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Abstract 

The purpose of this report is to present an effective shot change detection method for 

multimedia database systems using an unsupervised segmentation algorithm and the technique 

of object tracking based on the segmentation mask maps. Compared with other state-of-art 

techniques such as the method of DC images and some feature based technique, our results 

have shown that this method can not only perform accurate shot change detection, but also 

obtain object level information of the video frames, which is very useful for video content 

indexing and analysis in multimedia databases. 

Keywords: shot change detection, segmentation mask map, video indexing, multimedia 

databases, object tracking. 
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1. INTRODUCTION 

Recently, multimedia information has been made overwhelmingly accessible with the rapid 

advances in communication and multimedia computing technologies. The requirements for 

efficiently accessing the mass amounts of multimedia data are becoming more and more 

important. Unlike traditional database systems that have text or numerical data, a multimedia 

database or information system may contain different media such as text, image, audio, and 

video. Video is popular in many applications such as education and training, video 

conferencing, video on demand (VOD), news service, and so on. Traditionally, when users 

want to search certain contents in videos, they need to fast forward or rewind to get a quick 

overview of interest on the videotape. This is a sequential process and users do not have a 

chance to choose or jump to a specific topic directly. How to organize video data and provide 

the visual content in compact forms becomes important in multimedia applications [22]. 

Therefore, users can browse a video sequence directly based on their interests so that they can 

get the necessary information quicker and the amount of data transmission can be reduced. 

Also, users should have the opportunity to retrieve video materials using database queries. 

Since video data contains rich semantic information, database queries should allow users to get 

high level content such as scenes or shots. 

Video shot change detection is a fundamental operation used in many multimedia 

applications such as digital libraries and video on demand, and it must be performed prior to all 

other processes [15, 25]. Video data can be divided into different shots. A shot is a video 

sequence that consists of continuous video frames for one action. Shot change detection is an 

operation that divides video data into physical shots. There are a number of methods for video 

shot change detection in the literature. The matching process between two consecutive frames 
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is the essential part of it. Many of them use the low-level global features such as the luminance 

pixel-wise difference [24], luminance or color histogram difference [18] and edge difference 

[23] to compare two consecutive frames. Other recent work related to low level features 

includes the orientation histogram [13]. Especially, Zabih et al.’s [23] edge image based 

method works well in many cases when the detection with intensity histograms is difficult to 

work out. However, since luminance or color is sensitive to small change, these low-level 

features cannot give a satisfactory answer to the problem of shot change detection. For 

example, in the method of using DC image [21], it uses the luminance histogram difference of 

DC images, which is very sensitive to luminance changes. Recently, there have been many 

research work done on the compressed video data domain such as the fast shot change 

detection [11] and the directional information retrieving [10] by using the discrete cosine 

transform (DCT) coefficients in MPEG video data. Besides all the above techniques, some 

research work has been done on the dynamic and adaptive threshold determination problem 

such as [1, 19], which can be used to enhance the accuracy and robustness of the existing 

techniques in shot cuts detection. 

In this report, focusing on the uncompressed video data, we propose an innovative shot 

change detection method using an unsupervised image segmentation algorithm and the object 

tracking technique. By using the image segmentation algorithm, the segmentation mask map of 

each video frame can be automatically extracted. The segmentation mask map, in another 

word, can be deemed as the clustering feature map of each frame. In such a way, the pixels in 

each frame have been grouped into different classes (for example, 2 classes). Then two frames 

can be compared by checking the difference between their segmentation mask maps. In 

addition, in order to better handle the situation of camera panning and tilting, the object 



 4

tracking technique based on the segmentation results is used as an enhancement to the basic 

matching process. Since the segmentation results are already available, the cost for object 

tracking is almost trivial. Moreover, our key frame representation uses the information of the 

segmentation results such as the bounding boxes and the positions of the segments within that 

frame. In order to reduce the computational cost, we also apply the traditional pixel-level 

comparison for pre-processing in addition to segmentation and object tracking. The advantages 

of using unsupervised segmentation and object tracking are: 

 It is fully unsupervised, without any user interventions. 

 The algorithm for comparing two frames is simple and fast. 

 The object level segmentation results can be further used for video indexing and 

content analysis. 

