The Sorting of Points
Along
An Algebraic Curve

John K. Johnstone
Ph.D. Thesis

87-841
June 1987

Department of Computer Science
- Cornell University
Ithaca, New York 14853-7501






THE SORTING OF POINTS ALONG AN ALGEBRAIC
CURVE

A Thesis
Presented to the Faculty ;f the Graduate School
of C;)rneﬂ University
in Partial Fulfilment of the Requirements for the Degree of

Doctor of Philosophy

by
John Keith Johnstone

August 1987



© John Keith Johnstone 1987
ALL RIGHTS RESERVED



THE SORTING OF POINTS ALONG AN ALGEBRAIC
CURVE

John Keith Johnstone, Ph.D.

Cornell University 1987

The area of geometric modeling is concerned with the creation of computa-
tionally efficient models of solid physical objects to facilitate their design,
assembly, and analysis. In a geometric modeling system, a solid such as a
robot hand or a coffee cup is modeled by a collection of points, curves, and
surfaces. The sorting of points along an algebraic curve is an operation that
arises frequently during the creation and manipulation of geometric mod-
els. This thesis presents a thorough investigation of sorting, including an
evaluation of the two conventional methods of sorting and the presentation
of a new and superior method.

A brute-force method of sorting is to trace along the curve, using New-
ton’s method, and record the order in which the points are encountered.
However, this method is inherently inefficient. A natural way to sort points
along an algebraic curve is to use a rational parameterization of the curve.

However, both of the main steps of this method, finding and solving a ratio-



nal parameterization of the curve, can be difficult and expensive. Indeed,
many curves do not even have a rational parameterization.

We present a new method of sorting which is motivated by the observa-
tion that points on a convex segment of a curve can be sorted easily. The
fundamental steps of this method are a decomposition of the curve into
convex segments and a robust traversal of the curve by convex segments.
This traversal is especially challenging in the neighbourhood of singulari-
ties. The points of inflection and singularities of the curve play a major role
in the curve’s decomposition into convex segments, which is a preprocessing
step.

We analyze the complexity of the three sorting methods and then present
execution times for the three methods. The new method can sort points
along any algebraic curve. Moreover, for those curves that can be sorted by
all three of the sorting methods, the new method is usually much more effi-
cient than the conventional methods. We illustrate important applications

of sorting, including the intersection and display of geometric models.
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Chapter1

The Sorting of Points

1.1 Introduction

The area of geometric modeling is concerned with the creation of computa-
tionally efficient models of solid physical objects to facilitate their design,
assembly, and analysis. Geometric models of physical objects are needed
in many disciplines, including robotics, computer vision, computer-aided
design/computer-aided manufacturing, and graphics. In a geomeﬁic mod-
eling system, a solid such as a robot hand or a coffee cup is modeled by a
collection of points, curves, and surfaces. The creation and manipulation of
a solid model requires a variety of high-level operations, such as the com-
bination of models by the boolean operations of union, intersection, and

difference; the addition of blending surfaces to a model to smooth off sharp

1



connections between edges and faces; the detection of interference between
models; and the pictorial display of a model. The implementation of these
high-level operations requires a number of basic tools, such as finding tan-
gents to curves and surfaces; parameterizing lines, curves, and surfaces;
measuring distances; and finding roots of equations. The development of
efficient ways to perform these fundamental tasks will benefit all of the
applications that use them.

The sorting of points along an algebraic curve, as evidenced by its nu-
merous applications, is a basic tool for the manipulation of geometric mod-
els. Curve sorting has a natural definition. If S is a set of points on a
curve and AB is a segment of this curve, then to sort the points of S from
AtoB along AAB means to put them into the order that they would be
encountered in travelling continuously from A to B along AB (Figure 1.1).

Any of the points that do not lie on AB are ignored.

Figure 1.1: The sorted order from A to B is III, II, IV

Curve sorting has many applications in geometric modeling. We of-



fer two examples and postpone the discussion of further applications until
Chapter 5. An edge of a solid model is defined by a curve and a pair of
endpoints. A point lies on the edge if and only if it lies on the curve and
between the endpoints. The problem of deciding whether a point lies be-
tween two other points is a sorting problem. A more elaborate application -
of sorting arises in computing the intersection of two solid models. An
important step of this computation is to find the segments of an edge of
one model that lie in the intersection. This is done by finding and sorting
the points of intersection of this edge with a face of the other model. The
segments of the edge between the ith and i + 1°t intersections, for ¢ odd,

are contained in the intersection of the models.

There is no serious study of curve sorting in the literature. This can
be explained by the fact that, until recently, almost al of the curves in
solid models were linear or quadratic, and the sorting of a curve of these
low degrees is trivial (Corollary 2.1). Hdwever, as the science of geomet-
ric modeling matures and grows more ambitious, curves of degree three
and higher are becoming quite common. For example, the introduction of
blending surfaces into a model creates curves and surfaces of high degree.
Therefore, the sorting of points along an edge of a solid model has become

an important and difficult problem.

The lack of a study of curve sorting can also be explained by the presence



of an obvious method for sorting points. This obvious method, which uses
a parameterization of the curve, a tool with which the geometric modeler
is familiar, tends to obviate a search for any other method.

This thesis will present a thorough investigation of curve sorting. We
will show that there are at least three methods for sorting points along
an algebraic curve. One of these methods is entirely new and particularly
appealing. It will be shown to be the method of choice in many situa-
tions. The thesis is organized as follows. The next section gives a formal
definition of curve, sorting, and the remainder of the chapter discusses the
two conventional methods of sorting. Chapters 2 and 3 present our new
method. Chapter 4 is devoted to an analysis of the complexity of the new
method, experimental results, and a comparison of the three methods. Ap-
plications of curve sorting, future research, and conclusions can be found
in Chapter 5. Finally, there are three appendices, for definitions, technical

lemmas, and a survey of parameterization algorithms.

1.2 The Sorting of Points Along a Curve

In this section, we give a formal explanation of the sorting of points along a
curve. Let C be an irreducible,! algebraic curve described by a polynomial

f(z,y) = 0 or the intersection of two polynomial surfaces fi(z,y,2) = 0 and

lTerms such as these are defined in Appendix A.



fa(z,y,2) = 0. (The primary representation of curves and surfaces in many
solid modelers is the implicit equation. This representation is convenient for
deciding if a point lies on the curve or surface, and for applying techniques
from algebraic geometry, as in the creation of blending surfaces [18].) Let
AAB be a segment of C, such that both' A and B are nonsingular points. If
S C C is a set of nonsingular points on the curve, then (as we have said)
to sort the points of S from A to B along AB means to put the points into
the order that they would be encountered in travelling continuously from
A to B along AB. Points of S that do not lie on AB are never encountered
and are thus ignored. In order to avoid confusion, a vector at A is provided
to indicate the direction in which the sort is to proceed from A. This is
especially important when the curve is closed, since there are then two

segments between A and B to choose from.

A is called the start point, B the end point, and AB is the sort
segment. The points that are to be sorted (the points of S) are called the
sortpoints. We shall often refer to the sorting of points along a curve as

curve sorting.

The sorting of points along a curve is more sophisticated than the sorting
of numbers or names. In particular, start and end points are necessary, and
the sorted set is often a strict subset of the unsorted set. These changes

are necessary in order to resolve the ambiguity of sorting on a closed curve,

-



where order is cyclic. The changes are also useful for geometric modeling

applications, since only a part of the curve (viz., the edge) is of interest.

)

%

START

c

Figure 1.2: Some sorts are ambiguous

Every curve in this thesis can be assumed to be both algebraic and irre-
ducible. We also assume that all of the sortpoints of a sorting problem lie
on the connected component that contains the sort segment, since the order
of a set of points is unclear if the points lie on different connected compo-

_nents (Figure 1.2(a) and Section 5.2.2). Finally, we assume that the start



point, the end point, and the sortpoints are nonsingular points, because
the order of a set of points that includes singularities can be ambiguous

(Figure 1.2(b-c)).

1.3 The Parameterization Method

A natural way to sort points along a curve is to use a rational parameter-
ization of the curve (i.e., a parameterization (z(t),y(t)) or (z(t),y(t),2(t))
such that z(t), y(t), and z(t) can each be expressed as the quotient of two
polynomials in ¢t). The parameter values t; of the points (z;,y;) are com-
puted and sorted by increasing t; values. The points that occur before the

start point or after the end point of the sort segment are discarded.

Example 1.3.1 Consider the curve z* + zy? + 1622 — 4y? (a pedal of
a parabola) with start point A = (l,ﬁ), end point B = (3,-3V19),
sortpoints I = (3,3v19), IT = (-1,v3), III = (-2, —2\/§), and IV =
(1, —\/%7-), and direction V4 from A, as shown in Figure 1.1. A parameter:-
zation of the curve is z = 44%—5%9, y= ‘-"%%16‘. We compute a point d on the
curve close to A in the direction V4. The parameter value of d indicates
the order (increasing or decreasing) in which the parameter values should be

sorted: the values are sorted in increasing order if and only if the parameter

value of d is greater than that of A. For this ezample, d = (0.9, ,/%‘%—9-).

