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Abstract Bacterial colony enumeration is an essential tool
for many widely used biomedical assays. However,
bacterial colony enumerating is a low throughput, time
consuming and labor intensive process since there may
exist hundreds or thousands of colonies on a Petri dish, and
the counting process is usually manually performed by
well-trained technicians. In this paper, we introduce a fully
automatic yet cost-effective bacterial colony counter which
can not only count but also classify colonies. Our proposed
method can recognize chromatic and achromatic images
and thus can deal with both color and clear medium. In
addition, the proposed method is software-centered and can
accept general digital camera images as its input. The
counting process includes detecting dish/plate regions,
identifying colonies, separating aggregated colonies, and
reporting colony counts. In order to differentiate colonies of
different species, the proposed counter adopts one-class
Support Vector Machine (SVM) with Radial Basis Func-
tion (RBF) as the classifier. Our proposed counter demon-
strates a promising performance in terms of both precision
and recall, and is robust and efficient in terms of labor-and
time-savings.
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1 Introduction

In an oral cavity, there are over five hundred bacterial
species and several of them have very close relationship
with various dental diseases, such as dental caries and
periodontal diseases. Take dental caries as an example, it is
reported a most common infectious disease in children and
also its prevalence remains on the top of a few diseases in
adult. Dental caries is well-known a multi-factor disease. It
is not occurred with the absence of either one of
fermentable dietary carbohydrate and dental plaque bacte-
ria. To be able to quantify the amount of bacteria in the oral
samples, such as saliva samples and plaque samples, is very
important for monitoring the progress of the disease and
even for indicating the susceptibility of future occurrence of
the disease. For periodontal and endodontic diseases, the
bacterial culture from the oral samples is also an important
diagnostic tool that helps to determine the proper antibiotic
agents to use clinically. To analyze the result from bacterial
culture, we need to adopt bacterial colony enumeration to
count the number of viable bacteria as colonies, and
sometimes, there is a need to count the number of colonies
of a specific strain.

In general, the diagnostic method is achieved by pouring
a liquefied sample containing microbes onto agar plates,
incubating the survived microbes as the seeds for growing
the number of microbes to form colonies (a.k.a. colony
forming unit-CFU) on the plates. The evaluation is done by
examining the survival rate of microbes in a sample. These
assays are also widely used in biomedical examinations,
food and drug safety test, environmental monitoring, and
public health (Liu et al. 2004). Figure 1 shows two example
images of colonies on a 100 mm Petri dish.

Although this kind of diagnostic assay is very useful,
there are two major issues: (1) bacteria colony enumeration,
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and (2) bacteria colony classification. The bacterial colony
enumerating is a low throughput, time consuming and labor
intensive process since there may exist hundreds or
thousands of colonies on a Petri dish, and the counting
process is usually manually performed by well-trained
technicians. The manual counting is an error-prone process
since the results tend to have more subjective interpreta-
tions and mostly rely on persistent practice, especially when
there are a vast number of colonies on the plate (Chang et
al. 1994). Thus, having consistent criteria is very important.
Another issue is bacteria colony classification. As afore-
mentioned, in an oral cavity, there are over five hundred
bacterial species. Hence, it is possible that there is more
than one bacteria strain that exists in the sample. Figure 2
shows a Petri dish with several bacteria species from an oral
cavity.

In many cases, especially in clinic study, there is often a
need to count colonies of a specific strain in a sample.
However, to identify a specific strain of colonies is a tough
task, even for experienced human operators. To reduce the
operator’s workload and to provide consistent and accurate
results, colony counting devices have been developed and
commercialized in the market (Dahle et al. 2004). We
review these counters available in the market and classify
them into two categories.

The first kind of counter is called automatic digital
counters, widely used in most laboratories. However, they
are not truly automatic since they rely on technicians who
use probe to identify each colony so that the sensor system
can sense and register each count.

The second type of counter is semi-automatic or
automatic counters. Typically, these counters are often very
expensive. These high-priced devices often come with their
own image capture hardware for acquiring high quality
images to optimize the counter’s efficiency and perfor-
mance. However, the affordability of this kind of equipment
is still a non-trivial issue for most laboratories due to the
high price of such equipments in the market. Those
laboratories that need to perform a huge amount of
enumeration tasks may need more than one high-
throughput counter to fit their needs. Thus, colony

enumeration devices pose a significant budgetary challenge
to many laboratories (Putman et al. 2005).

In addition, some automatic counters accurately detect
colonies by growing bacteria on special growth medium
which contains fluorogenic substrates (COLIFAST 2008).
Bacteria metabolize the substrates, and then produce
fluorescent product for detection. These systems are
extremely sensitive, and are good for detecting micro-
colonies. However, the fluorogenic substrates used in the
medium are costly, and the fluorescence can only be
detected by a sensitive instrument. Besides, some automatic
counters (Niyazi et al. 2007) still require users to manually
specify the plate/dish area and provide parameters prior to
the actual enumeration process. Some may need operators
to adjust the threshold values in order to handle dishes/
plates/medium that differ from their default settings. In such
cases, human operators are heavily involved in the
operation, and it is thus not efficient for high throughput
processing of plates/dishes. Moreover, most of these
automatic counters do not have the ability to identify and
enumerate a specific strain from a culture with several
bacteria species.

Further, laboratories have needs to use various types of
dishes and plates in examinations. However, most of the
commercial counters are designed for 60–150 mm Petri

Fig. 2 Bacteria culture contains colonies of different bacteria strains
from an oral cavity

Fig. 1 a Mutans Streptococci
colonies with Mitis-Salivarius
agar; b Escherichia Coli colo-
nies with LB agar, on a 100 mm
Petri dish
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dishes, and thus, lack the flexibility for accommodating
plates with different sizes and shapes. Furthermore, some
existing counters use only binary images for detecting
colonies, with which plenty of important properties of the
colony, such as color, are lost, which can be used to identify
the genus of the bacteria.

To address the above problems, our goal in this study is
to design and implement a cost-effective, software-centered
system for detecting as well as classifying bacterial colonies
in a fully automatic manner. Therefore, more time and
money can be allocated to other priorities for those
laboratories. Our proposed method can recognize chromatic
and achromatic images and thus can deal with both color
and clear medium. In addition, as image acquiring devices
such as digital cameras and flatbed scanners become
popular and affordable, we are motivated to use these
devices to obtain cost-effective yet high-quality images for
colony counting and classification, without binding to
expensive image capturing and display devices. Thus, the
proposed method is software-centered and can accept
general digital camera images as its input. The counting
process includes detecting dish/plate regions, identifying
colonies, separating aggregated colonies, and reporting
colony counts. In order to differentiate colonies of different
species, the proposed counter adopts one-class Support
Vector Machine (SVM) with Radial Basis Function (RBF)
as the classifier (Schölkopf et al. 1999; Etzion et al. 2005).
To our best knowledge, there is no existing commercial tool
or software developed by academic researchers that can
perform counting and classification at the same time. Our
proposed counter has a promising performance in terms of
precision and recall, and is efficient as shall be demonstrat-
ed in our experiments.

In the remaining of this paper, our preliminary work of
this study is described in Section 2. The system details are
introduced in Section 3. Section 4 demonstrates the
experiment results. Section 5 concludes this paper.

