

Video Shot Change Detection for Multimedia

Database Systems

Shu-Ching Chen and Chengcui Zhang

Technical Report

No. 2001-11

 1

Video Shot Change Detection for Multimedia Database Systems

Shu-Ching Chen Chengcui Zhang

School of Computer Science

Florida International University

Miami, FL 33199, USA

Abstract

The purpose of this report is to present an effective shot change detection method for

multimedia database systems using an unsupervised segmentation algorithm and the technique

of object tracking based on the segmentation mask maps. Compared with other state-of-art

techniques such as the method of DC images and some feature based technique, our results

have shown that this method can not only perform accurate shot change detection, but also

obtain object level information of the video frames, which is very useful for video content

indexing and analysis in multimedia databases.

Keywords: shot change detection, segmentation mask map, video indexing, multimedia

databases, object tracking.

 2

1. INTRODUCTION

Recently, multimedia information has been made overwhelmingly accessible with the rapid

advances in communication and multimedia computing technologies. The requirements for

efficiently accessing the mass amounts of multimedia data are becoming more and more

important. Unlike traditional database systems that have text or numerical data, a multimedia

database or information system may contain different media such as text, image, audio, and

video. Video is popular in many applications such as education and training, video

conferencing, video on demand (VOD), news service, and so on. Traditionally, when users

want to search certain contents in videos, they need to fast forward or rewind to get a quick

overview of interest on the videotape. This is a sequential process and users do not have a

chance to choose or jump to a specific topic directly. How to organize video data and provide

the visual content in compact forms becomes important in multimedia applications [22].

Therefore, users can browse a video sequence directly based on their interests so that they can

get the necessary information quicker and the amount of data transmission can be reduced.

Also, users should have the opportunity to retrieve video materials using database queries.

Since video data contains rich semantic information, database queries should allow users to get

high level content such as scenes or shots.

Video shot change detection is a fundamental operation used in many multimedia

applications such as digital libraries and video on demand, and it must be performed prior to all

other processes [15, 25]. Video data can be divided into different shots. A shot is a video

sequence that consists of continuous video frames for one action. Shot change detection is an

operation that divides video data into physical shots. There are a number of methods for video

shot change detection in the literature. The matching process between two consecutive frames

 3

is the essential part of it. Many of them use the low-level global features such as the luminance

pixel-wise difference [24], luminance or color histogram difference [18] and edge difference

[23] to compare two consecutive frames. Other recent work related to low level features

includes the orientation histogram [13]. Especially, Zabih et al.’s [23] edge image based

method works well in many cases when the detection with intensity histograms is difficult to

work out. However, since luminance or color is sensitive to small change, these low-level

features cannot give a satisfactory answer to the problem of shot change detection. For

example, in the method of using DC image [21], it uses the luminance histogram difference of

DC images, which is very sensitive to luminance changes. Recently, there have been many

research work done on the compressed video data domain such as the fast shot change

detection [11] and the directional information retrieving [10] by using the discrete cosine

transform (DCT) coefficients in MPEG video data. Besides all the above techniques, some

research work has been done on the dynamic and adaptive threshold determination problem

such as [1, 19], which can be used to enhance the accuracy and robustness of the existing

techniques in shot cuts detection.

In this report, focusing on the uncompressed video data, we propose an innovative shot

change detection method using an unsupervised image segmentation algorithm and the object

tracking technique. By using the image segmentation algorithm, the segmentation mask map of

each video frame can be automatically extracted. The segmentation mask map, in another

word, can be deemed as the clustering feature map of each frame. In such a way, the pixels in

each frame have been grouped into different classes (for example, 2 classes). Then two frames

can be compared by checking the difference between their segmentation mask maps. In

addition, in order to better handle the situation of camera panning and tilting, the object

 4

tracking technique based on the segmentation results is used as an enhancement to the basic

matching process. Since the segmentation results are already available, the cost for object

tracking is almost trivial. Moreover, our key frame representation uses the information of the

segmentation results such as the bounding boxes and the positions of the segments within that

frame. In order to reduce the computational cost, we also apply the traditional pixel-level

comparison for pre-processing in addition to segmentation and object tracking. The advantages

of using unsupervised segmentation and object tracking are:

 It is fully unsupervised, without any user interventions.

 The algorithm for comparing two frames is simple and fast.

 The object level segmentation results can be further used for video indexing and

content analysis.

This technical report is organized as follows. In Section 2, we explain the shot change

detection method as well as the mechanism of the unsupervised segmentation algorithm and

the object tracking technique. In Section 3, experimental results are analyzed to show the

effectiveness of the proposed method. Section 4, we review related works in shot change

detection. Finally, conclusions are given in Section 5.