14 is found by crawling from A, a technique that is described in Section 1.4.



The parameter value associated with I = (3,3@) is determined by solving
the system {3 = %:—_1—6,3\/—1_= %ﬁf—‘}, yielding t = v/19. The parame-
ter values [IT, t=—v/3), (I, t=7\/1), 1V, t= -/, (4, t=\/T),
[B,t=—19],and [d , t = \/—1;-6.—? are computed in an analogous fashion.
After sorting by parameter values, the point list becomes B, IV, II, III, d,
A, I. Sorting from A to B in the appropriate direction yields the desired
sorted list III, II, IV.

There are three reasons that we insist that the curve’s parameteriza-

th roots, such

tion be rational. Consider a parameterization that involves n
as z(t) = Vvt + 2¥t. In solving such a parameterization for the parameter
value of a given point, it can be unclear which n*h root to use. Another
inconvenient property of non-rational parameterizations is that their rep-
resentation is difficult. They cannot be represented by the coefficients of
the parameterization: they must be represented symbolically (as in a com-
puter algebra system like MACSYMA), which is less efficient. For example,
a parameterization of the devil’s curve yt-zt -yt +4z? =0is

sin?(t) — 4cos?(t) sin?(t) — 4cos?(t)

z = cos(t)\J si'nz(t) — c032(t) y Y= Sin(t)\J sinz(t) _ c032(t)

Finally, there is no algorithm for the automatic parameterization of curves

that do not have a rational parameterization. Thus, there are problems
with all three aspects of a non-rational parameterization: computation,

representation, and solution.



1.3.1 Parameterization

Definition 1.1 A curve is rational if it has a rational parameterization.

The translation of an implicit representation of a curve into a paramet-
ric representation, which is one of the key steps of the parameterization
method of sorting, has received some attention in the literature. There
are constructive methods for the parameterization of plane curves of low
order (viz., two and three) [2,3,19] and rational plane curves [4]. There
are also constructive methods for the parameterization of surfaces of low
degree (again, two and three) [2,3,28], but not of high degree even if the
surface has a rational parameterization. (The parameterization of surfaces
is important because, as shown below, a space curve’s parameterization can
be developed from a parameterization of one of the surfaces that defines
the space curve.) Appendix C presents various methods for the parameter-
ization of low degree curves and surfaces.

A rational plane curve of order n can be parameterized by establishing
a one-to-one correspondence between the points of the curve and a one-
parameter family of curves of degree max(n — 2,1) through well-chosen

single and double points of the curve [4].

Example 1.3.2 Consider the parameterization of the circle 22 +y*—1 = 0.
Let P be a point of the circle (say P = (—1,0)) and let Ly be the line

through P of slope .t. There is a one-to-one correspondence between the
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lines through P and the points of the circle, which can be used to construct
a parameterization: the parameter value of a point Q is the slope of the
line through P that hits Q. The equation of L; is y = tz + t. The point of
the circle associated with L, satisfies y =tz +1t and 2% + y¥?-1=0, so
z? + (tz + t)2 — 1 = 0. Using the quadratic formula, ¢ = —1 or %;—:;— The

latter root is clearly the one of interest. Therefore,

Y+t= 2t
1+ t2

y= t:c+t-t(1_l_t2

. . . . —3
and a parameterization of the circle is (-11-_1—_-:7, 1—%; .

A space curve’s parameterization can sometimes be derived from a pa-
rameterization of one of its two constituent surfaces [20,29]. We illustrate

the method with an example.

Example 1.3.3 Consider the space curve SNT, where § = 2 +y?-1=0

and T = 222 + y? — 2? = 0 are surfaces. We find a parameterization for

S, {z = %;—:;—,y = %,z = s}, and substitute these parametric equations
213 4,2

into the implicit equation for T, yielding %{#— — 32 = 0. We then

solve for s in terms of t: 3 = V2242 W, conclude that a parameterization

1+¢2
; ; o (o= 1=th 2t VITLEY]
for the intersection of the two surfaces is {z = {33,y = 1172 = 114 21,

Notice that this parameterization is not appropriate for sorting, because it

s not rational.
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Unfortunately, it may be hard or impossible to find a parameterization for
either of the surfaces, and it may be impossible to solve for s in terms of t
(and vice versa) after substituting the parametric equations of one surface
into the implicit equation of the other. In particular, problems will arise
when the degree of s is five or more, since there is no general formula for
the solution of equations of degree greater than four [16]. Therefore, this
technique of space curve parameterization is quite restricted.

We conclude that plane curves of low degree, rational plane curves, and a

restricted class of rational space curves can be automatically parameterized.

1.3.2 Weaknesses of the Parameterization Method

The two main steps of the parameterization method of sorting are to find a
rational parameterization of the curve and to find the parameter values of
the sortpoints by solving this parameterization. We shall show that there
are problems with both of these steps.

Only a strict subclass of algebraic curves are rational, and the propor-
tion of algebraic curves that are rational decreases as the order of the curve
- increases. Therefore, there are many curves that cannot be sorted by the
parameterization method, simply because they do not have a rational pa-
rameterization. These facts are established by considering the genus of a

curve.
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Definition 1.2 The genus of an irreducible, algebraic, plane curve is

(n-1)(n - 2) ri(ri — 1)
2 > 2

where n is the order of the curve, the sum is over the singularities P; of
the curve,® and r; is the multiplicity of the curve at the singularity P;.
The genus is nonnegative, and it is zero if and only if the curve has the

mazimum number of singularities allowed for a curve of its order.

Theorem 1.1 ([35, p. 180]) A plane curve is rational if and only if its

genus is 0.

Example 1.3.4 It can be shown that any irreducible quartic (degree four)
space curve that is generated by the intersection of two degree two surfaces
is non-rational.

The genus of any quartic plane curve with an ordinary double point is 1,
so no curve of this type has a rational parameterization. For ezample, the
lemniscate of Bernoulli (z*+y*+222y? — 422 +4y? = 0) is such a curve, and

its parameterization is ¢ = lii::(:()t)’ y= 2‘;':5:}:;’(:%‘), -t <t< +m [27)].

Even if a rational parameterization for the curve can be found, it is

still necessary to solve for the parameter values associated with the set

3Singularities must be counted properly and singularities at infinity must be included.
See (35, pp. 80-84]. .
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of points that are to be sorted. This is another weakness of the parame-
terization method, because the solution of a polynomial of high degree is
usually expensive. Even for the tame example of the pedal of a parabola
(Example 1.3.1), which has a parameterization involving degree three poly-
nomials, each solution for the parameter value of a sortpoint consumes on
the order of 120 milliseconds.* We shall see in Chapter 4 that this is a non-
trivial expense. We conclude that the parameterization method of sorting
is limited and slow.

There are two fundamental ways of representing a curve: the implicit
equation and the parameterization. The difficulties that arise with the
parameterization method of sorting reflect the difficulty of working with
the parameterization representation of a curve in an environment where

the implicit equation is the original representation.

1.4 The Crawling Method

Another method of sorting points along a curve is the crawling method.
This is a brute-force method that sorts a set of points by tracing along the
sort segment and recording the order in which the sortpoints are encoun-

tered during this trace. The curve is traced by making small jumps along

4Using Common Lisp on a Symbolics Lisp Machine, and the ZEROIN algorithm of
Dekker and Brent for solving nonlinear equations [13].
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it, using Newton’'s method. For example, consider a small jump of size €
from the point P = (zo,y0) of the curve f(z,y) = 0. Depending upon the
behaviour of the curve in the neighbourhood of P, zg or yo is incremented
or decremented by e. Suppose that zg is incremented, effectively jumping
off of the curve to (zo+€ , yo)- A root y' of f(zo+e¢,y) is found by applying
Newton’s method, with initial guess yo. (zo + €,¥') is a point of the curve
that lies close to (zo,¥0), but it is a step further along the curve from the

original point.

P

N2
P

B e
Q

Figure 1.3: Tracing a curve from P to Q

Progress is made along the curve by these small jumps. For example, in
Figure 1.3, a tracing of the curve from P to Q may involve jumping to P,
Py, P3, and P;. The details of tracing along a curve, including a discussion
of how to trace tol;ustly through a singularity, are presented in [9].

If a jump is made to a point within some ball of radius § about a
sortpoint z, then we assume that the trace has reached ¢ and we insert z

into the sorted list that is being accumulated. If § is.small, then this is
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a reasonable assumption. However, this assumption is not entirely robust

(Figure 1.4).

