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Abstract—Recent advances in airborne light detection and Removing nonground points from LIDAR datasets has proven
ranging (LIDAR) technology allow rapid and inexpensive measure- to be a challenging task.

ments of topography over large areas. This technology is becoming  krays and Pfeifer [1], [2] utilized linear least squares inter-

a primary method for generating high-resolution digital terrain L .

mgdels ()EI)TMS) that argessentia?to r?umerous applic%tions suchas polatlo'n iteratively to rem.ove tree measurements and ge”?rate
flood modeling and landslide prediction. Airborne LIDAR systems D TMs in forest areas. This method was extended later to filter
usually return a three-dimensional cloud of point measurements buildings and trees in urban areas by Pfeéfal. [3]. The iter-

from reflective objects scanned by the laser beneath the flight ative linear interpolation method removes a low-degree polyno-
path. In order to generate a DTM, measurements from nonground  mja trend surface from the original elevation data to produce a

features such as buildings, vehicles, and vegetation have 10 bege of requced elevation values. This method requires that the re-
classified and removed. In this paper, a progressive morphological

filter was developed to detect nonground LIDAR measurements. By duced elevqtlon fOIIOWS_a random pf‘?ces_s of ergodic property.
graduallyincreasing the window size of the filter and using elevation However, this property is hard to satisfy in urban areas where
difference thresholds, the measurements of vehicles, vegetation, andsignificant anthropogenic modification of natural terrain occurs.
buildings are removed, while ground data are preserved. Datasets Therefore, the iterative linear interpolation is not guaranteed to
from mountainous and flat urbanized areas were selected to test converge when being applied to LIDAR measurements for these
the progressive morphological filter. The results show that the areas
filter can remove most of the nonground points effectively. ’ . . .
Vosselman [4] proposed a slope-based filter that identifies
Index Terms—Airborne laser altimetry, digital terrain model ground data by comparing slopes between a LIDAR point and
(DTM), light detection and ranging (LIDAR) data filtering. its neighbors. A point is classified as a ground measurement if
the maximum value of slopes between this point and any other
. INTRODUCTION point within a given circle is less than a predefined threshold.
The lower the threshold slope, the more objects will be removed.

(GIS)-related analysis and visualization. The airborne "g% n of distance. A reasonable threshold slope can be obtained

. . . T E/ using prior knowledge about terrain in the study area.
detection and ranging (LIDAR) technology is revolutionizing There are two basic errors in classifying LIDAR measure-
our way to acquire a high-resolution DTM by allowing rapi

di . s of t h | ents by virtually any filtering method. One is commission
and nexpensive measurements of topography over a 1, it classifies nonground points as ground measurements
area. Airborne LIDAR systems usually obtain measureme

. : . . The other is omission error that removes ground points mis-
for the horizontal coordinates:(y) and elevation £) of the g P

. . . takenly. The critical step in slope-based filtering is to determine
reflective objects scanned by the laser bengath the flight p %\ ptimum threshold so that omission and commission errors
These measurements generate a three-dimensional clou

ints with | | ina. The | d obiects incl be minimized. Determining a slope threshold in terms of
pOINTS With Irreguiar spacing. 1he laser-scanned objects inc rain information in the analyzed area is somewhat subjective.
buildings, vehicles, vegetation (canopy and understory), a

. i sselman [4] demonstrated that good results could be obtained
bare ground.” To generate a DTM, megsurgrnents from groug using threshold slopes from training datasets. However, the
and nonground features have to be identified and classifig ining datasets have to include all types of ground measure-
ments in a study area to achieve good results, which is not al-
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Haugerud and Harding [8] developed an algorithm to filte
tree points in forest areas by comparing local curvatures | o ®
point measurements. Ground measurements were selecte.. b P
removing tree vertices iteratively from a triangulated irregules s -
network (TIN) constructed from LIDAR measurements. Alter2
natively, ground points can be classified by iteratively selectirE ©
ground measurements from an original dataset. Axelsson
suggested adaptive TIN models to find ground points in urbi
areas. First, seed ground points within a user-defined grid o - |
size greater than the largest nonground features are selecte
compose an initial ground dataset. Then, one point above ei  ° - : - ; -
TIN facet is added to the ground dataset every iteration if i ? > i DistaZ:e(m) o e e
parameters are below threshold values. The iteration contint [ o Unfiftered Measuremert - - - - Eroded Surace
until no points can be added to the ground dataset. The problem
with the adaptive TIN method is that different thresholds havey. 1. Unfiltered and filtered LIDAR measurements along a profile at the
to be given for various land cover types. Florida International University campus. The unfiltered points are sampled

Another Commonly used algorithm to remove nonground o@I\_/ery 1x 1 m? cell along the profile. If more than one measurement falls

