultaneously and only
enforced important constraints. For example, Vosselman [13]
enforced parallelism on building topology adjustment. How-
ever, their assumption is too restrictive and cannot be applied
to buildings with edges oblique to both dominant directions.

To overcome limitations mentioned in the aforementioned
methods, this paper introduces a new data-driven model for 3-D
building model construction from LIDAR data through the
snake algorithm that can enforce multiple constraints simulta-
neously and easily. The snake algorithm was first introduced by
Kass et al. in 1988 [14], and it usually starts with an initial 1-D
contour, 2-D surface, or even-dimensional (3-D) volume [15]–
[18] close to a target model and then gradually deforms the
contour or surface with the goal of minimizing energy functions
so that the resulting contour or surface best matches the target
boundary or topology of the object [16], [19]. Significant re-
search efforts have been placed on applying the snake algorithm
to determine a surface or a contour having optimal properties
in the past decade [20]. Applications of the snake algorithm
include remote sensing imagery analysis, geometric modeling,
and tracking of nonrigid objects. For example, the snake al-
gorithm is one of the most frequently used methods to extract
building models and footprints from imagery and LIDAR [21]–
[23] in the remote sensing area. The critical steps for applying
snake algorithm include defining an energy function fit for the
given task and minimization of the energy function.

A traditional snake algorithm utilizes dynamic programming
to find the global minima by analyzing a collection of ad-
missible solutions. In dynamic programming, constraints are
often placed on the set of allowable solutions, thus reducing the
computational complexity. For example, in case of 1-D active
contours, the set of admissible solutions are, in fact, the set of all
allowed curves that connect the start point with the end point.
Unlike the variational method, dynamic programming can be
directly applied to a discrete grid without approximations.
Amini et al. [24] devised a time-delayed discrete dynamic
programming algorithm to minimize the energy for 1-D active
contours with only the first-order energy terms involved, where
each energy term depends on at most two vertices of the
contour. The discretization of the contour energy E(C) is repre-
sented by E(C)=E1(v1, v2)+E2(v2, v3)+· · ·+En−1(vn−1,
vn), where C={v1, . . . , vn} is the set of vertices forming a

1-D contour. Each contour point vi is allowed to only take on
d possible values. Instead of using exhaustive enumeration to
find the minimum of E(C), the discrete dynamic program-
ming method computes the global minimum in a much more
efficient way by breaking the global optimization problem
down into simpler subproblems. However, the existing dynamic
programming method [20], [24], [25] is inherently restricted to
problems with 1-D topology such as a contour. The dynamic
programming method outlined for 1-D topology cannot be
extended to 2-D cases [26]. The 2-D planar snake problems,
such as the construction of building models, cannot be solved
efficiently through existing dynamic programming methods.

This paper proposes a novel snake algorithm, named “2-D
snake algorithm,” to minimize the energy function associated
with 2-D planar topology through the graph reduction tech-
nique. The graph reduction technique consists of a set of graph
operations capable of reducing a 2-D planar topology to iso-
lated vertex/vertices while keeping the minimum energy of the
topology. Meanwhile, this paper proposes two energy functions
for 2-D topology adjustment by enforcing multiple geometric
constraints, such as parallel and deviation constraints. The
proposed snake algorithm and the energy functions are applied
to construct 3-D building models from LIDAR measurements
[27], and their effectiveness is verified thoroughly.

This paper is an extension of a short proceeding which
appeared in the 2007 IEEE International Conference on Com-
puter Vision and Pattern Recognition [28]. The new content
in this paper includes more detailed descriptions of the four
graph reduction operations, a generalization of the type IV
reduction operation in [28] to allow the algorithm to work on
general instead of a subset of 2-D snake problems. This paper
is organized as follows. Section II illustrates a framework for
3-D building model construction based on the proposed snake
algorithm. Section III describes the 2-D snake algorithm based
on graph reduction techniques and the energy functions pro-
posed for 3-D building model construction. Section IV presents
the experimental results of the algorithm on 3-D building
model construction from LIDAR measurements, and Section V
concludes this paper.

II. CONSTRUCTION OF 3-D BUILDING MODEL FROM

LIDAR DATA THROUGH 2-D SNAKE ALGORITHM

Fig. 1 illustrates a framework of constructing 3-D building
models from LIDAR measurements through the 2-D snake
algorithm. The framework consists of eight major steps. To
facilitate the discussion, an example as shown in Fig. 3 is
selected to illustrate the process of the framework and the
results from each step of the framework. More details about
the framework can be found in [3] and [29].

A. Separation of Ground and Nonground Points

The first step in the framework is to separate ground measure-
ments from nonground ones (e.g., buildings and vegetation).
We selected the progressive morphological filter [30] for this
task because this filter separated the ground from nonground
measurements sufficiently well for the sample data sets used
in our experiment. Other filters can also be used in this step

YAN et al.: 3-D BUILDING MODEL FROM AIRBORNE LIDAR DATA THROUGH 2-D SNAKE ALGORITHM 5

Fig. 1. Proposed framework for reconstruction of 3-D building models from LIDAR measurements. Each rectangular block represents one step or a substep of
the framework. The integer inside each rectangular block corresponds to the processing order of the step in the framework.

if they produce a good classification. Fig. 3(a) demonstrates
raw nonground LIDAR measurements overlaid on the aerial
photograph.

B. Building Measurement Identification

The second step further separates building measurements
from vegetation measurements using a region-growing algo-
rithm based on a plane-fitting technique [2] first (step 2a).
The rationale behind this algorithm is to group nonground
measurements, which are located on the same planes, into
patches. Building patches are much larger in size because
measurements for a roof facet are almost always located in
the same plane, while vegetation patch sizes are small due to
large local variations in elevations for irregular LIDAR data.
The plane equation describing each roof patch is derived in
step 2b and represented by the following equation:

z = ax+ by + c (1)

where (a, b, c) are the plane parameter for one roof patch. To
facilitate this discussion, measurements for each roof facet of
a building are assigned a unique positive integer label starting
from the label “1.” Fig. 3(b) shows the labels of facets from the

building in Fig. 3(a). There are totally seven facets identified
for the building.