2. SHOT CHANGE DETECTION METHOD

In this section, we first explain how the unsupervised segmentation algorithm and object

tracking work, and then give out the steps of the shot change detection method based on the

discussion.

 5

2.1 Segmentation Information Extraction

In this report, we use an unsupervised segmentation algorithm to partition the video frames.

First, the concepts of a class and a segment should be clarified. A class is characterized by a

statistical description and consists of all the regions in a video frame that follows this

description; while a segment is an instance of a class. In this algorithm, the partition and the

class parameters are treated as random variables. This is illustrated in Figure 1. The light gray

areas and dark gray areas in the right segmentation mask map represent two different classes

respectively. Considering the light gray class, there are in total four segments within this class

(the CDs, for example). Notice that each segment is bounded by a bounding box and has a

centroid, which are the results of segment extraction. The details of segment extraction will be

discussed in Section 2.2.

The method for partitioning a video frame starts with a random partition and employs an

iterative algorithm to estimate the partition and the class parameters jointly [3, 5, 4]. The

intuition for using an iterative way is that a given class description determines a partition, and

similarly a given partition gives rise to a class description. So the partition and the class

parameters have to be estimated iteratively and simultaneously from the data.

Figure 1: Examples of classes and segments. The original video frame is on the left and

the segmentation mask map of the left frame is on the right.

 6

Suppose there are two classes -- class1 and class2. Let the partition variable be c = {c1, c2},

and the classes be parameterized by  = {1, 2}. Also, suppose all the pixel values yij (in the

image data Y) belonging to class k (k=1,2) are put into a vector Yk. Each row of the matrix  is

given by (1, i, j, ij) and ak is the vector of parameters (ak0 , …, ak3)
T.

yij = ak0 + ak1i + ak2 j + ak3ij, (i, j) yij ck (1)

Yk =  ak (2)

TT
ka  1)(ˆ Yk (3)

The best partition is estimated as that which maximizes the a posteriori probability (MAP)

of the partition variable given the image data Y. Now, the MAP estimates of c = {c1, c2} and 

= {1, 2} are given by

)|,(max)ˆ,ˆ(
),(

YcPArgc
c






),(),|(max
),(




cPcYPArg
c

 (4)

Let  ,cJ be the functional to be minimized. With the above assumptions, this joint

estimation can be simplified to the following form:

),,,(min)ˆ,ˆ(2121
),(




ccJArgc
c

 (5)

 
 


1 2

);(ln);(ln),,,(22112121
cy cy

ijij

ij ij

ypypccJ  (6)

The problem of segmentation thus becomes the problem of simultaneously estimating the

class partition and the parameter for each class. About the parameter estimation, we can use

equation (3) to directly compute the parameter for each assigned set of class labels without any

numerical optimization methods. About the class partition estimation, we assign pixel yij to the

class that gives the lowest value of)|(ln kijk yp  . The decision rule is:

 7

1ĉyij  if)(ln)(ln 21 ijij ypyp  (7)

2ĉyij  otherwise (8)

Just as shown in Figure 2, the algorithm starts with an arbitrary partition of the data in the

first video frame and computes the corresponding class parameters. Using these class

parameters and the data, a new partition is estimated. Both the partition and the class

parameters are iteratively refined until there is no further change in them. We note here that the

functional J is not convex. Hence its minimization may yield a local minimum, which

guarantees the convergence of this iterative algorithm. Since the successive frames do not

differ much due to the high temporal sampling rate, the partitions of adjacent frames do not

differ significantly. The key idea is then to use the method successively on each frame of the

video, incorporating the partition of the previous frame as the initial condition while

partitioning the current frame, which can greatly reduce the computing cost.

Preliminary Class
Assignment

Parameter
Estimation

Partition
Estimation

STOP if
NO change

Figure 2: the flowchart of SPCPE algorithm

 8

We should point out that the SPCPE algorithm could not only simultaneously estimate the

partition and class parameters, but also estimate the appropriate number of the classes in the

mean time by some easy extension of the algorithm. Moreover, it can handle multiple classes

rather than two. In our experiment, we just use two classes in segmentation since two classes

are efficient and good enough for our purpose in this application domain.

2.2 Object Tracking

The first step for object tracking is to identify the segments in each class in each frame.

Then the bounding box and the centroid point for that segment are obtained. For example,

Figure 3(b) shows the segmentation mask maps of the video sequence in Figure 3(a). In this

figure, the player, soccer ball and the signboard belong to class 2 while the ground belongs to

class 1. As shown in Figure 3(b), the segments corresponding to the ball, player and signboard

are bounded by their minimal bounding boxes and represented by their centroid points.

