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ABSTRACT 

Biological videos are very different from conventional videos. 
Automatic spatiotemporal mining of moving cells from in vivo 
microscopy videos is extremely difficult because of the severe 
noises, camera/subject movements, deformations, and strong 
dependencies on microscopy operators. In this paper, we present 
an automatic spatiotemporal mining system of rolling and 
adherent leukocytes for intravital videos. The magnitude of 
leukocyte adhesion and decrease in rolling velocity are common 
interests in inflammation response studies. Currently, there is no 
existing system which is perfect for such purposes. Several 
approaches have been proposed for tracking leukocytes. However, 
these approaches can either only track leukocytes that roll along 
the centerline of the blood vessel, or can only handle leukocytes 
with fixed morphologies. In addition, the camera/subject 
movement is a severe problem which occurs frequently while 
analyzing in vivo microscopy videos. In this paper, we proposed a 
new method for automatic recognition of non-adherent and 
adherent leukocytes. The proposed method includes three steps: 
(1) camera/subject movement alignment; (2) moving leukocytes 
detection; (3) adherent leukocytes detection. The experimental 
results demonstrate the effectiveness of the proposed method. 
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1. BACKGROUND INTRODUCTION 
The in vivo microscopy technology enables biologists to create a 
natural environment and to monitor phenomena in live animal for 
studying biological problems. However, in contrast to mining the 
conventional surveillance video, mining in vivo microscopy 
videos is a more challenging since the respiration and movement 
of a living creature may cause unexpected camera/subject 
movements which change the spatial information of the monitored 
subject. Among mining various types of in vivo microscopy 
videos, the automatic detection of leukocytes is probably one of 
the toughest tasks since leukocytes are capable of amoeboid 
movements which may cause changes in their morphology.  
In this paper, we focus on mining the in vivo microscopy video 
for leukocyte detection since the process of leukocyte migration is 
a very important phenomenon in the inflammatory tissue. It is 
well known in biologists’ communities that leukocytes roll along 
vascular beds, arrest, and transmigrate before they are recruited to 
inflammatory sites and secondary lymphoid tissues during an 
inflammation response [9]. The magnitude of leukocyte adhesion 
and the decrease in rolling velocity are the main predictors of the 
inflammatory response. In [2] and [14], the measurement of 
leukocyte rolling and adhesion is done manually with a frame-to-
frame video analysis. This type of manual data collection is time 
and labor consuming and subject to bias from observers. 
Automatic spatiotemporal mining of rolling and adherent 
leukocytes from intravital videos can significantly increase the 

accuracy of the data collection and liberate biologists from the 
unnecessarily tedious analyses. 
Several approaches have been proposed for tracking moving 
leukocytes from in vivo microscopy video sequences. In [5], local 
features such as color and temporal features are combined to 
develop a tracking system. It is reported to be capable of 
automatically tracking moving leukocytes. In order to perform 
motion correspondence between frames, they assume that all 
leukocytes roll along the vessel centerline. However, this 
assumption is not appropriate for all leukocytes activated during 
an inflammation response. Our video clips show that a significant 
amount of activated leukocytes roll along the vessels’ boundaries. 
In another method of tracking moving leukocytes [1], after 
background removal, morphological filters are used to remove 
noises. However, with this method, the shape/size changes of 
leukocytes can pose a big challenge for selecting a fixed structure 
element for morphological operations. Furthermore, neither of 
these two papers deals with detecting adherent leukocytes at all. 