C. Two-Dimensional Topology Extraction

The third step identifies the raw 2-D topology of each build-
ing, which consists of footprints and internal boundaries be-
tween adjacent roof facets. The boundaries between roof facets
form a set of connected polygons that are the projections of roof
facets on a horizontal plane. In order to obtain the boundaries
of a roof facet, the mesh cs covering the data set further goes
through a mesh refinement process and a boundary tracking
step [29]. Fig. 3(c) demonstrates the identified boundary points
(i.e., those with the label “−1”), and Fig. 3(d) illustrates the raw
2-D topology for the building in Fig. 3(a).

D. Two-Dimensional Topology Simplification

The fourth step simplifies the raw 2-D topology by applying
an edge simplification algorithm. The raw 2-D topology is
noisy because of the interpolation of irregularly spaced LIDAR
measurements, segmentation errors introduced by the region-
growing step, etc. The raw 2-D topology needs to be simplified
so that the successive operations of the framework can be

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 1, JANUARY 2015

applied. Here, the Douglas–Peucker algorithm [31] is selected
for topology simplification since it generates high-quality results
and its efficient implementation is available. Fig. 3(e) demon-
strates the simplified 2-D topology for the building in Fig. 3(a).

E. Building Direction Estimation

The fifth step derives the building direction based on the
simplified 2-D topology (step 5a). We select the algorithm
proposed in [2] since it is robust and can handle complicated
buildings with lots of edges oblique to the building direction.
Next, the simplified 2-D topology is rotated clockwise accord-
ing to the estimated direction (step 5b) so that the 2-D topology
is aligned with the building direction for the convenience of
successive adjustments. Meanwhile, the parallel and perpen-
dicular property of each roof facet is enforced as proposed by
[29] by adjusting the plane parameters based on the estimated
building direction (step 5c). Since the building in Fig. 3(a) is
estimated to be horizontally placed, it is unnecessary to rotate
its 2-D topology in this step.

F. Two-Dimensional Topology Adjustment

The sixth step of the framework is to adjust the rotated 2-D
topology by applying the proposed 2-D snake algorithm as
detailed in Section III. We notice that the positions of most
vertices and edges on the 2-D topology from step 5 are still
distorted. An adjustment/rectification of the edges and the
vertices is needed to derive accurate 3-D building models. The
objective of topology adjustment is to enforce parallelism on
the 2-D topology while keeping the adjusted topology as close
to its original location as possible. We define direction energy
EDir to enforce the parallelism constraint and deviation energy
EDis to limit the deviation of the adjusted topology from its
original position. More details of these two energy functions
are discussed in Section III. The energy functions are gradually
minimized starting with a simplified 2-D topology such as the
one in Fig. 3(e). Finally, the topology corresponding to the min-
imum of the energy function is derived to represent the target
topology. The key to this procedure is to develop an effective
algorithm for energy minimization. The 2-D snake algorithm
based on graph reduction is proposed to find a global mini-
mum for a problem with 2-D topology, and the details of the
algorithm are presented in Section III. Fig. 3(f) shows the 2-D
topology after applying the proposed 2-D snake algorithm to
the topology in Fig. 3(e), from which we can see that most of
the edges on the 2-D topology are adjusted to be parallel or
perpendicular to the building direction.

G. Adjustment of Edges at Intersections

The topology from the sixth step could be further refined in
the seventh step for some buildings, such as residential houses
that mainly consist of nonhorizontal roof facets. The edges
between building facets can be classified into two categories:
intersection and step edges. A step edge separates either two
parallel planes or two intersecting planes with a height dis-
continuity [Fig. 2(a) and (b)]. An intersection edge separates
two adjoining roof planes with height continuity [Fig. 2(c)].
Obviously, all edges of the footprint outline are step edges.

Fig. 2. Two types of edge (AB) between two roof facets. (a) Step edge
separating two parallel planes. (b) Step edge separating two intersection planes
with height discontinuity. (c) Intersection edge separating two intersection
planes with height continuity.

The height values of a vertex on an intersection edge from two
adjoining roof facets may be different because the proposed 2-D
snake algorithm does not enforce the height continuity con-
straint. Fig. 3(g) demonstrates the reconstructed 3-D building
model based on the topology from the 2-D snake algorithm
directly. We can see many fake walls caused by the false height
discontinuity between neighboring roof facets in the model.
To remove this inconsistency, this step will enforce the height
continuity constraint for vertices on intersection edges. How-
ever, before any adjustment operation is performed, intersection
edges have to be identified. We determine an intersection edge
using the following equation:

DH (e(v, w)) =
∑
p∈vw

|h1(p)− h2(p)| /n (2)

where vw is the set of grid cells containing the edge e. n is
the number of grid cells in the set, and p is one grid cell in
the set. h1(p) and h2(p) are the elevation of p on its two ad-
joining planes, respectively. If DH(e) is less than a predefined
threshold T_Step, edge e is classified as an intersection edge
as shown in Fig. 2(c). Otherwise, it is a step edge as shown in
Fig. 2(a) or (b). In our framework, T_Step is conservatively set
to 2ΔhT . ΔhT is the average elevation measurement error of
LIDAR points. Since the height deviation of a point from the
fitting plane can reach ΔhT in the worst situation, the height
difference between two neighboring roof planes with height
continuity can reach 2ΔhT .

This step will check each vertex whether it is located on
any intersection edge. If a vertex is located on two intersection
edges, it will be replaced by the joint point of the three roof
facets forming these two intersection edges. If a vertex is lo-
cated on an intersection edge and a step edge, it will be replaced
by the joint point of the two roof facets forming the intersection
edge and the wall where the step edge is located. Fig. 3(h)
shows the 2-D topology after refining several intersection edges
in Fig. 3(f). Vertex 4 is replaced by the joint point of roof facets
1, 4, and 5 [see the facet labels in Fig. 3(c)]. Similar operations
are applied to vertices 5, 9, and 10. We can see that the refined
2-D topology better approximates the real topology.