PP

Figure 1.4: x may be sorted improperly by the crawling method

The major weakness of the crawling method is that it must make small
jumps, in order to ensure that the crawl proceeds smoothly along the curve
and does not get confused. If € is large, then it is possible to jump dis-
continuously to another part of the curve (Figure 1.5(a)), or even to jump
completely off of the end of the curve (Figure 1.5(b)). The jumps must
also be small in order to avoid jumping over two or more sortpoints at the
same time, which would cause problems in sorting, and to avoid ignoring a
sortpoint x by tracing through it without jumping into the §-ball about x
that triggers x’s insertion into the sort. As a result, the crawling method
is very slow unless the sort segment is short.

Another undesirable property of the crawling method is that its speed

depends upon the length of the sort segment rather than upon the number

of points to be sorted. The crawling method does have the advantage
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[

(a) (b)
Figure 1.5: Jumps must be small

that it does not require any preprocessing, such as the computation of a
parameterization.

The weaknesses that we have observed in the parameterization and
crawling methods of sorting points along a curve suggest that another
method is necessary: one that will perform more efficiently on a wider

selection of algebraic curves. The next chapter presents such a method.



Chapter-2

The Convex-Segment Method

of Sorting

2.1 Sorting a Convex Segment

The observation that motivates the new method is that a convex segment
can be sorted easily. Since every curve is a concatenation of convex segments
(Figure 2.1), this suggests a divide and conquer strategy.

The new method only applies directly to plane curves. However, the
sort of a space curve (i.e., a curve that does not lie in a plane) can be
mapped into a soft of a plane curve, as we shall see in Section 2.6, so there

is no loss of generality.
Definition 2.1 A segment PQ of a plane curve is convex if no line has

17



18

> CO

Figure 2.1: A curve is a collection of convex segments

more than two intersections with PAQ, unless all of the intersections occur
at the same point and are even in number! (Figure 2.2).

There is another useful characterization of convezity: a plane segment
is convez if it lies entirely on one side of the closed halfplane determined

by the tangent line at any point of the segment [13].

Definition 2.2 A polygon P is convex if, for all A,B € P, the line seg-
ment AB is entirely contained in P. The convex hull of a set of points S

is the smallest convez polygon that contains §.

Notation 2.1 Let P and Q be points of a curve C. PAQ is the segment of

the curve joining P to Q.2

The following theorem establishes that it is simple to sort a set of points

on a convex segment.

LThe normal definition of convexity is that PQ is convex if no line has more than two

intersections with PQ. We amend this definition because, for our purposes, a curve such
as y = z* can be considered convex. Thus, in the terminology of Section 2.2, we allow a
convex segment to contain flexes of even order.

21f the curve is closed, then the context should make clear which segment is intended.
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(a) (b)

-<

(d)

Figure 2.2: (a) is convex; (b)-(d) are not

Theorem 2.1 Let py,...,pn be points of a conver segment AB, and let
H be the convez hull of A, B, py,...,pn.- Then the vertices of H are A,
B, p1,...,pn. Moreover, the order of the vertices on the boundary of H is

ezactly the order of the points on iB (Figure 2.3).

Proof It is sufficient to show that the polygon created by joining the

points A, B, p1,...,pa in sorted order is their convex hull. Let this polygon
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B B
Pz p2
93 p3
A P A !

Figure 2.3: An example of Theorem 2.1

be P =7gry...Tn+1 , where rg = A, Pa1 = B, and 71,...,7, is the sorted
order of the p; on the curve. Let E = TiT;g1 be an edge of P (where & is
addition mod n + 2), E the infinite line containing E, and E = TiTiel.
By convexity, E can have only two intersections with AAB, those at r; and
ri@1. Therefore, all of E’ must lie on the same side of E, with the rest of
:’fB on the other side.? Since none of the r;j lie in between r; and rig, all
of the points r; lie on one side of the halfplane defined by the edge E, and
only the endpoints of E lie on E. Suppose, for the sake of contradiction,
that the continuation E of E intersects another edge 7;7;@1. Either r; and
T;j@1 lie on opposite sides of E or one of r;,rjg1 lies on E, a contradiction
in either case. Therefore, the continuation of any edge of the polygon P

does not strike any other edge of P. By Lemma B.3, P is convex. Since a

-

3A point of tangency to E counts as two intersections, so AB cannot stay on E’s side
by being tangent at =; or rig;.
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convex polygon is the convex hull of its vertices, P is the convex hull of the

r’s. |
Corollary 2.1 Conics can be sorted easily.

Proof Conics are convex, since a line can have only two intersections
with an irreducible curve of order two (Theorem B.1). |

When Theorem 2.1 is used to sort a set of points on a convex segment,
there is no need to actually create the convex hull. Let Q@ = %(A + B + p1),
the barycenter of A, B, and p;. Q will lie in the interior of the convex
hull of A, B, p1, ..., pn (Figure 2.4). Consider the angles that the lines
Q“A, QHB, Q;l, ceey Q;,. make with the positive x-axis, and sort these
angles from AQHA to LQhB (where 0 = 27). Since A, B, p1, ..., pn are the
vertices of a convex polygon and Q is a point in the interior of this polygon,
the order of the angles from AQ“A to LQHB is equivalent to the order of the
vertices on the polygon from A to B. Therefore, p1, ..., pn can be sorted

on AB by sorting the angles that they make with a central point.

Once it is realized that points on a convex segment can be sorted easily,
the focus on curve sorting can change, since the problem has essentially
been reduced from sorting points to sorting convex segments. Of course,
the curve must first be divided up into convex segments. We consider this

" division problem in the next section.
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Figure 2.4: Sorting points on a convex segment by sorting angles

2.2 Convex Segmentation

The crucial step of the new method is the decomposition of the curve into
convex segments. This decomposition allows us to take advantage of the
simplicity of sorting points on a convex segment. The decomposition is
achieved by the tangents at certain special points of the curve: the singu-

larities (Appendix A) and flexes.

Definition 2.3 4 point of inflection, or flex for short, of a curve F is
a nonsingular point P € F whose tangent has three or more intersections
with F at P. (The tangent of most simple points intersects the curve twice
at the point of tangency.) The number of intersections of the flez’s tangent
with the curve_at the flez is called the order of the flez. A flez of odd order

is called a flox.*

4This is our own term. It is not used in the literature.
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Example 2.2.1 The origin of y = z3 is a floz.

The interesting property of a flex is that the curve can only change
its direction of curvature (from convex to concave or vice versa) at a flex
or a singularity. In other words, flexes are the only nonsingular points
P such that the curve in any neighbourhood of P can lie on both sides
of P’s tangent. This is an important property because the curve in the
neighbourhood of a point P of a convex segment always lies on one side of
P’s tangent. Since the curve in the neighbourhood of a flex of even order
does not lie on both sides of P’s tangent (Lemma B.4), we will only be

interested in floxes.

Figure 2.5: (a-b) touch (c) touch and cross

Definition 2.4 The inside (resp., outside) of a plane curve f(z,y) = 0
is the halfplane f(z,y) < 0 (resp., f(z,y) > 0). Two curves touch at P if
they intersect at P. A line L crosses a plane curve C at P if L touches C
at P and L lies on both the inside and outside of C in any neighbourhood
of P (Figure 2.3).
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The tangents at the singularities and floxes of a curve subdivide the
plane of the curve into several cells and split the curve into several segments.

The following theorem establishes that each of these segments is convex.

Theorem 2.2 Let T be the set of tangents of the singularities and flozes
of a curve F, and let PQ be a nonconvez segment of F. Then some tangent

of T touches or crosses PQ. (Moreover, unless PQ contains a singularity,

some tangent of T crosses PQ.)

Proof Assume, without loss of generality, that PAQ does not contain a flox
or a singularity. (If it does, then we are done.) By Lemma B.6, there exists
a line L that crosses PAQ at three (or more) distinct points. Let z1, z2, and
z3 be three of these points such that z3 € z1z3 and z1z3 N L = {z1,22,23}
(i.e., 1, 3, and z3 are as close together as possible on PAQ). z1z3 does
not change its direction of curvature, since there is no flox or singularity
on PAQ. Moreover, z1z3 is not a line segment, otherwise z1z3 would be a
component of the curve (Theorem B.1), contradicting the irreducibility of
the curve. Therefore, without loss of generality, we can assume that T1Z3
looks like Figure 2.6(a). Let R be the closed region bounded by z1z3 and
7173 (Figure 2.6(b)). We will show that R contains a flox or a singularity.
This will complete the proof, since the tangent of a point inside R must
cross :x:rzg - PAQ at least once. (The tangent must cross the boundary of

R twice, and at most one of these intersections can be with Z1z3.)
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(b)

Figure 2.6: (a) z1z3 (b) the region R

The curve lies inside of R as it leaves z1z3 from z; and outside of R as
it leaves z1z3 from z3. Therefore, the curve must cross the boundary of
R after it leaves z1z3 from z1, either because it must join with z3 (if the
curve is closed) or because an infinite segment of an algebraic curve cannot
remain within a closed region (if the curve is open, using Lemma B.5). The
curve cannot cross the ziz3 boundary of R, since z1z3 C PAQ is nonsingular
by assumption. Therefore, the curve must cross Z1Z3 after it leaves z1z3
from z;.