2. OVERVIEW OF OUR APPROACH 
In this paper, the closed cranial window model on rats was used to 
study the brain microcirculation. The scalp and the tissue from a 
1.5×1.5 cm area bilaterally over the parietal cortex of rats were 
removed and a glass plate was glued to the surrounding bone to 
create a window. After recovery, animals were given 20 Gy 
radiation locally delivered to the brain. Ionizing radiation has 
been known to induce inflammatory responses in normal tissues 
including the central nervous system [2]. Prior to microscopy 
video recording, rhodamine 6G was injected through the tail vein 
to fluorescently label leukocytes in order to visualize the blood 
vessels. Leukocytes rolling and adhesion are thus visible in 
grayscale videos (see Figure 1). 
Figure 1 shows typical frames of rolling and adherent leukocytes 
from in vivo grayscale video sequences. It is apparent that both 
moving and adherent leukocytes have relatively higher intensities 
compared with surrounding pixels. This observation prompts us to 
consider using the intensity threshold method to extract 
leukocytes in each frame. However, a simple global threshold 
method cannot extract all moving leucocytes because some of 
them tend to appear blurred in some frames as shown in Figure 
1(c)-(d). Furthermore, as the separation of adherent and moving 
leukocytes is desired in most inflammation response studies, the 
presence of adherent leukocytes frequently introduces false 
correspondence in the temporal tracking of moving leukocytes. 
From previous studies in [1] and [5], the spatiotemporal feature 
between frames seems to be a good target for detecting moving 
leukocytes. Therefore, in our approach, we detect moving 
leukocytes first from spatiotemporal features and then use this 
information to facilitate the detection of adherent leukocytes with 
the intensity threshold method. By the end, we have two separate 
data sets on hands: moving and adherent leukocytes. 
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Our proposed method consists of three steps: (1) camera/subject 
movement alignment; (2) moving leukocytes detection; (3) 
adherent leukocytes detection. 
The camera/subject movement must be dealt with prior to 
leukocyte tracking. We adopt a 2D homography based method for 
frame alignment. The proposed method begins with detecting 
camera/subject movements and then matches the selected frames 
to their predecessors by extracting point correspondences, which 
are used to compute a homography matrix that captures the 
transformation between two consecutive fames. Then, a robust 
estimator is adopted to identify the matched points that are 
geometrically consistent. These points are used to calculate the 
final transformation matrix to align the two frames [7]. 
In the second step, we propose and compare two approaches for 
detecting moving leukocytes. The first approach is based on 
probabilistic learning. This approach assumes that the pixels at 
the same location of consecutive frames are considered to follow 
a Gaussian distribution by themselves. Therefore, the probabilistic 
density can be estimated and compared with a global threshold. 
The second approach adopts neural network which learns the 
pattern of a background pixel (non-moving). We implement a 
two-layer neural network with the ability to handle temporal 
relationships by adopting a sliding window technique. 

 
Figure 1. Four consecutive frames (a)-(d) from an in vivo 
microscopy grayscale video sequence. The bright white dots 
are mostly leukocytes and the tree-like structures are the 
blood vessels of study. The arrows mark one moving leukocyte 
over the four consecutive frames.  
The third step is adherent leukocytes detection. We adopt an 
automatic thresholding method which approximates the optimal 
threshold value by using image histogram curve fitting. The real 
part of the second largest root of the curve derivative is close to 
the ideal threshold. We then implement a denoise method by 
inspecting the probability of a leukocyte pixel appearing at a 
specific location in consecutive frames. It is worth mentioning 
that the majority of both slow-rolling and firmly adherent 
leukocytes can be detected with this approach. 
The contributions of this paper are in the following aspects: 
• A homography based method is proposed to deal with 

camera/subject movement, which, to our best knowledge, has 
never been addressed before for microscopy video mining. 

• A new algorithm of using probabilistic learning, filtering, and 
centroid trackers for automatic spatiotemporal mining of 
moving leukocytes from in vivo grayscale video sequences is 
proposed. Our algorithm has shown a reasonable recall rate and 

a very low false positive rate (1%) and is therefore capable of 
correctly detecting the average velocity automatically.  

• By detecting moving leukocytes, we are able to extract 
adherent leukocytes in a more robust way with an automatic 
thresholding method which approximates the optimal threshold 
value by using image histogram curve fitting. This adaptive 
method is able to find the optimal threshold for each frame 
respectively since the intensity level does change among 
frames in in vivo video microscopy. Our experiment results 
show a recall rate of 95% and a low false positive rate (≈2%) as 
verified manually.  

Section 3 describes the camera/subject movement alignment. 
Sections 4 and 5 present the detection methods for non-adherent 
and adherent leukocytes. Section 6 shows the experimental 
results. Section 7 concludes the paper. 

3. VIDEO FRAME ALIGNMENT 
The automatic mining of in vivo microscopy video is difficult. 
One of the reasons is the unexpected camera/subject movements, 
which would cause devastating noises in the spatial information 
of the moving cells. Thus, before any tracking tasks can be done, 
a preprocessing must be performed to make sure that all frames 
are aligned to the same coordinates. In this paper, we draw some 
ideas from the research of 2D projective transformations, namely, 
the 2D homography, as well as some recent developments in the 
area of image matching, and apply them to the problem of camera 
alignment. We embed it into a spatiotemporal mining system of 
rolling and adherent leukocytes for intravital videos. 
The algorithm begins with a global scan of all N input frames to 
detect which part of the video contains camera movements. Once 
a frame is selected for alignment, it is matched with its 
predecessor to extract point correspondences, which are used to 
compute the homography, a 3×3 matrix that encapsulates the 
transformation between two images. Due to the possible errors 
caused by mismatches, the homography computed may not 
always reflect the real geometry. Thus, a robust estimator, 
RANSAC [7] is adopted to identify the matches that are 
geometrically consistent (called inliers). Only these inliers are 
used to calculate the final transformation matrix. Because both 
rotation and projective distortion between consecutive frames are 
small enough, our final transformation only consists of a 
translation matrix, which is calculated based on the average shift 
of all inlier matches. 