H. Three-Dimensional Building Model Construction

The 3-D building model will be constructed based on the
adjusted 2-D topology and the plane parameters in previous
step. ArcGIS 3-D engine is selected to visualize 3-D building
models in our framework. For each roof facet, vertices forming
its boundary are identified, and their x and y coordinates can be

YAN et al.: 3-D BUILDING MODEL FROM AIRBORNE LIDAR DATA THROUGH 2-D SNAKE ALGORITHM 7

Fig. 3. Example illustrating the process of 3-D building model reconstruction based on the 2-D snake algorithm. (a) Raw LIDAR points overlaid on the aerial
photograph. (b) Segmented roof facets which are labeled by different positive integers. (c) Points forming the boundaries of 2-D polygons are labeled with “−1.”
(d) Raw 2-D topology of the building. (e) Simplified 2-D topology using the Douglas–Peucker algorithm. (f) Adjusted 2-D topology by applying the 2-D snake
algorithm on the 2-D topology in (e). (g) Three-dimensional building model reconstructed based on the topology from (f). (h) Refined 2-D topology by replacing
intersection edges with the joint point of neighboring roof facets. (i) Three-dimensional building model reconstructed in ArcGIS based on the refined topology
from (h).

derived from the refined 2-D topology directly. z coordinates
of these vertices can be calculated according to the plane (1).
Vertices with x, y, and z coordinates are saved as a closed
polygon in a shape file. The same operation is applied to
every facet, and finally, the shape file will contain multiple
closed polygons, and each of them corresponds to one roof
facet’s boundary. For example, the shape file for the building
in Fig. 3(c) contains seven polygons. The polygon for the facet
with label “6” is formed by vertices 17, 18, 6, and 1. ArcGIS
3-D engine can load a shape file and generate the corresponding
3-D building model. Fig. 3(i) displays the constructed 3-D
models for the building in Fig. 3(a).

III. TWO-DIMENSIONAL SNAKE ALGORITHM

A. Introduction of the 2-D Snake Algorithm

The 2-D snake algorithm was initially proposed by Yan [28].
The goal of the 2-D snake algorithm is to find the state assign-
ment for each vertex that would minimize the energy of 2-D
topology represented by a graph G = (V,E). Let Q = {1, 2,

. . . , d} be a set of possible states for any vertex v ∈ V . In our
framework for 3-D building model reconstruction, each state of
a vertex on the building topology corresponds to one possible
position that the vertex could be adjusted to. The energy of
vertex v in state i ∈ Q is denoted by EVG(v, i). The energy
of an edge e = (u, v) ∈ E of graph G, given that vertex u is in
state i and that vertex v is in state j, is denoted by EEG(e, i, j).
Let S be a state assignment function for each vertex v ∈ V , i.e.,
S : V → Q. For a given state assignment S, the energy of the
entire graph G is the sum of the energies of the vertices and the
edges of G

EG(G) =
∑

EE (e, S(u), S(v))e=(u,v)∈E

+
∑

EV (v, S(v))v∈V . (3)

Note that the energy of an edge only depends upon two
vertices to which the edge is connected. The specific forms
of the energy function EV and EE rely on the particular
application. Minimizing the total cost (energy) generates the

8 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 1, JANUARY 2015

Fig. 4. Example showing the graph reduction process for the 2-D topology as shown in Fig. 3(e).

optimal topology that best fits the given object. A brute-force
implementation of minimizing the energy specified in (3) is
to try each of the dn combinations of state assignments for n
number of vertices of the graph. This would take time that is
exponential to the number of vertices and is not tolerable for
snake problems with complicated topology. The 2-D snake al-
gorithm finds the minimum energy of a graph by progressively
simplifying the graph using graph reduction operations. Each
reduction operation will simplify the original graph while re-
taining the minimum energy of the graph. Four graph reduction
operations, as listed in the following, are utilized in the 2-D
snake algorithm, and examples and more details about them can
be found in the Appendix.

1) Type I operation: eliminate vertices of degree two—This
operation reduces a graph by replacing each vertex v of
degree two (i.e., the number of edges incident to v is
two) and its two incident edges with one single edge that
connects the two vertices (v′ and v′′) to which v originally
connects. The new edge e will hold the energy of v and its
two incident edges. We store in a look-up table the state
assignments of v that yield the minimum energy of e for
each possible pair of state assignments of v′ and v′′.

2) Type II operation: eliminate parallel edges—This opera-
tion reduces a graph by replacing all of the parallel edges
between two vertices with one single edge e. This new
edge will hold the energy of all of the replaced parallel
edges.

3) Type III operation: eliminate vertices of degree
one—This operation eliminates all vertices of degree one
and their incident edges. The energy of an eliminated
vertex v and its incident edge e will be stored in the vertex
v′ it originally connects to via e. The state assignment of
v that minimizes the sum of its energy and that of e, in
correspondence with each state assignment of v′, will be
stored in the look-up table.

4) Type IV operation: eliminate a pair of vertices of higher
degrees—This operation eliminates a selected pair of

vertices of higher degrees (> 2) and their incident edges,
when none of type I–III operations can be applied further.
The energy of those eliminated edges is absorbed by the
vertices that are adjacent to the eliminated vertices, and
the energy of the eliminated pair of vertices is absorbed
by a random vertex selected from the subgraph that
connects the two.

Fig. 4 demonstrates the graph reduction process for the 2-D
topology as shown in Fig. 3(e). Vertices marked by red rectan-
gles are involved in one graph reduction operation and removed.
The original graph in Fig. 4(a) is reduced to a single vertex in
Fig. 4(j). Type I operations (eliminate vertices of degree two)
can be found in Fig. 4(a)–(d) and (g). In Fig. 4(b), a type I
operation is first performed to replace a degree-2 vertex v
(marked by a red rectangle) with an edge that connects the
two vertices v originally connects to, introducing a new edge
parallel to the one that already exists connecting the two ver-
tices. A type II operation (eliminate parallel edges) immediately
follows to replace the two parallel edges with one single edge.
Type III operations (eliminate vertices of degree one) can be
found in Fig. 4(f), (h), and (i). One type IV operation (eliminate
a pair of vertices of higher degrees) is collected at Fig. 4(e).
The state that yields the minimum energy for the single vertex at
Fig. 4(j) is determined first. The states of the remaining vertices
yielding the minimal energy can be determined by retrieving
the corresponding states from their look-up tables created by
the 2-D snake algorithm (see the Appendix for examples of
look-up tables).