Figure 3 (a): Example video sequence

Figure 3 (b): Segmentation mask maps and bounding boxes for a.)

Figure 3: Object tracking

 9

 Line Merging Algorithm (LMA) for Extracting Segments:

Unlike the traditional way to do segment extraction such as the seeding and region growing

method used in [16], we use a computationally simple and fast method called line merging

algorithm (LMA) to extract the segments from the segmented frames. The basic idea is to scan

the segmented frame either row-wise or column-wise. If the number of rows (columns) is less

than the number of columns (rows), then row-wise (column-wise) is used respectively. For

example, as shown in Figure 4, suppose the pixels with value ‘1’ represent the segment we

want to extract, we scan the segmented frame row by row. By scanning the first row, we get

two lines and let each line represent a new segment so that we have two segments at the

beginning. In scanning rows 2 to 4, we merge the new lines in each row with the lines in

previous rows to form the group of lines for each segment. At row 5, we get one line and find

out that it can be merged with both of the two segments, which means we must merge the two

previously obtained segments to form a new segment so that we have only one big segment

now. Similarly, at row 8, two lines belong to the same segment because they can be merged

with the same line in row 7.

1: 000011111111111111111000000000011111110000000000
2: 000000111111111111111000000000111111111000000000
3: 000000000011111111111100000001111111110000000000
4: 000000000000011111111111100011111110000000000000
5: 000000000000000011111111111111110000000000000000
6: 000000000000000000000001111111111110000000000000
7: 000000000000000000000011111111100000000000000000
8: 000000000000000011111111001111111100000000000000
9: 000000000000000001111110000111111111111100000000
10: 000000000000000000011000000000000000000000000000

Figure 4: The segmentation mask map.

 10

The pseudo codes for line merging algorithm (LMA) are listed below:

Algorithm: GetSegments(V, i, A[i]) to get the new lines of each row.

V: the input vector of segmented frame of row ‘i’;

‘i’: the current row we are scanning;

A[i]: a list to store the segments.

GetSegments(V, i, A[i])

1) Number_of_segments = -1;

2) Segment D[col/2]; /* D is the temporary variable to store the line segments

 in row i. The maximal size of D is col/2. */

3) for j from 1 to col

4) if V[j] == 1

5) if j == 1 /* if the first line segment is at the beginning of the current row,

 add it to array D and increase the number of line segments. */

6) number_of_segments++;

7) D[number_of_segments].data = data; /* data contains the i and j values */

8) else if V[j-1] == 0 /* detect a new line segment and add it to array D */

9) number_of_segments++;

10) D[number_of_segments].data = data;

11) else D[number_of_segments].data += data;

 /* collect all the pixels belonging to the same line segment together. */

12) end if;

13) end if;

14) for k from 0 to number_of_segments /* copy the line segments in D to the

 data structure in A[i]. */

15) A[i].Add(D[k]);

16) end for;

 11

Algorithm: GetBoundingBox(m[row][col]) to combine A[i] and A[i-1] by checking

each line in A[i] and A[i-1] and combining those lines which belong to the same segment.

m[row][col]: the input matrix of segmented frame of size row by column.

GetBoundingBox(m[row][col])

1) number_of_objects =0; /* initially there is zero object identified. */

2) for k1 from 1 to row

3) GetSegments(m[k1][col], k1, A[k1]) /* get the line segments in

 Current row*/

4) for k2 from 1 to A[k1].size

 /* between the current row and the previous row, check and merge the

 corresponding line segments in them which belong to the same object

 to one big segment. */

5) for k3 from 1 to A[k1-1].size

6) if Segment Sk1 in A[k1]  Segment Sk2 in A[k1-1] != null

7) combine Sk1 and Sk2 into one segment

8) end for

9) end for

10) end for

Compared with the seeding and region growing method, the proposed algorithm extracts

all the segments and their bounding boxes as well as their centroids within one scanning

process, while the seeding and region growing method needs to scan the input data for

indeterminate times depending on the layout of the segments in the frame. Moreover, the

proposed algorithm needs much less space than the seeding and region growing method.

The next step for object tracking is to connect the related segments in successive frames.

The idea is to connect two segments that are spatially the closest in the adjacent frames [16]. In

 12

another word, the Euclidean distances between the centroids of the segments in adjacent frames

are used as the criteria to track the related segments. Besides, size restriction should be

employed in determining the related segments in successive frames.