. - ) ) . ; . ithin a cell, the point with the minimum elevation is selected. If there is no
jects is a mathematical morphology filter which is applied tfeasurement for a cell, nearest neighborhood interpolation is used to derive
a grayscale image [4], [10], [11]. The elevation of trees, cam) elevation. The filtered data are obtained by applying an opening operation

and buildings is usua”y higherthan those ofsurrounding groumjh a window size of 11 m. The profile location is shown in Fig. 5. Note

) . : e objects less than the window size are removed by erosion, while the large
points. If LIDAR points are converted into a regular, grayscalgiilding objects are restored by the dilation.

grid image in terms of elevation, then the shapes of buildings,

cars, and trees can be identified by the change of gray tone. ItisThe combination of erosion and dilation generates opening
well known that compositions of algebraic set operations basgfld closing operations that are employed to filter LIDAR data.
on mathematical morphology can be used to identify objects iTe opening operation is achieved by performing an erosion of
grayscale image [12]. Therefore, mathematical morphology cgie dataset followed by a dilation, while the closing operation
be used to filter LIDAR data. The main objective of this papgs accomplished by carrying out a dilation first and then an ero-
is to develop a progressive morphology filter to enable autgion. Fig. 1 shows the result of performing an opening operation
matic extraction of ground points from LIDAR measuremenigsing a line window. As the result demonstrates, an erosion op-

© Wi/w ow

Elevation
B

Dilated Surface |

with minimal human interaction. eration removed tree objects of sizes smaller than the window
size, while the dilation restored the shapes of large building ob-
[I. MORPHOLOGICAL FILTERS jects. The ability of an opening operation to preserve features

Mathematical morphology composes operations based on'@kger than the window size is very usgful in some applications.
theory to extract features from an image. Two fundamental op&2’ €<@mple, the measurements of cliff edges can be preserved

ations dilation anderosion are commonly employed to enlarge! e morphological filters are applied to the LIDAR measure-

(dilate) or reduce (erode) the size of features in binary imag&€nts for rocky coasts.

Dilation and erosion operations may be combined to produceKlllan et al. [10] proposed a method to remove nonground

openingandclosingoperations. The concept of erosion and goints using a morphological filter. In their method, a point with

lation has been extended to multilevel (grayscale) images éﬂ& lowest elevation within ggwefn wm((jjow S;fe(;s first detﬁctedh
corresponds to finding the minimum or maximum of the conft€r an opening operation is performed on the dataset. Then the
Zomts in this window that fall within a band above the lowest

binations of pixel values and the kernel function, respectivel | i X
within a specified neighborhood of each raster [13]. evation are selected as ground points. The range of the band

These concepts can also be extended to the analysis of a dletermined by the accuracy Of_ the LID,AR SUIVey, Whic_h s
tinuous surface such as a digital surface model as measured'g{nally 20-30 cm. All ground points are identified by moving

LIDAR data. For a LIDAR measuremenptz, y, ), the dilation € filtering window over the entire dataset. o
of elevation: atz andy is defined as The selection of a filtering window size and the distribution

of the buildings and trees in a specific area are critical for the

dy= max (z) (1) Success of this method. If a small window size is used in Kilian’s
P — P . .

(zp,yp)Ew method, most of the ground points will be preserved. However,

. , . ) only small nonground objects such as cars and trees will be
where points£,, y,, 2p) represenp’s neighbors (coordinates)

ithi ind The wind b di ) aiaf“fectively removed. The points corresponding to the tops of
within a window, w. 1heé window can be a one-dimensiona, ,q_sjzeq building complexes that often exist in urban areas

(1-D) line or two-dimensional (2-D) rectangle or other shapeg, , ot pe removed. The risk of making commission errors is
The dilation output is the maximum elevation value in the neig

borhood ofy. Erosion i ‘ t of dilati dis def ligh. On the other hand, the filter tends to over-remove the
agr 00d olp. Erosion|is a counterpart of diiation and is definegy g points with a large window size. For example, road sur-

face points next to drainage canals will be removed completely
. if the window size is larger than the width of a road. In addition,
ep= min (zp). (2) !
(2p.yp)EW the tops of local mounds and sand dunes in flat coastal areas
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are often “chopped off” by using a large size window. Ideally o .

the window size of the morphological operation should be smi o Tree
enough to preserve all ground details and large enough to ] .