As the curve leaves ziz3 from zi, it lies on the opposite side of z;'s
tangent from Z1z3. Therefore, after the curve leaves z1z3 from z; and
before it leaves R, the curve must cross z;’s tangent inside of R, in order to
reach Z1Z3. In order to cross over z;’s tangent, the curve must cross itself
or change its curvature inside of R (Figure 2.7), otherwise it will spiral

around inside R forever. Therefore, R contains a singularity or a flox. |
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Figure 2.7: The curve must cross itself or change its curvature in travelling

from z; to T1z3

Corollary 2.2 The tangents of the singularities and flozes of a curve di-

vide the curve into convez segments.

Example 2.2.2 Figure 2.8 illustrates the division of a curve into convez

segments by the tangents at singularities and flozes.

Theorem 2.2 establishes that the segmentation of a curve by its singu-
larities and the points where the curve crosses a singularity/flox tangent
will be a convex segmentation. Therefore, the nonsingular points at which
the curve touches (but dces not cross) a singularity/flox tangent can be

ignored. For example, the convex segment from W) in Figure 2.9 should

be W;W'; rather than W':Wz.
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s (a) N E ~A (b)

Figure 2.8: Convex segmentation of (a) limacon of Pascal (b) serpentine

(c) Cassinian oval
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Figure 2.9: Nonsingular points where the curve merely touches a tangent

are ignored

2.3 The Cell Partition and the Sorting of

Convex Segments

2.3.1 The Cell Partition

Consider a subdivision of the plane into cells by the tangents at the singu-
larities and floxes of a curve. Some of the cells contain a convex segment of
the curve, some of the cells contain several convex segments of the curve,
and the rest of the cells do not contain any of the curve (Figure 2.8). This

subsection develops some terminology to describe this situation.

Definition 2.5 4 cell partition of a plane curve F is a partition of the
plane into convez polygons, calied cells, by the tangents at the singularities
and the flozes of F. A line segment that forms part of the boundary of a cell
is called a cell segment. 4 tangent of a singularity or floz of F is called

a wall of the cell partition. Consider the points where the curve intersects
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the cell partition. Many of these intersections arise intentionally: 1i.e.,
the intersection is a singularity or a floz through which a wall of the cell
partition was ‘intentionally passed. The other intersections arise indirectly
and are called incidental curve points. The points of intersection of the

curve with the cell partition are collectively called curve points.®

The curve is decomposed into convezr segments by the cell partition. 4
multisegment cell is a cell that contains more than one convez segment.
The endpoints of each convez segment are curve points. If V?’V i a con-
vez segment of the partition, then V is called a partner of W (and vice
versa). A curve point separates two convezr segments and thus usually has
two partners. However, a curve point might only have one partner: a convez
segment that goes off to infinity within a cell C will have only one endpoint,

and this curve point will not have a partner with respect to C.

Example 2.3.1 The cell partition of the serpentine (Figure 2.8(b)) has
three walls and three curve points, each of which is a floz. E and F Aare
partners, as are F and G. The cell partition of the Cassinian oval (Fig-
ure 2.8(c)) has four walls, arising from the four flezes A, B, C, and D.
There are four incidental curve points: Wy, Wy, W3, Wy. Cell 1 is the only

multisegment cell. Wy and W, are partners in cell 1, as are W3 and Wjy.

SRecall that the nonsingular points of intersection where the curve only touches a wall
are ignored.
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A cell partition is not simply a collection of walls. It is a large data
structure that defines interrelationships between cells, walls, curve points,
and convex segments. It contains information that is needed in the im-
plementation of the new sorting method, such as the walls of each cell (in
implicit and parametric representations); for each of these walls, the side
that the cell lies on; the curve points on each cell segment; and adjacency

information, such as the two cells that border a cell segment.

The creation of the cell partition of a curve is a preprocessing step that

is entirely independent of the sorting of any points on the curve.

2.3.2 The Sorting of Convex Segments

We complete our description of the new sorting method by discussing how
to determine the order of the convex segments on the curve. The sorting
of the convex segments is done in an unusual manner. In fact, to say that
we ‘sort’ the convex segments is a misnomer. Unlike a normal sort, we do
not create a list of convex segments and rearrange them into proper order.
Instead, the points from A to B are sorted by traversing the curve from A
to B by convex segments, stepping from curve point to curve point. The

next convex segment is determined only when we need to move to it.5 As

8This technique is reminiscent of lazy evaluation in compiler theory. Since we sort
the convex segments ‘lazily’, only those convex segments that lie on the sort segment are
encountered and sorted.
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each convex segment is encountered, the points that lie on it are found and
sorted (using Theorem 2.1), and this subsort is appended to the end of a
global sort which is being accumulated. Thus, the sorting of the convex

segments is interleaved with the sorting of the sortpoints.

A crucial step in the traversal of a curve by convex segments is the
determination of the next convex segment. Given a convex segment V?’V,
‘we must be able to find the convex segment that follows VW from W.
Suppose that VW lies in cell C and W lies on the boundary of cells C
and D. The problem of finding the convex segment that follows VW from
W reduces to finding the partner of W in D. If the cell D contains only
one convex segment (as is often the case), then this is trivial. Chapter 3

discusses how to determine the partner of a curve point in a multisegment

cell.

The other main step in the traversal of a curve by convex segments is the
computation of the points that lie on a given convex segment. It turns out
that the theory that must be developed to solve this problem is the same
as for the solution of the above next-convex-segment problem. Chapter 3
discusses how to find the convex segment that contains a given point of the
curve and, thus, how to find the points that lie on a given convex segment.
The first step is to find the cell that contains the point: a point lies in a cell

if and only if it lies on the proper side of each of the walls that define the
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cell. If the point’s cell contains only one convex segment, then this convex
segment contains the point. However, if the cell contains several convex
segments, then the decision is much more c.omplicated.

The first convex segment is determined by first finding the convex seg-
ment VW that contains the start point S. Recall that, as part of the defini-
tion of a sorting problem, a vector at S is pfovided to indicate the direction
in which the sort is to proceed from S. This vector can be used to deter-
mine whether the first convex segment is S?./ or SW: SV is the first convex
segment if and only if the vector points to the inside of the chord SV (see
Appendix A’s definition).

We have now presented the fundamentals of our new method of curve

sorting. We refer to it as the convex-segment method of sorting.

Example 2.3.2 Consider the sorting of points along a Cassinian oval (Fig-
ure 2.10). We determine that the startpoint S lies on W:;C and use the vec-
tor at S to choose the subsegment W};S as the first convez segment. There
are no points on W:;S, so we move on. The nezt convez segment 1s W;Wz,
since W, is W3'’s partner in cell 1. There are two sortpoints in cell 1 (P
and P;), but only P, lies on W:Wz. We make P, the ﬁrst‘element of the
_sort. We jump to the next convez segment W’:A and sort the two points,

P; and P3, that lie on this convez segmeni by sorting the angles that Wi,

P;, P;, and A make with a central point. We add P; and P; to the global
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sort, and move on to the nezt convez segment AAB . We immediately move
on to B?V;, since we find that ‘IB does not contain any sortpoints. Both
END and P, lie on B?V;. The presence of END indicates that this is the
last convez segment that needs to be considered. Upon sorting END and
Py, P4 is discarded because it comes after END. The final sorted list is
Py, Py, P;.

Figure 2.10: Sorting a Cassinian oval
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2.4 Resolving the Ambiguity at Singulari-
ties

The traversal of a curve by convex segments is especially challenging in the
neighbourhood of a singularity. In particular, it can be ambiguous which

branch of the curve should be followed from a singular curve point.

Example 2.4.1 Consider the curve in the neighbourhood of 4 on Fig-
ure 2.11(a). It is ambiguous whether this is two semicircles touching or

two flezes crossing. In particular, it is not clear whether P, or P; follows

P.
2
A
¢ %
(a) (b)

Figure 2.11: Ambiguity about a singularity

Consider the sorting of points on a loop around an ordinary singularity

(Figure 2.11(b)). It is not immediately clear whether the order is Py, Py, P;
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or Py, P, P;.

This problem is resolved by finding, for each branch that passes through
a singularity, a pair of points, one on either side of the singularity. These
two points serve to guide the sort through the singularity along the proper
branch. Before we discuss how to find these points, we offer an example of

how they are used.

END START
(a)

Figure 2.12: Resolving the ambiguity at a singularity

Example 2.4.2 We associate four points with the singularity 4 of Fig-
ure 2.12(a): Vi, Vo, Wi, and W,. Vi is paired with V; on the solid arc, and
W1 is paired with W, on the dotted arc. When this curve is sorted, rather
than traversing the curve from START to A, 4 to A, and A to END, the

traversal proceeds from START to V3, V1 to Wi, and W, to END. Notice
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that if the traversal reaches a point associated with a singularity such as V3,
then the traversal continues from V3’s partner, not V3 itself.