2 Problem statement and initial testing results

In automating the bacteria colony counting process, one of
the challenges is to accommodate the variations in the
colors of bacteria colony and culture medium. This is
because different strains of bacteria may require different
nutrients, and these ingredients make the culture medium
colored differently. In addition, bacteria that grow on
different kinds of culture medium may appear in different
color. Hence, while some bacteria colony images contain
abundant color/chromatic information, others do not. In
general, we can categorize bacteria colony images into two
types based on their chromatic features, including chromat-
ic images and achromatic images. For example, Fig. 1a

shows the Mutans Streptococci grown as black colonies on
the blue color Mitis-Salivarius agar. This kind of image is
classified as chromatic image since it contains abundant
color information. On the contrary, Fig. 1b shows the
Escherichia Coli grown as white colonies on the clear/
transparent LB agar. This kind of image is considered to be
achromatic since it lacks color information. Based on our
experience with using existing software for colony count-
ing, it is almost impossible for one single system, or a
single algorithm, to accommodate the variations in different
types of medium. In this study, we intend to process the two
types of bacterial colony images that do or do not carry
color information in different ways.

Although human operators can easily recognize bacteria
colonies on medium after some training, computers can
hardly “see” these colonies without any prior knowledge.
This motives us to design a three-step approach for
simulating human’s recognition behavior. When human
operators examine a bacteria colony image, they gradually
identify objects from the image. First, the dish/plate region,
which is the largest object in the image, is identified.
Second, within the dish/plate region, one starts to identify
colonies based on some criteria such as color and shape. If
colonies are clustered together, the operator will try to
separate the clustered colonies based on their best visual
judgment. In addition, if the dish/plate contains more than
one bacteria species, the operator also needs to identify
manually the bacteria strain(s) that they are interested. Once
all colonies are identified, the operator counts the total
number of colonies for each bacteria strain.

The key issues we aim to solve in the first two steps are
segmentation and classification problems. Segmentation
distinguishes foreground objects from the background,
and classification identifies objects of a specific type (e.g.,
a specific bacteria strain) from a collection of objects. We
describe the segmentation problem first, followed by the
classification problem since the colony classification is
based on the segmentation results.

To identify objects from the background, the edges and
contours of objects play an important role in the human
visual system. In a chromatic image, we can easily
recognize colonies by identifying the color difference
between colonies and medium. Hence, we adopt color
similarity in HSV (Hue-Saturation-Value) color space to
assist the detection of colony boundaries in a chromatic
image. On the other hand, we identify colonies in an
achromatic image by observing the contrast difference
between colonies and medium. An achromatic image can
be considered as an intensity (or grayscale) image since it is
short of color information. Segmentation in an intensity
image is similar to a clustering process which minimizes
the intra-class variance of the foreground/background
pixels and maximizes the inter-class variance. A brute-
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force approach can be to use one single threshold to classify
pixels into two classes. Otsu’s (1979) method is one of the
widely used thresholding techniques. It calculates a global
threshold for an intensity image and uses it to convert the
image into a binary image. However, it is not appropriate to
directly use Otsu’s (1979) method to extract colony
segments due to the following reasons: First, a simple
global threshold can cause false positives due to artifacts,
such as scratches, dusts, markers, bubbles, reflections, and
dents in the image. Figure 3 shows some artifacts on a dish
with clear LB agar.

Background intensity variation is another issue because
in some cases, especially those with white colonies grown
on clear medium, we need to put the dish/plate on a darker
surface to enhance the contrast. Otherwise, the colonies
cannot be easily seen, even by trained eyes. The back-
ground intensity variations can be caused by the different
reflecting capabilities of different black surfaces, or
sometimes caused by different lighting conditions. In
Fig. 4, the top two images show the same Petri dish placed
on two different dark surfaces. The image on the right has a

much lower intensity (darker) than that of the image on the
left. Thus, applying global thresholding techniques directly
on those images may result in inconsistent segmentation
results due to the variations in background intensities. The
bottom two images in Fig. 4 demonstrate the segmentation
results by Otsu’s (1979) method for the two images in the
top row of Fig. 4.

Clustering is another popular choice for object segmen-
tation. To test the performance of clustering techniques on
colony images, we applied a commonly used clustering
technique, k-means clustering, on the bacteria colony
images (MacQueen et al. 1967). The k-means clustering
algorithm initializes k seeds as the centroids of the k
clusters. It iteratively assigns each data point to its nearest
cluster. Then, the new cluster centroids are calculated for
the next iteration. It stops when there is no more data
replacement (all clusters are stable). In Fig. 5, the k-means
clustering results for the two achromatic colony images in
Fig. 4 are presented. We choose k= 3 in our case, hoping
that pixels in an image can be grouped into 3 classes —
background, colonies, and artifacts. In Fig. 5, each row
corresponds to one of the two images, while each column
corresponds to one of the 3 clusters. The non-black pixels
represent pixels in the same cluster.

In Fig. 5, we observe that the three clusters roughly
correspond to background, colonies, and artifacts, from left
to right. However, for the colony cluster (the central
column), k-means method detects not only the colonies,
but also lots of pixels which belong to the medium or dish
areas.

The lesson learnt from the above experiments is that it is
difficult to use one single thresholding or clustering
technique to achieve our goal. In this paper, the proposed
framework processes the chromatic and achromatic images

Fig. 3 Artifacts on a 100 mm Petri dish with clear LB agar

Fig. 4 (Top): The same dish
placed on two different black
surfaces; (Bottom): The results
after applying the Otsu’s method
directly on the two images at the
top
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in different ways. In particular, it first determines whether
or not an image has color information. Then, the dish/plate
area is located. In the third step, colony candidates are
identified, which are subject to further statistics test in order
to identify the ‘true’ colonies. Clustered/aggregated colo-
nies are further separated by the use of Watershed algorithm
(Luc and Pierre 1991). Finally, we count the surviving
colony candidates.

A related yet separate issue is the colony classification.
In order to solve this problem, we first extract the features
with distinguishing power for each colony, and then
develop a classifier based on those features.

To find features which can describe the difference
between different types of bacteria strains, we first observe
that different types of bacteria will grow as colonies with
different morphologies and/or different color/intensity dis-
tributions. This is further complicated by the fact that even
the same type of bacteria, when grown on different
medium, may have different color/intensities. Hence,
colony morphology is an important indicator in classifying
bacteria strains. In fact, in Holt’s book (Holt 1994) titled
“Bergey’s Manual of Determinative Bacteriology,” there are
descriptions for the colony morphologies of each bacterial
species. Several features, such as size, color, shape, can be

used to characterize a colony. We exemplify colonies with
different morphologies in Fig. 6.

It is highly possible that two different bacteria strains
have similar morphological properties, e.g. in Fig. 6,
Columns 1 and 2 are two colonies with different shapes,
while their color variances are similar (the color is darker at
the center, and relatively lighter at the outer region);
Columns 1 and 3 are both round shaped, but their color
variances are quite different. Therefore, it is not sufficient
to use only one colony feature to distinguish all colonies. In
this study, we collect two shape features (solidity, com-
pactness) (Liu et al. 2000) and two color features (first and
second order color moments) (Stricker and Dimai 1996), to
classify colonies (Huang et al. 1997).