In fact, the proposed object tracking method can be called a “block motion tracking”

method since it is an extension of the macroblock matching technique used in motion

estimation [6, 7] between successive frames. The proposed object tracking method is based on

the segmentation results and goes much further than the macroblock matching technique

because it can choose the appropriate macroblocks (segments) within a specific frame by

segmentation and track their motions instead of fixed-size and pre-determinate macroblocks.

2.3 Shot Change Detection Method

Our method combines three main techniques together: segmentation, object tracking, and

the traditional pixel-level comparison method. In the traditional pixel-level comparison

approach, the gray-scale values of the pixels at the corresponding locations in two successive

frames are subtracted and the absolute value is used as a measure of dissimilarity between the

pixel values. If this value exceeds a certain threshold, then the pixel gray scale is said to have

changed. The percentage of the pixels that have changed is the measure of dissimilarity

between the frames. This approach is computationally simple but sensitive to digitalization

noise, illumination changes and the object moving. On the other hand, the proposed

segmentation and object tracking techniques are much less sensitive to the above factors. In our

method, we use the pixel-level comparison for pre-processing. By applying a strict threshold

for the percentage of changed pixels, we want to make sure that we will not introduce any

incorrect shot cuts that are identified by pixel-level comparison by fault. The advantage to

combine the pixel-level comparison is that it can alleviate the cost of computation because of

its simplicity. In other word, we apply the segmentation and object tracking techniques only

when it is necessary.

 13

Get the 1st frame

Get the current frame

Pixel-level comparison
(between current frame and the

previous frame)

Change_percent<ph?

Y

N

Change_percent>pl?
Y

Scene cut
identified

N

Is the immediate previous
frame segmented?

Y Get segmentation
mask map for

previous frame
(pre_map)

N Do segmentation
on previous frame

to get the mask
map (pre_map)

Do segmentation on current frame to get the
mask map (cur_map)

diff = | cur_map-pre_map |
diff_num = the number of elements in diff which are nonzero
diff_percent = diff_num / (total number of elements in diff)

diff_percent<Low_Th1?

N

Low_Th1<diff_percent<Low_Th2

and Change_percent<pm?

N

Do object tracking between the current
frame and the previous frame

A = the total area of those segments in previous
frame that cannot find out their corresponding

segments in current frame

(A/the area of the frame)<Area_thresh?

Scene cut identified

N

Y

Y

Y

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Figure 5: the flowchart of the proposed shot change detection method

 14

Figure 5 shows the flowchart of the proposed shot change detection. The steps are given in

the following:

1. Do the pixel-level comparison between the currently processed video frame and the

immediate preceding frame (see chart boxes 1 and 2 in Figure 5).

Let the percentage of change be change_percent and check this variable (chart box 3).

If the current frame is not identified as a shot cut, which means that

change_percent<ph, then go on to process the next video frame (chart box 1).

Otherwise go to step 2 (chart box 4).

2. If change_percent>pl (chart box 4), the current frame is identified as a shot cut. Go to

step 1 and process the next frame (chart box 1). Otherwise go to step 3 (chart box 5).

3. Do the segmentation on the previous frame only if the previous frame has never been

segmented (chart box 5).

If the previous frame has been segmented before, we only need to obtain its

segmentation mask map directly.

Then do segmentation on the current frame (chart box 6). Get the current and the

previous segmentation mask maps for these two frames. Let the variable cur_map

represent the current segmentation mask map’s value and variable pre_map represent

the value of the previous segmentation mask map. Note that the variables cur_map and

pre_map can be deemed as two matrices. Go to step 4 (chart box 7).

4. diff = | cur_map-pre_map |; where the variable diff is the point-to-point subtraction

between two successive segmentation mask maps.

diff_num = the number of elements in diff which are nonzero;

 15

diff_percent = diff_num / (total number of elements in diff); where the variable

diff_percent is the percentage of changes between the two successive segmentation

mask maps.

Go to step 5 (chart box 8).

5. Check the variable diff_percent (chart box 8).

If diff_percent < Low_Th1

Not shot change. Go to step 1 and process the next frame (chart box 1).
Else

If Low_Th1 < diff_percent < Low_Th2 and change_percent<pm // chart box 9

 Not shot change. Go to step 1 and process the next frame (chart box 1).

Else

Do object tracking between the current frame and the previous frame. Let

variable A be the total area of those segments in the previous frame that cannot

find out their corresponding segments in the current frame; // chart boxes 10, 11

If (A/the area of the frame)<Area_thresh // chart box 12

 Not shot change. Go to step 1 and process the next frame (chart box 1).

Else

 The current frame is identified as shot cut.

 Go to step 1 and process the next frame (chart box 1).