B. Energy Functions for Building 2-D Topology Adjustment

We propose two energy functions to enforce geometric con-
straints, such as parallel and deviation constraints. They are
used for building 2-D topology adjustment in our proposed
building model construction framework. Given an edge e =
(v, w) joining two vertices v and w on the topology and given
that v′ and w′ are some possible states for vertices v and w,

YAN et al.: 3-D BUILDING MODEL FROM AIRBORNE LIDAR DATA THROUGH 2-D SNAKE ALGORITHM 9

respectively, we define the direction energy EDir for the edge
e′ = (v′, w′) as

EDir (e
′ = (v′, w′)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 |vx − wx| <= T
& v′x = w′

x

0 |vy − wy| <= T
& v′y = w′

y

0 |vx − wx| > T &
|vy − wy| > T &
|v′y − w′

y| > T &
|v′x − w′

x| > T
|v − w| others.

(4)

A nonadjustable oblique edge e is a line whose projections on
the x- and y-axes are larger than a threshold T . All of the other
edges are considered adjustable ones, and they will be adjusted
to be either horizontal or vertical. A zero value is assigned to the
direction energy function if an adjustable horizontal, adjustable
vertical, or nonadjustable edge e is adjusted to a horizontal,
vertical, or oblique edge e′, respectively. Otherwise, a penalty
value proportional to the length of the edge is assigned to the
adjusted edge e′. As a result of applying this energy function,
the adjustable horizontal and vertical edges tend to align with
the dominant directions, and nonadjustable oblique edges tend
to remain oblique.

The deviation energy function EDis is defined as the sum
of the distance values between the points on the adjusted edge
(v′, w′) and that of the original edge (v, w)

EDis (e
′ = (v′, w′)) =

∑

p∈v′w′

Dchess(v, v
′, w, w′) (5)

where p is a point on the edge (v′, w′). The smaller the deviation
energy of the adjusted edge e′, the closer e′ is to the original
edge e. In order to compute EDis, a distance transform [29] is
applied on the 2-D topology to derive a gray scale image whose
pixel intensity indicates the distance between the position of
that pixel and the nearest edge in the topology. The edges
between roof facets are rasterized using the same grid mesh for
2-D topology extraction in the previous section. As shown in
Fig. 5, the distance values of edge cells are initialized as 0, and
the distance values of their direct neighbor cells are assigned
1. The distance values of the direct neighbors of cells with
distance values of 1 are assigned 2 and so on. Only the distance
values of points in an area close to the edges in the original
2-D topology need to be calculated since each vertex on the
2-D topology is only allowed to move within a small window
W ∗

vWv . The total energy for each adjusted edge e′ is determined
as follows:

E (e′ = (v′, w′)) = CDir ∗ EDir(e
′) + CDis ∗ EDis(e

′) (6)

where CDir and CDis are the weights for the two energy terms.
The snake algorithm tests different states for each adjustable
vertex on the 2-D topology and finds an optimal combination
of vertex states that minimizes the sum of energy for all of the
edges on the 2-D topology.

Fig. 5 demonstrates the distance values in the gray scale
image after applying distance transform on the 2-D topology
in Fig. 3(d). The distance value is calculated up to 3. These two

Fig. 5. Distance values derived by applying distance transform on the 2-D
topology of the building in Fig. 3. Label “0” indicates the edge cells in between
roof facets, and labels “1,” “2,” and “3” represent the distance values from the
nearest edges. The x and y coordinates are in meters.

gray windows represent the adjustable positions for vertices 17
and 1 in Fig. 3(d), respectively. The white segment represents
the original state of the edge connecting these two vertices. The
black line represents one possible state of the edge, where EDis

is (2 + 2 + 2 + 2 + 1 + 1 + 1 + 1) = 12 according to (5) and
EDir is around 8 according to (4).

IV. EXPERIMENTS FOR THE 3-D BUILDING

MODEL CONSTRUCTION FRAMEWORK

A. Data Processing

The proposed algorithm has been applied to reconstruct 3-D
building models from airborne LIDAR measurements to ex-
amine its effectiveness. The test data site is located around
the campus of Florida International University (FIU), Miami,
FL, USA, covering 6 km2 of low relief topography. Two data
sets are analyzed in our experiment. One is located at the FIU
campus and has 67 institutional buildings. Another one is next
to the FIU campus and has 211 residential and commercial
buildings. The LIDAR data for building extraction with an
average point spacing of 1 m were collected in August 2003.

Initial topology of buildings is extracted from LIDAR mea-
surements. The edges extracted are noisy, and most of the
critical corner vertices were not in correct positions in the
initial topology due to the influence of irregularly spaced
point LIDAR measurements. The process for refining building
topology involves adjusting the initial topology by changing the
admissible states of vertices by minimizing the defined energy
functions. The admissible states of vertices are determined
by the spatial resolution and errors of LIDAR measurements.
Therefore, the refinement of building topology from LIDAR
measurements provides an ideal case to test the proposed al-
gorithm. The thresholds used in our experiments for 3-D build-
ing reconstruction are listed in Table I. A sensitivity analysis
showed that small changes in most thresholds have little impact
on the final results. Aerial photographs and field investigation
were used to help evaluate the reconstructed building models.
The aerial photographs were collected in 1999 at a resolution
of 0.3 m. The focus of the experiment is to examine whether

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 1, JANUARY 2015

TABLE I
PARAMETERS FOR RECONSTRUCTING BUILDING MODELS

the minimum energy of a connected building topology can be
derived within a reasonable amount of time and how effective
the proposed energy functions can be applied to construct 3-D
building models.

B. Results

Here, 66 of 67 buildings in the data set at the FIU campus
and 210 of 211 buildings in the data set next to the FIU campus
are successfully reduced by the proposed algorithm without
type IV operations involved, which means that over 98% of
buildings from both data sets can be processed by type I,
II, and/or III operations only. The remaining two buildings
have very complicated topologies and are successfully refined
through the 2-D snake algorithm with one type IV reduction
operation involved in each case. It took about 2 and 3 min for a
personal computer with a 2.8-GHz processor and 2-GB RAM to
complete the entire building reconstruction process for the data
set of the FIU campus and the data set next to the FIU campus,
respectively, which demonstrates the efficiency of the proposed
snake algorithm in calculating the minimum energy of building
topologies in real-world cases.