This technical report is organized as follows. In Section 2, we explain the shot change 

detection method as well as the mechanism of the unsupervised segmentation algorithm and 

the object tracking technique. In Section 3, experimental results are analyzed to show the 

effectiveness of the proposed method. Section 4, we review related works in shot change 

detection. Finally, conclusions are given in Section 5. 

2. SHOT CHANGE DETECTION METHOD 

In this section, we first explain how the unsupervised segmentation algorithm and object 

tracking work, and then give out the steps of the shot change detection method based on the 

discussion. 
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2.1 Segmentation Information Extraction 

In this report, we use an unsupervised segmentation algorithm to partition the video frames. 

First, the concepts of a class and a segment should be clarified. A class is characterized by a 

statistical description and consists of all the regions in a video frame that follows this 

description; while a segment is an instance of a class. In this algorithm, the partition and the 

class parameters are treated as random variables. This is illustrated in Figure 1. The light gray 

areas and dark gray areas in the right segmentation mask map represent two different classes 

respectively. Considering the light gray class, there are in total four segments within this class 

(the CDs, for example). Notice that each segment is bounded by a bounding box and has a 

centroid, which are the results of segment extraction. The details of segment extraction will be 

discussed in Section 2.2.  

The method for partitioning a video frame starts with a random partition and employs an 

iterative algorithm to estimate the partition and the class parameters jointly [3, 5, 4]. The 

intuition for using an iterative way is that a given class description determines a partition, and 

similarly a given partition gives rise to a class description. So the partition and the class 

parameters have to be estimated iteratively and simultaneously from the data. 

   

 

 

Figure 1: Examples of classes and segments. The original video frame is on the left and 

the segmentation mask map of the left frame is on the right. 
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Suppose there are two classes -- class1 and class2. Let the partition variable be c = {c1, c2}, 

and the classes be parameterized by  = {1, 2}. Also, suppose all the pixel values yij (in the 

image data Y) belonging to class k (k=1,2) are put into a vector Yk. Each row of the matrix  is 

given by (1, i, j, ij) and ak is the vector of parameters (ak0 , …, ak3 )
T. 

yij = ak0  + ak1i + ak2 j + ak3ij, (i, j) yij ck    (1) 

Yk =  ak        (2) 

TT
ka  1)(ˆ Yk       (3) 

The best partition is estimated as that which maximizes the a posteriori probability (MAP) 

of the partition variable given the image data Y. Now, the MAP estimates of c = {c1, c2} and  

= {1, 2} are given by 

 )|,(max)ˆ,ˆ(
),(

YcPArgc
c




  

                                              ),(),|(max
),(




cPcYPArg
c

    (4) 

Let  ,cJ  be the functional to be minimized. With the above assumptions, this joint 

estimation can be simplified to the following form: 
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The problem of segmentation thus becomes the problem of simultaneously estimating the 

class partition and the parameter for each class. About the parameter estimation, we can use 

equation (3) to directly compute the parameter for each assigned set of class labels without any 

numerical optimization methods. About the class partition estimation, we assign pixel yij to the 

class that gives the lowest value of )|(ln kijk yp  . The decision rule is: 
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1ĉyij   if )(ln)(ln 21 ijij ypyp       (7) 

2ĉyij   otherwise       (8) 

Just as shown in Figure 2, the algorithm starts with an arbitrary partition of the data in the 

first video frame and computes the corresponding class parameters. Using these class 

parameters and the data, a new partition is estimated. Both the partition and the class 

parameters are iteratively refined until there is no further change in them. We note here that the 

functional J is not convex. Hence its minimization may yield a local minimum, which 

guarantees the convergence of this iterative algorithm. Since the successive frames do not 

differ much due to the high temporal sampling rate, the partitions of adjacent frames do not 

differ significantly. The key idea is then to use the method successively on each frame of the 

video, incorporating the partition of the previous frame as the initial condition while 

partitioning the current frame, which can greatly reduce the computing cost. 

 
 

Preliminary Class 
Assignment 

 

Parameter 
Estimation

 

Partition 
Estimation

STOP if 
NO change

 

Figure 2: the flowchart of SPCPE algorithm 
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We should point out that the SPCPE algorithm could not only simultaneously estimate the 

partition and class parameters, but also estimate the appropriate number of the classes in the 

mean time by some easy extension of the algorithm. Moreover, it can handle multiple classes 

rather than two. In our experiment, we just use two classes in segmentation since two classes 

are efficient and good enough for our purpose in this application domain. 

