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ABSTRACT 
With the wide use of monitoring systems, there emerges an ever 
increasing amount of surveillance videos. Sequential browsing of 
such videos from the database is time consuming and tedious for 
users, and thus cannot take full advantage of the rich information 
contained in video data. In this paper, a general framework for 
semantic video mining and retrieval is proposed. The framework 
detects and retrieves semantic events from surveillance videos. It 
starts by tracking and modeling the trajectories of semantic 
objects in videos. After that, some general user-interested 
semantic events are modeled. The goal is to retrieve these 
semantic events by analyzing the spatiotemporal trajectory 
sequences. However, since individual users may have their own 
subjective query targets, these event models may be too general to 
capture the subjectivity of each individual user. Therefore, in this 
paper, the mining and retrieval phase is designed to dynamically 
learn the user’s interest by interacting with the user. This 
technique is called the Relevance Feedback (RF) which is 
commonly used for Content-based Image Retrieval, but seldom 
applied to the field of semantic video mining. Due to the 
spatiotemporal nature of video events, substantial extensions to 
RF, especially its associated learning mechanisms, are needed to 
apply it to semantic video mining. The learning framework 
proposed in this paper bases its structure on the neural network 
for time series data, which is usually adopted for prediction 
purposes, and we tailor it to suit the specific needs of 
spatiotemporal video event mining. In this paper, transportation 
surveillance videos are used to demonstrate the design details.  

Categories and Subject Descriptors 
H.2.8 [Information Systems]: Database Applications – data 
mining. H.3.3 [Information Systems]: Information Search and 
Retrieval – relevance feedback, search process. 

General Terms 
Algorithms, Design, Experimentation, Human Factors. 

Keywords 
Multimedia Data Mining, Spatial and Temporal Data Mining, 
Visual Data Mining, Content-based Video Retrieval, Relevance 

Feedback, Neural Network. 

1. INTRODUCTION 
With the development of modern monitoring systems, there is an 
urgent need for techniques to automatically analyze and retrieve 
useful information from surveillance videos. Users are no longer 
satisfied with the video retrieval system that merely provides 
VCR functionality. They want to query the semantic content 
instead of sequentially browsing. Content-based retrieval of 
surveillance videos becomes a challenging and important task. 
This requires the machine to “learn” and “understand” the 
semantics of surveillance videos. In light of the status quo of 
existing techniques, there are two challenges we are yet to meet.  
Firstly, current techniques on video content analysis are mostly 
shot-based. These techniques target at such video types as movies, 
news broadcasts or sports games. By shot segmentation and key 
frame extraction [23, 24], the content of the video can be 
analyzed. However, surveillance videos are different from the 
above in that they are composed of monotonously running frames 
with no clear shot boundaries. Therefore, the traditional shot 
based video content analysis techniques cannot be directly applied 
to the surveillance videos. The proposed semantic video retrieval 
framework extracts semantic scenes by analyzing the 
spatiotemporal relations among moving and still objects in the 
video. 
Secondly, surveillance videos are a special kind of multimedia 
data. Traditional data mining methods cannot meet the special 
requirements in understanding the semantic meaning of and 
extracting knowledge from the raw multimedia data. Specifically, 
videos are composed of running images, which are dynamic and 
spatiotemporal in nature. Many researchers have focused on 
interpreting the video contents based on such low level features as 
color histograms and mid-level features as object trajectories. 
Some machine learning techniques are also employed to analyze 
these low level features [5, 15, 24]. However, it is inherently hard 
for the machine to understand the video content by simply reading 
pixels, frames or signals. There is a “semantic gap” between the 
low level features and the high level human concepts. The 
proposed framework strives to reduce this “gap” by the 
“Relevance Feedback” technique.  
Relevance Feedback (RF) is a well-known technique in the field 
of image retrieval. It is used to incorporate the user’s subjective 
perceptions with the learning process [18, 20] for Content-Based 
Image Retrieval (CBIR). The basic idea of Relevance Feedback is 
to ask the user’s opinion on the retrieval result for a user-specified 
query target. Based on these opinions, the learning mechanism 
tries to refine the retrieval result in the next iteration. As a 
supervised learning technique, Relevance Feedback has been 
shown to significantly increase the retrieval accuracy. 
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Besides bridging between low level features and high level human 
concepts, RF can also progressively gather training samples and 
customize the retrieval process. It is different from the traditional 
classification process in machine learning, where prior knowledge 
is required to compose the “training set” for each class. In the 
scenario of information retrieval, especially for large multimedia 
databases, multiple “relevant” and “irrelevant” classes exist 
according to the different preferences of different users [16]. The 
data in each “relevant” class may only constitute a very small 
portion of the entire database. Thus, in a large-scale multimedia 
database, it is difficult to pre-define a complete set of training sets 
for all “relevant” classes before query, due to the scarcity of 
“relevant” samples and the uncertainty of users’ interest. With 
RF, the initial query results are returned based on some heuristics 
i.e. the models of some general events. The training set for the 
user’s specific query is built up gradually with the help of the 
user’s feedback. Therefore, RF provides more flexibility in 
information retrieval as it customizes the search engine for the 
need of individual users. 
The core learning algorithm used in this paper is the recurrent 
neural network for time series data. Video data is a special kind of 
time series data as it consists of sequences of values or events 
changing with time. There are a large amount of literatures [3, 9, 
17] on applying neural networks in forecasting the behavior of 
real world time series data, which is popular in such applications 
as studying the fluctuations of stock market. However, relatively 
few works [11, 21] have addressed the issue of event detection in 
time series data with neural network. In this paper, we explore the 
spatiotemporal models of a neuron for semantic event mining and 
retrieval from video data. 
To summarize, we propose an interactive framework for semantic 
surveillance video mining and retrieval. This is a general 
framework in that its components are designed to suit the general 
needs of surveillance video mining and retrieval. The framework 
first performs the object tracking and segmentation, which 
extracts content features and the moving trajectories of objects in 
the video. Trajectories are then segmented into short sequences. 
Event models are constructed to model different semantic events 
and incorporate human knowledge. In the learning and retrieval 
phase, the technique of Relevance Feedback is incorporated, with 
which the user provides feedback and the learning algorithm 
learns from it by depressing the “irrelevant” scenes and promoting 
the “relevant” scenes. Instead of the pre-defined “expert” 
knowledge, the individual user’s subjective view serves as the 
guideline for learning. In this framework, recurrent neural 
network serves as the key learning mechanism to solve an event 
detection problem. It learns the spatiotemporal characteristics of 
user-interested video events, which is dynamic rather than static. 
The proposed framework is especially useful in mining and 
retrieving data from large video databases, where only raw data is 
stored. By using users’ feedbacks, human knowledge is 
incorporated into such a database.  
While the framework is designed to be of general use and can be 
tailored to many fields, transportation surveillance videos are used 
in this study to illustrate the design details. The semantic events in 
a transportation video database are incidents captured by the 
surveillance cameras on the road, such as car crash, bumping, U-
turn and speeding. Experimental results show the effectiveness of 
the proposed framework for traffic accident and U-turn detection. 