3.1 Camera/Subject Movement Detection 
Camera movement can be captured by measuring the difference 
between consecutive frames. Direct subtraction is probably the 
simplest way to do it. In our case, however, the foreground 
leukocytes shall be excluded since they are moving. Observing 
the different intensities of background tissues, vessels and 
leukocytes, we apply the Otsu’s method [12] to turn all frames 
into binary images. After this, background tissues will be black 
while vessel and leukocyte areas are white (see Figure 2). Thus 
only the static part (tissues and vessels) will take effect in the 
subtraction. 
Since each frame, if it needs alignment, will be aligned to their 
immediate predecessor, accumulating errors will be introduced if 
too many frames are selected for alignment. However, in a normal 
vivo microscopy video, only a small portion of frames are 
observed to contain camera movements that are severe enough to 
affect the tracking performance. Thus, instead of using direct 

(b) 

(d) 

(a) 

(c) 
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subtraction, we adopt a simple similarity metric that allows a little 
tolerance in spatial variation: 
 ( ) ( ) ( )

( )
∑ −++=

≤yx rdydx
yxfdyydxxfffS

,
21,21 ,,min,  (1) 

where f1 and f2 are binary images of two consecutive frames and 
(x, y) are the x- and y-coordinates of a pixel. The search radius r 
is set to 1 in our case to account for any errors and tiny shifts. 
After one scan over the N input frames, N-1 similarity values are 
computed for each consecutive pair. So is the standard deviation 
σ. If we assume that the movements of camera conform to the 
Gaussian distribution, frames with severe camera movements can 
be identified as the outliers of this distribution. That is, their 
similarity values S is larger than k times the variance (σ). The 
selection of k needs some training for different video contents. In 
our case, it achieves the optimal performance when k is set to 0.9. 

   
Figure 2. Left: the original video frame. Right: the binary 
image obtained by Otsu’s method.  

3.2 Frame Matching 
Once a frame is selected, it is matched to its predecessor for point 
correspondences. Many such approaches exist in the area of 
image matching, and an evaluation of their performances can be 
found in [11]. In our work, we use SIFT [10] as our feature 
descriptor, since it is invariant to image translation, scaling, 
rotation, and partially invariant to illumination changes and affine 
projection.  
SIFT [10] first locates feature points by detecting local extrema in 
a series of difference-of-Gaussian functions over all scales, and 
the sub-pixel accuracy is then achieved by fitting in a 2D 
quadratic and interpolating the location of the maximum. At each 
feature location, a dominant orientation is determined so that the 
features are invariant to image rotation. Finally, instead of 
recording the local pixel intensities, the SIFT feature vector is 
formed by accumulating local gradient values weighted by a 
Gaussian window, which provides certain invariance to affine 
transformations. For a typical frame, SIFT is able to generate 
around 2000 stable feature points.  
After a database of feature vectors is generated, the match for 
each feature point is identified as its nearest neighbor in the 
feature space. Because of the large volume of feature points in the 
database and the high dimensionality (128) of SIFT feature 
vectors, brute force matching (based on exhaustive search) could 
be very inefficient. Regarding the problem of the nearest neighbor 
search in high dimensional space, Beis proposed a modified k-d 
tree structure, called “Best Bin First” or BBF [3]. It stores all the 
feature points in a k-d tree, and checks only a small portion of the 
leaf bins in the increasing order of Euclidean distance from the 
query point. It can efficiently locate the approximate nearest 
neighbor for each feature point. In the mean while, it may lose 
some correct matches. 
Due to the relatively low intensity and the small frame size of our 
microscopy videos, much fewer feature points (around 200) are 
extracted from each frame. Therefore, the database of feature 

points is very small and the speedup brought by BBF is not quite 
noticeable. In order to find as many matches as possible for the 
following stages, we decide to settle for the little time overhead of 
brute force matching, which is able to detect all correct matches. 

3.3 2D Homography 
After a set of matched points are obtained for two consecutive 
images, we can estimate the 2D projective transformation of 
them. This transformation is represented by a 3×3 matrix called 
the homography, which satisfies the following equation: 
 'ii xHx =  (2) 
where xi and xi’ are matched points represented in the 
homogenous coordinates. Using the normalized direct linear 
transformation (normalized DLT) algorithm suggested by [11], H 
can be resolved based on 4 or more pairs of matched points. First 
the input coordinates are normalized with similarity 
transformations T and T ′ , each consisting of a translation and an 
isotropic scaling, such that the centroid of the points is the 
coordinate origin and their average distance from the origin is 

2 . Then the normalized coordinates are piled up into a 2n × 9 
matrix (there are n matching pairs and each accounts for 2 rows), 
and the normalized homography H~  is given by solving for its 
right null space. This can be done efficiently using singular value 
decomposition. Finally, H~  is denormalized to get the homograph 
H for the original matched points by THTH ~1−′= . 

