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Abstract—One key technology of intelligent transportation sys- ciency of existing road networks, have been identified as the
tems is the use of advanced sensor systems for on-line surveillancenew paradigm to address the growing mobility problems, and
to gather detailed information on traffic conditions. Traffic video to alleviate congestion and augment the quality of vehicular
analysis can provide a wide range of useful information to traffic . . .
planners. In this context, the object-level indexing of video data [1OW- While a whole new generation of methodological and al-
can enable vehicle classification, traffic flow analysis, incident de- gorithmic constructs are being developed to exploit the pow-
tection and analysis at intersections, vehicle tracking for traffic op- - erful capabilities afforded by the ITS technologies, concurrent
erations, and update of design warrants. In this paper, a learning- efforts needed to enable practical implementation are lacking

based automatic framework is proposed to support the multimedia . . . .
data indexing and querying of spatio-temporal relationships of ve- in some crucial aspects. One such aspect with sparse focus is

hicle objects in a traffic video sequence. The spatio-temporal rela- the ability to collect, analyze, and store large-scale multimedia
tionships of vehicle objects are captured via the proposed unsuper- traffic flow data for real-time usage. It implies capabilities to: 1)
vised image/video segmentation method and object tracking algo- store and catalogue data in an organized manner for easy acces;

rithm, and modeled using a multimedia augmented transition net- 5y o constryct traffic situations through off-line analysis for ad-
work model and multimedia input strings. An efficient and effec-

tive background learning and subtraction technique is employed dressing traffic safety and control; and 3) automate the process
to eliminate the complex background details in the traffic video Of data indexing and retrieval by obviating the need for human
frames. It substantially enhances the efficiency of the segmenta- intervention and supervision. While each of these capabilities

tig? process and tthe. O"l"CC‘.”gCy.Of the dsegmfr;.ta“o?hresu'ts to en-gjgnificantly enhances operational feasibility, the last capability
able more accurate video indexing and annotation. The paper uses R P R

four real-life traffic video sequences from several road intersec- has critical _Impllcatlons for real tlme Imp_lementatlon n terms
tions under different weather conditions in the study experiments. Of substantially reducing computational time for the associated

The results show that the proposed framework is effective in au- control procedures. One key application domain that addresses
tomating data collection and access for complex traffic situations. these three capabilities is the ability to track video sequences
Index Terms—Advanced traffic management systems (ATMS), both in time and space for easy and unsupervised access.
advanced traveler information systems (ATIS), background — this paper, our emphasis is on automatic traffic video in-
learning and backgro_und ;ubtractlon, mt_elhge_nt transportation dexina f turina th tio-t | relati hi fvehicl
systems (ITS), multimedia database indexing, segmentation, exing tor capturing the spatio-temporal relationships ot venicle
vehicle tracking, video analysis. objects so that they can be catalogued for efficient access using
a multimedia database system. Issues associated with extracting
traffic movement and accident information from real-time video
sequences are discussed in [1]-[4]. Two common themes existin
N RECENT years, intelligent transportation systems (ITShese studies. First, the moving objects (vehicles) are extracted
which integrate advances in telecommunications, inform&tom the video sequences. Next, the behavior of these objects
tion systems, automation, and electronics to enhance the dffitracked for immediate decision-making purposes. However,
these efforts do not have capabilities to: 1) index the data for
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timedia augmented transition network (MATN) model and muteal-life traffic video sequences are used for the experiments.
timedia input strings [5] are used to capture and model the te@enclusions and future work are presented in Section V.
poral and spatial relations of vehicle objects. In previous work,
we have addressed unsupervised image segmentation and ob-
ject tracking techniques, and applied these techniques to some
application domains such as traffic monitoring [6]-[8]. In this Over the past decade, ITS have been identified as the new
paper, a learning-based object tracking and indexing framewd&radigm to address the growing mobility problems. With the
is proposed to improve the vehicle identification process for oBxponential growth in computational capability and informa-
ject tracking and indexing for transportation multimedia dataion technology, traffic monitoring and large-scale data collec-
base systems. tion have been enabled through the use of new sensor tech-
In this study, an effective background learning algorithm Rologies. One ITS technology, advanced traffic management
proposed in our learning-based object tracking and indexigjstems (ATMS) [9]-[11], aims at using advanced sensor sys-
framework. By incorporating the background |earning a|gdems for on-line surveillance and detailed information gathering
rithm with the unsupervised segmentation method, the initi@D traffic conditions. Another, advanced traveler information
inaccurate background information can be refined and adjusg@¢ptems (ATIS), provides network-wide routing information to
in a self-adaptive way throughout the segmentation. That [Q,ad users. In addition, advancgd public transportation systems
the background learning process and the segmentation prod8&8TS) target mass transportation systems to enable greater op-
will benefit each other symbiotically in an iterative way as thgrational efficiency and travel convenience. Another example
processes go further. Experiments are conducted using f@fil 1S téchnologies is the use of advanced sensor systems for
real-life traffic video sequences from several road intersectiofg-ine surveillance, such as traffic video analysis.
under different weather conditions. The results indicate that'™ade processing and object tracking techniques have
almost all moving vehicle objects can be successfully identifi@€viously been applied to traffic video analysis to address
at a very early stage of the processing, thereby ensuring tAyeue detection, vehicle classification, and vehicle counting. In

accurate spatio-temporal information of objects can be obtain%?{ticmar' vehicle classification and vehicle tracking have been
through object tracking extensively investigated in [4], [12]-[15]. In [13], optical-flow

After the vehicle objects are successfully identified, th nalyslﬁé/\llzasfemplo%e(lj,whHi.spatlo_—Lerr;]poral l\flar_kov re;fndom
MATN model and multimedia input strings are propose eld ( ) or venicle trac ng with the occlusion e ecF
to represent and model their spatio-temporal relations [Qmong vehicles was proposed in [4]. Three methods for moving