Most buildings in the data set at the FIU campus consist
of flat roof planes, and their 3-D building model can be con-
structed by the footprint and the height of the building. The
quality of these reconstructed models is evaluated by comparing
the footprint of models with the actual footprint. The result in-
dicates that the footprint extracted based on the snake algorithm
is much better than that from the adjusting operations in Zhang
[2]. Fig. 6 compares the footprints of several flat buildings
in the FIU main campus extracted by these two methods.
Both of these two methods produce very similar geometric
shapes. After careful visual inspection, we found that the snake-
based algorithm generates more accurate details. For example,
compared with Fig. 6(a), Fig. 6(b) has more satisfactory results
at eight edges enclosed by red ovals, although it has worse
results at three edges enclosed by green ovals. Table II shows
the quantitative comparison results between the footprint results
adjusted by these two methods. The first and second rows show
the building IDs and the number of edges of each building
topology. Error1 and Error2 represent the numbers of edges
incorrectly adjusted by the adjusting method and the proposed
2-D snake algorithm, respectively. There are 12 buildings in
this area, and the total number of errors from the 2-D snake
algorithm is 11, which is 50% improvement compared with the
total errors (22) from the adjusting operation method.

The quality of the reconstructed models for the data set next
to the FIU campus is evaluated by visual inspection since no
ground-truth 3-D building models for this area are available.
Fig. 7(a) and (b) shows the extracted 2-D topologies and 3-D
building models from this data set. It is very difficult to quantify

Fig. 6. Footprints of buildings in the FIU main campus adjusted by (a) adjust-
ing operations and (b) the proposed snake algorithm and energy functions.

TABLE II
COMPARISON OF FOOTPRINTS ADJUSTED BY ADJUSTING

OPERATIONS AND THE PROPOSED SNAKE ALGORITHM

Fig. 7. (a) Two-dimensional topology overlaid on an aerial photograph.
(b) Reconstructed 3-D models for buildings next to the FIU campus.

the errors of the algorithm for reconstructing 3-D building mod-
els since no ground-truth data with a higher accuracy are avail-
able, and digitizing 3-D building models manually from LIDAR
measurements is not feasible. We qualitatively examined the

YAN et al.: 3-D BUILDING MODEL FROM AIRBORNE LIDAR DATA THROUGH 2-D SNAKE ALGORITHM 11

Fig. 8. Derivation of a complex 3-D building model from LIDAR measure-
ments. (a) Aerial photography of the building. (b) Reconstructed 3-D building
model. (c) Raw 2-D topology. (d) Simplified 2-D topology. (e) Refined 2-D
topology through the 2-D snake algorithm. LIDAR measurements for various
flat roof facets are displayed with different colors.

quality of the extracted building models by comparing the con-
structed 3-D building models with the LIDAR measurements
and the aerial photographs in ArcGIS. The results indicated
that most buildings (196/211) were reconstructed properly by
the proposed snake algorithm. The remaining building models
are not constructed with a satisfactory quality since the building
facet segmentation results at those areas are poor.

Fig. 8 demonstrates the 3-D building model reconstruction
process for a complicated building. The 2-D topology of the
building roof consists of 46 vertices and 67 boundaries. Al-
though the topology looks very complicated, it contains only
1 type IV reduction operation, and the minimum energy can be
determined in less than 1 min. Meanwhile, all of the roof facets
of the building are flat, and we can skip the step to adjust inter-
section edges. The reconstructed 3-D building model through
the 2-D snake algorithm is shown in Fig. 8(b) and is visually
satisfactory.

Some buildings, such as the residential house in Fig. 3(a),
mainly consist of nonhorizontal roof planes. The 2-D topology
adjusted through the 2-D snake algorithm needs to be refined
in order to derive satisfactory 3-D building models. Fig. 3(f)
illustrates the 2-D topology derived by applying the proposed
2-D snake algorithm on the building in Fig. 3(a). We can see
that edges connecting vertices 4 and 5 are misclassified as
horizontal ones. Some intersection edges, such as that connect-

ing vertices 2 and 4 in Fig. 3(f), are adjusted away from its
exact location. The height continuity is violated in some places,
leading to some fake walls as visualized in the constructed
building model shown in Fig. 3(g). Since the edges connecting
vertices 9–10 and 9–12 are classified as intersection edges,
vertex 9 is replaced by the joint point of three planes with labels
1, 3, and 4 [see labeled planes in Fig. 3(b)]. Vertices 10, 4,
and 5 are adjusted in a similar way. Since vertex 11 is located
on both the footprint of the building and the intersection edge
connecting vertices 10 and 11, it is replaced by the joint point of
the planes with labels 3 and 7 and the wall where the footprint
is located. Fig. 3(i) demonstrates the constructed 3-D building
model after replacing intersection edges. Comparing Fig. 3(i)
with Fig. 3(g), we can see that, with additional topology refine-
ment by replacing intersection edges, the resulting 3-D building
model constructed fits closer to the real building in Fig. 3(a).

Accurate segmentation of roof facets is critical for the ex-
traction of 2-D topologies and reconstruction of sophisticated
building models. Theoretically, the high density of LIDAR
measurements will increase the accuracy of segmentation of
building patches because more points are available for pa-
rameter estimation. Numerical experiments also demonstrated
that segmentation accuracy will be enhanced as the density of
LIDAR measurements increases. Some reconstructed models,
such as the 3-D model in Fig. 8(e), did not generate result good
enough for certain edges between roof facets within a building
footprint since the accuracy of segmentation is restricted by
the low density of LIDAR measurements. Further improve-
ment in segmentation is needed for reconstruction of better
building models.

The window size for vertex adjusting Wv also has certain
impact on the quality of reconstructed building models. With a
large window size, each vertex on the topology has more allow-
able states for adjustment, and the refined topology will likely
be more visually pleasing. However, the snake algorithm has
to take more time in deriving the minimum energy of the 2-D
topology. Also, the commission and omission errors between
the refined and raw 2-D topologies tend to increase because
a vertex could be adjusted to positions further away from its
original position. Therefore, there is a tradeoff between achiev-
ing visually pleasant results and minimizing commission and
omission errors. In our experiment, we selected a window size
large enough to achieve a reasonably good quality of refined
topology while keeping commission and omission errors low.
Energy functions used by the snake algorithm have a direct
effect on the refined 2-D topology. New energy functions can
be easily added into the 2-D snake algorithm to enforce more
geometric constraints simultaneously.