3.4 Robust Estimation 
Up to this point it has been assumed that the point matches we 
have do not contain any errors, but this is not always valid 
because points may be mismatched. These mismatched points (or 
outliers) may severely disturb the estimation of homography and 
thus must be identified before proceeding to the next stage. 
We adopt the robust estimator, the RANdom SAmple Consensus 
(RANSAC) algorithm [7] to iteratively find the largest subset of 
geometrically consistent matches (inliers). It begins with 
randomly sampling 4 point matches out of the sample set (all 
matches), based on which a homography H’ is estimated. Then H’ 
is applied to the rest of the point matches to find the inliers based 
on the following equation: 
 ε≤− '' ii xxH  (3) 

The distance thresholdε is set to 0.5 in our case. This process is 
repeated a number of times to find the largest subset of inliers. In 
practice, however, it is not necessary to try every possible sample. 
In our work, 143 RANSAC iterations are performed for each pair 
of frames. If we assume the probability that any correspondence is 
valid to be 0.5, then the likelihood that all RANSAC trials will all 
fail is (1–0.54)143<0.01%, which is good enough for our purposes. 
After the largest subset of inliers is selected, we can now re-run 
the algorithm described in Section 3.3. However, this time we 
only use all the inliers to compute the homography. An example 
result of the matched points can be found in Figure 3. 

3.5 Frame Alignment 
Given the homography of two images, we can easily align one to 
the other based on Equation (2). However, there is a disadvantage 
doing it that way: what homography describes is the projective 
transformation between two views, which also includes the 
change of perspectives. In most microscopy videos, this change is 
negligible, especially between consecutive frames. On the other 
hand, if we do consider projective distortion, the accumulated 
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error will grow significantly as subsequent images are aligned and 
the total number of frames that can be aligned is thus very much 
restricted. Also note that the camera/subject movement between 
consecutive frames can be well described by a “shift” (without 
significant rotation or zooming effect). Taking these into account, 
our final transformation matrix only consists of a translation T. 
Since we already have geometrically consistent point matches, we 
use their average shift in x- and y-axis to calculate T, and the 
bilinear interpolation is used in the pixel transformation. 

  
 

Figure 3. Left: matched points before RANSAC. Right: 
matched points after running RANSAC. Only those 
geometrically consistent matches are preserved. 

4. MOVING LEUKOCYTES DETECTION 
The optical flow techniques and background subtraction are 
popular approaches for tracking moving objects. The basis of 
optical flow is to estimate the optical flow at all points of a frame 
and significant points are grouped based on principles of motion 
coherence [15]. However, since there are also erythrocytes and 
other blood cells circulating inside and outside the targeted 
vessels, the optical flow technique can lead to a high false 
positive rate and make it inappropriate for tracking moving 
leukocytes from microcirculation video. Another drawback of the 
optical flow is its sensitivity to contrast changes. 
Background subtraction comes to everyone’s mind naturally since 
ideally we can consider that all have steady backgrounds and the 
rolling leukocytes are the only moving parts. The simplest 
background subtraction is to calculate an average image of all 
frames and then subtract each frame from this average, and finally 
threshold the result. Yet, the performance of tracking cells from in 
vivo videos is affected by many factors due to poor video quality 
such as noise and clutter, cell deformation, and contrast changes. 
Hence, the simplest form of background subtraction is not good 
enough and needs further improvement.  
In this paper, we propose and compare two approaches for 
background subtraction and detecting moving leukocytes, 
including a probabilistic learning approach and a neural network 
approach. Both methods are followed by a median and location-
based filtering to reduce noise. After locating moving leukocytes 
for each frame, we perform motion correspondence with centroid 
trackers and compute the average rolling velocity. 

4.1 Probabilistic Learning Approach 
Given x1j, x2j, … xNj be the grayscale intensity values (0 to 255) of 
a pixel at the location j (1 ≤ j ≤ Total number of pixels in a frame) 
over N consecutive frames. The probability density function that 
this pixel will have intensity value xtj in the frame t can be non-
parametrically estimated with the kernel estimator K [6]. We 
choose the kernel estimator function K to be a normal distribution, 

which means that the pixels at the same location of the N frames 
are considered to follow a Gaussian distribution by themselves. 
Therefore, the probabilistic density can be estimated with 

 22 /)(*5.0

1

2 )2/1(/1)( jijtj xx
N
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=
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σj is the temporal invariance of intensity I for a pixel at the 
location j over N frames and is calculated as 
 2