P o P mp . ~gbject detection within the video surveillance and monitoring
The capability to represent the spatio-temporal relatio SAM) testbed were developed in [14]. One of them uses
of the objects is critical from several perspectives. Firs )

the ability to store multimedia data efficiently provide témporal dn‘fere.ncmg to .detect moving targets and train the
emplate matching algorithm. These targets are then tracked

s!gn‘mc.ant |nS|ghts on traffic data col!ectlon and monitorin sing template matching. Another approach to moving object
vis-a-vis exploiting recent advances in sensor systems. T IS

. . : ; ; tection uses a moving airborne platform [15]. Though several
is especially important in the context of real-time data acceg

for | le traff . i d ol S proaches have been proposed for vehicle identification and
or large-scaje traflic system operation and control. Seco cking, to the best of our knowledge, none of them connect

an ability to obtain and store spatio-temporal relationshipg yatapases. Some have limited capabilities to index and store
provides powerful capabilities to analyze and/or addregg, co|iected data. Therefore, they cannot provide organized,
problems characterized by time-dependency. For exampleghervised, easily accessible, and easy-to-use multimedia
such a capability can significantly aid the off-line analysis qf¢ormation. Hence, there is a critical need to index the data
traffic accidents to isolate their causes and identify potentigficiently in traffic multimedia databases for transportation
design issues or operational conflicts. Third, it can Sig”ifbperations.
cantly reduce manual effort and intervention by automating For traffic intersection monitoring, digital cameras are fixed
the data collection and processing. For example, it can aiflq installed above the area of the intersection. A classic tech-
in revising traffic warrants without the need for superviseflique to resolve the moving objects (vehicles) is background
analysis, which is a significant improvement over curreRfybtraction [16]. This involves the creation of a background
labor-intensive approaches involving the painstaking manugbdel that is subtracted from the input images to create a dif-
examination of the video data collected. Fourth, the ability f&rence image. Ideally, the difference image contains only the
store data from different media on the same traffic situatigioving objects (vehicles). Various approaches to background
in an automatic and efficient manner simplifies data accesgbtraction and modeling techniques have been discussed in the
and fusion. This has significant real-time implications aserature [2], [12], [17], [18]. They range from modeling the in-
data storage and processing can constitute a substantial paisity variations of a pixel via a mixture of Gaussian distribu-
of the real-time implementation of traffic control strategiesions, to simple differencing of successive images. [19] provides
This paper is organized as follows. Section Il gives the litergome simple guidelines for the evaluation of various background
ture review. Section lll introduces the proposed learning-basemdeling techniques. There are two key problems in this con-
object tracking and indexing framework. The experiments, reext: 1) a complex learning model is highly time-consuming,
sults, and the analysis of the proposed multimedia traffic videmd 2) a simple differencing technique cannot guarantee good
data indexing framework are discussed in Section IV. Fosegmentation performance.

Il. LITERATURE REVIEW

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on August 31, 2009 at 19:49 from IEEE Xplore. Restrictions apply.



156 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 4, NO. 3, SEPTEMBER 2003

Ill. L EARNING-BASED OBJECT TRACKING AND INDEXING FOR  from new (moving) objects will generate a difference not equal
TRAFFIC VIDEO SEQUENCES to zero.
The traditional way to eliminate background details is to man-

Traffic video analysis at intersections can provide a rich arraplly select video sequences containing no moving objects and
of useful information such as vehicle identification, queue dehen average them together. This is done through the construc-
tection, vehicle classification, traffic volume, and incident deton of a reference background frame by accumulating and av-
tection. To the best of our knowledge, traffic operations cueraging images of the target area (e.g., a road intersection) for
rently either do not connect to databases or have limited gome time interval [4], [22]. However, the determination of the
pabilities to index and store the collected data (such as traffime interval is subjective, and is based on experience or esti-
videos) in their databases. Therefore, they cannot provide pration from experimental results. For the traditional method to
ganized, unsupervised, conveniently accessible and easy-toweek well, one key condition is that the video sequence should
multimedia information to the end users. The proposed learnirtgave approximately constant lighting conditions. Hence, it is
based object tracking and indexing framework includes baaket a robust technique as it is sensitive to intensity variations,
ground learning and subtraction, vehicle object identificatiais lighting conditions are not controlled [18]. That is, it can
and tracking, the MATN model, and multimedia input stringsyenerate false positives by incorrectly detecting moving objects
The additional level of sophistication enabled by the proposediely due to lighting changes. It can also generate false neg-
framework in terms of spatio-temporal tracking generates a Gatives by adding static objects to the scene that are not part of
pability for automation. This capability alone can significantlyhe reference background frame. In the proposed framework, in-
influence and enhance current data processing and implemestaad of manually selecting the suitable frames to generate one
tion strategies for several problems vis-a-vis traffic operationgeference background image at a time, an adaptive background