Based on the colony features, we adopt one-class
Support Vector Machine (SVM) with Radial Basis Function
(RBF) as the core algorithm for colony classification. One-
class SVM is a supervised learning method for classifica-
tion. It is widely used in supervised learning. In this study,
we use one-class SVM as the classifier to recognize user
specified bacteria strain in the image. With one-class
classification, relevant colonies are considered to be alike
in a similar way while irrelevant colonies are considered to
be outliers that deviate from the target class in their own

Fig. 5 k-means clustering
algorithm applied on the two
bacteria colony images in Fig. 4

Fig. 6 Bacteria colonies with
different morphologies
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ways. The detail of the proposed system is described in
Section 3.

3 The proposed system

Figure 7 illustrates the architecture of the proposed system.
Given an input image, the proposed system first examines
its chromatic/color components, and selects a proper
processing method, depending on the type of image
(chromatic/achromatic). In the second step, we adopt a
fictitious hierarchical structure concept, assuming the image
is composed of three layers, including background, con-
tainer, and colony. These three layers conceptually form a
hierarchical structure with three levels since the colonies
(top level) are cultured on the dish/plate (middle level)
which is encompassed by the background (bottom level). In
order to visualize this concept, we compare the bacteria
colony image layout to a three-level hierarchical structure
in Fig. 8. Based on this hierarchical structure assumption,
the proposed system extracts colonies from the image by
gradually removing objects from other layers (background
and container).

Once all colonies on the image are identified, we check
the morphology of each colony object. This is necessary
because some colonies may aggregate together to form a
larger cluster. Hence, to obtain an accurate colony count,
those clustered colonies need to be separated. For this

purpose, we adopt the Watershed algorithm to detect and
separate those plausible colony clusters. Once all the colony
clusters on the dish/plate have been identified and isolated,
we simply count the number of detected segments and use
it as the total count of bacteria colonies.

For colony classification, at this preliminary stage, we
rule out those clustered colonies because Watershed
algorithm may sometimes separate a colony with irregular
shape (e.g. column 4 in Fig. 6) into a set of smaller
colonies. Hence, we perform classification only on those
segments considered to be single colony (not clustered).
The shape and color features of each single colony are then
collected. If the user wants to count the number of colonies
of a specific strain, the system prompts the user to select
several colony segments of that strain from the image. The
selected colonies are used as training data to train a non-
linear SVM classifier which classifies all colony segments
into two groups — the group of colonies of that specific
strain, and all the other colonies (considered outliers to that
specific strain) in another group. This allows the system to
report the colony count for a particular bacteria strain.

3.1 Color feature detection

As mentioned in Section 2, some bacteria colony images
may contain abundant color information. For those chro-
matic images, we propose a color feature based method to
detect foreground objects in the target region (region-of-

Fig. 7 The overview of the
proposed system

Background

Container

Colony

Background

Container

Colony

Fig. 8 The hierarchical
structure of objects in a bacteria
colony image
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interest). On the other hand, those images with very little
color information (almost no hue) shall be dealt with
differently.

To choose a proper segmentation method for each type
of image, we first need to determine whether the imported
image is chromatic or achromatic. This is achieved by
examining the standard deviation of mean values from all
three color channels R, G, and B. If the RGB components
of a pixel have similar values, it is most likely a gray pixel,
and vice versa. Thus, a small standard deviation indicates
low hue or a lack of chromatic components. The smaller the
standard deviation is, the higher the possibility that the
image is achromatic (e.g. those colony images with clear
medium and white colonies.) It is at this point that
chromatic images (e.g. Mutans Streptococci appears as
black colonies on the blue color Mitis-Salivarius agar) are
differentiated from achromatic images (e.g. Escherichia
Coli appears as white colonies on the clear LB agar) and
they will be dealt with separately. Figure 9 shows two
different types of images with their normalized average
RGB values (R, G, and B) and standard deviation (S).

In Fig. 9, we show a set of images with different colors
and backgrounds. The left column contains dishes with

clear LB agar placed on different kinds of black surfaces.
The right column contains dishes with blue Mitis-Salivarius
agar placed on some bright surfaces. The clear agar forms
achromatic images, and the blue agar forms chromatic
images. The S (standard deviation) values of the achromatic
images are 0.02, 0.01, and 0.04, respectively, and those of
the chromatic images are 0.19, 0.19, and 0.14, respectively.
This demonstrates that the standard deviation of the average
RGB values in an image is an effective indicator of
achromatic/chromatic images.

In view of the different characteristics of achromatic and
chromatic images, we then develop different segmentation
methods for these two types of images in the subsequent
image segmentation step.

3.2 Colony segmentation

The core step of the proposed bacterial colony counter is
colony segmentation. The goal of segmentation is to
distinguish foreground objects from the background. As
mentioned earlier in Section 2, global thresholding tech-
niques use a single threshold value to separate foreground
from background, while the clustering techniques partition

Fig. 9 Differentiating chromatic
images (right column) from
achromatic images (left column)
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objects based on their inter-and intra-class similarities. The
thresholding techniques are quite straightforward and
efficient, but are not robust when dealing with images con-
taining more than two classes. According to our experi-
ments, the performance of multi-class clustering methods,
which are more complicated and usually more time-
consuming, is in general worse than that of the thresholding
techniques in terms of robustness, explainability, and
projectibility. Therefore, in this paper, we propose a thresh-
olding based technique for image segmentation.

To do segmentation with thresholding techniques, we
have to solve the problem that the target region contains
more than two classes. The natural hierarchical structure of
the objects in colony images (as shown in Fig. 8) indicates
that we may be able to gradually separate them in a
progressive way. Our targeted region, at the first level, is
the entire image. The foreground object is thus the dish/
plate region, and the background is the area surrounding the
dish/plate region. Once the dish/plate area is separated from
the background, we proceed to the second level in which
the foreground objects become the colonies and the
background is the medium and other artifacts in the dish/
plate region. With this method, we can gradually isolate
small objects from larger ones.

Based on the hierarchical structure aforementioned, the
proposed system adopts similar, but slightly different
methods in handling chromatic and achromatic images.
The major difference lies in whether or not to use the color
information in colony segmentation. No matter it is a
chromatic or achromatic image, our goal in this step is to
identify the dish/plate region in an image, and then,
recognize colonies in the detected dish/plate region.

3.2.1 Dish/Plate region detection

The automatic detection of dish/plate regions can relieve
the human operators from the tedious work of manually
specifying the target dish/plate region. To distinguish the
dish/plate region from the background, we first apply the
contrast limited adaptive histogram equalization (CLAHE)
on the converted grayscale images, which operates on small
regions called tiles in the image rather than the entire image
(Karel 1994). Each tile’s contrast is enhanced and the
neighboring tiles are then combined using bilinear interpo-
lation to eliminate artificially induced boundaries.

Then we apply the Otsu’s method on the contrast
enhanced image to identify the dish/plate region as a target
region. For some target regions detected this way, there
may be small holes inside, and we fill in the holes by
adopting a morphology-based method and consolidate the
target regions. Sometimes, this method can also detect
some small objects that are not part of the target dish/plate
region. We assume the dish/plate region should occupy the

most (and central) part of the image, thus there is an extra
step in our algorithm which is designed to remove those
isolated small objects. Some examples of detected target
regions of dish/plate, after applying the above steps, are
shown together with their original images in Fig. 10. The
results show that the automatic dish/plate region detection
algorithm is effective regardless of the size and shape of the
dish/plate. After the dish/plate region has been extracted,
we can apply segmentation again within the detected dish/
plate region.