In our previous work [8], a framework for traffic accident 
retrieval is constructed. The proposed framework in this paper 
significantly extends the previous one in the following aspects: 
o In [8], only one type of incident can be retrieved (i.e., 

accidents). For this purpose, two event models are 
constructed, one for single-vehicle accident and another for 
two-vehicle accident. In the proposed framework in this paper, 
only one event model for traffic accidents is designed, which 
is more general compared with the previous two models. 

o Besides accidents, the proposed work in this paper is also able 
to retrieve such events as U-turns. An event model for this 
type of incidents is constructed to characterize its uniqueness. 

o In [8], the .key learning algorithm (i.e. a static feedforword 
neural network) accepts time series data by expressing them in 
a spatial manner in the input nodes. In order to further explore 
the timeliness of the data, a dynamic recurrent neural network 
is applied in this framework for learning and retrieval. 

In the remaining of this paper, Section 2 briefly introduces a 
semantic object extraction and tracking algorithm for traffic 
surveillance videos. This section also illustrates the trajectory 
segmentation technique used in this framework. Section 3 
exemplifies the semantic event modeling. Section 4 presents the 
design details of the learning and retrieval process. Section 5 
provides the experimental results. Section 6 concludes the paper. 
 

2. SEMANTIC OBJECT TRACKING AND 
TRAJECTORY SEGMENTATION 
2.1 Automatic Vehicle Tracking and 
Segmentation 
As traffic surveillance videos are the target of our study in this 
paper, in this section, we provide some background information 
on the pre-processing of transportation surveillance videos. In our 
previous work [7], an unsupervised segmentation method called 
the Simultaneous Partition and Class Parameter Estimation 
(SPCPE) algorithm, coupled with a background learning and 
subtraction method, is used to identify the vehicle objects in a 
traffic video sequence. The technique of background learning and 
subtraction is to enhance the basic SPCPE algorithm in order to 
better identify vehicle objects in traffic surveillance videos.  

 
Figure 1. Tracked vehicle segments and their centroids 

The framework in [7] also has the ability to track moving vehicle 
objects (segments) within successive video frames. By 
distinguishing the static objects from mobile objects in the frame, 
tracking information can be used to determine the trails of vehicle 
objects. Figure 1 shows an example of the tracking result of three 
vehicles. The yellow rectangular area is the Minimal Bounding 
Rectangle (MBR) of a vehicle segment. (xcentroid, ycentroid) are the 
coordinates of a vehicle segment’s centroid represented by a red 
dot in the figure. It is used for tracking the positions of vehicles 
across video frames. The last phase of the framework is to 
classify vehicle objects into different classes such as SUVs, pick-
up trucks, and cars, etc. The classification algorithm is based on 



Principal Component Analysis. 
With the pre-processing, lots of spatiotemporal data is generated. 
This provides a basis for video mining and retrieval. In this paper, 
suitable spatiotemporal models for traffic video data are built to 
further organize, index and retrieve these information. 