In the proposed framework, an unsupervised video segmégarning method is used to achieve this goal. The idea is to first
tation method called the simultaneous partition and class pae the unsupervised segmentation method together with the ob-
rameter estimation (SPCPE) algorithm is applied to identify thect tracking technique to distinguish the static objects from the
vehicle objects in the video sequence [20], [21]. In addition, thRobile objects. Then, these static objects are grouped with the
technique of background subtraction is introduced to enharseeady identified background area to form a new estimation of
the basic SPCPE algorithm to help get better segmentation tige background.
sults, so that the more accurate spatio-temporal relationships ofhe basic workflow of the proposed framework is shown in
objects can be obtained. After the spatio-temporal relationshiig. 1. In the first step, a background learning method is applied
of the vehicle objects are captured, the MATNs and multimedim the first few video frames (for example, the first four frames)
input strings are used to represent and model their temporal andbtain the initial reference background image. By applying
relative spatial relations. In the following subsections, we withe unsupervised segmentation method, the static and mobile
first discuss the motivation for the proposed framework. Theobjects are roughly determined, and then the static objects are
an overview of the SPCPE algorithm and the object trackingouped with the already identified background to form the ini-
techniques will be provided. This will be followed by an intro+ial reference background image. The second step involves the
duction to the background subtraction technique. Then, we willibtraction of the initial reference background image from the
briefly describe how to use the MATNs and multimedia inpuurrent frame to generate the difference image whose back-
strings to model traffic video frames. Two example video framegound is much cleaner compared to the original frame. Then,
are used to demonstrate how video indexing is modeled througle unsupervised segmentation method is applied on the dif-
the MATNs and multimedia input strings. ference image to get the segmentation results. Using them, a
new reference background image is generated in a self-adap-
tive way. The details are described in the following subsec-
tions. After the vehicle objects (such as cars and buses) are

Image segmentation techniques have been used previowsslgcessfully identified, their relative spatio-temporal relation-
to extract the semantic objects from images or video framesips are further indexed and modeled by the MATN model to-
but in most cases the nonsemantic content (or backgroundgether with multimedia input strings. The proposed segmenta-
the images or video frames is very complex. For example, tadn method can identify vehicle objects but cannot differentiate
a traffic intersection, there are nonsemantic objects such as tietween them (into cars, buses, etc.). Therefopgiori knowl-
road pavement, trees, and pavement markings/signage in aédge (size, length, etc.) of different vehicle classes should be
tion to the semantic objects (vehicles), which introduces comrovided to enable such classification. In addition, since the ve-
plications for the segmentation methods. Therefore, an effdiele objects of interest are the moving ones, stopped vehicles
tive way to obtain background information can enable bettwiill be considered as static objects and will not be identified
segmentation results. This leads to the idea of background sab-mobile objects until they start moving again. However, the
traction. Background subtraction is a technique to remove nawbject tracking technique ensures that such vehicles are seam-
moving components from a video sequence. The main assurgssly tracked though they “disappear” for some duration due
tion for its application is that the camera remains stationary. Thethe background subtraction. This aspect is especially critical
basic principle is to create a reference frame of the stationamyder congested or queued traffic conditions.
components in the image. Once created, the reference framtn a traffic video monitoring sequence, when a vehicle object
is subtracted from any subsequent images. The pixels resultingves out of the monitor area (intersection) or stops in the inter-

A. Motivation
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Fig. 1. Basic workflow of the proposed framework.

section area (including the approaches to the intersection), itial partition is used for the first few frames during the initial
framework may deem it as part of the background informatiobhackground learning.

In the former case, tracking is not necessary as the vehicle id) Class Parameter EstimationThe mathematical descrip-
out of the monitoring area. Usually, in such a situation, the cetien of a class specifies the pixel values as functions of the spa-
troid of its bounding box will be very close to the boundary ofial coordinates of the pixel. The parameters of each class can be
the monitoring area. In the latter case, since the vehicle objectsnputed directly by using a least squares technique. Suppose
move into the intersection area before stopping, they are identie have two classes. Let the partition variablezbe {c1, ¢}

fied as moving vehicles before their stop due to the charactersid the classes be parameterizeddby: {6;,6>}. More pre-

tics of our framework. In this situation, their centroids identifiedisely, an image is partitioned into two classes by dividing the
before they stop will be in the intersection area. For these vehmage pixels into two subsets andc,. The notatiory;; is used

cles, the tracking process is frozen until they start moving agdiere to represent the value of a pixel at location ). Also, sup-

and they are identified as “waiting” rather than “disappearingfose all the pixelg;; (in the image data”) belonging to class
objects. Thatis, the tracking process will follow the same prock-(k = 1,2) are put into a vecto¥'y. Each row of the ma-
dure as before unless one or more new objects abruptly appeiar® is given by(1, 4, j,ij) anday, is the vector of parameters

in the intersection area. Then, the matching and tracking of the.o, ..., ax3)7

previous “waiting” objects will be triggered to continue tracking ) ) N o

the trails of these vehicles. Yij = aro + arri + akoj + arzij, V(i 7) yij € ek (1)
Yk = ‘I’ak (2)

B. Unsupervised Video Segmentation Method (SPCPE) ap = (o7 0) 1oy (3)

The SPCPE algorithm is an unsupervised video segmenta-

i thod t i ideo f 201 1211, A i | 2) Class Partition Estimation:We estimate the best parti-
lon method fo partition video Trames [ ].’ [21]. A given clas on as that which maximizes tlzgposterioriprobability (MAP)
description determines a partition, and vice versa. Hence,

o ; . he partition variable given the image dataThe MAP esti-
partition and the class parameter have to be estimated simu Rtes of: — {c1,¢5} andf = {6,,0,} are given by
neously. In practice, the class descriptions and their parameters 12 172

are not readily available. An additional difficulty arises when (¢, é) = Argmax P(c,0|Y)
images have to be partitioned automatically without the inter- (e:8)
vention of the user: we do not knampriori which pixels belong = Arg max P(Y [c,0)P(c,0). 4)

to which class. In the SPCPE algorithm, the partition and the
class parameters are treated as random variables. The methdtfe assume that the pixel values and parameters are indepen-
for partitioning a video frame starts with an arbitrary partitiodlent and that the parameters are uniformly distributed. We also
and employs an iterative algorithm to estimate the partition apgsume thatthe error functiongf is represented by a Gaussian
the class parameters jointly. Since the successive frames Wit mean 0 and variance 1. Lé{c, #) be the functional to be
video do not differ much, the partitions of adjacent frames dinimized. With these assumptions the joint estimation can be
not differ significantly. Each frame is partitioned by using théimplified to the following form:

artition of the previous frame as an initial condition to speed . A .
Ep the convergepnce rate of the algorithm. A randomly gengrated (¢,0) = Arg 0] (v, c2,01,62) )
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initial condition while partitioning the current frame. This can
greatly reduce the computational cost substantially (up to 90%)
because the number of iterations needed is much less than that
of randomly initial partition.