End if;

End if;

End if;

(Here, ph, pl, pm, Low_Th1 and Low_Th2 are threshold values for variables change_percent

and diff_percent that are derived from the experiential values.)

 16

3. EXPERIMENTAL RESULTS

We have performed a series of experiments on various video types such as the TV news

videos (in MPEG-1 format) that include FOX 25 LIVE NEWS, ABC 7 NEWS and WNBC

NEWS. Other video types used in our experiment include the music MTV video, documentary

video and sports video such as the soccer game. The average size of each frame in the sample

video clips is 180 rows and 240 columns. All the MPEG video clips are downloaded from the

URLs listed in [26, 27, 28, 29]. Table I gives the statistics of all the video clips used. The

experimental results demonstrate the effectiveness of the proposed shot change detection

algorithm. Next we will see how the proposed method detects the different types of shot

changes that cannot be correctly identified by the traditional pixel-level comparison method.

Table I: Video data used for experiments

Name Type Number of Frames Shot Cuts

News1 News 731 19

News2 News 1262 26

News3 News 4225 90

Labwork Documentary 495 15

Robert MTV 885 26

Carglass Commercial 1294 29

Aussie2g2 Sports 511 19

Flo1 Sports 385 8

Flo2 Sports 406 10

AligoISA Sports 418 11

 17

Figure 6 (a): An example video sequence for camera panning and tilting. The temporal order of

the sequence is from the top-left to the right-bottom.

Figure 6 (b): The corresponding segmentation mask maps for the video sequence shown in a).

Figure 6: An example video sequence for camera panning and tilting.

CASE 1: Camera Panning and Tilting

Figure 6 gives an example of the camera panning while tilting. Figure 6(a) is the original

video sequence and Figure 6(b) is the corresponding segmentation mask maps for (a). In this

 18

case, the pixel-level comparison will identify too many incorrect shot cuts since the ‘objects’ in

the shot moves and turns from one frame to another. But as we can see from Figure 6, the

segmentation mask maps can still represent the contents of the video frames very well. Since

the segmentation mask maps are binary data, it is very simple and fast to compare the two

mask maps of the successive frames. Moreover, by combining the object tracking method,

most of the segment movements can be tracked so that we know that there is no major shot

change if the segments in two successive frames can be tracked and matched well according to

the object tracking method mentioned in Section 2.2.

Figure 7 (a): An example video sequence of zooming out. The temporal order of the sequence

is from the top-left to the right-bottom.

Figure 7 (b): The corresponding segmentation mask maps for the video sequence shown in a).

Figure 7: An example video sequence of zooming out.

 19

CASE 2: Zoom In and Zoom Out

Figure 7 gives an example video sequence of camera zooming out. Similarly, we also apply

the combination of the segmentation and object tracking to identify this sequence as a single

shot.

CASE 3: Fade In and Fade Out

Figure 8 gives out an example video sequence for shots fading out. We still can identify

this video sequence as one shot (the shot cut is marked by dotted border in Figure 8). This is a

good example to show that the proposed segmentation together with object tracking technique

is not sensitive to luminance changes.

Figure 8: An example video sequence of fading in. The frame with dotted border is shot cut

detected by the proposed method.

In Figure 9, a more fancy example video sequence is given to show the effectiveness of the

proposed method. In this example, one shot is fading in while another shot is fading out

continuously. By applying the proposed method, this sequence is divided into three different

shots, and the identified shot cuts are marked by dotted borders as shown in Figure 9. The first

shot and the third shot are clearly and correctly identified, while the second shot cut represents

the intermediate transforming process from the first shot to the third shot. In our experiments,

this kind of video sequences can be divided into either two or three shots. In case of two shots,

 20

the intermediate transforming sequence belongs to either the previous shot or the following

shot.

……….

……….

Figure 9: An example video sequence of continuously transforming from one shot to another

shot. The frames with dotted borders are shot cuts detected by the proposed method.

Figure 10 gives an example shot cuts detection results for an ABC 7 NEWS video. Figure

10(a) shows the original video frames that have been detected as the shot cuts, and Figure

10(b) shows the example segmentation mask maps for the shot cuts in Figure 10(a). The

performance is given in terms of precision and recall parameters. NC means the number of

correct shot change detections, NE means the number of incorrect shot change detections, and

NM means the number of missed shot detections.

EC

C

NN

N
precision




MC

C

NN

N
recall




 21

frame45 frame127 frame221 frame297

frame327 frame368 frame413 frame459

frame542 frame679 frame723 frame782

a). The example shot cuts for the ABC 7 NEWS video sequence.