V. CONCLUSION

Many algorithms have been developed to automatically ex-
tract 3-D building models from LIDAR measurements in the
past decade. However, all of them have different kinds of
limitations. For example, some algorithms need involvement
of data source other than LIDAR, such as topographic maps.
Some algorithms generate building models with poor quality
since the 2-D building topologies extracted are always noisy.

12 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 1, JANUARY 2015

Fig. 9. Example of type I operation. (a) Original graph. (b) Graph after being
reduced by this operation. The vertex and the two edges marked by dashed lines
are removed and replaced by a new edge e. (c) Associated state look-up table.

Fig. 10. Example of type II operation to reduce the two parallel edges
connecting vertices a and b. (a) Original graph. (b) Graph after being reduced
by this operation. The edges marked by dashed line are removed and replaced
by a new edge e.

To overcome these limitations, a framework is introduced in
this paper to construct 3-D building models from LIDAR data
through a novel 2-D snake algorithm. This paper has three
major technical contributions. First, this framework enables
a systematic and automatic way of refining noisy building
topologies and generating building models with a much better
quality. Second, this paper proposes a “2-D snake algorithm”
to address the challenging issue from traditional snake algo-
rithm, which is to find the minimum energy of a complicated
graph instead of a 1-D contour. Third, this paper proposes
two energy functions for building topology adjustment. They
enforce multiple geometrical constraints, such as deviation and
parallel constraints, in building topology adjustment easily and
simultaneously, which is very difficult to achieve in existing
algorithms for 3-D building model construction.

The effectiveness of the framework has been verified by
applying the algorithm to constructing various institutional,
commercial, and residential buildings. Over 98% of building
topologies have been successfully processed by the 2-D snake
algorithm with only type I, II, or III operations, and their global
optima have been found in polynomial time. The remaining 2%
of buildings’ topologies can be processed with only one type IV
operations involved, which still takes polynomial time. This
demonstrates that the proposed 2-D snake algorithm is very
effective and efficient in deriving the minimum energy for the
building topology adjustment which is the most critical step
in the framework for building model construction. Both the
quantitative and qualitative experimental results demonstrate
that the framework is effective in constructing a 3-D model for
various kinds of buildings.

APPENDIX A
TYPE IV OPERATION

Details about type I–III operation can be found in [28] by
Yan et al. Figs. 9–11 demonstrate examples of each type,
respectively.

Fig. 11. Example of type III operation. (a) Original graph. (b) Graph after
being reduced by this operation. The vertex and the edge marked by dashed
lines are removed. (c) Associated state look-up table.

Fig. 12. Example of type IV operation. (a) Original graph. (b) Graph after
being reduced by the operation. The vertices and the edges marked by dashed
lines are removed.

Originally, the 2-D snake algorithm is restricted by type IV
reduction operation proposed by Yan et al. [28] and can be
applied only to some kind of graphs. A new type IV operation
is proposed in this paper to enable the 2-D snake algorithm
to work on any kind of graphs. For a given pair of vertices a
and c, as shown in Fig. 12(a), we will remove a and c and the
edges adjacent to them in a type IV operation. Assume that a
connects with vertices a1, . . . , at, and c connects with vertices
c1, . . . , cg .

We denote the reduced graph by G4=(V4, E4), where V4=
V \{a, c} and E4=E\{(a, a1), . . . , (a, at), (c, c1), . . . , (c, cg)}.

If Sa and Sc are the states of vertices a and c, respectively, in
graph G, then the energy of a vertex v ∈ V4 will be updated as
follows if v connects to either a or c:

EVG4
(v, Sv)=EVG(v, Sv)+EEG (e=(v, u), Sv, Su) (7)

where Sv is the state of vertex v and v connects to u ∈ {a, c}. If
v connects to both a and c, its energy will be updated as follows:

EVG4
(v, Sv) = EVG(v, Sv) + EEG (e = (v, a), Sv, Sa)

+ EEG (e = (v, c), Sv, Sc) . (8)

Meanwhile, one random vertex w ∈ V4 will be selected to
hold the energy of vertices a and c. If vertex a connects with c,
w will also take the energy of edge (a, c), and its energy will be
updated as follows:

EVG4
(w, Sw) = EVG4

(w, Sw) + EVG(a, Sa) + EVG(c, Sc)

+ EEG (e = (a, c), Sa, Sc) . (9)

Otherwise, the energy of vertex w will be updated as follows:

EVG4
(w,Sw)=EVG4

(w,Sw)+EVG(a,Sa)+EVG(c,Sc) (10)

where Sw is a state of vertex w. Since there are d2 possible state
combinations of (Sa, Sc), we need to calculate the minimum

YAN et al.: 3-D BUILDING MODEL FROM AIRBORNE LIDAR DATA THROUGH 2-D SNAKE ALGORITHM 13

energy of the reduced graph G4 under d2 possible state combi-
nations (Sa, Sc) in order to derive the minimum energy of the
original graph G. Similar to other reduction operations, graphs
G and G4 have the same minimum energy.

With type I–IV operations, we have developed the following
2-D snake algorithm to reduce a graph G and derive the state
assignment list min_states = (s1, s2, . . . , sk, . . . , s|V |), sk ∈
Q that minimizes the total energy of G. This algorithm consists
of three major steps. The first step applies and records all
of the reduction operations used to reduce a graph G to a
set of isolated vertices and stores them in array operations.
The second step calculates the minimum energy min_energy
of the graph G, and the last step returns the state assignment
min_states of vertices that minimizes the energy of G. Details
about each step are listed as follows.

Step 1) Collect reduction operations: This step starts with
an iterative process of collecting type I, II, and
III operations. It iteratively scans each vertex v of
graph G, applies any type I, II, and III operations
applicable to v to the current graph, and records
the applied operations in the array operations. The
iteration terminates if no type I–III operation can be
further applied to the graph.

If the graph has been reduced to a set of isolated
vertices, the algorithm exits the current step. Oth-
erwise, a pair of vertices will be selected based on
certain criteria, and a type IV reduction operation
based on the selected vertices is applied to further
reduce (simplify) the graph and recorded in the array
operations. Then, the algorithm goes back to the
beginning of this step and continues to collect new
type I–IV reduction operation until no new operation
can be applied.