move buildings, cars, and trees. Unfortunately, an ideal wind(E
E 454

size does not exist in the real world. = Building
To avoid this conflict, Kilianet al. [10] proposed to apply & st
the operations with different window sizes to the dataset seve” 51 Terrain :
times starting from the smallest size. Each point is assigne! D iy
weight related to the window size provided it is classified as : '

ground point. The larger the window size of an operation, tt

higher the weight of a point. Finally, the terrain surface is e "7 1o 2 = o 5 & 5 & w
timated by using all the survey points with assigned weight Distance (m)
A|though a better terrain SUrface COUld be derived USing tl“’ o Terran e Building & Tree - - - - - 1st Fitered Surface 2nd Filtered Surface

v_velghte_d points from different Slzes_Of morphOIOglcal Oper%'ig. 2. Process of the progressive morphological filter to identify terrain and
tions, this method does not make the improvement in separats@ding measurements. The dots represent synthetic points based on LIDAR

ground and nonground LIDAR measurements at the point leveyrveys. The firstfiltered elevation surface (dashed line) is obtained by applying
Classifying ground and nonground measurements at the PR fiered olevation surface (solc i) i orved by appying an opening
level is useful for some applications. operation with a window size of 21 n#,( to the first filtered surface.
Lohmannet al. [11] used a dual-rank morphological filter
proposed by Eckstein and Munkelt[14] to classify LIDAR point Fig. 2 illustrates the process of a progressive morpholog-
data. The dual-rank filter initially sorts the neighborhood of gal filter. An initial filtered surface is derived by applying an
pointp in terms of elevation, and then selects an elevation wipening operation with a window of length to the raw data.
a given rank valué to perform a rank operatiofi(p, i), where The large nonground features such as buildings are preserved
i ranges from 1 t@,,, andn,, is the total number of points @fs  pecause their sizes are larger thanwhile individual trees
neighbors (including). The neighbors of a point are delineate@f size smaller thari; are removed. For the terrain, features
by a window that is usually a circle and can be any shape. Té@aller tharl; are cut off and replaced by the minimum ele-

dual-rank filter is then defined as vation within;.
In the next iteration, the window size is increasedstoand
DR(p,i) = R(p,i) o R(p,n, —i+1). (3) another opening operation is applied to the filtered surface, re-

sulting in a further smoothed surface. The building measure-

The symbol %" indicates the successive operations: theents are removed and replaced by the minimum elevation of
points are processed by the first rank operation, and then ff€vious filtered surface withif, since the size of the building
second rank operation is performed on the results from the fitssmaller than the current window size.
operation. The dual-rank filter becomes an opening operationBy performing an opening operation to laser-scanned data
when the rank value is one (i.6.= 1) and closing operation With a line window that increases in size gradually, the progres-
when the rank value is,, (i = n,). Promising results have Sive morphological filter can remove buildings and trees at var-
been achieved by applying a dual-rank filter to a test datadeds sizes from a LIDAR dataset. However, the filtering process
[11]. However, an optimum filtering window is hard to derive€nds to produce a surface that lies below the terrain measure-
because a single fixed-size window of the dual-rank filtgnents, leading to incorrect removal of the measurements at the
cannot fit all nonground objects. top of high-relief terrain (points above in Fig. 2). Even in the

The above morphological filters need to be improved becaud@t ground areas, the filtered surface is usually lower than the
they suffer from various problems such as the requirement opHginal measurements. Therefore, most point measurements for
predefined filtering window size. In addition, a highly automati¢errain are removed, and only afiltered surface is available if the
filtering tool that identifies ground measurements is desired d@eening operation is performed to the LIDAR data directly. This
to the large volume of LIDAR data involved. Furthermore, sefroblem can be overcome by introducing an elevation difference
arating ground and nonground measurements at the point |dgshold based on elevation variations of the terrain, buildings,
is preferred so that users can generate a DTM using the inteRd trees.
polation method that fits their applications best. The focus of Each building has a certain size and height. There is an abrupt
this study is to develop a morphological filter can remove noghange in elevation between the roof and base of a building,

ground measurements from LIDAR dataset at the point levelWhile the elevation changes of terrain are gradual (Fig. 2). The
difference in the elevation variations of buildings and terrain

can help the filter to separate the building and ground measure-
ments. Suppose thdt,, ; represents the height difference be-

It has been shown that morphological filters can remove maseen an original LIDAR measurement and the filtered surface
surements for buildings and trees from LIDAR data [10], but it the initial iteration at any given poipt(Fig. 2), andihr 1 rep-
is difficult to detect all nonground objects of various sizes usinmgsents the elevation difference threshold. Ppiig classified
a fixed filtering window size. This problem can be solved by inas a ground measurementlfi, ; < dhy; and as a nonground
creasing window sizes of morphological filters gradually. measurement itlh, 1 > dhr 1. Let dhpax 1 Stand for the

I1l. PROGRESSIVEMORPHOLOGICALFILTER
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Load raw airborne LIDAR Step 1: The irregularly spaced ( x,y,z) LIDAR mea-
(1) data and generate a minimum surements are loaded. A regularly spaced minimum
surface grid surface grid is constructed by selecting the min-

imum elevation in each grid cell. Point coordinates

(x,y,z) are stored in each grid cell. If a cell con-

@ [ Morphological filtering ;a;r;e:to measurements, it is assigned the value of

} point measurement.