Suppose that we have determined that the curve of Figure 2.12(b) is ac-
tually two semicircles touching at A. We will associate four points with the
singularity, as above. The convez aegmeﬁta of the two cells of Figure 2.12(b)
are now P?’l, V;Q, R?Vl, and W};S. If a traversal of the curve during a
sort reaches P, then it will proceed to Vi and then on from V3 to Q. In
particular, there is no danger of the traversal mistakenly proceeding from P

to A to S.

Notice that, after each singularity of the curve has been decomposed in
this manner, every convex segment of the curve is bounded by simple points.
Care must be taken with the sortpoints that lie on any of the segments
about a singularity that are essentially sliced out, such as sortpoints that
lie on VlAVg in the previous example. We shall discuss how to sort these

points at the end of this section.

2.4.1 Blowing Up The Curve at a Singularity

For each branch that passes through a singularity, we wish to find a pair
of points on it, one on either side of the singularity. We would like to do
this by crawling a small distance along the arc in both directions from the

singularity. However, there is no reliable way of crawling along a given



37

arc as it passes through a singularity. Therefore, we must isolate each arc
of the singularity so that we can crawl along it robustly. We accomplish
this by blowing up the curve at the singularity by a series of quadratic
transformations [9,35].

Suppose that a curve has been translated so that one of its singularities
is at the origin. Let its new equation be f(z,y) = 0. Consider the affine
quadratic transformation z = z;, y = z1y; (of Cremona) [35] and the
associated curve f(z1,z1y1). The useful property of this transformation is
that it maps the origin to the entire y;-axis and maps the r;est of the y-axis
to infinity: y1 = ¥ so (0,5) maps to (0, g-), which is a point at infinity
unless b = 0. The quadratic transformation is one-to-one for all points
(z,y) with ¢ # 0. The line y = mz through the origin is mapped to the
horizontal line y; = m: y = mz — z1y1 = mz; — y; = m. Thus, a
quadratic transformation maps distinct tangent directions of the various
branches of f at the singular origin to different points on the exceptional
line z; = 0.7 The intersections of the transformed branches with the
exceptional line correspond to the transformed points of the singularity at

the origin (Figure 2.13). If an intersection point on the exceptional line is

singular, then the procedure is applied recursively (Figure 2.14). Hence,

"The quadratic transformation does not map the line z = 0 properly, so we must make
sure that 2 = 0 is not a tangent direction to the curve at the origin. This is done by a
nonsingular linear transformation z = az+ 3y and y = §2 + 9, such that neither a2 + 8y
nor §2 + vy are tangents to the curve at the origin.
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(a) (b)
Figure 2.13: (a) node and (b) its quadratic transformation

under quadratic transformations, the various branches of the curve in the
neighbourhood of the singularity eventually get transformed to separate
branches. Once a branch is isolated, it is simple to find two points of it on
either side of the singularity, since there are no other branches present to

cause confusion.

Lemma 2.1 ([4,35]) 4 finite number of applications of the quadratic trans-

formation reduces a singularity to a number of simple points.

To summarize, for each singular point of the curve, we translate the
singularity to the origin and apply a series of quadratic transformations
until the singularity is transformed into a set of nonsingular points. Each
branch of the transformed curve will intersect the exceptional line in a sim-
ple (nonsingular) point. For each of these branches, we compute two points

on either side of the exceptional line z;= 0 (by crawling an e-distance) and

map this pair back onto the corresponding branch of the original curve, by
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Figure 2.14: (a) the original singularity (b) after one quadratic transfor-
mation (c) after a second transformation: the original singularity has been

successfully transformed into two simple points
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applying inverse transformations. The pair of points on each branch clarify
the branch connectivity at the singularity and allow a robust traversal of

the curve by convex segments.

Definition 2.6 The collection of points associated with a singularity are
called pseudo curve points. (For ezample, V1, V3, Wy, and W; of Ez-
ample 2.4.2 are pseudo curve points.) They replace the singularity curve
point in the cell partition. That is, for the purposes of curve traversal, the

singularity is no longer considered to be a curve point.

As mentioned above, the sortpoints that lie close to a singularity (on one
of the segments that is ‘sliced out’) must be treated as a special case. These
points must be sorted by mapping them to the blown-up, desingularized
curve and using the crawling method. This is not expensive because the
sliced-out segment is very short and very few jumps are needed to crawl

over it.

2.5 Of Flexes and Singularities

This section explains how to find the walls of a cell partition. We start
with a discussion of projective space so that we can show how to find

the singularities and flexes of a curve. We then examine how to find the
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tangents of a singularity and a flex, and how to-distinguish a flox from a
flex.

We have been working in affine space, the familiar n-dimensional Eu-
clidean space in which points are represented as n-tuples, such as (0,0) for
the origin of the plane. Projective space is an extension of affine space.
Consider the equivalence relation (zi,...,Zn+1) = (¥1,...,Yn+1) if and
only if there exists ¢ # 0 such that z; = t x y; for all i. N-dimensional
projective space (over the field K) is the space of equivalence classes of
tuples of K™*1\ {(0,0,...,0)} under this equivalence relation. The point
(21,...,Zn) of affine space is identified with the point (¢ * z1,...,¢ * za,1)
= (z1,-..,Zn,1) of projective space. That is, points in affine space are as-
sociated with points of the complement of zn4; = 0 in projective space.
The plane z,+1 = 0 of projective space is called the plane at infinity. It
allows the formal treatment of points and components at infinity, such as
the intersection of two curves at infinity. The point (z1,...,Zn,0) repre-
sents the point at infinity along the vector (z1,...,2a). Projective space is
the extension of affine space by the plane at infinity.

In projective space, a plane algebraic curve is the zero set of a homo-

8 A more spatially oriented and evocative view of projective space is offered by Fulton
[14]. The point (21,...,2n) is identified with the line in K™*' through (0,0,...,0) and
(21,---12n,1). Projective space is the collection of iines through (0,0,...,0) in K™+t
Affine space is embedded in projective space as the plane z,4; = 1. Two points of K™**!
on the same line are equivalent. The lines through (0,0,...,0) in the plane 2,y = 0
correspond to the points at infinity. :
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geneous polynomial (i.e., a polynomial whose terms are all of the same
degree) in three variables. The curve F(X,Y,Z) = 0 in projective space
corresponds to the curve f(z,y) := F(z,y,1) = 0 in affine space. Con-
versely, the curve f(z,y) = 0 of order n in affine space corresponds to the
curve F(X,Y,7) = Z"f(‘%, %) = 0 in projective space, which is a ho-
mogenized version of f(z,y) = 0. In both cases, the curve f(z,y) = 0 is

equivalent to the curve F(X,Y, Z) = 0 without its points at infinity.

Example 2.5.1 The projective~equivalent of the curve 2t +22 -4y -3=0
is 23 + 22z — 4yz — 322 = 0. Consider the hyperbola 22 -y2-1=0 and
one of its asymptotes z —y = 0. Their projective equivalents are

2 —y? - 22 =0 and z — y = 0, respectively. Solving for their intersection
yields ¢ =y, z = 0. Therefore, since (z,z,0) = (1,1,0), the hyperbola in-

tersects its asymptote at the point of infinity (1,1,0).

The following lemma gives the mathematical characterization of a sin-

gularity and a flex.

Lemma 2.2 ([35, pp. 51,71]) Let F(z,y,z) = 0 be the representation of

a plane curve C in projective space, and let P be a point of projective space.

1. P is a singularity of C if and only if F;(P) = Fy(P) =
F,(P)=0

9The equation must be homogeneous, since solutions must be invariant under the above
equivalence relation.
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2. P is a flez of C if and only if F(P) = 0, P is not a singu-
larity, and det(F;;(P)) = 0,

where F, is the derivative of F with respect to z, etc.; F11 = Fiz, etc;
and (Fij(P)) is a 3 by 3 matriz. (The curve det(Fij(P)) =0 is called the

Hessian of the curve F =0.)

Therefore, the computation of the singularities of a curve of order n
involves the solution of a system of three equations of degree n — 1. The
computation of the flexes involves the solution of a system of two equations,
one of degree n and the other of degree 3(n — 2). Resultants offer a possible
method of solution (Appendix A). The solution of systems of equations is
a well-studied problem, so we do not elaborate further.

The following lemma gives an indication of the worst-case complexity

of a cell partition.

Lemma 2.3 ([35, pp. 65,120]) A curve of order n has at most L"—_—I—;"—"zl
singularities. A curve of order n that has no eztraordinary!® singularities
of multiplicity greater than two has at most 3n(n — 2) — 66 — 8« flezes,
where § is the number of nodes of the curve (properly counted) and x is the

number of cusps.

These maxima are not attained simultaneously. The maximum number

10Gee Appendix A.



44

of flexes occurs when there are no singularities, and the number of flexes
decreases as the number of singularities increases.