Preliminary Class

Assignment
C. Object Tracking
1 In order to index the vehicle objects, the proposed framework
must have the ability to track the moving vehicle objects (seg-
Parameter ments) within successive video frames [6]. Since the tracking
Estimation trail information can be obtained for each segment, it is pos-
sible to distinguish the static objects from the mobile objects in
the frame, enabling the estimation of the background informa-
l tion. Furthermore, this tracking technique can be used to deter-
mine the trace tubes (trails) for vehicle objects, which enable
Partition the proposed framework to provide useful and accurate traffic
Estimation mformatlor_l fqr ATIS e_md ATMS. _ _ _ _
1) Identifying Static and Mobile Objects Using Object
Tracking: After video segmentation, the segments (objects)
l with their bounding boxes and centroids are extracted from
each frame. Intuitively, two segments that are spatially the
STOP if closest in adjacent frames are connected. Euclidean distance is
NO change used to measure the distance between their centroids.
. Definition 1: A bounding box B (of dimension 2) is defined
by the two endpoints S and T of its major diagonal [16]
(a) B =(S,T),whereS = (s1,s2) and T = ({1,t2) and

Fig. 2. (a) The flowchart of the SPCPE algorithm; (b) Initial random partition; si <t fori=1,2.

c) Original traffic video frame; (d) Object segmentation result. L.
(c) Orig () Obi 9 Due to Definition 1, the area @3: Areap = (t1 —s1) X (t2 —

82).

J(e1, 2,01,02) = Z — Inpy (yij:61) Definition 2: The centroic:td 3 of a bounding box B corre-
Y€ sponding to an object O is defined as follows:
+ —1In i 0s). 6
y§,2 pz(y ! 2) ( ) Ctdo = [(th()l7 Ctdog]

S . where
The minimization of/ can be carried out alternately eand

¢ in an iterative manner. Let(c) represent the least squares

No
estimates of the class parameters for a given partitiohhe
A = i N ;
final expression fod (¢, §(¢)) can be derived easily and is given ctdor ; O ¢
by No
. ctdps = Oyi NO; (8)
J(c,0(c)) = Arg(min) {% Inp; + % In ﬁg} @) 2 (; Yy )/

R . . . whereNo is the number of pixels belonging to object O within
wherep; andps are the estimated model error variances of the . . o

: : ounding box B0,,; represents thecoordinate of théth pixel
two classes antll;, N, are the number of pixels in each class.

As shown in Fig. 2(a), the algorithm starts with an arbitrary pa:rE ?)EJ'Z((; g and),; represents thg coordinate of theth pixel
tition of the data in the first video frame and computes the corre- ) ' . .
het ctdys andctdy, respectively, be the centroids of seg-

sponding class parameters. Using these class parameters andmterﬁs M and N that exist in consecutive frames, drige a

data, a new partition is estimated. Both the partition and the Cl%ﬁ?eshold The Euclidean distance between them should not ex-
parameters are iteratively refined until there is no 1‘urtherchangged the 'threshold it M and N represent the same obiect in
in them. We note here that the functionals not convex. Hence consecutive frames P )

its minimization may yield a local minimum, which guarantees

the convergence of this iterative algorithm. Fig. 2(d) shows th&IST(ctdy; — ctdy)

segmentation result for the video frame in Fig. 2(c) given the _ — 0 — B

initial partition in Fig. 2(b). Since the successive frames donot Vet = ctdya)” + (ctdarz = ctdy2)” <6 (9)

differ much due to the high temporal sampling rate, the parti- In addition to the use of the Euclidean distance, some size
tions of the adjacent frames do not differ significantly. The kenestriction is applied to the process of object tracking. If two
idea is to use the method successively on each frame of Bsgments in successive frames represent the same object, the
video, incorporating the partition of the previous frame as thfference between their sizes should not be large. The details

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on August 31, 2009 at 19:49 from IEEE Xplore. Restrictions apply.



CHEN et al. LEARNING-BASED SPATIO-TEMPORAL VEHICLE TRACKING 159

.
s B
00 100 o9
2 1 BUS £y BUS
| | ——
~ e
200 0
“ 20
[ ]
] = —1 250 20
@ 00 20 200 26 - %0 @ e £ 0 150 200 20

Fig. 3. (@) Original video frame 3, (b) segmentation result along with the bounding boxes and centroids for (a), (c) segments with diagonaléedrasdenti
“static segments,” and (d) final segmentation result for frame 3 after filtering the “static segments.”