2.2 Trajectory Modeling and Segmentation 
By tracking each moving vehicle in the video, a series of object 
centroids on successive frames are recorded. We can approximate 
the trajectory of the vehicle by using the least-square curve 
fitting. A kth degree polynomial for the curve is: 
 y = a0 + a1x + … +akxk (1) 
Given n centroids on a trajectory, the k+1 unknowns [a0, a1, …, 
ak] can be resolved by n equations through minimizing the 
squared sum of the deviations of the data from the model. The n 
equations can be represented as: 
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The fitted curve represents a rough shape of the moving 
trajectory. It can be described by only a few polynomial 
coefficients. The first derivative of a polynomial curve is a 
tangent vector, which represents the velocities of that vehicle at 
different time.  
Trajectory segmentation is an important task in many applications 
such as gesture detection in the area of computer vision. Mann et 
al. [13] proposed a method using dynamic programming. The 
basic idea of Mann et al. is to divide the trajectory into piece-wise 
polynomial curves. Meanwhile, the trade off of curve fitting error 
and the cost of introducing new segments are optimized. It is 
shown that the global optimization for a single trajectory is 
reached through dynamic programming. This proposed method is 
applied to segmenting the motion trajectory of a basketball. Wang 
and Li [22] employed a spectral analysis method in motion 
segmentation. The centroid coordinates of moving objects are 
clustered. In this way, the breakpoints for segmentations are 
obtained. Anagnostopoulos et al. [1] proposed a global distance 
based method for trajectory segmentation. This method considers 
all the trajectories in the database instead of each individual 
trajectory separately. The optimization is based on the distances 
of each pair of trajectories.  
All the above mentioned work, whether it is distance based or 
spectral based, whether it views the problem from a set of 
centroids or from each individual trajectory or even from the 
perspective of the whole trajectory set, are targeting at an 
optimization problem. With these methods, the segmented 
trajectories are suited for tasks such as trajectory retrieval. 
However, semantic video event retrieval is not as simple as to 
retrieve similar trajectories from a database. Sophisticated as 
these trajectory segmentation methods are, they are too general to 
meet the special needs of such application as incident detection in 
transportation surveillance videos.  
The moving trajectories of vehicles in the surveillance videos are 
mostly smooth curves, unless there are some accidents with 
sudden turns or stops. Therefore, we can use some simple 
methods to detect the curvature of the trajectory and segment the 
trajectory into pieces such that each piece contains an integral 

semantic meaning. Bashir et al. [2] proposed to use curvature as a 
determinant of the concavity or convexity in the curve. The 
trajectories are divided into segments of smooth motions. Take 
Figure 2 as an example, each segment represents such a motion.  
We follow a similar idea. However, smooth motions are not what 
we want since these motions signify the normal driving of 
vehicles and are usually not of the user’s interest. Instead, in order 
to detect interesting events, we perform trajectory segmentation 
according to the rotation of tangent vectors on the curve.  
As shown in Figure 3, the tangent vectors rotate continuously 
along the curve either clockwise or counterclockwise. The point 
where the rotation direction changes from clockwise to 
counterclockwise can be set as a breakpoint for a new segment 
and vice versa. With such a segmentation scheme, incidents such 
as U-turns, corner turns or sudden change of driving directions 
which may imply accidents can be singled out. Further analysis 
based on trajectory segments instead of the whole trajectory can 
eliminate the noise in the learning process. Instead of representing 
the trajectory segments by some scalar parameters [15] [2], such 
as Fourier Descriptor, parametric curve coefficients or PCA 
coefficients, we want to keep the spatial-temporal characteristics 
of the data set. Therefore, in the following sections, each 
segmented trajectory is still represented in a discrete manner, i.e., 
by a continuous set of centroids of the moving object. Features 
are extracted from these centroid sequences and presented to the 
learning algorithm in a sequential form. 
 

 
Figure 2. Trajectory segmentation of smooth motions 

 
Figure 3. Segmentation of trajectories containing possible 
interesting events 

3. EVENT MODELING 
With different event types, different features of the semantic 
objects can be extracted to build models for specific event types. 
Take transportation surveillance videos as an example, the general 
events of interest may include car crashes, illegal U-turns, and 
overtaking. In this study, we tested our framework on car crashes 
and U-turns. In this section, two generic models for the above two 
types of events are built, one for the modeling of the behavior of 
vehicles in car crashes and another for the modeling of U-turns. 

3.1 Traffic Accidents 
Under some circumstances, a car accident may involve only one 
vehicle. Examples are sudden stops or crashes onto side walls in 
the tunnel. If a vehicle crashes into another vehicle or several 
vehicles bump into each other, the accident will involve more 



than one vehicle. In all cases, the focus shall be the sudden 
change of behavior pattern of individual vehicles. Within each 
vehicle trajectory, three properties of the vehicle are recorded: 
velocity, change of velocity, and change of motion vector. Once 
the sampling rate is known, the velocity at each sampling point 
can be directly calculated. The change of velocity Vdiff at each 
point can also be easily calculated by subtracting the velocity 
sampled at the previous sampling point from the current velocity. 
A motion vector is a vector with its starting point being the 
centroid of some vehicle at the previous sampling point and the 
ending point being the centroid of the same vehicle at the current 
sampling point. As illustrated in the figure below, the change of 
motion vector is denoted as the angle between the current motion 
vector and the previous motion vector, 1M  and 2M . θ  is the 
difference angle between them. Since we only record the absolute 
angle difference, there is no need to normalize these vectors along 
the axis. 