3.2.2 Colony detection

The second step is to extract colonies from the dish/plate
region, and identify single and clustered colonies for
subsequent colony enumeration and classification. In order
to detect colony segments, in this step, we adopt a color
similarity measurement for chromatic images, while using
Otsu’s thresholding technique on the dish/plate region in
achromatic images. For chromatic images, a color similarity
metric in HSV (Hue-Saturation-Value) color space (Seber
1984) is adopted for detecting colony boundaries. This is
necessary because a simple global threshold cannot extract
all colonies due to the existence of artifacts such as
scratches, dusts, markers, bubbles, reflections, and dents
in the image. The calculation of color similarity in HSV
color space is shown in Equation 1.

CSij¼ 1� 1ffiffi
5

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj�xi
� �2þ yj�yi

� �2
þ zj�zi
� �2r

xi¼ Si�cos Hi�2pð Þ
yi¼ Si�sin Hi�2pð Þ
zi¼ vi

ð1Þ

where CSij is the color similarity of two pixels i and j.
H, S, V are the hue, saturation, and value of a pixel in the
HSV color space. This approach is based on the assumption
that pixels inside a segment, no matter it is a colony
segment or a medium segment, should have higher
similarity values with its neighboring pixels than those of
the pixels along the segment boundary with their neighbors.
We thus calculate the color similarity values between a
pixel and its eight neighbors, and use the minimum
similarity value to represent the maximum color difference
with its neighbors. Thus, pixels inside a segment should
have higher minimum similarity values. On the contrary,
pixels on the boundary of a segment have lower values.
After the calculation, the boundaries are more evident, and
the minimum color similarity values form a matrix as a
grayscale image as shown in Fig. 11b.

Subsequently, we apply the “Laplacian of Gaussian”
(LoG) filter to sharpen the edges. The LoG filter is
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Fig. 10 Segmentation results
for detecting dish/plate regions.
Raw images (left column);
Otsu’s method (middle column);
the proposed method (right
column)
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based on the sum of the second derivatives of the two-
dimensional Gaussian, which is defined in Equation 2.

LoGs x; yð Þ¼ � x2þy2�s2

s4

� �
� e�

x2þy2

2s2 ð2Þ

As shown in Fig. 11c, the edges of segments are
sharpened with noise impulse after applying the LoG filter.
The image can be considered as a binary image, and the
convex hull area of each segment can be examined. If the
convex hull area of a segment is extremely large, that
segment must be on the rim of the container (or part of the
rim). Hence, we can remove those large segments on the
rim, and then fill the inner hole of those small segments. To
this end, the remaining segments include solid colony
segments together with noise segments and few small rim
segments. We illustrated the resultant image in Fig. 11d.

For achromatic images, we directly apply the Otsu’s
method on the dish/plate region in the original achromatic
image for colony detection. After this step, colony segments
in both types of images are isolated from medium regions.
However, there are noise and small rim segments in the
background (see Fig. 11d). All these segments are consid-

ered to be colony candidates. Next we will examine whether
a candidate segment is a noise or rim segment by performing
a statistics test and a morphological test, respectively.

3.2.3 Noise removal

The idea of using a statistics test to remove noise segments
is based on the assumption that the distribution of pixel
values in a colony and that in its surrounding background
are significantly different. Hence, we adopt a two-sample
Kolmogorov-Smirnov test for this. The two-sample
Kolmogorov-Smirnov test compares the distribution of
values in the two data vectors xf and xb of length nf and
nb, respectively, representing random samples from some
underlying distributions, where xf are pixel values collected
from a segment, and xb are pixel values collected from
surrounding background of that segment. The null hypoth-
esis for this test is that both vectors are drawn from the
same distribution, and the alternative hypothesis is that they
are drawn from different continuous distributions. The
reject of null hypothesis implies the tested segment is a
colony. Otherwise, the tested segment is a noise.

Fig. 11 a The raw image; b the
minimum color similarity im-
age; c the result after applying
LoG filter; d the result after
filling closed segments and re-
moving extremely large seg-
ments; e the result after applying
the two-sample Kolmogorov-
Smirnov test and a morphologi-
cal test to remove noise and rim
segments
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However, the tests on rim segments of the dish/plate may
reject null hypothesis since they looks quite different from
their surrounding backgrounds. To solve this problem, we
further examine the location and the morphology of those
segments which reject the null hypothesis. This is done on
the basis of the observation that a rim segment should be
located closely to the boundary of the container, and the
variance of its segment width is relatively small.

We estimate the approximate location of a container rim
as follow. The radius of a Petri dish is approximated by the
minor axis length of the minimum bounding box of the dish
region segment. Also, the center of the dish can be detected
with Hough transform (Hough 1962). With the dish/plate
center and its radius, we can estimate a region that
approximately covers the rim of the dish.

The variance of the segment width is evaluated based on
their morphology. This is achieved by first rotating the
major axis of the minimum bounding box of a segment to x
axis, then projecting the width of the segment, i.e. the
number of segment pixels along the minor axis, onto the x
axis. The projection forms a vector. If the variance of the
vector is small, the corresponding segment is more likely to
be a rim segment. We illustrate this idea in Fig. 12. We
combine the above two criteria to eliminate a segment if it
has a small width variance and resides in the rim region.
With this method, most of the rim segments can be detected
and removed.

3.2.4 Colony separation and enumeration

Ideally, an isolated foreground object from the previous
step corresponds to one colony. However, such an object
may correspond to more than one colony because several
colonies may aggregate together. There is a need to split
them in order to get the correct colony counts. The first
issue is to distinguish single colonies from clustered
colonies. This is done by using the following assumption.
In general, the convex hull of a single colony segment is
close to a round shape. Thus, its minimum bounding box is
close to a square. This implies that the ratio of the major
and the minor axis lengths is close to 1. On the contrary, in
a clustered colony segment, the ratio of the major and
minor axis lengths should be away from 1 since its

minimum bounding box is like a rectangle. This property
is used in this study to distinguish aggregated colonies from
single colonies. In order to split the connected colonies, we
consider the intensity gradient image as a topological surfaces
(Luc and Pierre 1991), thus the Watershed algorithm can be
applied to divide clustered colonies in the image just as
water flood in a topographical surface. To illustrate the con-
cept, we demonstrate the application of Watershed algorithm
in Fig. 13. After applying the Watershed algorithm, almost
all clustered colony segments have been split and are ready
for the colony enumeration. After all colonies had been
properly split and identified, the final step is to acquire the
total number of viable colonies by adding up the number of
the segments that have been identified as colonies.

3.3 Colony classification

In this paper, we propose to use the one-class Support
Vector Machine with Radial Basis Function (RBF) kernel
for colony classification. The reason we select a supervised
learning method as our classification algorithm is that
bacteria colony classification is indeed a complicated task
even for well-trained human operators. Therefore, while we
always try to minimize the human labor involved, a small
effort to help collect the training data is required from the
user. This is done via a ‘feedback’ process in which the user
is asked to select 3~9 colonies as the training data for the
colony strain that is of his interest.