of object tracking can be found in [8]. Fig. 3 illustrates the seg- 2) Handling Occlusion Situations in Object Trackinés
mentation result for frame 3, where the dark gray area represemintioned earlier, in most cases, the complexities associated
the background and the light gray segments (class 2) are swith the background preclude good segmentation results and
posed to correspond to the vehicle objects we want to extramymplicate the solution for object occlusion situations. How-
However, there are several segments that do not corresponever, by applying the background subtraction method discussed
moving vehicles. For example, part of the road pavement, rogdSection 111.D, substantially simpler difference images are ob-
lamps, and trees are also identified as objects though they &i@ed. This enables fast and satisfactory segmentation results,
not vehicle objects of interest. greatly benefiting the handling of object occlusion situations. A
Since the location of the camera monitoring the intersectionore sophisticated object tracking algorithm, namelytthek-
area is fixed above the ground, the centroids of static segmeinék-chain-update splialgorithm, is given in [8], [23], which
(road pavement, trees, etc.) should remain fixed throughout then handle the situation of two objects overlapping under certain
video sequence. This is how “static segments” are differendissumptions (e.g., the two overlapped objects should have sim-
ated from “mobile segments” (moving vehicles) in this applilar sizes). It considers the situation when overlapping happens
cation domain. Fig. 3(c) shows the “static segments” identifidmbtween two objects that separate from each other in a later/ear-
in frame 3. However, there is problem related to vehicles thigr frame. In this case, it can find the split object and use the
move very slowly; they may be identified as static segments aimdormation in the current frame to update the previous frames
thus become part of the background information learned till tlre a backtrack-chain manner. Our previous study suggests that
current frame. For example, as shown in Fig. 3(d), except tthés algorithm is effective in handling two-object occlusions.
bus object in the middle of the intersection area, the other 10However, there are cases where a large object overlaps with
cars [eight of them are located in the upper left part, one whigesmall one. For example, as shown in Fig. 4, the large bus
car is located in the upper right part, and a gray car is in fromerges with the small gray car to form a new big segment in
of the bus, as seen in Fig. 3(a)] are identified as static segmefngsne 20 though they are two separate segments in frame 19.
and are merged with the already identified background area (thehis scenario, the car object and the bus object that were sep-
dark gray area) even though they are moving slowly. As mearate in frame 19 cannot find their corresponding segments in
tioned earlier, based on the object tracking results, an initial réfame 20 by centroid-matching and size restriction. However,
erence background image can be generated. However, the inftiain the new big segment in frame 20, we can reason that this
background area information obtained here is not very accuréean ‘overlapping segment that actually includes more than
because many slow moving vehicles are identified as part of thee vehicle object. For this purpose, a difference binary map
background. In Section I1.D, we show that it is not necessargasoning method is proposed in this paper to identify which
to obtain very accurate initial background information in ordesbjects the bverlapping segment may include. The idea is to
to achieve good segmentation results. By applying a self-adajtain the difference binary map by subtracting the segment re-
tive background adjusting and subtraction method, the proposedt of frame 19 from that of frame 20 and check the amount
framework can robustly capture the spatio-temporal relatioof difference between the segmentation results of the consecu-
ships of vehicle objects in real-life traffic video sequences. tive frames. As shown in the difference binary map in Fig. 4, the
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frame 19

frame 20 S

difference binary map

Fig. 4. Handling object occlusion in object tracking.

white areas in it indicate the amount of difference between thbscure and much darker when compared with that of the bus
segmentation results of the two consecutive frames. Therebpject, the SPCPE method can successfully identify all the
the car and bus objects in frame 19 can be roughly mapped in&hicles in frame 4, which provides a better estimation for a
the area of the big segment in frame 20 with relatively small difrew background image. For comparison purposes, we also
ferences. Hence, the vehicle objects in the big segment in frast®w the original segmentation result (origisgigmentst)

20 can be obtained by reasoning that this segment is most prfady-frame 4 without any background learning and subtraction.
ably related to the car and bus objects in frame 19. Therefolihere, the bus object merged with the road pavement to form a
for the big segment (theoterlapping segment) in frame 20, big segment, and most of other vehicles cannot be identified as
the corresponding links to the car and bus objects in frame §8parate segments.

can be created, which means that the relative motion vectors ofA key point here is that if a new background image is always
that big segment in the following frames will be automaticallgonstructed based on the current frame’s segmentation result,
appended to the trace tubes of the bus and car objects in frahe construction error will accumulate and finally become un-

19. acceptable. This means that the trail of a moving vehicle will
) ) also be identified as part of the object, which causes inaccu-
D. Self-Adaptive Background Subtraction rate or even unacceptable segmentation results after processing

After background learning using the first few video frames) number of frames. This is because when an object moves, a
most of the static segments can be identified and subtracted fremall part of the background area will appear in the current
the set of segments in the current frame [as shown in Fig. 3(dfyame though this area was identified as part of the vehicle object
In our experiment, we use the first 3 frames for initial backn the preceding frame. Without any adjustments, the accumu-
ground learning. lative construction error will lead to unacceptable segmentation

As shown in Fig. 5(a), an initial reference backgrountesults. In our framework, a simple but effective self-adaptive
image (backgroundmage3) is obtained by extracting theadjustmentis applied in creating a new background image. The
final segmentation result of frame 3 (segme8}sfrom the adjustmentis done by shrinking the size of the bounding box of
original frame 3. Then, this initial background image is suk®ach segment before constructing a new background image for
tracted from the next frame (frame 4) to obtain the differendése in the next frame’s segmentation based on the current seg-
image (differencémage4). As illustrated in Fig. 5(a), the mentation results. This adjustment can be thought as the predic-
differenceimage4 not only stores the visual informationtion of the changes in the background area. The key aspect of
for the bus object identified in frame 3, but also shows th&is self-adaptive process is the strong support derived from the
motion difference information for each car object that has beé&pbustness of the SPCPE segmentation method. Although the
identified as part of the background in frame 3. That is, frofackground area is enlarged a little as the result of the shrinking
the segmentation result for differenomage4, all 11 vehicle of the bounding boxes, the resulting difference image still in-
objects are successfully identified as separate segmentsclirdes the new information of the motion difference (if any) that
frame 4 no matter whether they moved fast or slow. Thougéan be identified as part of the moving object by the SPCPE
in differenceimage4, the visual information representingsegmentation method. In other words, due to the shrinking of
the motion difference of the slow moving vehicles is verpounding box, the object size will decrease in the newly created
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frame 3 segments_3

frmc_S backgrod_i.mage_4 difference_image 5 segments_5

(b)