Step 2: The progressive morphological filter whose
major component is an opening operation is applied
to the grid surface. At the first iteration, the
minimum elevation surface together with an initial

Filtered terrain surface model Nonground points

filtering window size provide the inputs for the
] filter. In the following iterations, the filtered

surface obtained from the previous iteration and an

increased window size from Step 3 are used as input

for the filter. The output of this step include a)

the further smoothed surface from the morphological

filter and b) the detected nonground points based

on the elevation difference threshold.

] Step 3: The size of the filter window is increased
and the elevation difference threshold is calcu-

lated. Steps 2 to 3 are repeated until the size

Fig. 3. Framework of the progressive morphological filter. of the filter window is greater than a predefined

maximum value. This value is usually set to be

the elevation difference threshold

1ze of filter > maximum window size 7

Yes
(4 ( Generate DTM

3) [ Increase the size of the filter and determine

. . . - . lightly | than th i buildi ize.
maximum height difference between the original terrain meg> 0 Y [@rger fhan e maximum bUiding size

surements and the filtered surface (Fig. 2). dfia-  is selected P % The last step s to generate the DTMs based

such that th@h a1 1 is less tharlhr 1, then the LIDAR mea- EZe;here?néﬁjzzt after nonground measurements have

surements for terrain will be preserved. In genetay; ; will be ’

a function of window size. How to derive this threshold value

will be discussed later. Note that each cell of the minimum surface grid generated in
In the second iteration, suppose that the maximum height dtep 1 contains an original or interpolated LIDAR point with el-

ference between the previous and this filtered terrain surfa@eation representing the cell value. Any filtering operation per-

iS dhmax(t),2- The ground measurements withih,,,...;) » will ~ formed to the grid is actually applied to points in cells. There-

be preserved as long d8.,,.«(;),» is smaller than the elevation fore, the progressive morphological filter classifies the LIDAR

difference thresholdhr» for the current operation. Supposeneasurements at the point level.

that the minimum elevation difference for the building between

the previous and current filtering operation is represented Ipy. PARAMETERS FORPROGRESSIVEM ORPHOLOGICAL FILTER

ff_ﬁgi%ﬁ?l?éi’n""ﬁ?g;;ﬁgﬁ}fﬁ:?ﬁﬁlz::‘;mhgi?erg g;tsgntéﬁiigjri]nt% tThe selection of the window size and elevation difference
dh isglar er thandh fireshold is critical to achieve good results when applying the
min(b),2 9 T2 morphological filter. For window size selection, one straight-

Generally, the elevation difference threshald ;. is setto  forward choice is to increase the window size linearly by the
be the minimum height value of the building objects in an angs|owing formula:

lyzed area at iteratioh. Takingdhr . as the threshold, for any
given pointp at k&th opening operation, we magkas a ground wy = 2kb+ 1 4)
measurement ifih, , < dhr, and as a nonground measure-
ment otherwise. In this way, the measurements for buildinggherer, = 1.2..... M, andb is the initial window. The max-
with various sizes can be identified by gradually increasing thgum wind0\7/v size 7(number of cells) is equabld/b+1. Taking
widow sizes and applying an opening operation repeatedly unfjly 4 1 as the window size guarantees that the filter window is
a window size is greater than the size of the largest bU"di”g/mmetric around the central point so that the programming of
Since there is also an abrupt elevation change from trees to ﬁq_sopening operation is simplified. The advantage of increasing
jacent ground, the above building filtering procedure can be gz window size linearly is that gradually changing topographic
plied to the removal of tree measurements as well. Note that fa@tures are well preserved. However, considerable computing
filtered surfaces from the opening operation are not utilized {pne is needed for an area with large nonground objects.
generate the DTM, but used to help classify point measurementg,|ternatively, the window size can be increased exponentially
together with elevation difference thresholds. to reduce the number of iterations used in the filter.

The detailed steps to use the progressive morphological filter
to construct the DTMs are shown in Fig. 3 and given as follows. wy = 268 +1 (5)
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whereb is the base of an exponential functidn= 0,1,2,.. .,

M; and agaireb™ + 1 is equal to the maximum window size. (n) using m =
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2. Determine the numbers of rows ( m) and columns

floor[(max(y) — min(y))/¢ + 1 and

The elevation difference threshold can be determined based= floor[(max(x) — min(x))/¢] + 1.

on the slope of topography in the study area. There is a relati@n-Create a 2-D array

ship between the maximum elevation differenig, ..+ » for
the terrain, window sizey, and the terrain slope (Fig. 2) as-
suming that the slope is constant.

dhmax(t),k

= . 6
s (wg — wi—1) ©
Therefore, the elevation threshaldr . is given by
dhy, if w, <3
th,k = S(U}k — wk_l)c + dho./ if wg > 3 (7)
dhma)u if th,k > dhmax

wheredhy is the initial elevation difference thresholdjs the

slope;c is the cell size; andh,., is the maximum elevation

difference threshold.