The one-class SVM can be considered as a hyper-sphere
with radius r. The center of this hyper-sphere is the query
target, in our case, the user-specified bacteria strain. The
one-class SVM collects training data from the user’s
feedback to construct such a hyper-sphere which encloses
colonies of this particular strain. Objects within the hyper-
sphere are considered to share common properties, hence
classified as one class. All other objects are considered to
be outliers of this class.

Fig. 13 The concept of Watershed algorithm

Minimum bounding box

Variance is small Variance is large x

Fig. 12 An example of the segment width variance
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Before constructing the classifier, our first step is to
select the colony feature(s) with the most distinguishing
power. In our dataset, we have 4 different bacteria strains as
shown in Fig. 6. After carefully examining the data, we
extract four features for each colony, including solidity,
compactness, color moment 1 (color mean), and color
moment 2 (color variance). The solidity feature is defined
as the ratio of the segment area to its convex hull area. The
compactness feature is defined as the ratio of (segment
perimeter)2 to the segment area. The third feature is color
moment 1, which is the mean of the pixel intensity values
within the segment. The last colony feature is color moment
2, which represents the variance of the pixel intensity
values within the segment.

These four colony features are collected for each single
(non-clustered) colony identified in the image segmentation
step. The reason we rule out clustered colonies at this stage
is that clustered colonies may contain colonies from
difference bacteria species. Another reason is that, Water-
shed algorithm may split those colonies with irregular
shape such as the columns 2 and 4 in Fig. 6, although they
are not clustered colonies, into a set of smaller colonies.
Hence, at this stage of our work towards colony classifi-
cation, we test our colony classification algorithm only on
single colonies at this moment. In addition, we notice that
the range of each feature is quite different, and therefore, z-
score normalization is performed for each feature before it
can be used in the classification.

Our system collects training data from users by prompt-
ing them to select several colonies of the specified strain
from the given image. The proposed system takes user
inputs and retrieves the corresponding features of the
selected colonies in the training set. The one-class SVM
uses user inputs to construct a classifier, and then applies
the classifier on the feature vectors of all the remaining
colonies in that image. The classifier will return scores
representing the similarity between testing data and the
classifier. In general, all data with score value greater than 0
are considered to be in the same class as those in the
training set.

4 Experimental results

In our experiments, the test platform is an Intel® Core™ 2
Duo T7700 2.4 GHz machine with 2GB memory. We use
four different digital cameras as the image acquiring
devices to obtain dish/plate images for bacterial colony
detection. The four digital cameras include a Nikon D50
Digital SLR Camera (6.0-megapixel) with a resolution of
3008×2000, a Canon PowerShot A95 Camera (5.0-mega-
pixel) with a resolution of 2592×1944, a Sanyo DSC-J1
Camera (3.2-megapixel) with a resolution 1600×1200, and

an Asus P525 PDA cell phone built-in camera (2.0-
megapixel) with a resolution of 1600×1200.

Additionally, Petri dishes with two different types of
medium and bacteria strains are used in our experiments.
The first type of images is obtained from the Department of
Pediatric Dentistry at the University of Alabama at
Birmingham. This type of plate contains blue color Mitis-
Salivarius agar which is used for isolating Mutans
Streptococci. These acid-producing bacteria attack tooth
enamel and cause dental caries. The second type of plate is
obtained from the Division of Nephrology, Department of
Medicine at the University of Alabama at Birmingham.
This type of plates contains the clear LB agar which is
widely used in laboratories for Escherichia Coli culture.

4.1 Dish/Plate detection

The goal of the dish/plate detection algorithm is to detect
the dish/plate area. We compare and evaluate the perfor-
mance of the proposed dish/plate detection algorithm with
Otsu’s method by applying both methods on 100 chromatic
and achromatic images. Some sample segmentation results
are demonstrated in Fig. 10. The performances of both
methods are evaluated and compared using the accuracy
rate. The accuracy rate is defined as the ratio of the number
of accurately detected dish/plate segments to the total
number of dish/plate segments, where a dish/plate area is
considered accurately segmented if the difference between
the detected dish/plate segment and its ground truth mask is
less than 5%.

The accuracy rates for the proposed method and Otsu’s
method are 96% and 38%, respectively. For the 25
chromatic images, the accuracy rates for the proposed
method and Otsu’s method are 92% and 0%, respectively.
For the 75 achromatic images, the accuracy rates for the
proposed method and Otsu’s method are 97% and 50%,
respectively. It is obvious that the proposed method
outperforms Otsu’s method in dish/plate region detection.
We summarize the accuracy rates for both methods in
Table 1.

The experimental results show the proposed method
outperforms the Otsu’s method in processing both chro-
matic images and achromatic images. It is obvious that
using a single thresholding approach alone, i.e. Otsu’s

Table 1 Performance comparison for dish/plate region detection

Method Chromatic
images

Achromatic
images

Over all

(Amount: 25) (Amount: 75) (Amount: 100)

Proposed method 92% 97% 96%

Otsu’s method 0% 50% 38%
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method, is not sufficient. The reason is that, for chromatic
images, the background area and the central part of the
dish/plate area are relatively bright due to the light box
being used to enhance the contrast. The Otsu’s method thus
cannot detect the central area of the dish/plate because it
has similar intensity as the background. In the case of
achromatic images, there are two major factors that make
the Otsu’s method fail — the uneven medium and the
artificial objects such as markers. The former may cause
uneven light reflections and cause part of the dish/plate area
darker than other areas, while the latter may reduce the
brightness of the dish/plate area. On the other hand, the
proposed method combines Otsu’s method with some
morphological constrains and is thus able to recover the
missing foreground area and remove the noise from the
detected dish/plate area.

4.2 Colony detection

Since the characteristics of the chromatic and achromatic
images are quite different, it is more appropriate to discuss
the counter performance on them separately. In the experi-
ments, we compared the proposed counter (P.C.) with the
Clono-Counter (C.C.) (Niyazi et al. 2007) which is reported
by Niyazi in 2007, and the automatic counter (A.C.)
proposed in our previous study (Zhang and Chen 2007).

For chromatic images, we test the three counters on 9
images with 2161 colonies in total. The precision values of
the A.C. and C.C. methods are 0.97±0.03 and 0.52±0.19,
respectively; their recall values are 0.96±0.04 and 0.99±
0.01, respectively; their F-measure values are 0.96±0.01
and 0.67±0.18, respectively. The precision, recall, and F-
measure values of the proposed counter (P.C.) are about the
same as those of the A.C. method on chromatic images.
Table 2 shows the performance comparison on chromatic
images.

In addition, the time used by the proposed counter (P.C.),
Clono-Counter (C.C), and manual counting (M.C.) is
compared. The time used for a counter is greatly affected
by the number of colonies in an image, in particular the
manual counting. Hence, for a fair comparison, we test

these methods on different number of colonies. For manual
counting, in general, the ranges in common acceptance for
countable numbers of colonies on a 100 mm Petri dish are
between 30 and 300 (Breed and Dotterrer. 1916; Tomasiewicz
and Peeler 1980). According to this, we select 10 images
with colony numbers in this range and then divide them
into three groups, including Group I: 30–120 (2 images),
Group II: 121–210 colonies (2 images), and Group III:
211–300 colonies (6 images). To avoid bias, we apply
each method (including manual counting) to the 10 images
for three times. The time used by each method and the
output colony counts are also collected for performance
comparison.