Fig. 5. Self-adaptive background learning and subtraction in the traffic video sequence. (a) Generating the initial reference background image
(backgroundmage3) and subtracting it from the next frame (frame 4), then applying the segmentation on the obtained difference image (diffegente
and (b) self-adaptive adjustment in generating new background images.

background image. However, this will not affect the segmespatio-temporal relations of the vehicle objects in the video se-
tation result of the next frame because the motion differengeences. Multimedia input strings adopt the notations from reg-
area will still appear in the difference image, and can be ideanlar expressions [24]. A multimedia input string is accepted by
tified as part of the vehicle object to compensate the size lofise grammar if there is a path of transitions which corresponds
As a vehicle object moves from the current frame to the neixd the sequence of symbols in the string and which leads from a
frame, part of the area of the vehicle object identified in the cuspecified initial state to one of a set of specified final states.

rent frame may become part of the background area in the nexFig. 6 illustrates the use of MATNs and multimedia input
frame. Without shrinking, this part of background area may Istrings to model the spatio-temporal relations of the vehicle ob-
misidentified as part of the current object. That is, the shrinkirjgcts in traffic video frames. Assume three objects,greind

of the bounding box is used to achieve the motion predictiaar, andbusrepresented b, C, and B, respectively. As in-
without losing any information in segmenting and identifyingroduced in [5], one semantic object is chosen as the target se-
the moving vehicle objects. Fig. 5(b) shows the segmentatiorantic object in each video frame. The minimal bounding rec-
result for frame 5 by applying the proposed background adjusangle (MBR) concept in R-trees [25] is also used so that each
ment method. The segmentation result accurately identifies $@mantic object is covered by a rectangle. Here, we choose the

bounding boxes of all vehicle objects. groundas the target object. In order to distinguish the 3-D rela-
tive spatial positions, 27 numbers are used [5]. In this example,
E. Using MATNs and Multimedia Input Strings each frame is divided into nine 2-D subregions with the corre-

sponding subscript numbers shown in Fig. 6(a).

The spatio-temporal relations of the vehicle objects in the Each video frame is represented by an input symbol in a mul-
video sequence must be captured in an efficient way. In the ptmnedia input string. The “&” symbol between two vehicle ob-
posed framework, the spatio-temporal relations are indexed gects denotes that the vehicle objects appear in the same frame.
modeled using a MATN model and multimedia input strings [5]The subscripted numbers are used to distinguish the relative spa-
A MATN can be represented diagrammatically as a labeled dial positions of the vehicle objects relative to the target object
rected graph, calledteansition graph Multimedia input strings “ground [as shown in Fig. 6(a)]. For simplicity, two example
are used as inputs to an MATN, and are proposed to representithenes (frames 1 and 2) are used to explain how to construct the
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Fig. 6. MATN and multimedia input strings for modeling the key frames of traffic video Sh¢a) Nine subregions and their corresponding subscript numbers
and (b) example MATN model.

TABLE |
OVERALL PERFORMANCE OFVEHICLE OBJECT IDENTIFICATION

Video # | Number of Frames | Frame Size | Quality | Correct | Missed | False | Precision | Recall
Video #1 50 512x512 Good 64 0 0 100% 100%
Video #2 300 268x251 | Medium 83 12 1 99% 87%
Video #3 1733 353x473 | Poor 621 66 14 98% 90%
Video #4 3000 240x320 | Medium 1611 195 103 94% 89%
Overall 5083 2379 273 118 95% 90%

multimedia input strings and the MATN [as shown in Fig. 6(b)Jnodes and the order of their appearance in the MATN is based
The multimedia input string to represent these two frames is @s the temporal relations of the selected video frames. The mul-
follows: timedia input strings model the relative spatial relations of the

vehicle objects.

(G1 & C13 & Big & C3) (G1 & C1 & Ba). )

K>

K

Two input symbolsK; and K> are used for this purpose. The .
appearance sequence of the vehicle objects in an input symBolExPerimental Results
is based on the relative spatial locations of the vehicle objects~our real-life traffic video sequences are used to ana-
in the traffic video frame from left to right and top to bottomlyze spatio-temporal vehicle tracking using the proposed
For example, frame 1 is represented by input syn#ol G; learning-based vehicle tracking and indexing framework.
indicates thati is the target objectC3 implies that the first These video sequences are obtained from different sources,
car object is to the left of and abo&, B19 denotes that the showing four different road intersections with different qual-
bus object is to the right aff, andCs5 means that the secondities and under different weather conditions. Videos #1 to #3
car is to the right of and below#. The multimedia input string are grayscale videos downloaded from the research website of
for frame 2 is different from that of frame 1 in that the €5 University Karlsruhe [26]. Video #3 was taken in the winter
that appeared in frame 1 has already left the road intersectiomihere there was snow on the lane and light snow was falling
frame 2, the ca€ 3 in frame 1 moved into the same subregiomith a strong wind. The qualities of video #2 and video #3
asG in frame 2 and thus becoméy,, and the bus objedB;9 are significantly worse than that of video #1. Video #4 is also
in frame 1 moved into the lower right corner in frame 2 and grayscale video captured with a common digital camera.
becomesB,5. Hence, the spatial locations of vehicle object¥he proposed new framework is fully unsupervised in that
change, and the number of vehicle objects decreases from thitemn enable the automatic background learning process that
to two. This example illustrates the ability of a multimedia inpugreatly facilitates the unsupervised video segmentation process
string to represent the spatial relations of objects. without any human intervention. Based on our experiments,
Fig. 6(b) is the MATN for the two frames in this example. Thdy applying the background learning process, the computation
starting state name for this MATN /. As shown in Fig. 6(b), time savings for the segmentation process are eighty percent
there are two arcs with labes; and K,. The different state of the original time cost. As shown in Table I, the overall