2.2 Object Tracking 

The first step for object tracking is to identify the segments in each class in each frame. 

Then the bounding box and the centroid point for that segment are obtained. For example, 

Figure 3(b) shows the segmentation mask maps of the video sequence in Figure 3(a). In this 

figure, the player, soccer ball and the signboard belong to class 2 while the ground belongs to 

class 1. As shown in Figure 3(b), the segments corresponding to the ball, player and signboard 

are bounded by their minimal bounding boxes and represented by their centroid points. 

    
Figure 3 (a): Example video sequence 

    

Figure 3 (b): Segmentation mask maps and bounding boxes for a.) 

Figure 3: Object tracking 
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 Line Merging Algorithm (LMA) for Extracting Segments: 

Unlike the traditional way to do segment extraction such as the seeding and region growing 

method used in [16], we use a computationally simple and fast method called line merging 

algorithm (LMA) to extract the segments from the segmented frames. The basic idea is to scan 

the segmented frame either row-wise or column-wise. If the number of rows (columns) is less 

than the number of columns (rows), then row-wise (column-wise) is used respectively. For 

example, as shown in Figure 4, suppose the pixels with value ‘1’ represent the segment we 

want to extract, we scan the segmented frame row by row. By scanning the first row, we get 

two lines and let each line represent a new segment so that we have two segments at the 

beginning. In scanning rows 2 to 4, we merge the new lines in each row with the lines in 

previous rows to form the group of lines for each segment. At row 5, we get one line and find 

out that it can be merged with both of the two segments, which means we must merge the two 

previously obtained segments to form a new segment so that we have only one big segment 

now. Similarly, at row 8, two lines belong to the same segment because they can be merged 

with the same line in row 7. 

  
1:  000011111111111111111000000000011111110000000000 
2:  000000111111111111111000000000111111111000000000 
3:  000000000011111111111100000001111111110000000000 
4:  000000000000011111111111100011111110000000000000 
5:  000000000000000011111111111111110000000000000000 
6:  000000000000000000000001111111111110000000000000 
7:  000000000000000000000011111111100000000000000000 
8:  000000000000000011111111001111111100000000000000 
9:  000000000000000001111110000111111111111100000000 
10: 000000000000000000011000000000000000000000000000  

Figure 4: The segmentation mask map. 

 
 



 10

The pseudo codes for line merging algorithm (LMA) are listed below: 
 

Algorithm: GetSegments(V, i, A[i]) to get the new lines of each row. 

V: the input vector of segmented frame of row ‘i’; 

‘i’: the current row we are scanning; 

A[i]: a list to store the segments. 

 

GetSegments(V, i, A[i]) 

1) Number_of_segments = -1;  

2) Segment D[col/2]; /* D is the temporary variable to store the line segments  

                                         in row i. The maximal size of D is col/2. */ 

3) for j from 1 to col 

4)   if V[j] == 1 

5)       if j == 1 /* if the first line segment is at the beginning of the current row, 

                               add it to array D and increase the number of line segments. */ 

6)             number_of_segments++; 

7)             D[number_of_segments].data = data; /* data contains the i and j values */ 

8)       else if V[j-1] == 0 /* detect a new line segment and add it to array D */ 

9)             number_of_segments++; 

10)             D[number_of_segments].data = data; 

11)       else D[number_of_segments].data += data; 

            /* collect all the pixels belonging to the same line segment together. */ 

12)       end if; 

13)   end if; 

14)   for k from 0 to number_of_segments /* copy the line segments in D to the  

                                                                        data structure in A[i]. */ 

15)        A[i].Add(D[k]); 

16)  end for; 
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Algorithm: GetBoundingBox(m[row][col]) to combine A[i] and A[i-1] by checking 

each line in A[i] and A[i-1] and combining those lines which belong to the same segment.

m[row][col]: the input matrix of segmented frame of size row by column. 