1
)(*)1/(1 IIN

N

i
ij −−= ∑

=
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Using this probability estimate, a pixel at the location j in the 
frame t is considered to be a foreground pixel if P(xtj) < th where 
th is a global threshold over all frames that can be adjusted to 
achieve a desired percentage of false positives. With this simple 
model, a foreground pixel is a part of moving leukocytes in each 
frame since adherent leukocytes and blood vessels will be 
identified as background by this model.  
Simple as it seems, it is not easy to determine the threshold value 
th. This requires expert knowledge or many trial and error 
experimentations. Another problem of this method is that it is 
only effective on linearly separable datasets. In view of these 
problems of the thresholding method, we choose to use One-class 
SVM [13] to partition the pixels into two classes (i.e., foreground 
and background). The SVM approach is more desirable because it 
discards the notion that there exists a straight line separating 
foreground pixels from background pixels. It is safer to assume 
that the probability values are not linearly separable. During 
experiments, it was also found that a one-class SVM approach 
was better than the binary classification.  
One-Class classification is a kind of unsupervised learning 
mechanism. It tries to assess whether a test point is likely to 
belong to the distribution underlying the training data. The 
objective of One-Class SVM is to create a binary-valued function 
that is positive in those regions where the data predominantly lies 
and negative elsewhere. More details of Schölkopf’s One-Class 
SVM can be found in [13]. 

 
Figure 4. Extract moving leukocytes via probabilistic 
learning. (a) The current frame; (b) the next frame from the 
same video sequence; (c) the moving leukocytes extracted 
through probabilistic learning; (d) the result of (c) after noise 
removal. The arrows point to a moving leukocyte in (a) and 
(b) which is being tracked and becomes evident in (c) and (d). 
The probabilities (based on Equation (4)) of a small set of pixels 
which are part of some moving leukocytes are used to train a one-
class SVM, and the trained model is used to classify pixels into 

(a) (b) 

(c) (d) 
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foreground (moving leukocytes) and background. Based on our 
experiments, the probabilistic learning from temporal features, 
when coupled with one-class SVM, is able to identify all moving 
leukocytes from each frame. An example of extracted moving 
elements is shown in Figure 4. The arrows in Figures 4(a) and (b) 
point to the appearance of a moving leukocyte in two consecutive 
frames. In Figure 4(c), the extracted moving elements are 
depicted as white dots. As expected, the extracted moving 
elements include not only moving leukocytes, but also noises. 

4.2 Neural Network Approach 
Moving and adhering leukocytes co-exist in blood cells. As 
adhering leukocytes are static or rolling very slowly, they can be 
regarded as part of the background. In order to detect moving 
leukocytes, we only need to single out the foreground of a frame.  
Each pixel can be represented by a sequence of intensity values 
extracted from each frame, which is referred to as the intensity 
sequence in this paper. Intensity sequence of a pixel is time series 
data. The foreground pixels’ intensity sequences are different 
from those of background pixels in that the former vary 
dramatically along time while the latter only show small 
variations. That is to say, the background pixels’ intensity 
sequences demonstrate stable and consistent patterns while the 
foreground pixels’ intensity sequences are comparatively more 
unpredictable. Therefore, we can analyze the predictable 
background pixel patterns and hence detect the foreground pixels 
(i.e., moving leukocytes) by identifying the intensity sequences 
that do not follow the learned background pattern. Classical linear 
autoregressive models in modeling time series data are rather 
limited, since they assume linear relationship among consecutive 
data series. As illustrated in [4], Multi-Layer Perceptron (MLP) 
and Radial Basis Function (RBF) offer an extension to the linear 
model by using a non-linear function, which can be estimated by 
such learning and optimization techniques as back propagation 
and conjugate gradient. Therefore, we choose to use the temporal 
model of a neural network for time series data prediction. The 
neural network has two layers with sigmoid transfer in the first 
layer and linear transfer in the second layer.  

 
Figure 5. Temporal Model of a Neural Network 

The neural network is supposed to learn the consistent pattern of a 
background pixel. As can be seen from Figure 5, the input nodes 
of the neural network have temporal relationships. These input 
nodes are sub-sequences extracted from the intensity sequences 
by a sliding window technique. For each pixel, its intensity 
sequence can be obtained by a window of size m one step a time. 
Each time, a sub-sequence of size m can be extracted. With the 
intensity sequence length being n, the total number of sub-
sequences is n-m+1. The intensity of the pixel at time t can be 
predicted by the sub-sequence of size m preceding it. In this way, 
we can predict the intensity value of a pixel at each time point 

(i.e., at each frame). There are certain parts of the blood cell that 
we know for sure are background. We choose the intensity 
sequence S of a background pixel as the training data, where S = 
[s1, …, st, …, sn-m+1] and st is a subsequence {x(t-m),…,x(t-1), 
x(t)}. x(t) is the output of the network, given {x(t-m),…,x(t-1)} as 
the input. The neural network is trained to learn the pattern of the 
background pixel. In testing, the trained neural network assumes 
each input sub-sequence follows this pattern and predict the pixel 
in the next frame according to this pattern. We test the trained 
neural network on intensity sequences of all the pixels and 
generate their prediction values on each frame.  
In each frame, the pixel’s real intensity is compared to its 
predicted intensity. A big difference between these two signifies 
that the preceding sub-sequence does not match the background 
pattern, and the pixel in the current frame is foreground. 
Otherwise it is background. A threshold is set up to differentiate 
foreground and background. 