It is simple to find the tangent of a flex.

Lemma 2.4.([35, p. 55])-If.P is.a nonsingular point of. the plane curve...
F(z,y,z) =0 (in projective space), then the equation of the tangent to F
at P 1s

F:(P)z + Fy(P)y + F:(P)z =0

Definition 2.7 The order form of a polynomial f(z,y) = 0 is the homo-

geneous polynomial consisting of the terms of lowest degree in f.

The tangents of a singularity are found by translating the singularity to

the origin and applying the following lemma.

Lemma 2.5 ([35, p. 54]) If the order form of f(z,y) = 0 is of degree T,
then the origin is a singularity of f = 0 of multiplicity v, and the compo-

nents of the order form are the tangents to f at the origin.

We wish to ignore all flexes of even order, so we require a method of

computing the order of a flex.

Lemma 2.8 Let P be a nonsingular point of a plane curve. Let f(z,y) =0

be the equation of the curve after it has been translated and rotated so that P
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is the origin and P’s tangent is the z-azis. Then the number of intersections
of P’s tangent with the curve at P is
rﬁin {i| Az’ is a term of f(z,y), for some 4 # 0}
Proof (This proof is a variation upon the discussion of (35, p. 53].)
The intersections of f(z,y) with the x-axis (whose parameterization is
z =t, y =0) are represented by the roots of f(¢,0) = 0. The number
of intersections of f(z,y) with the x-axis at the origin is equal to the mul-
tiplicity of the root ¢ = 0 in f(¢,0) = 0. The Taylor expansion of f(t,0)
is
£(0,0) + £2(0,0) » £ + 2 fee(0,0) # £ + 3 fraa(0,0) + £ + ...
and the multiplicity of the root ¢ = 0 is the lowest nonzero power of t in
this expansion. That is, the multiplicity of intersection of f(z,y) with the
x-axis at the origin is
min (i ] (35)(0,0) 0}

=min { i | Az’ is a term of f(z,y), for some A # 0}

2.6 Space Curves

The convex-segment method has been presented as a technique for sorting

plane curves. Indeed, its reliance upon a cell partition of the curve’s plane
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suggests that it can only be used to sort plane curves. However, we shall
now show that space curves can also be sorted by the new method.

We solve a sorting problem for a space curve by mapping it to é. related
sorting problem for a plane curve. The plane curve is derived by projecting

the space curve.

Definition 2.8 Let B be a plane and let q be a point, ¢ ¢ B. The (cen-
tral) projection of a point p (with respect to ¢ and B) is the point of
intersection of the line pq with B. The (central) projection of a space
curve C (with respect to q and B) is the plane curve generated by the pro-
jections of the points of C. B is the plane of projection and q is the

center of projection.
Lemma 2.7 Let z = 0 be the plane of projection and let (zc,yc, 2c) be the
center of projection (z. # 0). The projection map P : R — R? is

_ (Iczsd — T3d%c Yc23d — Y3dZc
- )
23d — 2c 23d — 2c

P(dea Y3d» 234)

The inverse map P! : R? — R3 is

T2d(ze — 23d) + Tcz3d Yad(Ze — 23d) + YeZ3d
) ng)

P! =
(z2da y2d) ( Ze ’ 2

The inverse image of (T24,Y2d) must be ezpressed in terms of z34, since
infinitely many points project to a given point on the plane (viz., all of the

points on the line between (z24,Y2d,0) and (zc,Ye, 2c) )-
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Proof The line through (z¢,yc, 2c) and (z34,¥3d, 234) can be parameter-
ized by ((z30 — Zc)t + T, (Y3d — Ye)t + Ye, (23d — 2e)t + zc). The projection of
(34, Y3d; 234) lies on this line and has a z-coordinate of 0. Therefore, it cor-
responds to the parameter value { where (233 — z.)t + 2. = 0 = i = Py

Therefore,—-

. -2, -2
proj (234, ¥3ds 23d) = ((23d — T )(————) + Ze, (¥3d — Ye)(———) + ¥, 0)
, 23d — 2¢ 234 — Zc

zc(zc - 33&) + Zc(zsd - zc) zc(yc - y3d) + yc(z3d - Zc)
( ’ , 0)
23d — 2c 23d — Zc

(3c23d — 2¢T3d  Yc23d — 2cY3d 0)
b
23d — 2c 23d — Z¢ ’

The inverse map can be derived by solving for z34 and y34 in the equations

_ Tc23d — T3d2c _ Yec23d ~ Y3d2c
T2d = ’ =
23d — Zc 23d — 2c

Corollary 2.3 Let z = 0 be the plane of projection and let (z¢,yc, 2c) be the
center of projection (z. # 0). Let A be the plane z = z.. The projection map
P : R — R? is continuous on R\ A. (That is, limge—q P(X + a) = P(X)
for Xe R\ A.)

Proof If f(x), g(x), and h(x) are polynomials, then the rational map

(fg}, %) is continuous at all points where the denominator is not zero.
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Definition 2.9 Order on the segment SEG is preserved by the projection
map proj: R} — R? if proj(SEG) is connected and, for all P\, P2, P3 € SEG,
proj(Pz) lies in between proj(P)) and proj(P3) whenever P; lies in between

Py and P;.

We want to choose a projection that preserves order on the sort segment
of the space curve. We do this by ensuring that the projection map is
continuous on the entire sort segment. In the rest of this section, F is a space
curve defined by the intersection of the two (affine) surfaces fi(z,y,z) =0

and f2(z,y,z) =0, and PAQ is a finite segment of F (viz., the sort segment).

Lemma 2.8 Let projc be the projection map for the projection onto the
plane z = 0 from the center of projection C. There ezists a point C € R?

such that order on PQ is preserved by the projection projc.

Proof Let a = max{ 7 | (<,¥,Z') € PAQ}. a exists because PAQ is a
finite segment. Choose C = (z¢,yc,2c) so that z¢c > a. projc will be
continuous on PAQ, by Corollary 2.3. projc(PAQ) is connected, since it is
the continuous image of a connected segment. Let P;, P;, P; be points of
PAQ such that P; lies in between P; and P;. The continuity of projc ensures
that projc(P;) lies in between projc(P1) and projc(Ps). |1

In solid modeling applications, PAQ will usually be the finite segmenst

of a space curve that defines an edge of a solid model. The model will be
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bounded and, in particular, it will be bounded in the z direction. There-
fore, the center of projection can be chosen above this bound to guarantee
the continuity of the projection map on the sort segment, and thus the
preservation of order on the projected sort ségment. In the rest of this
section, let z = 0 be the plane of projection-and let {z¢;¥e; zc) be-the center -

~~

of projection, chosen so that the projection map is continuous on PQ.

In order to apply the convex-segment method to the projection proj( PAQ)
of the sort segment, we must know the implicit equation of the irreducible
component of the projection that contains proj(PAQ). The following lemma
shows how this equation can be determined from the equation f;=0nN f2=0
of the original space curve. It makes use of the resultant of a pair of poly-

nomials, which is defined in Appendix A.

Lemma 2.9 The projection of F is contained in the plane curve defined

b‘y the msultaﬂt R(z,y) Of gl(z,y,Z) = fl(z(zc“:c)+2c3’y(zc_:c)'*‘ycz’z) a‘nd
g2(z,y,2) == fg(’(“":c)"'"‘,”(’°';)+y",z) with respect to z. Moreover,

the projection of PQ is contained in a connected component of the curve

R(z,y) = 0.

Proof Let 8 = (z34,%2d,0) be a point of the projection of F. By Lemma 2.7,

Ze—2Z +ZeZ Ze—2Z +YeZ
)

the point of F that projects into 3 is (* ) 23d),
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for some z34. That is, there exists z34 such that

Zod(2c — 23d) + Tc23d Y2d2c — 23d) + Yc23d
fl( (c ) = ) (C ) = ’Z3d)=0

Zc Zc

and

T2d(2c — 23d) + Tc23d Y2d(2c — 23d) + Ye23d
fo( 22z = 7aa) + Zemsd aalse = d) Hemd g

2c zc

Therefore, for every point (zg,yo) of the projection of F, there exists zg such
that g1(zo, %0, 20) = 92(%0, %0, 20) = 0. Thus, by Lemma B.1, for every point
(z0,y0) of the projection, R(zo,y0) = 0. Therefore, R(z,y) = 0 contains
the projection of F. Since the projection map is continuous on PAQ and the
continuous image of a connected set is connected, the projection of PAQ is
connected. |

The problem of sorting points along a space curve has now been suc-
cessfully reduced to a problem of sorting points along a plane curve. The
equation of the plane curve is computed by the method of Lemma 2.9,
and the sortpoints, start point, and end point are the projections of their
counterparts on the space curve.