 

GetBoundingBox(m[row][col]) 

1) number_of_objects =0; /* initially there is zero object identified. */ 

2) for k1 from 1 to row  

3)       GetSegments(m[k1][col], k1, A[k1]) /* get the line segments in  

                                                                              Current row*/ 

4)       for k2 from 1 to A[k1].size  

            /* between the current row and the previous row, check and merge the  

                corresponding line segments in them which belong to the same object  

                to one big segment. */ 

5)             for k3 from 1 to A[k1-1].size 

6)                   if Segment Sk1 in A[k1]  Segment Sk2 in A[k1-1] != null 

7)                         combine Sk1 and Sk2 into one segment 

8)             end for 

9)       end for 

10) end for 

 

Compared with the seeding and region growing method, the proposed algorithm extracts 

all the segments and their bounding boxes as well as their centroids within one scanning 

process, while the seeding and region growing method needs to scan the input data for 

indeterminate times depending on the layout of the segments in the frame. Moreover, the 

proposed algorithm needs much less space than the seeding and region growing method. 

The next step for object tracking is to connect the related segments in successive frames. 

The idea is to connect two segments that are spatially the closest in the adjacent frames [16]. In 
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another word, the Euclidean distances between the centroids of the segments in adjacent frames 

are used as the criteria to track the related segments. Besides, size restriction should be 

employed in determining the related segments in successive frames. 

In fact, the proposed object tracking method can be called a “block motion tracking” 

method since it is an extension of the macroblock matching technique used in motion 

estimation [6, 7] between successive frames. The proposed object tracking method is based on 

the segmentation results and goes much further than the macroblock matching technique 

because it can choose the appropriate macroblocks (segments) within a specific frame by 

segmentation and track their motions instead of fixed-size and pre-determinate macroblocks. 

2.3 Shot Change Detection Method 

Our method combines three main techniques together: segmentation, object tracking, and 

the traditional pixel-level comparison method. In the traditional pixel-level comparison 

approach, the gray-scale values of the pixels at the corresponding locations in two successive 

frames are subtracted and the absolute value is used as a measure of dissimilarity between the 

pixel values. If this value exceeds a certain threshold, then the pixel gray scale is said to have 

changed. The percentage of the pixels that have changed is the measure of dissimilarity 

between the frames. This approach is computationally simple but sensitive to digitalization 

noise, illumination changes and the object moving. On the other hand, the proposed 

segmentation and object tracking techniques are much less sensitive to the above factors. In our 

method, we use the pixel-level comparison for pre-processing. By applying a strict threshold 

for the percentage of changed pixels, we want to make sure that we will not introduce any 

incorrect shot cuts that are identified by pixel-level comparison by fault. The advantage to 

combine the pixel-level comparison is that it can alleviate the cost of computation because of 

its simplicity. In other word, we apply the segmentation and object tracking techniques only 

when it is necessary. 
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Figure 5: the flowchart of the proposed shot change detection method 
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Figure 5 shows the flowchart of the proposed shot change detection. The steps are given in 

the following: 

1. Do the pixel-level comparison between the currently processed video frame and the 

immediate preceding frame (see chart boxes 1 and 2 in Figure 5). 

Let the percentage of change be change_percent and check this variable (chart box 3). 

If the current frame is not identified as a shot cut, which means that 

change_percent<ph, then go on to process the next video frame (chart box 1). 

Otherwise go to step 2 (chart box 4). 

2. If change_percent>pl (chart box 4), the current frame is identified as a shot cut. Go to 

step 1 and process the next frame (chart box 1). Otherwise go to step 3 (chart box 5). 

3. Do the segmentation on the previous frame only if the previous frame has never been 

segmented (chart box 5). 

If the previous frame has been segmented before, we only need to obtain its 

segmentation mask map directly. 

Then do segmentation on the current frame (chart box 6). Get the current and the 

previous segmentation mask maps for these two frames. Let the variable cur_map 

represent the current segmentation mask map’s value and variable pre_map represent 

the value of the previous segmentation mask map. Note that the variables cur_map and 

pre_map can be deemed as two matrices. Go to step 4 (chart box 7). 

4. diff = | cur_map-pre_map |;  where the variable diff is the point-to-point subtraction 

between two successive segmentation mask maps. 

diff_num = the number of elements in diff which are nonzero; 
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diff_percent = diff_num / (total number of elements in diff); where the variable 

diff_percent is the percentage of changes between the two successive segmentation 

mask maps. 