4.3 Noise Removal 
As shown in Figure 4, the data obtained from probability learning 
is not perfect and we can see a lot of noise signals in Figure 4(c). 
Further enhancement is necessary to differentiate noise from real 
signals. As mentioned earlier, one of the problems faced in vivo 
microcirculation videos is fluids flowing outside the vessels. 
Leukocytes moving outside the target vessels are certainly not of 
our interests. We can remove moving objects outside vessels with 
a location-based filtering. This can be achieved with a binary 
image of vessel segmentation. A simple way of vessel 
segmentation is to create a binary image of each frame using a 
global threshold method based on Otsu’s thresholding algorithm 
[12]. Figure 2 shows such a binary image example. It is worth 
mentioning that each frame is associated with its own vessel 
binary image which might be slightly different from the others. 
By doing this, the slight changes in vessel shapes due to animal 
respiration or other reasons can be accommodated.  
Based on our experiments, the vessel segmentation is effective in 
filtering out moving objects outside vessels. However, even after 
we remove the objects outside the vessels, there are still random 
noises which are relatively small and mostly isolated. Thus, the 
median filtering is a good choice to remove them without losing 
real signals. With the median filtering, the value of an output 
pixel is determined by the median of the neighborhood pixels. 
Figure 4(d) shows an example of cleaned result after noise 
removal. 

4.4 Motion Correspondence and Velocity 
Computation 
As aforementioned, the velocity of moving leukocytes is a 
qualitative measurement of inflammation responses. Current 
methods of tracking cells from in vivo videos include correlation 
trackers [1] [16] and centroid trackers [17]. Correlation trackers 
use a fixed template for target cells and correlate it with the 
images to trace the target cells. This type of correlation is 
inappropriate for tracing moving leukocytes during inflammation 
responses because activated leukocytes tend to change their 
shapes a lot. We indeed observe this from the video sequence 
used in this paper. In contrast, centroid trackers are able to trace 
deformable cells by following their intensity mass center 
positions over frames. Therefore, we are going to use centroid 
trackers to trace moving leukocytes in this paper.  
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The binary image obtained after noise removal (Figure 4(d) is an 
example) for each frame actually contains spatial information 
about moving leukocytes in each frame. Then a seeding and 
growing approach is used to extract each group of spatially 
connected leukocytes, and finally the centroid of each of such 
group can be located. After all centroid positions are located, we 
apply our matching algorithm to each frame and its previous 
frame. The matching algorithm is designed as below: 
• Start with a centroid in the current frame, find the centroid in 

the previous frame with the smallest distance; 
• If the smallest distance is within a pre-defined limit, we 

consider this pair to be a match;  
• Remove the matched pairs from the previous and the current 

frames and repeat the first step until all the centroid positions in 
the current frame are tried.  

In our experiments, the limit is set at 30 pixels, which is 
determined by the camera calibration parameters and the maximal 
velocity we can expect. Our results show a very low false positive 
rate and a reasonable recall rate when verified manually, which 
proves that the chosen limit is reasonable for our case.  
After acquiring all matched centroid positions between frames, 
we can compute the mean velocity Ve by averaging the Euclidean 
distances between matched pairs. We get an average velocity of 
6.218 pixels per frame in our experiments. It is easy to convert it 
to a real-world velocity measurement Vc by the following 
equation when a calibration of in vivo microscopy c (length per 
pixel) and the time elapse between frames t are available: 

tcVV ec /*=  (6) 

5. ADHERENT LEUKOCYTE DETECTION 
From Figure 1, it can be seen that leukocytes tend to stand out 
from their surrounding areas in each frame. This suggests that 
local features (e.g., local intensity distribution) in each frame 
might be sufficient for extracting leukocytes. The local range 
feature, where each pixel is represented by its range value 
(maximum_value–minimum_value) of its neighborhood pixels, is 
tried first. The choice of the neighborhood turns out to be very 
tricky. A circular shape neighborhood is reported to be a good 
choice by Acton et al. for tracking leukocytes [1], but we find it 
very difficult for our case. Even though normal leukocytes have a 
disk shape, leukocytes in inflammation responses tend to change 
their shapes a lot and the shapes can be quite irregular. We finally 
find out that the traditional 3-by-3 rectangle neighborhood is 
actually the best choice. The local range filtering indeed captures 
all moving and adherent leukocytes in the frame. However, the 
resulting local range image also outlines the vessel boundaries. 
The single global intensity threshold is another method which 
might be used to extract leukocytes of our interest. Yet, the 
intensity change between frames from in vivo microscopy video 
sequences could not justify a single intensity threshold for all 
frames. Therefore, we design an adaptive algorithm to select an 
intensity threshold for each frame, respectively. 
To detect adherent leukocytes, we observe that each frame mainly 
consists of three types of regions: tissues, blood vessels, and 
leukocytes. These three regions are very different in their pixel 
intensity values. The intensity values of tissue pixels are often on 
the low side, and the pixel intensities of blood vessel regions are 
generally in the middle range, while the pixel intensities of 
leukocytes are typically on the high end. This is exemplified in 