Step 2) Determine the minimum energy of G: This step
recursively calculates the minimum energy of the
graph G based on the information stored in the
operation array operations. It checks the operations
in the array operations one by one from the begin-
ning. For a type I, II, or III operation, the graph is
deterministically reduced, and its energy is updated
accordingly. For a type IV operation, the energy of
the current graph at each possible state combination
of the pair of vertices removed in this operation will
be calculated recursively and compared to return
the minimum. For each possible state combination,
the graph is reduced, and its energy is updated
accordingly.

Once all of the operations in the operation array
have been checked, the graph should be reduced to
a set of isolated vertices. The minimum energy of
the graph is the sum of the minimum energy of all
of the vertices, which is further compared with the
global minimum energy min_energy found so far. If
the minimum energy of the current graph is smaller,
it will replace min_energy, and the corresponding
states of vertices removed in every type IV operation
will be recorded in the array min_states.

Step 3) Determine the state assignment of vertices that
minimizes the energy of G: After step 2, vertices
removed in all type IV operations have determined
their corresponding states in min_states. To decide
the states of the remaining vertices in min_states,
this step scans again each reduction operation in
the array operations from the start and applies them
to the original graph G one by one. For a type I,
II, or III operation, the graph’s energy is updated
accordingly, and the corresponding state look-up
table is constructed. For each type IV operation,
the energy of the graph is updated accordingly,
given the known states of the pair of vertices re-
moved in the operation which are stored in array
min_states.

After all of the reduction operations have been
processed, the current graph is reduced to a set of
isolated vertices. The state of every isolated vertex
that yields the minimum energy value is determined
by comparing its energy under each possible state
and saved to min_states. The states of the remaining
vertices are retrieved by checking the look-up tables
in the order reverse to the insertion order of their
corresponding operations.

REFERENCES

[1] J. R. Jensen, Remote Sensing of the Environment, 2nd ed. Upper Saddle
River, NJ, USA: Prentice-Hall, 2000.

[2] K. Zhang, J. Yan, and S.-C. Chen, “Automatic construction of building
footprints from airborne LIDAR data,” IEEE Trans. Geosci. Remote Sens.,
vol. 44, no. 9, pp. 2523–2533, Sep. 2006.

[3] K. Zhang, J. Yan, and S.-C. Chen, “A framework for automated con-
struction of building models from airborne LIDAR measurements,” in
Topographic Laser Ranging and Scanning: Principles and Processing,
J. Shan and C. Toth, Eds. New York, NY, USA: Taylor & Francis, 2008.

[4] E. Schwalbe, “3D building model generation from airborne laser scanner
data using 2D GIS data and orthogonal point cloud projections,” in Proc.
ISPRS WG III/3, III/4, V/3 Workshop Laser Scanning, Enschede, The
Netherlands, Sep. 12–14, 2005, pp. 209–214.

[5] H. Maas and G. Vosselman, “Two algorithms for extracting building
models from raw laser altimetry data,” ISPRS J. Photogramm. Remote
Sens., vol. 54, no. 2/3, pp. 153–163, Jul. 1999.

[6] C. Brenner, “Modelling 3D objects using weak CSG primitives,” in Proc.
Int. Arch. Photogramm. Remote Sens., 2004, vol. 35, no. B3, pp. 1–6.

[7] R.-J. You and B.-C. Lin, “A quality prediction method for building model
reconstruction using LIDAR data and topographic maps,” IEEE Trans.
Geosci. Remote Sens., vol. 49, no. 9, pp. 3471–3480, Sep. 2011.

[8] M. Awrangjeb, M. Ravanbakhsh, and C. S. Fraser, “Automatic detec-
tion of residential buildings using LIDAR data and multispectral im-
agery,” ISPRS J. Photogramm. Remote Sens., vol. 65, no. 5, pp. 457–467,
Sep. 2010.

[9] J. Xiao, M. Gerke, and G. Vosselman, “Building extraction from oblique
airborne imagery based on robust facade detection,” ISPRS J. Pho-
togramm. Remote Sens., vol. 68, pp. 56–68, Mar. 2012.

[10] A. Sampath and J. Shan, “Segmentation and reconstruction of polyhedral
building roofs from aerial LIDAR point clouds,” IEEE Trans. Geosci.
Remote Sens., vol. 48, no. 3, pp. 1554–1567, Mar. 2010.

[11] K. Kim and J. Shan, “Building roof modeling from airborne laser scanning
data based on level set approach,” ISPRS J. Photogramm. Remote Sens.,
vol. 66, no. 4, pp. 484–497, Jul. 2011.

[12] A. Gruen and X. Wang, “News from cybercity-modeler,” in Proc. of
3rd International Workshop on Automatic Extraction of Man-Made Ob-
jects from Aerial and Space Images, Monte Verita, Ascona, Switzerland,
Jun. 10–15, 2001, pp. 93–101.

[13] G. Vosselman, “Building reconstruction using planar faces in very high
density height data,” in Proc. Int. Archive Photogramm. Remote Sens.,
1999, vol. 32, no. 32W5, pp. 87–92.

14 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 53, NO. 1, JANUARY 2015

[14] D. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour mod-
els,” Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, Jan. 1988.

[15] G. Subsol, J. P. Thirion, and N. Ayache, “A scheme for automati-
cally building three-dimensional morphometric anatomical atlases: Ap-
plication to skull atlas,” Med. Image Anal., vol. 2, no. 1, pp. 37–60,
Mar. 1998.

[16] D. Terzopoulos, A. Witkin, and M. Kass, “Constraints on the deformable
models: Recovering 3D shape and nonrigrid motions,” Artif. Intell.,
vol. 36, no. 1, pp. 91–123, Aug. 1988.

[17] J. P. Thirion, “Image matching as a diffusion process: An analogy with
Maxwell’s demons,” Med. Image Anal., vol. 2, no. 3, pp. 243–260,
Sep. 1998.

[18] T. Chan and L. Vese, “Active contours without edges,” IEEE Trans. Image
Process., vol. 10, no. 2, pp. 266–277, Feb. 2001.