Go to step 5 (chart box 8). 

5. Check the variable diff_percent (chart box 8). 

If diff_percent < Low_Th1 

Not shot change. Go to step 1 and process the next frame (chart box 1). 
Else  

If Low_Th1 < diff_percent < Low_Th2 and change_percent<pm           // chart box 9 

 Not shot change. Go to step 1 and process the next frame (chart box 1). 

Else  

Do object tracking between the current frame and the previous frame. Let 

variable A be the total area of those segments in the previous frame that cannot 

find out their corresponding segments in the current frame;  // chart boxes 10, 11 

If (A/the area of the frame)<Area_thresh       // chart box 12 

 Not shot change. Go to step 1 and process the next frame (chart box 1). 

Else 

 The current frame is identified as shot cut. 

 Go to step 1 and process the next frame (chart box 1). 

End if; 

End if; 

End if; 

(Here, ph, pl, pm, Low_Th1 and Low_Th2 are threshold values for variables change_percent 

and diff_percent that are derived from the experiential values.)  
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3. EXPERIMENTAL RESULTS 

We have performed a series of experiments on various video types such as the TV news 

videos (in MPEG-1 format) that include FOX 25 LIVE NEWS, ABC 7 NEWS and WNBC 

NEWS. Other video types used in our experiment include the music MTV video, documentary 

video and sports video such as the soccer game. The average size of each frame in the sample 

video clips is 180 rows and 240 columns. All the MPEG video clips are downloaded from the 

URLs listed in [26, 27, 28, 29]. Table I gives the statistics of all the video clips used. The 

experimental results demonstrate the effectiveness of the proposed shot change detection 

algorithm. Next we will see how the proposed method detects the different types of shot 

changes that cannot be correctly identified by the traditional pixel-level comparison method. 

 

Table I: Video data used for experiments 

Name Type Number of Frames Shot Cuts 

News1 News 731 19 

News2 News 1262 26 

News3 News 4225 90 

Labwork Documentary 495 15 

Robert MTV 885 26 

Carglass Commercial 1294 29 

Aussie2g2 Sports 511 19 

Flo1 Sports 385 8 

Flo2 Sports 406 10 

AligoISA Sports 418 11 



 17

 

    

    

    
  

Figure 6 (a): An example video sequence for camera panning and tilting. The temporal order of 

the sequence is from the top-left to the right-bottom. 

 

 

 
 

Figure 6 (b): The corresponding segmentation mask maps for the video sequence shown in a). 

Figure 6: An example video sequence for camera panning and tilting. 

 

CASE 1: Camera Panning and Tilting 

Figure 6 gives an example of the camera panning while tilting. Figure 6(a) is the original 

video sequence and Figure 6(b) is the corresponding segmentation mask maps for (a). In this 
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case, the pixel-level comparison will identify too many incorrect shot cuts since the ‘objects’ in 

the shot moves and turns from one frame to another. But as we can see from Figure 6, the 

segmentation mask maps can still represent the contents of the video frames very well. Since 

the segmentation mask maps are binary data, it is very simple and fast to compare the two 

mask maps of the successive frames. Moreover, by combining the object tracking method, 

most of the segment movements can be tracked so that we know that there is no major shot 

change if the segments in two successive frames can be tracked and matched well according to 

the object tracking method mentioned in Section 2.2. 

 

     

     
  

Figure 7 (a): An example video sequence of zooming out. The temporal order of the sequence 

is from the top-left to the right-bottom. 

 

     

     
 

Figure 7 (b): The corresponding segmentation mask maps for the video sequence shown in a). 

Figure 7: An example video sequence of zooming out. 
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CASE 2: Zoom In and Zoom Out 

Figure 7 gives an example video sequence of camera zooming out. Similarly, we also apply 

the combination of the segmentation and object tracking to identify this sequence as a single 

shot. 

CASE 3: Fade In and Fade Out 

Figure 8 gives out an example video sequence for shots fading out. We still can identify 

this video sequence as one shot (the shot cut is marked by dotted border in Figure 8). This is a 

good example to show that the proposed segmentation together with object tracking technique 

is not sensitive to luminance changes. 

 

     

     
  

Figure 8: An example video sequence of fading in. The frame with dotted border is shot cut 

detected by the proposed method. 