In urban areas, primary nonground objects include cars, tregs, . .. window size
and buildings. The sizes of individual cars and trees are mugh

A[m,n] for LIDAR points,
p(xz,y,z). Traverse every point to determine the cell
in which the point will fall according to its
y coordinates. If more than one point falls in the
same cell, select the one with minimum elevation.

4. Interpolate elevation of cells in A which do
not contain any points using the nearest neighbor
method. Set the x and y coordinates of those in-
terpolated cells as zero to distinguish them from
those cells that contain LIDAR points. Copy
B. Initialize elements of a 2-D integer array
flag[m,n] with 0.

5. Determine series of

x and

A to

wy, using (4) or (5), where
wy, < maximum window size.

6. dhr = dhg

Wy,

for i=11t m

less than that of the buildings, so most of them are often removgéd P

in the first several iterations, while the large buildings will be re-

moved last. The maximum elevation difference threskalg.

? » = Ali;] (A[i;] represents a row of points at
A and P; is a 1-D array)
Z «— Pi (Assign elevation values from

row ¢ in

10. P; to a

can be set to a fixed height (e.g., the lowest building height) t9_ ¢ evation —_— 7)

ensure that building complexes are identified. The optimum, ;
is usually achieved by iteratively comparing the filtered and uns
filtered data. On the other hand, the nonground objects in the
mountainous areas are primarily vegetation (trees). There is ng
need to set up a fixed maximum elevation difference thresholg
to remove trees, andh.max is usually set up as the largest ele- . . 1o row

vation difference in the study area.

V. ALGORITHM AND IMPLEMENTATION

The progressive morphological filter can be either 1- or 2-L8.
depending on its window shape. The filter is 2-D if its windowo.
is a 2-D shape such as rectangle or circle, while the filter is 1-0.
if its window is defined by a segment of a line. The algorithmal.
for 1- and 2-D filters are similar. For simplicity, yet not losing22.
generality, only the input, output and algorithm for the 1-D pra23.

gressive morphological filter are presented as follows.

Algorithm 1: The progressive morphological filtering

algorithm

Input:

o A set of points representing LIDAR measurements.

Each point has three components ( z, y, and =z) to

represent horizontal coordinates and elevation of a
LIDAR measurement.

o Cell size c.

o Parameter b in (4) or (5).

o Maximum window size.

o Terrain slope S.

o Initial elevation difference threshold dhy.
o Maximum elevation difference
Output:

o Two sets of the classified points representing
ground and nonground measurements.
1. Determine the minimum and maximum

AR

x and y values.

Z; = erosion(Z,wy)
Z; = dilation(Z;, wy)

P; — Z; (Replace =z values of P; with the values
Zy)
Al;] = P; (Put the filtered row of points P;
¢ of array A)
15. for 7 =1t n
16. if  Z[j]— Zs[j] > dhr then flag[i,j] = wy
17. end for 5 loop
end for : loop
if ( dhy > dhpgay)
dhy = dhpyax
else
dhr = s(w, — wi_1)c+ dhy
end for window size loop
24, for =11t m
25. for j7=11t =n
26. if ( Bli.j)(z) >0 and B[i,j](y) > 0)
27. if ( flagli,s] = 0)
28. Bli,j] is a ground point
29. else
30. Bl[i, 4] is a nonground point
31. end for 5 loop
32. end for i loop

Erosion(Z, wy):
1. for ] =11t n
2 7.0 = min

719 G—lwy, /2]1<1< 4wy, /2
3. return 7

(zm

Dilation(Z, wy,):
1. for j =11t n

2. Z:y] = ax
sl i lwg, /211 4wy, /2]
3. return Zy

(Zim
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Fig. 4. Aerial photograph for the University Park campus of FIU. Six hundred forty-eight random sample points are also overlain over the phdiegraph. T
ground and nonground measurements identified from these samples by the progressive morphological filter are represented by white and spedtidelts, re
The white rectangles represent the range of Figs. 5 and 6.