[19] V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert, “Minimal surfaces based
object segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 19,
no. 4, pp. 394–398, Apr. 1997.

[20] J. Montagnat, H. Delingette, and N. Ayache, “A review of deformable
surfaces: Topology, geometry, deformation,” Image Vis. Comput., vol. 19,
no. 14, pp. 1023–1040, Dec. 2001.

[21] S. Ahmadi, M. V. Zoej, H. Ebadi, H. Moghaddam, and
A. Mohammadzadeh, “Automatic urban building boundary extraction
from high resolution aerial images using an innovative model of active
contours,” Int. J. Appl. Earth Observ. Geoinf., vol. 12, no. 3, pp. 150–157,
Jun. 2010.

[22] J. Peng, D. Zhang, and Y. Liu, “An improved snake model for building
detection from urban aerial images,” Pattern Recognit. Lett., vol. 26, no. 5,
pp. 587–595, Apr. 2005.

[23] K. Karantzalos and N. Paragios, “Recognition-driven two dimensional
competing priors toward automatic and accurate building detection,”
IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 133–144,
Jan. 2009.

[24] A. A. Amini, T. E. Weymouth, and R. C. Jain, “Using dynamic program-
ming for solving variational problem in vision,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 12, no. 9, pp. 855–867, Sep. 1990.

[25] D. Geiger, A. Gupta, L. A. Costa, and J. Vlontzos, “Dynamic pro-
gramming for detecting, tracking, matching deformable contours,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 17, no. 3, pp. 294–302,
Mar. 1995.

[26] Y. Boykov, O. Weksler, and R. Zabih, “Fast approximate energy mini-
mization via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 23,
no. 11, pp. 1222–1239, Nov. 2001.

[27] J. Shan and C. Toth, Topographic Laser Ranging and Scanning: Princi-
ples and Processing. Boca Raton, FL, USA: CRC Press, 2008.

[28] J. Yan, K. Zhang, C. Zhang, S.-C. Chen, and G. Narasimhan, “A
graph reduction method for 2D snake problems,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Minneapolis, MN, USA, Jun. 17–22,
2007, pp. 1–6.

[29] J. Yan, “A Framework for Automatic Feature Extraction From Airborne
Light Detection and Ranging Data,” Ph.D. dissertation, Florida Int. Univ.,
Miami, FL, USA, 2007.

[30] K. Zhang et al., “A progressive morphological filter for removing non-
ground measurements from airborne LIDAR data,” IEEE Trans. Geosci.
Remote Sens., vol. 41, no. 4, pp. 872–882, Apr. 2003.

[31] D. Douglas and T. Peucker, “Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature,” Can.
Cartogr., vol. 10, no. 2, pp. 112–122, Dec. 1973.

Jianhua Yan received the Ph.D. degree from the
School of Computer Science, Florida International
University, Miami, FL, USA, in 2007.

He is currently with the Transaction Risk Manage-
ment Team, Amazon.com, Seattle, WA, USA. His
research interests include image processing, pattern
recognition, data mining, and geographic informa-
tion systems.

Keqi Zhang received the Ph.D. degree from the
University of Maryland, College Park, MD, USA,
in 1998.

He joined the Department of Earth and Environ-
ment, Florida International University, Miami, FL,
USA, as an Assistant Professor in 2003, where he
was promoted to Associate Professor in 2007 and
Full Professor in 2013. He is the author and coau-
thor of 80 journal papers, book chapters, conference
proceedings, and technical reports. His research in-
terests include coastal response to sea level rise and

storm impact, airborne light detection and ranging remote sensing, storm surge
modeling, and mapping coastal hazards using geographic information systems.

Chengcui Zhang (M’00) received the Ph.D. de-
gree in computer sciences from Florida International
University, Miami, FL, USA, in 2004. She is an
Associate Professor with the Department of Com-
puter and Information Sciences, The University of
Alabama at Birmingham, Birmingham, AL, USA.
She is the author and coauthor of over 130 research
papers focusing on multimedia data mining, multi-
media information retrieval, multimedia databases,
bioinformatics, and geographic information systems.

Prof. Zhang has served on more than 70 inter-
national conferences and workshops and taken a leadership role at the 2014
IEEE International Conference on Multimedia and Expo, the 2012–2013 IEEE
International Conference on Information Reuse and Integration, 2012 IEEE
International Symposium on Multimedia, and 2010 IEEE International Con-
ference on Multimedia and Ubiquitous Engineering (MUE). In addition, she
is a frequent panelist for National Science Foundation panels and an Editorial
Board member of several international journals.

Shu-Ching Chen (M’95–SM’04) received the M.S.
degrees in computer science, electrical engineering,
and civil engineering and the Ph.D. degree in electri-
cal and computer engineering from Purdue Univer-
sity, West Lafayette, IN, USA, in 1992, 1995, 1996,
and 1998, respectively.

He is currently a Full Professor with the School
of Computing and Information Sciences, Florida
International University, Miami, FL, USA. His
main research interests include distributed multime-
dia database management systems, multimedia data

mining, and disaster information management.
Dr. Chen is a Fellow of SIRI. He was a steering committee member of the

IEEE TRANSACTIONS ON MULTIMEDIA from 2011 to 2013. He received
the 2011 ACM Distinguished Scientist Award and the Best Paper Award from
the 2006 IEEE International Symposium on Multimedia.

Giri Narasimhan received the B.Tech. degree in
electrical engineering from the Indian Institute of
Technology, Bombay, India, and the Ph.D. degree in
computer science from the University of Wisconsin,
Madison, WI, USA.

He is a Professor with the School of Computing
and Information Sciences, Florida International Uni-
versity (FIU), Miami, FL, USA. He is also currently
the Associate Dean for Research and Graduate Stud-
ies with the College of Engineering and Computing,
FIU. He has been on the program committee of

numerous international conferences and is on the editorial board of three
international journals. His research has been funded by the US National Science
Foundation, US National Institutes of Health, state agencies, and industry. He
has more than 100 refereed publications to his credit in the form of journal
publications, conference proceedings, and book chapters. He is the coauthor
of a monograph entitled Geometric Spanner Networks (Cambridge University
Press) and has coedited two conference proceedings. His research interests are
in the design and analysis of algorithms and bioinformatics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