In Figure 9, a more fancy example video sequence is given to show the effectiveness of the 

proposed method. In this example, one shot is fading in while another shot is fading out 

continuously. By applying the proposed method, this sequence is divided into three different 

shots, and the identified shot cuts are marked by dotted borders as shown in Figure 9. The first 

shot and the third shot are clearly and correctly identified, while the second shot cut represents 

the intermediate transforming process from the first shot to the third shot. In our experiments, 

this kind of video sequences can be divided into either two or three shots. In case of two shots, 
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the intermediate transforming sequence belongs to either the previous shot or the following 

shot. 

 

                           

      

                            

………. 

………. 

 

Figure 9: An example video sequence of continuously transforming from one shot to another 

shot. The frames with dotted borders are shot cuts detected by the proposed method. 

Figure 10 gives an example shot cuts detection results for an ABC 7 NEWS video. Figure 

10(a) shows the original video frames that have been detected as the shot cuts, and Figure 

10(b) shows the example segmentation mask maps for the shot cuts in Figure 10(a). The 

performance is given in terms of precision and recall parameters. NC means the number of 

correct shot change detections, NE means the number of incorrect shot change detections, and 

NM means the number of missed shot detections. 
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C
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N
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
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a). The example shot cuts for the ABC 7 NEWS video sequence. 
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b). The example segmentation mask maps for the shot cuts in a). 

Figure 10: The example shot cuts and their segmentation mask maps. 
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The summary of the proposed method is shown in Table II and Figure 11 via the precision 

and recall parameters. In our experiments, the recall and the precision values are both above 

ninety percent. Our results are comparable to other techniques such as the PM method in [11] 

and DC method in [21]. Moreover, the recall results seem very stable and promising because 

most of the recall results are 100 percent. The DC method is very sensitive to luminance and 

color change, but the proposed method is not. As seen in Table II, the precision values for 

sports and commercial videos are a little lower (but still above ninety percent) than other types 

of videos because there are lots of fast movements and fancy transformation between 

successive frames. As mentioned before, the method of using low-level features is very 

sensitive to luminance and color change, but our segmentation-based method is not. One thing 

should be mentioned here is that even it is efficient to simply compare the segmentation mask 

maps, the employment of the object tracking technique is very useful in case of camera 

panning and tilting. It helps to reduce the number of incorrectly identified shot cuts. Another 

thing is that by combining the pixel-level comparison, the number of the video frames that 

need to do segmentation and object tracking is greatly reduced. As can be seen from Table II, 

the percentage of the reduced frames that do not need segmentation and object tracking is 

between fifty percent and eighty percent. 

Moreover, the process produces not only the shot cuts, but also the object level 

segmentation results. As can be seen from Figure 10(b), each detected shot cut is selected as a 

key frame and has been modeled by the features of its segments such as the bounding boxes 

and centroids. Based on this information, we can further structure the video content using some 

existing multimedia semantic model such as the multimedia augmented transition network 

(MATN) model [4]. 
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Table II: The Precision and Recall Parameters 

Name Type Precision Recall 
Computation Reduce by 

Pixel-level Comparison 

News1 News 0.95 1.00 72% 

News2 News 0.96 0.96 75% 

News3 News 0.98 1.00 80% 

Labwork Documentary 0.94 1.00 80% 

Robert MTV 0.96 1.000 70% 

Carglass Commercial 0.933 1.000 60% 

Aussie2g2 Sports 0.950 1.000 70% 

Flo1 Sports 0.889 1.000 60% 

Flo2 Sports 0.909 1.000 67% 

AligoISA Sports 0.910 1.000 53% 
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Figure 11: The average results of parameters Precision and Recall for different types of video 

clips (News, MTV, Documentary, Commercial and Sports). 

4. RELATED WORK 

Video segmentation is the first step for automatic indexing of digital video for browsing 

and retrieval. The goal is to separate the video into a set of shots that can be used as the basis 

for video indexing and browsing. Usually, the existing techniques for shot change detection 
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can be grouped into the methods operating on uncompressed data and those operating on 

compressed data.  