IV. EXPERIMENTAL ANALYSIS
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performance of vehicle object identification over the fouin the upper left area of the video frames. Another class cap-
video sequences is robust. The precision and recall values tares most part of the ground. Also, the fourth column of Fig. 7
approximately 95% and 90%, respectively. shows that almost all vehicle objects are captured as separate
A portion of the traffic video #1 is used to illustrate how the&egments. However, the bus and the gray car (in the lower right
proposed framework can be applied to address spatio-temp&@jt of the intersection area) are identified as one big segment
queries such as: “estimate the traffic flow at this road intersgf-rames 25, 28, and 34; while they are identified as separate
tion approach from 5:00 PM to 5:30 PM.” This requires the pros.egments in frame 19. As discussed in Section lll, this occlusion
posed framework to elicitinformation on the number of vehicledtuation can be detected by the proposed difference binary map
passing through that intersection approach in the stated time gigthod. In our indexing schema for a multlmeQ|a database, we
ration. Further, the collected information must be indexed afge & special symbol to denote such avetlapping segment
stored into a multimedia database in real-time or off-line. The§#at has the corresponding links to the related vehicle segments

aspects are addressed hereafter. in the preceding frame.

The enhanced video segmentation method is applied to }heFig' 7 alsollists the multimepiia input strings for the s_elected
video frames by considering two classes. Consider a videg o> As d|scgsseq n Sec'uop lll.E, we use symbolic repre-
frame like the one in Fig. 3(a). There could be several variatioﬁ%matlons (multlmeQ|a m_put strings) to represgnt the spatial re-
. ationships of the objects in each frame. In the rightmost column
in the background such as road pavement, trees, pavem

. ) : . : of Fig. 7, the groundG) is selected as the target object, the seg-
markings/sighage, and ground. Since the interest is only ljrll’lents are denoted 1§ for cars ofB for buses, and theover-
the vehicle objects, it is a two-class problem. The first fran]t(;-;\1 !

is partitioned with two classes using random initial partitions; pping’ objects are denoted by symblwhich has the corre-

. s 4 ... __sponding links to the related segments in the preceding frame.
After obtaining the partition of the first frame, the partltlonsAS shown in Fig. 7, there are 11 vehicle objects visible in frame

of the subsequent frames are computed using the prewqtlés_two gray car§Cio & C1o) are in the left middle area, one
partitions as the initial partitions since there is no significant, . . 10 10 ’
white car is located in the upper left aré@; 3 ), three cars are

difference between consecutive frames. By doing so, the S?rgfhe upper middle are@y & C4 & C.), two cars are located

mentatlo.n process W|_II converge fast,.thereby proy|d|ng SUppﬁrr]tthe middle areéC; & C1), one bus Bys ) and one dark gray
for real-time processing. The most time consuming part at the . . ;
cah(Czs) are in the lower right corner, and another white car

beginning is the background learning process because enoggh. ; . .
background information does not exist at that time. Hence, tEﬂvmg toward northeast s located in the upper right g ).

segmentation process has to deal with the original video fra fame 25 indicates that the white car (the secOdn frame

S . ' 5?) is moving slowly into the middle area so that its symbol
which include very complex backgrounds. The effecnvenessaqalrlges taC’y, and the bus and dark gray caBs and Cas

the proposed background learning process ensures that a I%r:ﬁame 19) are identified as amverlapping object Oss in
run is not necessary to fully determine the accurate backgro me 25. In frame 28, the white caB'§, in frames 19 aﬁd 25)
!nformat!on. In our experlments, the prel!m!nary backgrou'nl% the upper right corner disappeared from the intersection area
information can be obtained usually within 5 consecutive, . . : .
frames, and it is good enough for the future segmentatigy ¢ another white car appeaiGsy) in the upper right corner

rocesé In fact. b gcombinin ?he backaround Iearn?n rOC(_;f)rom the underneath tunnel. Also in frame 28, we can see part
pr ' DY 9 )ackg gp osfa new car object entering into the intersection area from the
with the unsupervised segmentation method, our framewar

can enable the adaptive learning of background information. PP " bound, which is successfully identified as a new segment
P 9 9 ‘(the thirdC4 in frame 28) even though the small area it occupies

Fig. 7 shows the segmentation results and the correspondiigrame 28 is part of the background in the preceding frames.
multimedia input strings for a few frames (19, 25, 28, and 34)nd in frame 34, one gray car (heading southwest, denoted by
along with the original frames, background images, and the dife firstCy in the preceding frames) disappeared from the in-
ference images. As illustrated by the figure, the background section area. A point to note here is that though the white car
this traffic video sequence is very complex. Some vehicle ofjpcated in the upper left part) that is slowly heading southeast
jects (for example, the small gray vehicles in the upper left pafhs part of its body becoming progressively invisible due to the
of the video frames) can easily be ignored or confused with thectangular poster in front of it in the frames, our framework can
road surface and surrounding environment. While there is 8fccessfully identify it as a complete segment (denote@fy
existing body of literature [27] that addresses relatively simpjg gj| the selected frames) throughout the entire video sequence.
backgrounds, our framework can address far more complex $i jllustrated by Fig. 7, the multimedia input strings can model
uations, as illustrated here. not only the number of vehicle objects, but also the relative spa-