 
Figure 4. The change of motion vector 

Another factor that needs to be taken into consideration is the 
distances among vehicles as it is a good indication for multi-
vehicle accidents. For each vehicle, we record its minimum 
distance from its nearest vehicle – mdist at each sampling point.  
As mentioned earlier, some heuristics need to be established in 
order to process the initial queries. This heuristic model is built 
based on the observation that the sudden change of velocity and 
driving direction may indicate an accident. Further, the closer the 
vehicle is to the other vehicles, the higher the chance of an 
accident. At the ith sampling point, the feature vector of a 
trajectory segment is iα = [1/mdisti, vdiffi, iθ ]. A series of such 
vectors ],...,[ 1 nααα =  represent the whole trajectory segment.  

3.2 U-turns 
In events such as U-turns, the main focus is the change of driving 
direction of vehicles. As in the accident model, θ  is the 
difference angle between two consecutive motion vectors. Besides 
its absolute value, we shall also look at its angle change direction. 
We use θ

r
to represent its vectorial property, which is also the 

feature vector of each sampling point in the trajectory segment for 
detecting U-turn events. According to our trajectory segmentation 
method, the angle change direction of each iθ

r
 is the same (either 

clockwise or counterclockwise. See Figure 4) within each 
trajectory segment. If we represent the clockwise rotation as 
positive and counterclockwise as negative, a set of such vectors, 

],...,[ 1 nααα =  with ii θα
r

= , can be represented by a set of real 
scalars within [ ππ  ,− ]. α  thus represents the entire trajectory 
segment. The heuristics for U-turns can therefore be represented 
by Equation (3).  

 )(
1
∑
=

=
n

i
iscalarh θ
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h is the total angle change within the segment. scalar is a function 
that returns positive angle values for clockwise θ

r
s or negative 

angle values for counterclockwise θ
r

s. Ideally, a U-turn event 
occurs when h reaches π  or π− . However, since video frames 
taken by a stationary camera are actually a series of artificial 
perspective projection images of the real world scenes, which 
come with the problem of perspective projection, a U-turn cannot 
always be tracked as a 180o turn. Besides, some accidents, where 
a quick and substantial change of driving direction is involved, 
may also be mistakenly identified as U-turns. Therefore, we 
cannot rely on this heuristic alone to detect U-turns. Nevertheless, 
this heuristic can be used as the basis for the initial query, 
followed by a learning process which is guided by the user.  
 

4. LEARNING AND RETRIEVAL 
In this section, we shall present the core learning mechanism and 
the design details for mining and retrieving semantic events. 

4.1 The Learning Mechanism 
Neural network simulates human brain in constructing a complex, 
nonlinear and parallel computing environment. Knowledge is 
acquired by the network through a learning process. Interneuron 
connection strengths known as weights are used to store the 
knowledge. Each neuron is a processing unit. For much of the 
neural network analysis, the nonlinear model of a neuron is used 
as shown in Figure 5. W1×k is a k×1 weight vector for each input 
vector xi whose length is k and b is the bias. The limitation of this 
model is that it only accounts for the spatial behavior of a neuron.    Input V

ectorx
i

 
Figure 5. The standard model of a neuron 

By extending this model for temporal processing, the neural 
network method for time series prediction induces the function f 
in a Multilayer Perceptrons (MLP) or Radial Basis Function 
(RBF) architecture. Time series analysis using neural networks 
requires the prediction or estimation of xk based on the preceding 
m observed data points xk-m, …, xk-2, xk-1. In prediction, an exact 
value of xk is required. Thus, prediction becomes a problem of 
function approximation which is to find an f such that: 
 xk = f(xk-m, …, xk-2, xk-1) (4) 
However, for video event mining and retrieval, there is no need to 
predict an exact value for xk. Instead, only an indication of 
whether xk will be the event of interest is needed. In this case, the 
problem turns into a classification problem, mapping a temporal 
sequence onto the classes of “relevant” or “irrelevant”: 
 fc : (xk-m, …, xk-2, xk-1) →  ci  ∈  C (5) 
where C is the set of all class labels. This can be treated as a 
special case of function approximation, in which the targets are 
binary values. Classical linear autoregressive models in modeling 
time series data are rather limited, since they assume linear 
relationship among consecutive data series. As illustrated in [10], 
MLP and RBFs offer an extension to the linear model by using a 
non-linear function, which can be estimated by such learning and 
optimization technique as back propagation. Figure 6 shows the 
basic architecture of a neuron for time series data. Unlike in 
Figure 5, the temporal relationships among the inputs (xt-1, …, xt-m) 
are considered in Figure 6, i.e. the output signal of the current 



input will be feed back into the same layer and thus the 
processing of the next input is at least partially dependent upon 
earlier computations. This is different from the feedforward 
networks in that the output of a hidden unit not only can be 
connected to the units in the next layer but also the units in the 
same layer or even itself. Therefore, instead of feed forward, 
these units can also feed back. This type of network architecture 
is called Recurrent Neural Network (RNN). As a result, the 
network can perform more complex computations than static 
feedforward networks. For example, it is capable of learning 
temporal pattern sequences. 