The experimental results show that for Group I (30–120
colonies), the average running times for P.C., C.C., and
M.C. are 27.8±1.0, 44.1±7.5, and 11.0±1.1 (seconds),
respectively; for Group II (121–210 colonies), the average
running times for P.C., C.C., and M.C. are 27.4±1.1, 39.9±
2.6, and 36.4±3.9 (seconds), respectively; for Group III
(211–300 colonies), the average running times for P.C.,
C.C., and M.C. are 30.8±2.5, 45.9±11.2, and 148.3±14.6
(seconds), respectively. It is obvious that the proposed
counter almost always has the shortest time among all three
methods, except for Group I in which the number of
colonies is small. This is because human counters can
easily identify colonies when there are not many, without
the need to adopt a complicated segmentation process.
However, the manual counting time dramatically increases
as the number of colonies is increasing.

In addition to the running time, we also measure the
variation of the colony counts for each method. Both C.C.
and M.C. methods involve human interventions and may
produce various counting results. For Group I, the colony
count variations of the P.C., C.C., and M.C. methods are
0.0, 21.6, and 0.8, respectively; for Group II, the variations
of the P.C., C.C., and M.C. methods are 0.0, 45.6, and 8.0;
for Group III, the variations of the P.C., C.C., and M.C.
methods are 0.0, 15.8, and 15.1, respectively. From the
above results, we observe that as the number of colonies
increases, the variation of the M.C. method also increases.
This is because the manual counting is an error-prone
process. In the C.C. method, the large variation is due to the
different counting areas selected by the human operator.

To evaluate the robustness of the proposed counter (P.C.)
on achromatic images, we conduct the following two
experiments, and compare the performance of P.C. with
that of A.C. and C.C.

In the first experiment, we test the proposed counter
(P.C.) on 24 achromatic images (9 good quality images with
1080 colonies and 15 poor quality images with 330
colonies). The performance matrices of the P.C., A.C., and
C.C. methods (C.C.1 in Table 3) on good/poor quality
images are summarized in Table 3. From Table 3, we can

Table 2 Performance comparison on chromatic images

Method Precision Recall F-measure

P.C. 0.97±0.03 0.96±0.04 0.96±0.01

A.C. 0.97±0.03 0.96±0.03 0.96±0.01

C.C. 0.52±0.19 0.99±0.01 0.67±0.18

P.C.: The proposed counter

A.C.: Automatic counter (Zhang et al. 2007)

C.C.: Clono-Counter (Niyazi et al. 2007)
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observe that the P.C. significantly outperforms A.C. and
C.C. The average overall precision, recall, and F-measure
values of the P.C. method are 0.61±0.29, 0.94±0.06, and
0.69±0.20, while the corresponding values of A.C. and C.C.
are (0.44±0.24, 0.68±0.24, 0.44±0.13) and (0.00±0.00,
0.00±0.00, 0.00±0.00), respectively. The reason that the
C.C. method failed on all achromatic images is that it is
designed especially for gray-scale images under the assump-
tion that the foreground intensity is lower than the
background intensity. In our data set, however, the achro-
matic images have bright color foreground objects and dark
color background. Hence, the C.C. method cannot be
directly applied to our dataset. For a more fair comparison,
in the new experiment, we preprocess the achromatic images
in order to apply the C.C. method. The preprocessing steps
include (1) converting the RGB image into a grayscale
image, and (2) inverting the gray-level of the image. After
preprocessing, we obtain the overall precision, recall,
and F-measure values of the C.C. method (C.C.2 in
Table 3) as 0.22±0.25, 1±0.00, and 0.29±0.31, respec-
tively. The experimental results show that the proposed
counter (P.C.) has the highest F-measure value among all
the methods.

In the second experiment, we further apply the proposed
method on 15 different achromatic images taken from the

same dish, but with different background surfaces, zooms,
and lighting conditions. We measure the precision, recall,
and F-measure of the proposed counter. The average
precision, recall, and F-measure on the 15 achromatic
images are 0.93±0.11, 0.87±0.04, and 0.90±0.07, respec-
tively. The results of the consistency analysis show the
proposed system is quite robust.

4.3 Colony separation

In detecting colonies, there are some clustered colonies that
need to be further split into separate colonies. As mentioned
earlier, we adopt the Watershed algorithm to solve this
problem and find it effective in separating clustered
colonies according to our experimental results. An example
of the splitting result with the use of Watershed algorithm is
given in Fig. 14.

In this experiment, we apply the proposed method on all
8 images that contain clustered colonies. To obtain the
ground truth, we visually examined all 115 clustered colony
segments carefully and identified in total 240 colonies.

As mentioned earlier in Section 3.2.4, our assumption is
that a single colony segment is approximately a round
shape such that the ratio of its minor and major axis lengths
is close to 1. In other words, the greater deviation the axial

Image Condition Method Precision Recall F-measure

Good quality (9) P.C. 0.94±0.07 0.88±0.02 0.90±0.03

A.C. 0.71±0.06 0.42±0.16 0.52±0.12

C.C.1 0.00±0.00 0.00±0.00 0.00±0.00

C.C.2 0.52±0.13 1.00±0.00 0.67±0.12

Poor quality (15) P.C. 0.41±0.16 0.98±0.04 0.56±0.13

A.C. 0.27±0.12 0.84±0.07 0.40±0.12

C.C.1 0.00±0.00 0.00±0.00 0.00±0.00

C.C.2 0.04±0.04 1.00±0.00 0.07±0.07

Overall P.C. 0.61±0.29 0.94±0.06 0.69±0.20

A.C. 0.44±0.24 0.68±0.24 0.44±0.13

C.C.1 0.00±0.00 0.00±0.00 0.00±0.00

C.C.2 0.22±0.25 1.00±0.00 0.29±0.31

Table 3 Performance compari-
son on achromatic Images

P.C.: The proposed counter

A.C.: Automatic counter (Zhang
et al. 2007)

C.C.1 : Clono-Counter without
preprocessing (Niyazi et al.
2007)

C.C.2 : Clono-Counter with im-
age preprocessing (Niyazi et al.
2007)

Fig. 14 Clustered colonies sep-
arated by the Watershed
algorithm

Inf Syst Front



ratio is from 1, the higher the possibility that the segment
contains more than one colony. On the basis of this
assumption, we set a cutoff value on the ratio (0.7 in our
case) in order to obtain the candidate segments for applying
Watershed algorithm. Among the 115 clustered colony seg-
ments, 101 segments (actually containing 208 colonies) are
identified as candidates by our segmentation algorithm. After
applyingWatershed algorithm on the 101 candidate segments,
we successfully identify 167 colonies with no false positives,
which is about 80% of the ground truth (208 colonies).

In the proposed system, the colony separation process is
an essential step for accurate colony counting. This is
especially important when enumerating a large amount of
colonies, because high colony density implies more over-
lapped colonies in a dish/plate. It is worth noting that the
Watershed algorithm is an integral part of the proposed
system, in which each step contributes to the better
performance of the subsequent steps.