In Fig. 7, the video frames in the leftmost column repreial relations of the vehicle objects.
sent the original frames. The second column shows the backAs mentioned in Section Ill, we apply the object tracking
ground images derived from the immediate preceding framéschnique to track the trail of each vehicle object to the extent
The third column shows the difference images after backgroupdssible. Fig. 8 shows the tracking of the trail of the bus ob-
subtraction. The segmentation results are illustrated in the foujtiet in the video sequence. Fig. 8(a) shows the bounding boxes
column, and the rightmost column shows the bounding box aadd centroids of the bus object from frame 4 to frame 34, while
centroid for each segment in the current frame. As illustrated Byg. 8(b) shows the trail information of the bus object by ap-
the fourth column of Fig. 7, a single class can capture almost plyying the object tracking technique. In fact, in the proposed in-
vehicle objects, even those vehicles that look small and obscdexing schema, it is not necessary to record the position of the
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Fig. 7. Segmentation results and multimedia input strings for frames 19, 25, 28, and 34. The leftmost column shows the original video frames, the secon
column shows background reference images derived from the immediate preceding frames, the third column shows difference images obtaintagaheubtrac
background reference images from the original frames, the fourth column shows the vehicle segments extracted from the video frames, andttbeuigihtmos

lists the bounding box and centroid for each segment in the current frame.

bus segment in each frame. Instead, it can be done when thHferenation of each vehicle object, the traffic flow in a specified
is amajor moven that object or based on a fixed frequency. direction can be roughly estimated. Also, since vehicle classi-
As described earlier, the framework can determine not orfigation may be important, the sizes of the bounding boxes are
the indexes for the number of vehicle objects, but also the indesed to determine the vehicle types (such as “car” and “bus”).
information of relative spatial relations by recording the poskor “overlapping segments, their links to specific vehicle seg-
tions of the centroid of the segment throughout the video sa&ents can be used to correctly account for their contribution to
guence. However, to address the traffic flow query mentiondiae traffic flow. While the traffic flow query mentioned earlier is
at the beginning of this section, it is necessary to have a “judgsed as an example here, the proposed framework has the poten-
line” in the frame so that the traffic flow in a specified directiontial to address other (and more complex) spatio-temporal related
can be estimated. This judge line can be provided by the edatabase queries. For example, it can be used to reconstruct acci-
user. For example, it could be a line before vehicles go into dents at intersections in an automated manner to identify causal
out of the intersection area. By using the centroid position ifactors to enhance safety.
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Fig. 8. Tracking the trail of a bus in the traffic video sequence. (a) Bounding boxes and centroids for the bus object in the video sequence ailcbtihéhe tra
bus object from frame 4 to frame 34.

B. Insights thresholds selected for object tracking depend on the shooting

The experimental results demonstrate the effectiveness of §6&/€ and the average vehicle speed. The constancy for the
hicle identification and indexing using the proposed frameworRNMNKing of the bounding box for background update is se-
The index information can be used to address spatio—tempd?aﬂted as four to six pixels, and it works well in most scenarios.
queries for traffic applications. In the study experiments, the
backgrounds of the traffic video sequences are complex. Our
framework can address such complex scenarios for intersection
monitoring. In this paper, a learning-based spatio-temporal vehicle

Based on our experiments, the false positives are maintacking and indexing framework is presented for unsupervised
caused by camera motion. The temporal tracking over a setviideo data storage and access for real-time traffic operations.
frames allows us to reduce this kind of errors since segmeiitsincorporates a unsupervised image/video segmentation
identified due to noise and motion are not temporally coheremiethod, background learning and subtraction techniques,
By contrast, the typical reason to have the false negativesoigject tracking, MATN model, and multimedia input strings.
because of the slow motion of the vehicles, in which the motigh self-adaptive background learning and subtraction method is
difference exists but is not significant. In such situations, oproposed and applied to four real life traffic video sequences to
segmentation method tends to detect only part of the vehiglehance the object segmentation procedure for obtaining more
object. It is typically a small region and will likely be discardedaccurate spatio-temporal information of the vehicle objects.
through a noise-filtering phase. In our framework, the segmenitee background learning process is relatively simple and very
which are very small will be identified as noise and henceffective based on our experiment results. Almost all vehicle
rejected. The selection of the threshold value for determinimdpjects are successfully identified through this framework. The
whether a segment should be identified as noise dependsspatio-temporal relationships of the vehicle objects are captured
prior knowledge such as the average size of the vehicle objeci®s the unsupervised image/video segmentation method and
(in terms of pixels) under a specific shooting scale. Also, thbe proposed object tracking algorithm, and modeled using the

V. CONCLUSIONS AND FUTURE WORK

Authorized licensed use limited to: UNIV OF ALABAMA-BIRMINGHAM. Downloaded on August 31, 2009 at 19:49 from IEEE Xplore. Restrictions apply.



166

MATN model and multimedia input strings. Useful information [15]
is indexed and stored into a multimedia database for further
information retrieval and query. A fundamental advantage OflG]
the proposed background learning algorithm is that it is fully
automatic and unsupervised, and performs the adjustments gl
self-adaptive way. As illustrated by the experiments, the initial
inaccurate background information can be iteratively refined as
the procedure proceeds, thereby benefiting the segmentati&]
process in turn. Hence, the proposed framework can deal with
very complex situations vis-a-vis intersection monitoring.

The proposed research seeks to bridge the important missirttf]
link between transportation management and multimedia infor-
mation technology. In order to develop a transportation multi{20]
media database system (MDBS) with adequate capabilities, the
following future work will be investigated: 1) to store and or-
ganize the rich semantic multimedia data in a systematic andi]
hierarchical model; 2) to identify the vehicle objects in video
sequences under different conditions; and 3) to fuse differen,,
types of media data.
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