W1×k

b

W1×1

t-1 t-2
 

Figure 6. The time series model of a neuron 
We can think the recurrent neural network (RNN) structure as a 
group of interconnected processing units, where any unit may be 
connected to any other unit or cyclically connected to itself. This 
network can be represented by a single weight matrix Wn×(n+m), 
where n is the total number of units with m being the number of 
external inputs. In this paper, our learning algorithm is based on a 
recurrent multilayer neural network that incorporates the 
technique of Relevance Feedback. The structure of the whole 
network is shown in Figure 7. 
In the proposed learning mechanism, the user’s feedback is added 
as a node in the input layer. Other input values include a sequence 
of vectors ],...,[ 1 nαα , where iα is the feature vector at each 
sampling point as illustrated in Section 3. The number of input 
nodes corresponds to the number of sampling points with a 
trajectory segment plus one node for user feedback. The 
processing units (neurons) in the hidden layer are grouped into n 
sets as illustrated by the dashed red rectangles (see Figure 7). 
Each set of hidden units processes an input vector iα . The output 
signals of each set of hidden units are not only connected with the 
output unit of the network but also connected with the next set of 
hidden units i.e., the ones that process the subsequent input 
vectors. With this network architecture, the trajectory sequence 
are spatio-temporally connected and processed. The detailed 
design decisions as to the input nodes, the numbers of hidden 
units and hidden layers, weights, and learning algorithms will be 
discussed in the following section. 

 
Figure 7. The proposed learning mechanism 

4.2 Network Design 
4.2.1 Input Nodes 
As aforementioned, the length of the trajectory segment 
determines the number of input nodes. With a sampling rate of 5 
frames per sampling point, the trajectory segments are represented 
by a series of such sampling points. As mentioned above, each 
input node, excluding the fdk node, is a feature vector extracted at 
its corresponding sampling point according to some event model. 
For example, in a car-crash model, the feature vector iα = 
[1/mdisti, vdiffi, iθ ] is three dimensional. In a U-turn model, the 

feature vector ii θα
r

=  is one dimensional. The trajectory 
segments are thus not uniform in length. The longest segment is 
then chosen to determine the number of input nodes. Some 
dummy variables (i.e., zeros) are used to pad the segments that 
are shorter than this length. More design details as to the fdk node 
is included in Section 4.3. 
4.2.2 Hidden Layer and Output Layer 
Most practical neural networks have used just two or three layers. 
Four or more layers are rarely used. In our framework, we adopt a 
two-layer neural network – one hidden layer having sigmoid 
transfer function and one output layer having linear transfer 
function. It has been shown that this network architecture can 
approximate virtually any functions of interest to any degree of 
accuracy, provided sufficiently many hidden units are available 
[12]. As demonstrated by our experiments, this architecture can 
be trained to approximate the function f well as discussed in 
Section 4.1. Particularly, the processing units in the hidden layer 
are interconnected in a sequential manner, which enables them to 
process a set of time series data. 
In our case, there is one unit in the output layer indicating 
whether the sequence is the desired event or not. The optimal 
number of units in the hidden layer is a decision hard to make. A 
large number will reduce the convergence rate of learning and 
have a higher generalization error due to overfitting and high 
variance, while a small number cannot guarantee the 
approximation accuracy. An appropriate number of hidden units 
are necessary for adequate performance. One rule of thumb [4] is 
that it shall not exceed twice the size of the input nodes. Suppose 
the size of one input vector is l, in our platform, we tested on the 
hidden layer the sizes of nl, 1.5nl and 2nl and found that nl 
generates the minimum estimated generalization error. n is the 
number of input vectors i.e. the length of the longest trajectory 
segment.  

4.2.3  Transfer Function 
As mentioned above, the transfer function in the first layer 
(hidden layer) is sigmoid, which is used to introduce nonlinearity.  
 )tanh(∑=

i ii xwy  (6) 

tanh is the tangent hyperbolic function, a conventional sigmoid 
function. wi is a weight for each input or the weight connecting 
two hidden units.   

4.2.4  Initial Weights 
Most of the neural networks use random numbers as initial 
weights. However, since the back propagation is a hill-climbing 
technique, the randomness of initial weights may result in local 
optimum. In [6], a multiple linear regression weight initialization 
method is proposed. It is adopted in our learning algorithm. In this 
method, the initial weights in the first layer are still uniform 



random numbers. However, the weights in the second layer are 
obtained by multiple linear regression. 
After the initial weights for the first layer are generated, the input 
nodes, their corresponding weights and the interconnecting 
weights of the hidden units are fed to the sigmoid function to get 
the output values for each neuron in the hidden layer. As 
mentioned above, in our design, there are nl processing units 
(neurons) in the hidden layer. Suppose these outputs are R1, R2, … 