4.4 Colony classification

To evaluate the performance of the one-class SVM on
bacteria colony strain classification, we apply the proposed
classification method on 2 images taken from the same
plate, in which there are four different bacteria strains and
the morphology of each strain is shown in Fig. 6. The
reason for using a single plate in our experiment is that
getting the ground truth is very time consuming and labor
intensive since we need to manually verify each colony
under the golden standard — the microscope. In this plate,
the total colony numbers for each bacteria strain are 59, 30,
35, and 20 (S1, S2, S3, and S4 from left to right in Fig. 6),
respectively.

In addition, four colony features, including solidity (SO),
compactness (CO), color moment 1 (CM1: mean), and
color moment 2 (CM2: variance) are collected at the end of
the colony detection step. The collected colony features are
normalized using the z-score method.

Since one-class SVM is a supervised learning method,
users must provide training data to the classifier. In our
case, if a user wants to count the colony number of a
specific strain, he is required to select several colonies of
that strain from the image. The selected colony segments
will be used as the training data to construct a one-class
SVM classifier. The one-class SVM requires two parameters
γ and u as its input, where γ is a variable in the RBF kernel,
and u is the percentage of outliers in the whole class. We
test on different combinations of γ2{0.01, 0.1, 0.5, 1} and
u2{0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 0.98} in order to find
the best parameters. Our experimental results show that the
best γ and u values are 0.01 and 0.1, respectively.

While the classification process requires the user to
provide training data, the burden put on users should be

minimized. To determine the optimal size of the training
set, we use S1 which has the most colonies (59 colonies) in
the plate, to evaluate how the size of the training set affects
the classification results. The size of the training set in our
experiment is ranging from 3 to 35 colonies. For each
training set size n, we randomly select n colonies from the
images as the training set. For each training set, 12
combinations of colony features are tested for training the
corresponding one-class SVM classifier. The performance
of each classifier is evaluated using the F-measure. To
avoid bias, we repeat the above steps 60 times for
calculating the average F-measure value for each training
set size n and each feature combination.

Since our goal in this study is to enumerate the selected
bacteria strain, it is reasonable to emphasize recall more
than precision in calculating the F-measure. Figure 15
shows the 4 different weighted F-measures F2, F3, F4, and
F5. For instance, F2 indicates that recall is twice as
important as precision, and F3 indicates recall is three
times as important as precision, and so forth. In each plot,
the x-axis is the size of the training set and the y-axis is the
corresponding F-measure value. We can observe that as the
size of the training set increases, the F-measure value also
increases. It is obvious that the F-measure value starts con-
verging when the size of the training set is over 9. Based on
the results, both F4 and F5 measurements are good enough
for performance evaluation. We thus use F4 measure as the
criterion for subsequence performance evaluation.

We can also observe that the F-measure value increases
rapidly when the size of the training set changes from 3
to 9. Hence, we use the range of 3 to 9 to evaluate the
overall performance of the classification in the subse-
quent experiments.

The values in Table 4 are obtained by averaging the
results for all four types of bacterial colony strains. The
experimental results (as shown in Table 4) show that
the combination of solidity and color moment 2 (SO+CM2)
and the combination of compactness and color moment 2
(CO+CM2) produce the best results (0.915) among all
combinations in terms of F4-measure when the size of the
training set is 8. It is worth noting that in our experiments,
for each type of strain, the colonies of that strain are
randomly divided into two groups, one for training and
one for testing. There are in total 60 training-testing
groups randomly generated for evaluating the performance
of the classifier for each type of strain and each different
size of the training set.

Conceptually, the one-class SVM classifier creates a
boundary, i.e., a hyperplane, to separate the data points into
two groups. In the classification process, the classifier tries
to maximize the margin of the hyperplane and minimize the
classification error from the training data points. According
to this, we may consider adding a feature in the support
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vector as adding a constraint on creating the boundary.
Hence, as shown in Table 4, we can observe that the
precision value increases while the recall value decreases if
more features are used. Although the combination of the
four features has the highest precision value, it does not
mean this combination is the optimal choice. In fact, the
combination of features used to train the classifier should
be determined based on the purpose of the applications. For
example, the precision value is more important than the
recall value in some applications. On the contrary, in some
other applications, the recall value is more important than
the precision value. For example, recall (a.k.a. sensitivity)
is more important in disease screening while precision (a.
k.a. specification) is more important in disease differen-
tiation. Thus, it is not recommended to use a single critical
value of F-measure for diagnosis. In our case, as aforemen-
tioned, since we emphasize recall more than precision, F4 is
used in subsequence performance evaluations.

From Table 4, we observe that the best performance (F4:
0.915) is achieved when we use 8 training samples and (CO+
CM2) or (SO+CM2) features. This setup is thus chosen for the
following reasons: 1) First, since one of the goals of the
proposed approach is to reduce the manual labor, it is not
reasonable to involve too many human interventions, i.e.,
selecting a large amount of training samples. From that aspect,
a small training set is preferred. However, a training set with
less than 5 colonies does not have sufficient confidence.
According to our experimental results, the average F4 value,
when the training set contains less than 5 samples, is below

the acceptable F4 value of 0.90 for diagnosis. On the other
hand, the F4 values, when the training set has 6~9 examples,
are all above 0.90 and converge at around 8 samples.
Therefore, we decide to use 8 samples for training the
classifier in this paper. 2) Second, in order to select the
robust features for classification, we conduct more experi-
ments as shown in Table 5. Table 5 shows the classification
performance for each bacterial colony strain when the size of
the training set is 8. From the experimental results, we can
observe that the feature combinations of (CO+CM2) and
(SO+CM2) are quite effective in classifying S1, S2, and S3.
For S4, none of the feature combinations really work well.
This shows that the combination of color and shape features
adopted in this paper do not have sufficient distinguishing
power to classify S4 strain, while they are quite sufficient for
classifying S1~S3 because of the complementary nature of
these two features. Therefore, we decide that the combina-
tion of (CO+CM2) or (SO+CM2) is a good compromise
between classification accuracy and efficiency, while
admitting that more other features that complement the
existing combination can be incorporated into the classifi-
cation step.