20 40 60 80 100 120 140 160

20

40

60

80

100

20 40 60 80 100 120 140 160

20

40

60

80

100

20 40 60 80 100 120 140 160

20

40

60

80

100

20 40 60 80 100 120 140 160

20

40

60

80

100

frame45 frame127 frame221 frame297

20 40 60 80 100 120 140 160

20

40

60

80

100

20 40 60 80 100 120 140 160

20

40

60

80

100

20 40 60 80 100 120 140 160

20

40

60

80

100

20 40 60 80 100 120 140 160

20

40

60

80

100

frame327 frame368 frame413 frame459

20 40 60 80 100 120 140 160

20

40

60

80

100

20 40 60 80 100 120 140 160

20

40

60

80

100

20 40 60 80 100 120 140 160

20

40

60

80

100

20 40 60 80 100 120 140 160

20

40

60

80

100

frame542 frame679 frame723 frame782

b). The example segmentation mask maps for the shot cuts in a).

Figure 10: The example shot cuts and their segmentation mask maps.

 22

The summary of the proposed method is shown in Table II and Figure 11 via the precision

and recall parameters. In our experiments, the recall and the precision values are both above

ninety percent. Our results are comparable to other techniques such as the PM method in [11]

and DC method in [21]. Moreover, the recall results seem very stable and promising because

most of the recall results are 100 percent. The DC method is very sensitive to luminance and

color change, but the proposed method is not. As seen in Table II, the precision values for

sports and commercial videos are a little lower (but still above ninety percent) than other types

of videos because there are lots of fast movements and fancy transformation between

successive frames. As mentioned before, the method of using low-level features is very

sensitive to luminance and color change, but our segmentation-based method is not. One thing

should be mentioned here is that even it is efficient to simply compare the segmentation mask

maps, the employment of the object tracking technique is very useful in case of camera

panning and tilting. It helps to reduce the number of incorrectly identified shot cuts. Another

thing is that by combining the pixel-level comparison, the number of the video frames that

need to do segmentation and object tracking is greatly reduced. As can be seen from Table II,

the percentage of the reduced frames that do not need segmentation and object tracking is

between fifty percent and eighty percent.

Moreover, the process produces not only the shot cuts, but also the object level

segmentation results. As can be seen from Figure 10(b), each detected shot cut is selected as a

key frame and has been modeled by the features of its segments such as the bounding boxes

and centroids. Based on this information, we can further structure the video content using some

existing multimedia semantic model such as the multimedia augmented transition network

(MATN) model [4].

 23

Table II: The Precision and Recall Parameters

Name Type Precision Recall
Computation Reduce by

Pixel-level Comparison

News1 News 0.95 1.00 72%

News2 News 0.96 0.96 75%

News3 News 0.98 1.00 80%

Labwork Documentary 0.94 1.00 80%

Robert MTV 0.96 1.000 70%

Carglass Commercial 0.933 1.000 60%

Aussie2g2 Sports 0.950 1.000 70%

Flo1 Sports 0.889 1.000 60%

Flo2 Sports 0.909 1.000 67%

AligoISA Sports 0.910 1.000 53%

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

News Docu Comm

Precision

0.975

0.98

0.985

0.99

0.995

1

News Docu Comm

Recall

Figure 11: The average results of parameters Precision and Recall for different types of video

clips (News, MTV, Documentary, Commercial and Sports).

4. RELATED WORK

Video segmentation is the first step for automatic indexing of digital video for browsing

and retrieval. The goal is to separate the video into a set of shots that can be used as the basis

for video indexing and browsing. Usually, the existing techniques for shot change detection

 24

can be grouped into the methods operating on uncompressed data and those operating on

compressed data.

Gargi et al. [8] gave a survey on video indexing, as well as the video segmentation

techniques used in uncompressed data domain. In uncompressed domain, the shot change

detection algorithms process uncompressed video, and a similarity measure between

successive frames is defined. Algorithms in this category include [12, 24]. The basic idea in

pixel-level comparison is to compute the differences in values of corresponding pixels between

two successive frames. It uses one threshold to tell if the value of the corresponding pixels has

changed or not, and uses another threshold to measure the percentage of changed pixels

between two successive frames. If the percentage of changes exceeds some pre-defined

threshold, then a new shot cut is detected. This method is very simple, but the disadvantage is

that it is very sensitive to object and camera movements. In our method, we embed this simple

method into the techniques of object tracking and image segmentation in order to overcome its

shortcomings, and at the same time to reduce the computation. Another kind of comparison

technique used in uncompressed domain is the block-wise comparison. Instead of pixel-by-

pixel matching, block-wise comparison methods use the local characteristics (such as the mean

and variance intensity values) of blocks to reduce the sensitivity to object and camera

movements. In this kind of approaches, each frame is divided into several blocks that are

compared with their corresponding blocks in the successive frame. If the number of changed

blocks exceeds some threshold, then a shot cut is detected. This method is more robust, but it is

still sensitive to fast object movement or camera panning. Moreover, since the mean and

variance values of a block are not good enough to represent the block’s characteristics, it is

highly possible to introduce incorrect matching between two blocks that have the same mean