Gargi et al. [8] gave a survey on video indexing, as well as the video segmentation 

techniques used in uncompressed data domain. In uncompressed domain, the shot change 

detection algorithms process uncompressed video, and a similarity measure between 

successive frames is defined. Algorithms in this category include [12, 24]. The basic idea in 

pixel-level comparison is to compute the differences in values of corresponding pixels between 

two successive frames. It uses one threshold to tell if the value of the corresponding pixels has 

changed or not, and uses another threshold to measure the percentage of changed pixels 

between two successive frames. If the percentage of changes exceeds some pre-defined 

threshold, then a new shot cut is detected. This method is very simple, but the disadvantage is 

that it is very sensitive to object and camera movements. In our method, we embed this simple 

method into the techniques of object tracking and image segmentation in order to overcome its 

shortcomings, and at the same time to reduce the computation. Another kind of comparison 

technique used in uncompressed domain is the block-wise comparison. Instead of pixel-by-

pixel matching, block-wise comparison methods use the local characteristics (such as the mean 

and variance intensity values) of blocks to reduce the sensitivity to object and camera 

movements. In this kind of approaches, each frame is divided into several blocks that are 

compared with their corresponding blocks in the successive frame. If the number of changed 

blocks exceeds some threshold, then a shot cut is detected. This method is more robust, but it is 

still sensitive to fast object movement or camera panning. Moreover, since the mean and 

variance values of a block are not good enough to represent the block’s characteristics, it is 

highly possible to introduce incorrect matching between two blocks that have the same mean 
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and variance values but with totally different contents [20]. In our method, we partially adopt 

the idea of block matching in object tracking technique. Instead of dividing the frame into 

fixed size of blocks absolutely, we employ an innovative image segmentation method to cluster 

the pixels in a frame into multiple classes (normally two classes) and obtain the segments 

(blocks). These segments (blocks) are then tracked and matched between two successive 

frames. 

A further improved method in order to reduce sensitivity to camera and object movements 

is the histogram-based comparison. Since the object moving between two successive frames is 

relatively small, their histograms will not have big differences. It is more robust to small 

rotations and slow variations [14, 17]. But as we know, the histogram-based method has its 

potential problems. That is, two successive frames will possibly have the similar histograms 

but with different contents. Another approach based on the low-level features of images is 

proposed by Zabih et al. [23]. Their proposed approach used the intensity edges between 

successive frames to detect shot cuts. However, as the authors have pointed out, the 

weaknesses of their approach are the false positives due to the limitations of the edge detection 

method. 

In addition to the research on the methods of similarity measures between successive 

frames, there have been other works towards solving the problem of threshold estimation. In 

[9], the unsupervised clustering algorithm proposed a generic technique that does not need 

threshold setting and allows multiple features to be used simultaneously. Another interesting 

work done by Truong et al. in [19] proposed an adaptive threshold determination method that 

is to reduce the artifacts created by noise and motion in shot change detection.  
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There are many shot change detection algorithms in compressed domain, especially in 

MPEG format videos. Since the encoded video stream already contains many features such as 

the DCT coefficients and motion vectors, it is suitable for video shot change detection. In [2], 

it used the DCT (discrete cosine transform) coefficients of I frames as the similarity measure 

between successive frames. Yeo and Liu [21] used the dc-images to compare successive 

frames, where the (i,j) pixel value of the dc-image is the average value of the (i,j) block of the 

image. In [10], Hwang and Jeong utilized the changes of directional information in the DCT 

domain to detect the shot breaks automatically. Lee et al. [11] further improved the DCT 

coefficient-based method. They used the binary edge maps as a representation of the key 

frames so that two frames can then be compared by calculating a correlation between their 

edge maps. The advantage of this method is that it gives directly the edge information such as 

orientation, strength, and offset from the DCT coefficients. 

5. CONCLUSIONS 

In this report, we proposed an innovative shot change detection method using the 

unsupervised segmentation algorithm and object tracking technique, and showed the precision 

and recall performance using the different types of sample MPEG-1 video clips. The key idea 

of the matching process in shot change detection is to compare the segmentation mask maps 

between two successive video frames, which is simple and fast. In addition, the object tracking 

technique is employed as a complement to handle the situations of camera panning and tilting 

without any extra overhead. Unlike many methods using the low-level features of the video 

frames, the proposed method is not sensitive to the small changes in luminance or color. 

Moreover, it has high precision and recall values as shown in our experiments. 
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