5 Conclusions and discussions

The proposed approach (P.C.) is a much improved version
of the automatic colony counter (A.C.) developed in our
previous study (Zhang and Chen 2007). Like A.C., P.C. is a

Fig. 15 The classification results for different sizes of the training set
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software-based colony counter which can handle both
achromatic and chromatic dish/plate images. The differ-
ences between the proposed method (P.C.) and the one in
our previous work (A.C.) are: 1) the capability of handling
achromatic images has been greatly improved in the P.C.

approach. In the P.C. method, we redesign the segmentation
algorithm in A.C. for handling both chromatic and
achromatic images. In particular, for chromatic images,
we apply the “Laplacian of Gaussian” (LoG) filter to
sharpen the edges detected by the color similarity method;

Table 4 Colony classification results with different combinations of features and different training data sizes

Size of training set Feature combination Overall Rank

Precision Recall F-measure(F4)

mean std mean std mean std

7 EXP1 (SO) 0.446 0.252 0.977 0.040 0.879 0.064 30

EXP2 (CO) 0.437 0.234 0.954 0.066 0.853 0.072 54

EXP3 (CM1) 0.417 0.231 0.987 0.015 0.870 0.097 41

EXP4 (CM2) 0.472 0.217 0.997 0.007 0.908 0.078 7

EXP5 (SO+CM1) 0.527 0.290 0.959 0.039 0.876 0.064 34

EXP6 (SO+CM2) 0.596 0.258 0.969 0.034 0.912 0.053 4

EXP7 (CO+CM1) 0.508 0.290 0.963 0.041 0.871 0.075 40

EXP8 (CO+CM2) 0.565 0.254 0.977 0.032 0.913 0.056 3

EXP9 (CM1+CM2) 0.521 0.262 0.972 0.040 0.893 0.067 15

EXP10 (SO+CM1+CM2) 0.603 0.289 0.939 0.061 0.881 0.048 27

EXP11 (CO+CM1+CM2) 0.578 0.288 0.947 0.063 0.882 0.054 26

EXP12 (SO+CO+CM1+CM2) 0.620 0.296 0.931 0.067 0.877 0.045 32

8 EXP1 (SO) 0.424 0.245 0.989 0.019 0.880 0.079 29

EXP2 (CO) 0.442 0.257 0.986 0.026 0.876 0.090 35

EXP3 (CM1) 0.392 0.217 0.995 0.007 0.870 0.103 42

EXP4 (CM2) 0.437 0.193 0.998 0.004 0.902 0.076 11

EXP5 (SO+CM1) 0.498 0.282 0.974 0.028 0.880 0.079 28

EXP6 (SO+CM2) 0.555 0.242 0.980 0.026 0.915 0.055 1

EXP7 (CO+CM1) 0.487 0.287 0.980 0.022 0.878 0.090 31

EXP8 (CO+CM2) 0.532 0.248 0.986 0.021 0.915 0.058 1

EXP9 (CM1+CM2) 0.487 0.241 0.984 0.017 0.897 0.070 13

EXP10 (SO+CM1+CM2) 0.566 0.282 0.959 0.047 0.891 0.052 20

EXP11 (CO+CM1+CM2) 0.543 0.278 0.967 0.038 0.893 0.057 16

EXP12 (SO+CO+CM1+CM2) 0.586 0.293 0.955 0.047 0.892 0.047 19

9 EXP1 (SO) 0.421 0.254 0.992 0.018 0.875 0.095 36

EXP2 (CO) 0.434 0.255 0.986 0.022 0.871 0.095 39

EXP3 (CM1) 0.368 0.210 0.995 0.006 0.860 0.107 51

EXP4 (CM2) 0.413 0.190 0.997 0.004 0.892 0.082 17

EXP5 (SO+CM1) 0.475 0.280 0.980 0.021 0.874 0.095 37

EXP6 (SO+CM2) 0.532 0.253 0.988 0.015 0.912 0.074 4

EXP7 (CO+CM1) 0.461 0.272 0.984 0.016 0.874 0.098 38

EXP8 (CO+CM2) 0.501 0.243 0.990 0.013 0.909 0.068 6

EXP9 (CM1+CM2) 0.462 0.237 0.991 0.010 0.895 0.082 14

EXP10 (SO+CM1+CM2) 0.542 0.289 0.971 0.031 0.891 0.071 21

EXP11 (CO+CM1+CM2) 0.518 0.276 0.976 0.028 0.892 0.072 18

EXP12 (SO+CO+CM1+CM2) 0.563 0.304 0.964 0.037 0.889 0.066 22

1. The ranks are produced on the basis of the overall experimental results in which the size of a training set ranges from 3 to 9

2. The experimental results of the training set sizes 3 to 6 are omitted due to the limited space
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for achromatic images, we replace the color similarity
method with Otsu’s method since there is not much color
information in achromatic images. In addition, in order to
further reduce the noise, we also propose to use a
morphological based approach coupled with a statistics
test, i.e., a two-sample Kolmogorov-Smirnov test, in the
proposed P.C. method. 2) Another major difference be-
tween P.C and A.C. is that the P.C. method has the ability to
differentiate between different bacteria colony strains, with
little user inputs.

In brief, in this paper, we introduce a robust and effective
automatic bacterial colony counter which is capable of
recognizing chromatic and achromatic images, detecting
dish/plate regions, isolating colonies on the dish/plate, and
further, separating the clustered colonies for accurate
counting of colonies. In addition, this software-based
colony counter has the ability to differentiate between
different bacteria colony strains with little user inputs. The
proposed counter has the following contributions.

First, our proposed method can handle various kinds of
dish/plate images, including round and rectangular shaped
dishes/plates. Second, it can accept general digital camera
images, which are cost-effective, as its input. In addition,
the proposed method can recognize chromatic and achro-
matic images and handle both color and clear medium. The
most challenging part in this study is to handle clear
medium images, since colonies look very similar to the
background. There also exists a lot of noise on the plate
such as bubbles, small scratches, and small markers. Some
round-shaped small artifacts also look very similar to the
colonies, and sometimes it is hard to tell whether or not
they are colonies even by trained human eyes. This makes
the colony isolation task extremely difficult. In addition,
our system not only can detect colonies on the dish/plate,
but also can differentiate colonies of different bacteria
species with little user input. The bacteria colony classifi-
cation is considered a tough task even for a well-trained
operator. In this paper, we address those challenges and
demonstrate reasonable counting and classification perfor-
mance for both color and clear medium images.

The above cost-effective features also make our pro-
posed system very flexible and attractive to laboratories. In
addition, our counter operates automatically without any
human intervention, and the performance is promising, for
both color and clear medium. For colony classification,
although it still requires some minimal user input, the
proposed system demonstrates acceptable results and is
much faster than human operators.

Although the performance of the proposed method is
promising, we also realize that there still exist several
challenges in colony separation as well as colony classifi-
cation. For example, in colony separation, to determine
whether a segment contains clustered colonies is still an T
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issue. In our current approach, the use of the axial ratio of a
segment as an indication of clustered colonies is based on
the assumption that the clustered colonies are not tightly
clustered. However, it is possible that a segment consisting
of multiple colonies forms a shape, e.g. triangle or square,
with its axial ratio close to 1. As another example, if a dish/
plate contains colonies with several different shapes or
colonies with irregular shapes, e.g. the right most colonies
in Fig. 6, the current approach cannot effectively tell
whether a colony segment is an irregularly shaped colony
or a clustered colony.

In colony classification, visually identifying bacteria
strain is not a trivial task and it has some limitations for the
following two reasons. First, sometimes the size of the
colony becomes extremely small, i.e. micro-colony, so that
we cannot extract their features for classification without
using a microscope. Second, bacteria can be grown on
several different kinds of culture medium, which may
produce colonies with different properties in terms of their
color, morphology, etc. Hence, automating the bacteria
colony separation and classification process is an important
but under-explored field. This paper is our first effort in
identifying different strains of bacterial colonies. More
efforts will be directed at improving the performance of the
bacteria colony classification in our future work. In
particular, we plan to detect and distinguish different
species of bacteria not only for well-isolated colony, but
also for clustered colonies in the dish/plate. The ultimate
goal is to accurately classify bacterial colonies according to
their strain types and produce the correct count for each
class, which could greatly benefit clinical studies.
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