 25

and variance values but with totally different contents [20]. In our method, we partially adopt

the idea of block matching in object tracking technique. Instead of dividing the frame into

fixed size of blocks absolutely, we employ an innovative image segmentation method to cluster

the pixels in a frame into multiple classes (normally two classes) and obtain the segments

(blocks). These segments (blocks) are then tracked and matched between two successive

frames.

A further improved method in order to reduce sensitivity to camera and object movements

is the histogram-based comparison. Since the object moving between two successive frames is

relatively small, their histograms will not have big differences. It is more robust to small

rotations and slow variations [14, 17]. But as we know, the histogram-based method has its

potential problems. That is, two successive frames will possibly have the similar histograms

but with different contents. Another approach based on the low-level features of images is

proposed by Zabih et al. [23]. Their proposed approach used the intensity edges between

successive frames to detect shot cuts. However, as the authors have pointed out, the

weaknesses of their approach are the false positives due to the limitations of the edge detection

method.

In addition to the research on the methods of similarity measures between successive

frames, there have been other works towards solving the problem of threshold estimation. In

[9], the unsupervised clustering algorithm proposed a generic technique that does not need

threshold setting and allows multiple features to be used simultaneously. Another interesting

work done by Truong et al. in [19] proposed an adaptive threshold determination method that

is to reduce the artifacts created by noise and motion in shot change detection.

 26

There are many shot change detection algorithms in compressed domain, especially in

MPEG format videos. Since the encoded video stream already contains many features such as

the DCT coefficients and motion vectors, it is suitable for video shot change detection. In [2],

it used the DCT (discrete cosine transform) coefficients of I frames as the similarity measure

between successive frames. Yeo and Liu [21] used the dc-images to compare successive

frames, where the (i,j) pixel value of the dc-image is the average value of the (i,j) block of the

image. In [10], Hwang and Jeong utilized the changes of directional information in the DCT

domain to detect the shot breaks automatically. Lee et al. [11] further improved the DCT

coefficient-based method. They used the binary edge maps as a representation of the key

frames so that two frames can then be compared by calculating a correlation between their

edge maps. The advantage of this method is that it gives directly the edge information such as

orientation, strength, and offset from the DCT coefficients.

5. CONCLUSIONS

In this report, we proposed an innovative shot change detection method using the

unsupervised segmentation algorithm and object tracking technique, and showed the precision

and recall performance using the different types of sample MPEG-1 video clips. The key idea

of the matching process in shot change detection is to compare the segmentation mask maps

between two successive video frames, which is simple and fast. In addition, the object tracking

technique is employed as a complement to handle the situations of camera panning and tilting

without any extra overhead. Unlike many methods using the low-level features of the video

frames, the proposed method is not sensitive to the small changes in luminance or color.

Moreover, it has high precision and recall values as shown in our experiments.

 27

6. ACKNOWLEDGEMENT

This research was supported in part by NSF CDA-9711582.

7. REFERENCES

[1] A. M. Alattar, “Detecting Fade Regions in Uncompressed Video Sequences,” in

Proceedings of 1997 IEEE International Conference on Acoustics Speech and Signal

Processing, pages 3025-3028, 1997.

[2] F. Arman, A. Hsu, M.-Y. Chiu, “Image Processing on Compressed Data for Large Video

Databases,” in Proc. First ACM Intl. Conference on Multimedia, 1993, pp. 267-272.

[3] S.-C. Chen, S. Sista, M.-L. Shyu, and R. L. Kashyap, “Augmented Transition Networks

as Video Browsing Models for Multimedia Databases and Multimedia Information

Systems,” 11th IEEE International Conference on Tools with Artificial Intelligence

(ICTAI'99), pp. 175-182, November 9-11, 1999.

[4] S.-C. Chen, M.-L. Shyu, and R. L. Kashyap, “Augmented Transition Network as a

Semantic Model for Video Data,” International Journal of Networking and Information

Systems, Special Issue on Video Data, vol. 3, no. 1, pp. 9-25, 2000.