,Rnl. The second layer use a linear transfer function so that 
 ∑= i ii Rvy  (7) 

where, vi is weight on the second layer. This is a typical multiple 
linear regression model. Ri’s are regressors. vi can be estimated 
using standard regression method. The least square optimization 
procedure is used in the proposed framework for such a purpose.  
4.2.5 Learning Algorithm  
Minsky and Papert [14] had shown that one can always derive an 
equivalent Multilayer Feedforward (MLFF) network from any 
recurrent neural network, in that the two networks demonstrate 
the same behavior. In doing so, the recurrent neural network can 
be unfolded with each time step t corresponding to an additional 
layer. During this unfolding process, the back propagation 
algorithm used in MLFF network can also be applied to the 
training of recurrent neural networks. A simple form of this is 
called “Back Propagation Through Time” (BTT), which is 
adopted in the proposed learning framework. This method 
requires that the errors due to feedback connections be 
accumulated in the weight adjustment process. Just as the regular 
back propagation, the weights are updated after a complete 
forward step and a complete backward step. Since the input 
sequence is finite, the weights are updated after importing the 
whole sequence, in our case the whole trajectory segment. 
The basic form of the back propagation algorithm is 
computationally expensive and its training may take days or 
weeks. This has encouraged considerable research on methods to 
accelerate the convergence rate. As training neural networks to 
minimize the squared error is simply a numerical optimization 
problem, some existing numerical optimization techniques have 
been successfully applied to the training of multilayer 
perceptrons. Among them are steepest descent, conjugate gradient 
and Newton’s method. Steepest descent is the simplest algorithm, 
but is often slow in convergence. Newton’s method is much 
faster, but requires that the Hessian Matrix and its inverse be 
calculated. The conjugate gradient is a compromise in that it does 
not require the calculation of second derivatives, yet it still has the 
quadratic convergence property. In the proposed framework, we 
choose the conjugate gradient.  
The learning algorithm is provided with a set of examples of 
proper network behavior: {I, O}, where I is a group of inputs and 
O is the set of the corresponding desired outputs. While each input 
is applied to the network, the network output is compared to the 
desired output. The algorithm then adjusts the weights to 
minimize the mean square error: 
 eeIOwF T

i ii =Φ−=∑ 2))(()(  (8) 

)( iIΦ is the actual output of the network with the current 
weights. e is the error vector and w is the weight vector. e can be 
rewritten as e = O – Gw, where Gw =  )( iIΦ  and G is a matrix. 
Then,  

 GwGwGwOOOwF TTTT +−= 2)(  (9) 
Compare this with the following quadratic form: 
 cwbAwwwF TT +−=

2
1)(  (10) 

we can see that these two are the same with 
GGAOGbOOc TTT 2 and  ,2  , === . It can be easily proved that 

A is positive-definite, in that for every nonzero vector x, xTAx>0. 
The conjugate gradient algorithm starts from an initial point and 
searches along the conjugate directions to find the point where the 
network output error reaches its minimum i.e. to minimize F(w). 
Since A is positive-definite, the surface represented by Equation 
(10) is a concave surface that has one single lowest point. F(w) 
reaches its minimum at F’(w) = 0. Therefore, F’(w) = 0 at this 
single lowest point. In [19], this is explained in a more intuitive 
way. If A is symmetric, the gradient of the above equation can be 
reduced to: 
 F’(w) = Aw –b (11) 
which makes Aw = b the solution. In this way, the problem of 
finding the minimum of a quadratic form of Equation 9 equals to 
solving a linear system. If A is not symmetric, we can use the 
conjugate gradient to find a solution to the system 

bwAAT =+ )(
2
1 , where )(

2
1 AAT +  is symmetric.  

The conjugate gradient method searches the surface by stepping 
along the conjugate directions {d(i)}. By updating the weights 
along the conjugate directions, we have: 
 wi+1 = wi + sid(i)  (12) 
where si is the step size: 
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ri  is the residual. 
 

iiiiiiii AdsrdseAAer −=+−=−= ++  )( )(11
 (14) 

Two vectors d(i) and d(j) are conjugate if  
 d(i) A d(j) = 0 (15) 
The Conjugate Gram-Schmidt process provides a simple way to 
generate a set of conjugate search directions {d(i)}.  
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ikβ  can be obtained by Equation (15) and Equation (14): 
 ( ))()()( j
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T
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With an initial search point, Equations (11)(12)(13)(14)(15)(16) 
together form the conjugate gradient method in searching the 
minimum point in the surface represented by Equation (10). 

4.3 Event Mining and Retrieval Process 
In the initial query, the user specifies an event of interest as the 
query target. The ultimate goal is to retrieve those video 
sequences that contain similar semantic events. At this point, no 
relevance feedback information is provided by the user. 
Therefore, no training sample set is available that can be used in 
learning the pattern of user interested events. In order to provide 
an initial set of video sequences for the user to provide relevance 
feedback, for each trajectory segment in the database, we 
calculate its relevance (or similarity score) to the target query 
video event according to some event-specific search heuristics. 
In the initial retrieval for car-crash events, each sampling point is 
represented by the square sum of all the three features in the 
feature vector 

iα = [1/mdisti, vdiffi, iθ ]. The relevance score of a 
trajectory segment sequence is represented by the maximum value 