Let A be the plane that contains the center of projection and lies par-
allel to the plane of projection. By the choice of the center of projection
(Lemma 2.8), all of the sort segment lies on the same side of A; and a sort-
point will lie on the same connected component as the sort segment if and

only if it lies on this side of A. Therefore, since we want all of the projected

sortpoints to lie on the same connected component of the projected plane
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curve (Section 1.2), we discard all sortpoints on the space curve that lie on
the opposite side of A from the sort segment. These sortpoints do not lie

on the sort segment, so they can be safely ignored.

If the resultant of Lemma 2.9 is factored into irreducible components
(perhaps by the method of [8] or [36]), then it is simple to determine the
component associated with the projection of the sort segment. Let proj(P)
be the projection of a sortpoint of the space curve (one that has not been

discarded). The desired component is the unique one that contains proj(P).

It is possible that a sortpoint of the space curve could project into a
singularity. This must be avoided because the sorting of a set of points
that includes singularities can be ambiguous (Section 1.2). Therefore, if
a projected sortpoint proj(P) is discovered to be a singularity when the
singularities and flexes of the projection are computed, then proj(P) is
offset along the appropriate branch of the singularity by crawling a short
distance along the space curve from the original sortpoint P to a point Pe.
That is, if proj(P) is a singularity, then we map P to proj(Pe), which is not
a singularity. (The crawl is stable because P cannot be a singularity. Care
must be taken to make the crawl on the space curve short so that it does
not crawl over another sortpoint, since this would disrupt the order of the

sortpoints.)

Similarly, if two sortpoints S1 and S of the space curve project to the
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same point of the projection, then S; should be mapped to proj(57) and S
to proj(S§), where St is found by crawling a short distance from S;. (Care

must be taken that S and S§ do not still map to the same point.)

The computation of the resultant of Lemma 2.9 and its subsequent
factorization (in order to find the irreducible component that contains the
projection) are expensive operations. The expense of the factorization is the
lesser problem, since the resultant is often already irreducible. We conclude
that although the convex-segment method can indeed be used to sort points
on a space curve, space curve sorting is considerably more expensive than

plane curve sorting.

Since it can be difficult to find the parameterization of a space curve,
the parameterization method may also decide to sort the p.rojection of
the space curve rather than the space curve itself. Recall that a rational
parameterization of the space curve §; N S3 is derived from a low degree,
rational parameterization of S or S3. If there is no such parameterization
(or no such parameterization is computable by a known algorithm), then
the only recourse may be to look for a parameterization of the projection
and sort it instead. Therefore, the expense of projecting the space curve to
a plane curve may have to be absorbed by the parameterization method as

well.
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2.7 A Broad Comparison of the Methods

We have been introduced to three methods of sorting points along an alge-
braic curve. The crawlihg method sorts the points by making short jumps
along the curve. The parameterization method observes that the sorting
of points on a line is simple and tries to unwind the curve into a line by
parameterizing it. The convex-segment method borrows from both of these
methods.

Like the crawling method, the convex-segment method leaps from one
point to another along the curve (;iz., from a curve point to its partner).
However, its jumps are large while the crawling method’s jumps must be
very small. Moreover, once the partner of each curve point of the cell
partition has been computed (which can be done once and for all in a
preprocessing step), each jump of the convex-segment method can be done
very quickly; whereas, the crawling method must grope for some time (by
applying Newton’s method) to find the destination of each jump. In short,
the convex-segment method makes large, bold jumps while the crawling
method makes small, timid ones.

The convex-segment method is similar to the parameterization method
because they both reduce the sorting problem to an easier one. However,
rather than trying to reduce the entire problem (from sorting points on

a curve to sorting real numbers), the convex-segment method divides the
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problem up into many smaller ones and reduces each one of these (from
sorting points on a convex segment to sorting the angles those points make
with a central point). We shall see that the many small reductions of the
convex-segment method can be done more quickly than the single, large

reduction of the parameterization method.



Chapter 3
Multisegment Cells

When a cell of a curve’s cell partition contains more than one convex seg-

ment (Figure 3.1), two of the problems associated with curve sorting become
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Figure 3.1: Some multisegment cells

nontrivial: determining the partners of a curve point and determining the

convex segment that a sortpoint lies on. This chapter confronts these prob-

-
99
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lems. Section 1 introduces the definitions and lemmas that are needed for
the treatment of multisegment cells, while Sections 2 and 3 actually solve

the problems.

3.1 Foundations

Throughout this section, C is a cell of the cell partition of a curve F, and

P and Q are points of F.

\Nz_ .S.L

Figure 3.2: The inside of P’s tangent

Definition 3.1 If P is not a singularity or a floz, then the inside of P’s
tangent is the halfplane that contains all of the curve in the neighbourhood
of P (Figure 3.2(a)). Otherwise, P’s tangent is a wall of F'’s cell partition,
and the inside of P’s tangent with respect to the cell C is the

halfplane that contains C (Figure 3.2(b)). The inside includes the tangent,
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while the strict inside does not.

Let P be a floz that lies on the boundary of the cell C. Let P, be a point
of the curve inside cell C at distance € > 0 from P. (P, may be found by
crawling into C from P.) The outside endpoint of P’s cell segment
with respect to C is the endpoint that lies outside of P.’s tangent, for €
small (Figure 3.3).

Figure 3.3: E is the outside endpoint of P’s cell segment

If P is not a floz, then P faces Q if Q lies on the inside of P’s tangent
(Figure 3.2(a)). Otherwise, P faces Q with respect to the cell C if
(1) Q lies strictly inside P’s tangent with respect to C, or (2) Q lies on P’s
tangent and Q lies on the opposite side of P from the outside endpoint of

P’s cell segment with respect to C (Figure 3.4).

Notation 3.1 #{S} is the number of elements in the set S. Ty is the line

segment between z and y, and it is assumed that Ty does not include its
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Figure 3.4: P faces both Q; and Q2 with respect to C

endpoints z and y. Finally, we use ‘w.r.t.” as an abbreviation for ‘with

respect to’.

The following lemma establishes three important properties of the line
segment that joins two points of a convex segment. (Recall from Section 2.2

what it means for a line and a curve to cross.)

Lemma 3.1 Consider the cell partition of a curve F, and a cell C of this
partition. Let X and Y be two nonsingular points of a convez segment of

the cell C. Then s

1. the curve crosses XY at an even number of points (ignoring singu-

larities)

2. #{Pec XY NF :P faces X w.rt. C} =
#{PecXYNF:P faces Y wr.t. C}
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3. forallae XY, #{PeXanF:P faces X w.rt C} <
#{P e XanF:P faces Y w.r.t. C}

Figure 3.5: An example of Lemma 3.1

Example 3.1.1 Figure 3.5 offers a hypothetical ezample for Lemma J.1.

The curve F crosses XY an even number of times.
{PeXYNF: Pfaces X} = {P2,Ps, Ps}
which is of the same size as
{PcXYNPF: Pfaces Y} = {Py, P3, Py}

Moreover,

{PeXanF: P faces X} = {P2}

which is smaller than

{PeXanF: P faces Y} = {P,, P3, Py}
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Proof (of Lemma 3.1)

(1) Consider the closed region Rxy bounded by XY and XY (Figure 3.6).

Figure 3.6: The region.Rxy

Rxy lies in the cell C:

XY lies in the cell = XV lies in the cell (since the cell is a
convex polygon) = the region bounded by XY and XY lies in

the cell (since the cell is a convex polygon)

X and Y are nonsingular, and XY does not contain a singularity, since it
lies in the interior of the cell. Therefore, the curve can only cross into Rxy
through X7Y. If the curve enters Rxy, then it must also leave Rxy, since
an infinite segment cannot remain within a closed region (Lemma B.3) and
an algebraic curve of finite length is closed (in particular, the curve cannot
stop short in the middle of Rxy). We claim that the point of departure
D must be distinct from the point of entry E, unless all of the tangents
at D = FE are X‘—Y, as in Figure 3.7. Otherwise, if D = E, then at least

one of the tangents of the singularity D will cross into Rxy and form a



61

wall of the cell partition which will split Rxy in two, contradicting the fact
that all of Rxy lies in the same cell. Therefore, with the exception of the
extraordinary singularities of Figure 3.7, the crossings of XY by the curve
occur in pairs, which we shall call couples. This establishes condition (1)

of the lemma.