Figure 6, where the pixel intensity histograms of the above three 
types of regions overlap with each other in a frame. 
While the detection of tissue regions is relatively easy, problems 
remain in finding a threshold that can best separate leukocytes 
regions from blood vessel regions. As shown in Figure 6, the ideal 
threshold is around the intersection of the two curves representing 
the regions of leukocytes and blood vessels, respectively. 
However, finding the ideal threshold is difficult since the above 
two curves are unknown. 
To approximate the ideal threshold value, our first step is to find 
the best fitting curve for a given image histogram. We tried 
several curve fitting methods, and found that the 8th degree 
polynomial which is shown as the red curve in Figure 6 is the best 
fit. We then calculate the first derivative and the roots of the 8th 
degree polynomial equation. We found that the real part of the 
second largest root is about the ideal threshold value. Though the 
majority of leukocytes can be detected with this threshold, some 
low-intensity leukocyte pixels are excluded and some high-
intensity blood vessel pixels are falsely included. In the latter, 
those pixels are present in the form of noise as shown in Figure 7. 
To eliminate noise, we observe that the rolling velocity of 
adherent leukocytes is relatively slow compared with the 
exposure time (30fps). This implies an adherent leukocyte should 
stay at almost the same location in adjacent frames. On the 
contrary, noise pixels often appear randomly in a frame. 
Therefore, we may determine whether a pixel belongs to 
leukocytes or noise based on the frequency of a pixel being 
recognized as a candidate leukocyte pixel at the same location in 
consecutive frames. 

 
Figure 6. A sample intensity distribution of tissues, blood 
vessels, and leukocyte regions in an image histogram. 

  
Figure 7. Left: The candidate adherent leukocytes (marked 
with red) before denoising. Right: The result after denoising. 
In particular, to determine whether a pixel (x, y) in frame fk is a 
leukocyte pixel or noise, we first obtain the adjacent frames 
around fk -- fi … fk… fj, where j-i = m (m is an odd number), i=k - 
⎣m/2⎦ and j=k + ⎣m/2⎦. Assume there are n pixels locate at (x, y) 
in adjacent frames fi … fj being recognized as candidate leukocyte 
pixels by the thesholding method in the first step, a probability p 
= n/m is calculated for this pixel. If the probability is greater than 
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0.5, this pixel is considered to be a leukocyte pixel. Otherwise, 
this pixel is considered to be a noise pixel. We tested on different 
values of m and found that m≈5 performs the best for the given 
testing video. Based on this, a median filter is further applied to 
eliminate those relatively small and isolated noise pixels. A 
sample result of this denoise process is demonstrated in Figure 7. 
It is worth noting that this adaptive thresholding method is 
applied after the moving leukocytes are removed (see Section 4). 
This way, we observe much less false positives.  

6. RESULTS AND DISCUSSIONS 
Our testing video sequence comes from an in vivo video 
microscopy during a typical inflammation response where 
activated leukocytes roll and adhere to the vessels. Our strategy is 
to detect moving leukocytes first and then utilizes the information 
of moving leukocytes to detect adherent leukocytes. The testing 
video consists of 148 frames with several places of 
camera/subject movements. As the preprocessing step, the entire 
video sequence is first aligned by the 2D homography based 
method.  
Our video mining of moving leukocytes include three steps – 
locating moving leukocytes through the spatiotemporal 
probabilistic learning, noise removal with median filtering and 
location-based filtering, and centroid trackers for tracing moving 
leukocytes over the frames and computing the average rolling 
velocity. As aforementioned, there are several approaches 
locating moving leukocytes and computing rolling velocity from 
in vivo microscopy videos based on background subtraction with 
temporal features [1] [5]. In [1], the background subtraction is 
achieved by subtracting the average of all frames from each 
frame. In [5], a temporal invariance image is computed for each 
frame and a single threshold is then selected to remove the 
background. We test both methods with our test video and both 
yield poor performances. This is largely due to severe noises, cell 
deformations and background movements. In order to overcome 
the problems, we introduce the use of spatiotemporal probabilistic 
learning to extract moving leukocytes as foreground pixels and 
the performance is satisfactory. This demonstrates that a 
probability threshold is more appropriate than a low level 
intensity threshold, especially for those video sequences full of 
severe noises and contrast changes. However, the background 
subtraction alone is likely to suffer from excessive noise. Further 
enhancements following background subtraction are necessary to 
overcome this problem. In [5], a location-based filtering is used to 
remove false positives outside a vessel region. Acton et al. [1] 
approach this problem by using morphological filters. However, 
none of them deal with the detection and separation of adherent 
leukocytes from moving leukocytes. In addition, the 
morphological filtering method performs poorly on our video 
sequence. This is probably due to the irregular shapes of 
leukocytes and their deformations. In any morphological 
operation, a structuring element has to be defined to specify the 
neighborhood of the pixel of interest. It is a matrix consisting of 
only 0’s and 1’s that can have any arbitrary shape and size. In [1], 
they use a structuring element with a disk shape because ideal 
leukocytes have disk shapes. However, this is not true in our 
video sequence and it is easy to spot that leukocytes come in all 
shapes and sizes. After location-based filtering, we also apply 
median filtering on our data to further remove those isolated 
random noises. After locating moving leukocytes in each frame, 
we continue our with centroid trackers to obtain motion 