of sampling points within the segment. The retrieval results are 
returned in descending order of this value. It is assumed that a big 
velocity change, a sudden change of driving direction and a short 
distance between two vehicles indicate possible accidents. 
For U-turn events, the initial retrieval takes into account the 
accumulative angle change as indicated in Equation (3), which is 
used as the heuristic for detecting possible U-turns. We calculate 
the absolute value of the total angle change h within each 
trajectory segment and sort them in a descending order. 
After the initial query, a number of trajectory segment sequences 
are presented to the user. In our experiment, the top 20 video 
sequences are returned for feedback. The user identifies a 
returned sequence as “relevant” if it is of his/her interest; 
otherwise the user labels it “irrelevant”. With this information, a 
set of training samples are gathered. Each training sample is in the 
form of [α1, α2, …, αn, fdk, opt]. αi’s are the feature vectors at 
consecutive sampling points used to model a trajectory segment 
sequence. fdk is subtracted by  a small positive number ε if the 
user marks it “irrelevant”, otherwise it is incremented by ε. The 
value of ε is set to 0.2 in our case as we assume there are no more 
than 5 rounds of user-feedback and the normalized input value is 
within a range of [-1, 1]. opt is the desired output with the value 
of one for a “relevant” sequence or zero for an “irrelevant” 
sequence. These training samples are fed into the neural network 
based learning framework (Figure 7), which learns and models 
users’ interest and refines the retrieval result in the subsequent 
runs of the retrieval-feedback process. After several iterations, the 
“relevant” sequences and their common features are encouraged 
by incrementing their fdk values, while the “irrelevant” sequences 
are panelized by decreasing their fdk values. It is shown in our 
experiment that, with this interactive learning technique, the 
retrieval results are improved through iterations. 
 

5. EXPERIMENTS 
5.1 System Overview 
The overall flow of the whole system proposed in this paper is as 
follows - The raw video is analyzed by segmenting and tracking 
semantic objects (vehicles) in it. After tracking, the object 
trajectories are modeled with the curve fitting technique. 
Trajectories are then segmented into smaller pieces for the 
purpose of learning and retrieval. In our experiment, we test its 
performance on retrieving traffic accidents and U-turns from 
traffic surveillance videos. The corresponding event models are 
built and the feature vectors at each sampling point are extracted. 
When the user specifies a query type (i.e., accidents or U-turns), 
the system performs an initial query based on some heuristics as 
discussed in Section 4.3, and returns the initial retrieval results to 
the user. The user responds to each returned trajectory segment 
sequence by giving his/her feedbacks. The learning mechanism in 
the system will then learn from these feedbacks and refine the 
retrieval results in the next iteration. The whole process goes 
through several iterations until a satisfactory result is obtained. 
Figure 8 shows the interface for the user to provide feedback 
information. In this example, the user chooses to query for U-turn 
events. The top 20 video sequences are returned to the user at 
each iteration. The user can play the retrieved sequence. If the 
user thinks a sequence is a U-turn event, that sequence will be 
selected. This is equal to labeling the video sequence “relevant”. 
As shown in the interface, 5 sequences (in orange rectangles) are 
labeled “relevant” given a U-turn query. 

 

 
Figure 8. The user interaction interface 

5.2 System Performance 
5.2.1 Query Accidents 
The proposed framework is tested on two video clips for 
accidents. The first one is taken in a tunnel and contains 2504 
frames in total. The second one is taken by a real-life traffic 
surveillance video at a road intersection in Taiwan and contains 
592 frames. The sampling rate is 5 frames/sampling points. After 
trajectory segmentation, 82 trajectory segments extracted from the 
first video and 69 trajectory segments from the second clip.  
The proposed framework is compared with the traditional 
weighted relevance feedback method. In this method, each feature 
in the feature vector 

iα  has a weight. The initial round of retrieval 
is the same as that of the proposed framework. That is to say, the 
initial weights of the three features are all 1s and the square sum 
of the features is computed as the relevance score. With the user’s 
relevance feedback, the feature vectors of all relevant trajectory 
sequences are gathered. The inverse of the standard deviation of 
each feature is computed and used as the new weight for that 
feature in the next round. In our experiment, we found that some 
large weights can introduce bias in computing relevance scores 
and hence affect the retrieval accuracy. Therefore, it is necessary 
to normalize these weights. We first tried to linearly normalize 
these weights to the range of [0, 1]. However, the problem with 
this method is that a weight that equals zero will always eliminate 
the corresponding feature. We then tried another method -- the 
percentage of each weight among the total weight is used as the 
normalized weight. In our experiment, the latter outperforms both 
the linear normalization and no normalization at all.  
Besides weighted RF, the proposed framework is also compared 
with the feedforward neural network and One-class SVM. With 
feedforward neural network, there is no recurrent behavior in the 
network. Each trajectory segment is presented to the network as if 
there are no temporal relations among the sampling points in the 
trajectory segment. A trajectory segment sequence is expressed 
spatially in the network in that the feature vector of each sampling 
pint corresponds to an input node and there is no temporal relation 
among the hidden units processing these inputs. In other words, 
the temporal relation among inputs is not used explicitly in the 
learning process. Therefore the processing of one input node is 
not affected by the processing of any proceeding input node.  