The above 1-D erosion algorithm can be easily extended to a TABLE |
2-D one with a square window by performing erosion in the PARAMETERS FOR THEPROGRESSIVEMORPHOLOGICAL FILTER. BOTH FIU
. . . . . . CAMPUS AND PUGET SOUND ARE IN METERS
direction first and then in thg direction. The same rule can be

applied to dilation as well. Location FIU Campus | Puget Sound
The major computation time needed by the progressive mor- Cell size (c in Equation (7)) 1 1

phology filter is the erosion and dilation in addition to the in-  Base of the exponential window
terpolation. It is easy to see that the opening algorithm requires (4 in Equation (5)) 2 2
O(wN) time to perform an erosion and dilation, wherés the Increment step for windows
window size of the morphological filter and¥ is the product (k in Equation (5)) 0,1,2,...,8 | 0,1,2,...,5
of the number of rows and columns for an arrag) (holding Slope (s in Equation (7)) 0.08 12
LIDAR data. ForM windows, the time complexity is equal to Initial threshold

M (dho in Equation (7)) 0.25 0.2

0 <Z wi N ) . (8) Maximum threshold
k=1 (dhmax in Equation (7)) 2.5 210

VI. TESTDATASETS

The morphological filter was tested on two LIDAR datasetgiN€ Site consists of 1.3 kinof tree-covered mountain land.
an urban setting with low-relief topography and a forested sef2€ distribution of trees varies with topography, and usually is

tion with high-relief topography. The urban test site is locatet£"S€ in the valleys and sparse on the ridges. The terrain varies

at the Florida International University (FIU) campus in Miamiconsiderably with slopes ranging from 0.1t0 1.5. The LIDAR

FL and covers about 1.8 KiriThere are residential houses, largd@t@ were derived using TerraPoint LLC's laser altimeter, and

buildings, single trees, forests, parking lots, open ground, ponds; dataset includes up to fqur returns for each laser pqlse. Each

roads, a major highway, and a canal in this area (Fig. 4). THgNt surveyed a 600-m-wide swath with a 0.9 m-diameter

overall slope of the terrain is gentle except for several sm&Ser footprint spaced approximately every 1.5 m. An average

mound areas. The dataset was collected by an Optech ALR@Nt density of one point per square meter was derived by

1210 LIDAR mapping system mounted to a Cessna 337 ajpeasuring the area with a 50% side-lap between swaths.

craft in April 2000. By flying at a speed of 200 km/h, altitude of

600 m, off-nadir scan angle of 18and laser repetition rate of VIl. RESULTS

10000 pulses per second, we collected a 400-m-wide swath of

laser range data. The objects were measured by a 15-cm foo# progressive morphological filter was applied to two test

print spaced approximately 2 m apart. Flight lines were spacetPAR datasets to examine its filtering effect. The opening op-

300 m apart to avoid possible data gaps. eration was applied to both andy directions at every step to
The test dataset for the high-relief area came from the Pugeisure that the nonground objects were removed. The filtering

Sound LIDAR Consortium Http://www.pugetsoundlidar.ofg parameters used in our experiments are listed in Table I. The
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Fig.5. (a) Unfiltered and (b) filtered LIDAR point measurements for an area at the FIU campus with cars, single trees, buildings, and a smadl &desstidr

values higher than 6 m were assigned the same color (red) for display purposes. The horizontal coarcanaltgsdre in UTM zone 17 referenced to NAD83.
Elevation ¢) coordinates are referenced to NAVD88. The map units are in meters. Note that the filter removed most of the nonground objects successfully, but
some tree measuremen@) (were not removed completely, and some ground points were filtered out mistakBnly (

window size was incremented using the exponential function VIII. A CCURACY ANALYSIS
[as defined in (5)].

For the FIU campus dataset, the initi#h, was set up as
0.25 m, which is approximately equal to the LIDAR measur

Like other filtering methods, the progressive morphological
dilter is subject to omission and commission errors. In order to
ment error (0.2-0.3 m). The cell sizavas set to 1 m, which is Measure the effectiveness of the filter, these two errors have to

about two times less than the average spacing between LIDR% examin_ed. Both qualitative _anq quantitative methods were
measurements, and therefore most of the LIDAR points wefg'Ployed in this study. A qualitative method checks whether
preserved when a grid was generated for the filter. A small slop@nground features such as buildings are excluded entirely and
factor (0.08) was selected to filter this urban dataset with neaﬂ%hether ground features like small mounds are included com-
flat terrain. A 2.5-m maximum elevation difference thresholf/€tely by visually comparing the unfiltered and filtered data.
was used to ensure the removal of the buildings. The quantitative method examines the correctness of the filtered
There are about 1.03 million LIDAR measurements for thidi€asurements at the point level from a random sample.
area and the number of grid cells to hold the data is 2.02 million, The raw LIDAR data, filtered measurements, black-and-
Among them, 0.71 million cells have data, and about 30% of tH¢éhite aerial orthophotographs, and field investigation were
points were removed as repeated measurements for each E§gd to quantitatively examine the filtering errors for the FIU
About 74% of the points in cells having data were classified £&8Mpus dataset. The aerial photographs were collected in 1999
ground measurements by the progressive morphological filtet @ resolution of 0.3 m. The evergreen vegetation at the FIU
For the high-relief test area, the initidh, was selected to c@mpus changes little through time. Therefore, vegetation and
be 0.2 m, and maximum elevation difference threshold was $&tilding information from aerial photographs can be used to
to be the largest elevation difference value in the analyzed arb@lp identify filtering errors, although the aerial photographs
The terrain slopes of the Puget Sound area in Washington Staffe taken at the time different from the LIDAR surveying.
are relatively steep, ranging from 0.1 to 1.5, and therefore, tR/antitative analysis of filtering accuracy for the mountain
sin (7) was set to 1.2, which is close to the maximum slope. dataset was not performed because the aerial photographs for
There are about 2.68 million LIDAR measurements for thé&e study area are not available, and it is too expensive to do a
mountain area, and the number of grid cells to hold the ddiald examination.
is 1.4 million. Among them, only 0.91 million cells have data, Fig. 5(a) and (b) shows the unfiltered and filtered LIDAR
and about 76% of the points were removed as repeated meeasurements for an area occupied with cars, single trees, build-
surements for each cell because this dataset includes multings, a small forest, and ground. As can be seen from Fig. 5,
turns of the same laser pulse. Fifty-eight percent of the point®st of the cars, trees, and buildings were removed success-
in cells having data were classified as ground measurementdilly by the filter. However, some commission and omission er-
the filter. rors did occur. A few measurements for trees remair@dh|[