[5] S.-C. Chen, S. Sista, M.-L. Shyu, and R. L. Kashyap, “An Indexing and Searching

Structure for Multimedia Database Systems,” IS&T/SPIE conference on Storage and

Retrieval for Media Databases 2000, pp. 262-270, January 23-28, 2000.

[6] B. Furht, S. W. Smoliar, and H. J. Zhang, Video and Image Processing in Multimedia

Systems, Kluwer Academic Publishers, 1995.

[7] D. Le Gall, “MPEG: A video compression standard for multimedia applications,”

Communications of the ACM 34(1): 46-58, April 1991.

 28

[8] U. Gargi, R. Kasturi, S. Antani, “Performance Characterization and Comparison of Video

Indexing Algorithms,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR),

559-565, 1998.

[9] B. Gunsel, A. M. Ferman, A. M. Tekalp, “Temporal Video Segmentation Using

Unsupervised Clustering and Semantic Object Tracking,” Journal of Electronic Imaging,

7(3), pp. 592-604, 1998.

[10] T.-H. Hwang and D.-S. Jeong, “Detection of Video Scene Breaks Using Directional

Information in DCT Domain,” Proceedings of the 10th International Conference on

Image Analysis and Processing, 1998.

[11] S.-W. Lee, Y.-M. Kim, and S.-W. Choi, “Fast Scene Change Detection using Direct

Feature Extraction from MPEG compressed Videos,” IEEE Trans. on Multimedia, vol. 2,

No. 4, pp. 240-254, Dec. 2000.

[12] A. Nagasaka, Y. Tanaka, “Automatic Video Indexing and Full-video Search for Object

Appearances,” in Visual Database Systems II, pp. 113-127, Elsevier, 1995.

[13] C.-W. Ngo, T.-C. Pong and R. T. Chin, “Motion-Based Video Representation for Scene

Change Detection,” Proceedings of the International Conference on Pattern Recognition

(ICPR'00), vol. 2, pp. 827-830, 2000.

[14] G. Pass, R. Zabih, “Comparing Images Using Joint Histograms,” ACM Multimedia

Systems, 1999.

[15] B. Shahraray, “Scene change detection and content-based sampling of video sequences,”

in Proc. SPIE’95, Digital Video Compression: Algorithm and Technologies, vol. 2419,

pp. 2-13, San Jose, CA, 1995.

 29

[16] S. Sista and R. L. Kashyap, “Unsupervised Video Segmentation and Object Tracking,”

IEEE Int'l Conf. on Image Processing, 1999.

[17] M. J. Swain, “Interactive Indexing into Image Databases,” in Proc. SPIE Conference

Storage and Retrieval in Image and Video Databases, pp. 173-187, 1993.

[18] D. Swanberg, C. F. Shu, and R. Jain, “Knowledge guided parsing in video database,” in

Proc. SPIE’93, Storage and Retrieval for Image and video Databases, vol. 1908, pp. 13-

24, San Jose, CA, 1993.

[19] B. T. Truong, C. Dorai, S. Venkatesh, “New Enhancements to Cut, Fade, and Dissolve

Detection Processes in Video Segmentation,” in Proceedings of the 8th ACM

International Conference on Multimedia, pp. 219-227, 2000.

[20] W. Xiong, J. C.-M. Lee, “Efficient Scene Change Detection and Camera Motion

Annotation for Video Classification,” Computer Vision and Image Understanding, 71(2),

pp. 166-181, 1998.

[21] B. Yeo and B. Liu, “Rapid scene analysis on compressed video,” IEEE Trans. Circuits

Systems Video Technol., vol. 5, no. 6, pp. 533-544, 1995.

[22] B. Yeo and M. Yeung, “Retrieving and visualization video,” Comm. of the ACM, vol. 40,

no. 12, pp. 43-52, December 1997.

[23] R. Zabih, J. Miller, and K. Mai, “A Feature-Based Algorithm for Detecting and

Classifying Scene Breaks,” in Proc. ACM Multimedia ’95, 1995, pp. 189-200.

[24] H. Zhang, A. Kankanhalli, and S. W. Smoliar, “Automatic partitioning of full-motion

video,” Multimedia System, vol. 1, pp. 10-28, 1993.

 30

[25] H. Zhang and S. W. Smoliar, “Developing power tools for video indexing and retrieval,”

in Proc. SPIE’94, Storage and Retrieval for Image and video Databases II, vol. 2185, pp.

140-149, San Jose, CA, 1994.

[26] www.ibroxfc.co.uk

[27] http://hsb.baylor.edu/courses/Kayworth/fun_stuff/

[28] www.cincinnatidockers.com

[29] www.mormino.net/videos/index.php3