correspondence and compute the rolling velocity. The rolling 
velocity is the main interest of moving leukocytes for many 
inflammation response studies because it offers biologists a 
qualitative measurement of each inflammation response. In [5], it 
is assumed that leukocytes roll along the vessel centerline and 
therefore a vessel centerline extracted by thinning can help in 
predicting the direction of moving leukocytes. However, this 
assumption is against our observations that under inflammation 
response, leukocytes rarely roll along the centerline and move 
along the vessel boundaries instead. Acton et al. 2002 use 
correlation trackers to match a template of the target leukocyte to 
each frame in order to find the instances of the target. This 
method is insufficient and very vulnerable to leukocytes’ 
deformations. We decide to apply the centroid trackers in our 
motion correspondence because it is less vulnerable to the 
frequent shape changes of leukocytes. We match leukocytes 
between frames by finding the pairs with the minimal distance 
which is below a selected limit.  
Our experiments on detecting moving leukocytes show a false 
positive rate as low as 1% when double-checked manually, while 
the neural network based approach has a false positive rate of 
nearly 49%. The rolling velocity is 6.218 pixels per frame, which 
is verified by manually. It is easy to convert it to a conventional 
speed representation by Equation 6. However, we observe a 
relatively low recall rate (≈50%) for tracking moving leukocytes 
since some leukocytes tend to disappear in some frames and 
reappear afterwards. Since the measurement of the average rolling 
velocity is the main interest, this is justified as long as enough 
leukocytes are tracked with a very low false positive rate. More 
discussion about this issue is presented at the end of this section. 
There are no studies about automatic detection of adherent 
leukocytes that can be found in the literature. This is probably due 
to the emphasis on leukocyte rolling in most inflammation 
responses studies. However, the magnitude of adherent leukocytes 
is certainly a way to predict the strength of one inflammation 
response. In this paper, we are able to extract adherent leukocytes 
by combining an adaptive global intensity threshold method with 
the information about the moving leukocytes detected earlier. Our 
experimental results show a recall rate of 95% with a low false 
positive rate (≈2%) when double-checked manually. 
It is observed from our video sequence that moving leukocytes 
occasionally disappear in one frame and reappear again in the 
next frame. We are concerned that our motion correspondence 
algorithm may be vulnerable to the errors caused by this 
phenomenon and draw a potential criticism. In [11], Ghosh and 
Webb address the similar concern in their approach to 
automatically detect cell receptors. They propose including a 
storage matrix for the unmatched pixels in the previous frame 
against the current frame. Then when the matching for the next 
frame starts, a scan through the storage matrix of the previous 
frame is also performed to find whether there is any reappearance. 
We test this algorithm on our video sequence. However, our 
results show the false positive rate of this algorithm is as high as 
61% when double-checked manually. By including those false 
leukocytes into our measurement, we are also introducing more 
significant errors into our velocity measurement. Therefore, we 
argue that in this case, precision is more important than recall, and 
that omitting those disappearing and reappearing leukocytes is 
okay for the measurement of the average rolling velocity as long 
as enough leukocytes are traced. Another potential criticism is the 
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inclusion of one empirical parameter in learning motion 
correspondence. We use a distance threshold for leukocytes 
matching. This concern will be addressed in our future work when 
we include relevance feedback in our algorithm to automatically 
adjust those two parameters. 

7. CONCLUSIONS 
In this paper, we present an automatic intravital video mining 
system of leukocytes rolling and adhesion. Video mining of in 
vivo microscopy video sequences is very difficult due to severe 
noises, background movements, leukocytes’ deformations, and 
contrast changes. Currently, there are a few approaches 
attempting to automatically track rolling leukocytes in the 
literature but none of them suit our needs of separating moving 
leukocytes from adherent ones. In our approach, we first align 
video frames to eliminate noise caused by camera movement. We 
then locate the moving leukocytes by applying and comparing a 
spatiotemporal probabilistic learning method and a neural 
network framework for time series data. We further remove 
noises by applying median and location-based filtering. Another 
contribution from this paper is that we extract the information 
about moving leukocytes first and therefore are able to extract 
adherent leukocytes with an image histogram curve fitting 
method.  
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