With One-class SVM, the temporal relation among sampling 
points in the trajectory segment sequence is also not used 
explicitly. The trajectory segment is simply represented by a 
vector whose length is the number of sampling points in the 
segment. With the user’s feedback, the “relevant” sequences are 
gathered and fed into One-class SVM. Since “irrelevant” 
sequences are different in various ways, they are not considered 
to be in a single class. Instead, “irrelevant” sequences are treated 
as outliers of the “relevant” class. This justifies the usage of the 
One-class SVM instead of the binary SVM.  
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Figure 9. The retrieval accuracies for the 1st clip 

Five rounds of relevance feedback are performed - Initial (no 
feedback), First, Second, Third, and Fourth. At each iteration, the 
top 20 sequences are returned to the user. In a large-scale 
information mining and retrieval system, since there is no prior 
knowledge as to the total number of “correct” results given a 
user’s query, it is not applicable to use traditional data mining 
measurements such as precision and recall. Instead, we use the 
“accuracy” measure for such a purpose, which is defined as the 
percentage of all the “relevant” sequences within the top n (e.g. 
n=20) returned sequences. Figure 9 shows the retrieval accuracies 
within the top 20 sequences for the first video clip after Initial, 
First, Third, and Fourth round of iterations. “Weighted_RF” 
represents the weighted relevance feedback method, “SVM” is the 
One-class SVM, “BP” is the feedforward neural network and 
“BP_RNN” is the proposed framework. 
It can be gleaned from Figure 9 that the initial accuracies of the 
four methods are the same since the same retrieval algorithm is 
used in the initial round. After that, the proposed framework 
performs much better than the other methods in that the accuracy 
values increase steadily from 40% to 90%. “SVM” and “BP” also 
have higher performance gains than that of “Weighted_RF”. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Initial 1st 2nd 3rd 4th

A
cc

ur
ac

y Weighted_RF
SVM
BP
BP_RNN

 
Figure 10. The retrieval accuracies for the 2nd clip 

Most of the accidents in the first clip only involve one vehicle. 
The video was taken in a tunnel and features some accident 
scenes where speeding vehicles lost control and hit on the 
sidewalls of the tunnel. In the second clip, all the accidents 

occurred at a road intersection and often involve two or more 
vehicles. The retrieval results are compared with that of the 
weighted RF, One-class SVM and feedforward neural network in 
Figure 10. Although the 35% accuracy gains with the proposed 
framework is not as high as that for the first clip, it is far better 
than that of the other methods. Specifically, in “Weighted_RF”, 
performance degradation occurs right after the initial iteration. 
“SVM” and “BP” achieved 15% and 20% accuracy increase, 
respectively.  

5.2.2 Query U-turns 
We test the U-turn events on the video taken at a major 
intersection at a frame rate of 30 frames per second. There are 
altogether 13261 frames. After trajectory segmentation, 377 
trajectory segments are extracted. Since the feature vector in U-
turn event model is one dimensional, it does not make sense to 
change the weight of this single feature. Therefore, we cannot 
directly compare the proposed framework with the weighed 
relevance feedback. In the experimental results shown in Figure 
11, only the results of One-class SVM (SVM) and feedforward 
neural network (BP) are presented for comparison.  
The proposed framework reaches 70% accuracy rate at the 4th 
iteration. “BP” has a total of 60% accuracy rate and “SVM” only 
has a 40% accuracy rate at the end of the query. The initial 
retrieval accuracy is only 25%, which further affects the first and 
the second iterations. This is due to the imperfection of vehicle 
segmentation and tracking. For example, in tracking a vehicle 
driving along the X axis, supposedly, the x-coordinate of the 
vehicle centroid shall increase in each subsequent frame. 
However, the current segmentation method cannot guarantee to 
100% correctly locate the exact centroid of a vehicle in each 
frame. This inaccuracy may cause the vehicle centroid’s next x-
coordinate smaller than that in the current frame. In this case, the 
vehicle “seems” to be driving backward. As a result, an angle 
change of 180o may be incorrectly computed due to this 
inaccuracy in vehicle segmentation and tracking. This 
significantly hinders the retrieval accuracy in the initial retrieval. 
However, after several rounds of learning and feedback, the 
accuracy rate of the proposed framework gradually picks up. 
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Figure 11. The retrieval accuracies for the U-turns 

Ideally, all the video clips in a transportation surveillance video 
database shall be mined and retrieved as a whole. However, in 
order to do that, it requires that we normalize all the video clips 
taken at different locations with different camera parameters. 
Those parameters, such as camera angles and camera positions, 
are necessary for normalization. Unfortunately, these metadata 
are missing in our experimental videos. Therefore, at the current 
stage, the retrieval is performed independently for each group of 
videos taken by the same camera at the same location. Our next 
immediate step is to collect our own transportation surveillance 



videos and normalize them before storing them into the database. 

6. CONCLUSION 
In this paper, an interactive semantic video mining and retrieval 
framework for general surveillance videos is proposed. Given a 
set of raw video data, the semantic objects are tracked and the 
corresponding trajectories are modeled. After that, trajectories are 
segmented and stored into the database. Some general event 
models are then constructed. In the learning and retrieval phase, 
the user provides feedback to the relevance for each returned 
video sequence. The learning algorithm then refines the retrieval 
results with the user’s feedbacks. This framework successfully 
incorporates the Relevance Feedback technique in mining video 
data, which is rarely studied in video mining and retrieval. For 
learning and retrieval, recurrent neural network is adapted to fit 
the specific needs of event detection for time series data. Our 
experimental results on live transportation surveillance videos 
demonstrate its effectiveness. 
In future work, we will normalize videos before storing them into 
the database. To reduce the influence of imprecise vehicle 
segmentations, we will blur the difference between consecutive 
centroid coordinates. This may be achieved by sampling the fitted 
curve instead of using the original sampling points (real 
centroids). Currently, the framework only supports query by 
specified event types. This will be extended to include query by 
example, query by sketches and the customized query types. 
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