ZHANG et al: PROGRESSIVE MORPHOLOGICAL FILTER FOR REMOVING NONGROUND MEASUREMENTS FROM AIRBORNE LIDAR DATA 879

2848700

- - - ' 2B4B500 ay ’ -
561800 5620 562100 562200 562300 562400 561900 562000 562300 £62400
(@) (b)

Fig.6. Shaded relief maps for the grids generated from (a) unfiltered and (b) filtered LIDAR data from the FIU campus. The grids of cell size 0.5erated ge
by applying Kriging interpolation to LIDAR data with a search radius of 100 m in the Surfer software program. Note the effect of the remainingsrieetipeint
filtered data on the DTM (b).

Elevation
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Fig. 7. (a) Unfiltered and (b) filtered LIDAR point measurements for an area at the FIU campus with many buildings. The buildings were removeteby the fil
completely, but some omission errors occurré. (

Fig. 5(b)], and a small mound was mistakenly remov@dj Figs. 7 and 8 show the unfiltered and filtered LIDAR point
Fig. 5(b)]. The first error occurs because of the high tree densityeasurements and shaded relief grid maps for a dense building
surroundingC [Fig. 5(a)]. Few true ground LIDAR measure-area at the FIU campus. In general, the progressive morpholog-
ments were derived because most laser pulses were reflecteithifilter performed well in this area. Omission errors occurred
the canopy and did not reach the ground. The elevation changea few spots because of the complicated composition of build-
of some tree tops are similar to those of low topographic relighgs and ground object®[in Fig. 7(b)].

Fig. 6 shows the shaded relief maps for the grids generated fronA simple random sampling scheme [16] was employed to se-
unfiltered and filtered LIDAR data using Kriging interpolationlect the points to quantitatively examine omission and commis-
[15]. The effect of commission errors on the DTM in the forestion errors of the filtering results for the FIU campus dataset.
area is obvious [Fig. 6(b)]. The reason for the omission of therst, 1600 random points were generated within a rectangle of
small mounds is that the slopes of these mounds are relativeG00 m long £ or east—west direction) and 800 m widedr
steep, which is larger thanin (7). north—south direction), which is the extent of the LIDAR dataset.
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Fig. 8. Shaded relief maps of two grids from unfiltered and filtered LIDAR data with many buildings at FIU campus. Grids of 0.5-m cell size weralgenerate
using Kriging interpolation with a search radius of 100 m.
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Fig. 9. (a) Unfiltered and (b) filtered LIDAR measurements for mountains at Puget Sound, Washington State. The unfiltered data include albA&urn LI
measurements. The horizontal coordinates are in Washington State plane north coordinate system and refer to datum NAD83. Elevations referAd NAVD88
coordinate units are meters. The trees were removed from the LIDAR dataset, while the ground measurements were well preserved.

Second, the row and column locations of those 1600 sampt$3IS. The digital surface model with cell size of 0.5 m was gen-
in array B, which holds a minimum elevation grid of 1 m cellerated by applying Kriging interpolation to the raw LIDAR mea-
size interpolated from the unfiltered LIDAR dataset (Step 4 isurements. All errors detected from overlay analysis were further
Algorithm 1), were determined based on theiandy coordi- examined in the field to avoid possible misinterpretation.

nates. Third, 648 cells of the grid were derived by removing thoseQuantitative error analysis shows that there were 17 omission
sample cells which do not have LIDAR measurements. Fourtimd two commission errors in 648 samples, about 3% of the
the ground measurements in the 648 cells were marked as 1, ttdl, indicating that the progressive morphological filter works
the nonground points were marked as 0 in terms of filtering rerell. One reason for having more omission errors than commis-
sults. Finally, the 648 measurements were manually examirgdn errors is that the parameters were set up in such a way that
point by point to find the filtering errors by overlaying them intahe filter can remove most of the nonground measurements. The
the aerial photographs (Fig. 4) and a digital surface model in Asther reason is that the samples are not dense enough to pick up
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Fig. 10. Shaded relief maps for two grids generated from (a) unfiltered and (b) filtered data at the Puget Sound area, Washington State. Thefopdgyaphy
is clear, and linear features such as roads are well preserved in the filtered image.

the scattered commission errors in small ar€as[Fig. 5(b)]. The time of filtering increases linearly as the total number
Sample size and sampling scheme can affect the error analgditIDAR measurements increases based on (8). Computation
considerably [5]. The effect of various sample sizes and salecomes time-consuming when the number of LIDAR measure-
pling schemes such as stratified random sampling on accur&gnts is large. Itis impractical to apply the progressive morpho-
analysis of the filtering results needs to be studied further in thgical filter to process all measurements as a single file because
future. millions of points were collected for each survey. For efficient
Comparison of Fig. 9(a) and (b) shows that tree measufdocessing, the data can be split into tiles with a user-specified
ments were well removed, while ground points were preservége; and then the filter is applied to these tiles. _
in the high-relief test area. The shaded relief maps [Fig. 10(a)-'PAR data sometimes may contain a few points with large
and (b)] for the two grids generated from unfiltered and ﬁ|tere@egatlve elevation values drastically lower than thqse of their
data illustrate that the topography of valleys is much clear in th€ighbors. These measurements are called negative blunders,
filtered image. Linear features such as roads are also well pf@d their source is still in debate [8]. The proposed progres-
served by the filter. The filtered dataset does contain some copi¥’€ Mmorphological filter cannot remove negative blunders by
mission errors where trees were not entirely removed. These @1y performing the opening operation. When a DTM s interpo-
rors show up as mottled areas on the otherwise smooth tob’cg_ed using the ground measurements including negative blun-

graphic surface and probably represent bushes beneath the‘iﬁa@ conical pits_like “bomb c_rate_:rs_” [81 will be gene_:rated. For-
canopy [Fig. 10(b)]. tunately, a negative blunder is distinctive from their surround-

ings in elevation and occupies a small area in space (often as an
individual point). Therefore, it can be removed by performing
a closing operation immediately following a series of opening
Some LIDAR measurements are removed in generating a regrerations that are applied to the LIDAR dataset as described
ularly spaced minimum elevation grid before the progressiygeviously. The closing operation could diminish the details of
morphological filter is applied to the points. The disadvantagerrain by removing low-elevation objects less than the window
of this implementation is that good ground measurements areggre. However, the terrain reduction will be minor because only
moved when a cell includes more than one point. This problesnsmall size window is used in the closing operation.
can be minimized by selecting a grid cell size smaller than the
point spacing. The removed ground points usually have little ef-
fect on DTM generation because LIDAR measurements are so
dense in space that major topographic features are rarely missed progressive morphological filter was built to remove non-
The advantage of preprocessing the LIDAR data to generatgraund LIDAR measurements to generate bare-ground eleva-
minimum elevation grid is that the algorithm implementation ison models. Experimental results show that the proposed pro-
made easier by using arrays. In addition, the dataset includimgssive morphological filter separated ground and nonground
multireturns can be handled by selecting a point of minimubdDAR measurements in both the urban and mountain areas ac-
elevation in a cell because the lowest point is more likely to lairately and effectively by gradually increasing the sizes of the
a ground measurement. opening operation and using elevation difference threshold. The

IX. DISCUSSION

X. CONCLUSIONS
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accuracy analysis of filtering results for the urban dataset shogs
that only 3% errors were committed by the filter in a rando
sample of 648 measurements.

The selections of the filtering parameters have a greatimp¢
on the removal of nonground objects. Appropriate paramete
can be found based on analyzing terrain and nonterrain m;
surements in the study area. The filtering process is highly au
matic and requires little human interference, which is desirak an Assistant Professor in the School of Computer
when processing voluminous LIDAR measurements. Howevey Science, FIU. Before joining FIU, he worked as a

. . L. . _.Résearch and Development Software Engineer for the database engine design
this method is not perfect, and a few commission and omissigdup at Micro Data Base Systems, Inc., West Lafayette, IN. His main research
errors did occur during filtering. A human interactive filteringnterests include distributed multimedia database systems, data mining, and

method may need to be developed in the future to refine the ﬁI_S. He has authored and coauthored one book and more than 80 research
. papers in journals, refereed conference proceedings, and book chapters.
tering results. Dr. Chen was the program Co-Chair of the 10th ACM International Sympo-

sium on Advances in Geographic Information Systems.
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