Figure 3.7: The only type of singularity that can lie on XY

(2) Now consider condition (2) of the lemma. Note that the extraordi-
nary singularities of Figure 3.7 can be ignored during the consideration of
conditions (2) and (3), since they face both X and Y and contribute the
same amount to the left-hand side and right-hand side of the expressions
of conditions (2) and (3). Therefore, we can concentrate on the remaining
crossings of XY: the distinct ‘couples’. Let 4,B € XY be a couple and
assume, without loss of generality, that A lies closer to X than B does (Fig-
ure 3.8(a)). AB is a convex segment since it lies within a cell of the cell
partition. Therefore, A and B face each other (with respect to the cell C),

by Lemma B.7. Since A faces B, A faces Y. Similarly, since B faces A, B
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faces X. Therefore, one member of each couple faces X and the other faces

Y. This yields the desired result:

#{PeXYNF:PfacesX wrt.C}=#{P€ XY NF:Pfaces Y wrt. C}

Figure 3.8: (a) a couple (b) open cells and open convex segments

(3) The point of a couple that faces Y (A) is closer to X than the point

that faces X (B). Therefore, for all a < Xy,

#{PeXa N F:Pfaces X} < #{PcXa N F:P faces Y}
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3.2 Finding the Partners of a Curve Point

This section applies the theory of the previous section to the problem of
determining the partners of a curve point. A solution of the partner problem
is needed in order to find the next convex segment during a traversal of a
curve by convex segments. (Recall that two curve points W) and W; of a
cell partition are partners if W;Wz is a convex segment.) Since we identify
a convex segment by its two endpoints, if the partners of all of the curve
points have been computed, then the two convex segments that leave a
given curve point can be quickly identified.

Let F be a plane curve that has been split into convex segments by a
cell partition. Consider a multisegment cell C of this cell partition and a
curve point W of this cell. Since singularities have been replaced by pseudo
curve points (Section 2.4), W1 is either a flox, an incidental curve point, or a
pseudo curve point. Theorem 3.1 shows how to determine whether W1 has
a partner in C (i.e., whether W} is the endpoint of a closed convex segment
in C) and, if W; does have a partner in C, how to find this partner. In

preparation for this theorem, we must make some preliminary comments.

Definition 3.2 A cell is closed (resp., open) if it is (resp., is not) a
closed polygon (Figure 3.8(b)). An open cell is unbounded. A conver seg-
ment of the curve in cell C is closed if it is of finite length and open if

it proceeds to infinity within C. Open segments have only one endpoint and
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must lie in open cells.

The computation of Wy’s partnef involves the computation of inter-
sections of lines with the boundary of cell C and a traversal of the cell
boundary. Therefore, it is necessary for the cell to be closed. If C is an
open cell, then temporary cell segments must be placed across its opening
in order to artificially make it a closed cell (Figure 3.9). The added cell
segments are called the closing boundary of C, and they must be chosen
carefully. The resulting closed cell should be a convex polygon, it should.
be large enough to contain all of the closed convex segments of the original
open cell, and it should have only one intersection with each open convex

segment in the cell.

Figure 3.9: A closing boundary for an open cell

If C is an open cell that contains an open convex segment SEG, then
we shall be interested in the intersection of this open segment with the

closing boundary of C. If W) is the endpoint of SEG, then the intersection
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of SEG with the boundary will behave like a partner of W;. Indeed, we
shall identify that W) has no partner by noticing that the partner computed
for W, lies on the closing rather than the original boundary of the cell. A
point of intersection of the curve with the closing boundary shall be called

a closing-curve-point:—-- -

There are now three families of curve points: (1) original curve points,
which include floxes and incidental curve points; (2) pseudo curve points,
which are the points that replace the singularities and guarantee a robust
traversal of the curve; and (3) closing curve points, which are points on the

closing boundary of open cells.

The computation of Wi’s partner involves the sorting of curve points
along the boundary of the cell C. However, a pseudo curve point does: not
lie on the boundary. Therefore, with each pseudo curve point W; in C, we
must associate a point W/ on the cell boundary. If W; # Wi, then W]
is chosen to be the intersection of the ray W, W; with the cell boundary
(Figure 3.10(a)). (A link is maintained between W; and W so that it is
simple to retrieve W; from W).) If W, is itself a pseudo curve point, then
it has a special associated point. Let V be the singularity from which W)
is derived, let T be the tangent to the branch of V that contains W3, and

let T} be the ray of Wi’s tangent that intersects T (Figure 3.10(b)): W' is

the intersection of T; with the cell boundary. For notational consistency,
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The boundary points W]
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we let W! = W; if W; is a curve point that already lies on the cell boundary
(i-e., a flox, incidental, or closing curve point).

Finally, we partition the boundary of the cell into two regions. Let B,
be the boundary of C from W' to X in one direction and B; the boundary
from Wi'-to X-in the other direction; where X is defined-as-follows:~If-W;
is a flox, let X be the outside endpoint of W;’s cell segment with respect to
C (Definition 3.1 and Figure 3.11(a)). Otherwise, let X # W' be the other
intersection of W;’s tangent with the cell boundary (Figure 3.11(b-c)). We

are now ready for the statement of the theorem.

Theorem 3.1 Let S(W)) = {(original, pseudo, and closing) curve points

W # W) of cell C of the cell partition of the curve F |

1. W lies on the strict inside of W1 ’s tangent (with respect to C)

2. #{Pe WiWNF : P faces W) (w.r.t. C)} =
#{Pe WiWNF : P faces W (w.r.t. C)}

3. for alla € W1W,
#{P e WiaNF : P faces W (w.r.t. C)} <
#{PeWianF:P faces W (w.r.t. C)}

4. W faces Wy (w.r.t. C)}

Case 1: Suppose that S(Wy) # 0. Let S'(Wy) = { W' : W € S(Wy) }. Let

B; and B, be the appropriate sections of the boundary of C, as defined
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Figure 3.11: Partitioning the boundary of a cell

above. Either S'(W)) C By or S'(W1) C B;. (Assume without loss of gen-
erality that S'(W,) C By.) Sort the points of S'(W1) along By from Wy’
to X. That is, sort the points of S'(W) into S},5%,...,S,, where S| is
encountered before S. ., in a traversal of the cell boundary from W to X
along By. If Sp (the curve point associated with S,) is a closing curve point,

then W, has no partner in C. Otherwise, Sp is W1’s partner in C.

Case 2: Suppose that S(W,) = 0. Then W is not a pseudo curve point
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and Wy ’s partner lies on Wy's cell segment. Let T(W,) = { original curve
points! W of C |

1. W lies on Wy'’s cell segment

2. W, faces W and-W faces W,

3. #H{PeWiWANF: P faces W, (w.r.t. C)} =

#{(Pe Wy,WNF: P faces W (w.r.t. C)} }

W1'’s partner is the element of T(W1) that is closest to Wj.

£/
=

N

Figure 3.12: Cell partition of a limacon

Example 3.2.1 Consider the cell partition of a limacon (Figure 3.12) and
the multisegment cell containing the convezr segments W;i‘Vz and W’;FV.;.

Suppose that we wish to find the partner of W,. W3 violates condition (4)

1That is, floxes and incidental curve points.
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of S(W1) and W, violates condition (2), so S(W1) = {W2} and it is clear
that W, is Wy'’s partner.

Consider the multisegment cell of Figure 3.13 and the computation of
Wi 'y partner, where W) is the endpoint of an open conver segment.
S(Wh) = {W;, W3, Wy} and S'(Wy) = {W,, W3, W,}. The sorted order of
S'(W1) along the boundary from Wy' (= W) to X (the intersection of Wy's
tangent with the boundary) is W3, W, W3. The last element is W3, which

is a closing curve point. Therefore, W, has no pariner.

Figure 3.13: Computing the partner of the endpoint of an open convex

segment

Finally, consider the computation of the partner of W, in Figure J.14,
where S(W) = 0. V1, V2 and Vy are ruled out by condition (2) of T(W1),

while V3 and Vs are ruled out by condition (3). Therefore, T(W,) =
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{Vs,Wa}. W, is the closest element of T(W1) to W1, so it is Wy 's partner.

A

3 W V4 V5 Vg

Figure 3.14: Partner computation when S(W;) =0

Proof (of Theorem 3.1)

If W, is the endpoint of an open convex segment SEG, then let W; be the
intersection of SEG with the closing boundary of the cell. Otherwise, let
W32 be W;’s partner.

Case 1: Suppose that S(W;) # 0. Let WTVV; be the boundary of the cell
from W! to W}, such that X ¢ WiW; (Figure 3.15(a)). W1W,; is a subset
of either B, or By. We will show that §'(W;) C W W3, Let s € S(Wh).
Claim: W:;s does not cross W’:W’z \ {IV2}.

Proof of claim: Suppose, for the sake of contradiction, that Wis crosses
W;W’z at y # W3. This is impossible if s = W; (since PV;W'; is convex) so
assume that s # Wj.

Subcase 1: Suppose that s € WW;y. By the argument of the proof of
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Figure 3.15: (a) W1W; is dotted (b) s and t on Wiy

Lemma 3.1, the points of intersection of the curve F with W)y pair up. Let
t be the partner of s (Figure 3.15(b)). The segment st is convex, so s and
t face each other (Lemma B.7). s faces W, (condition (4) of S(W1)) and ¢,

so t € Wys. Since s € S(W,),
#{PeWisNF: Pfaces W} = #{P ¢ WisN F : P faces s}

Since W;s does not include its endpoints, Wis = Wit U ts U {t}. Also, t

faces s. Therefore, the above equation becomes
L4{PcWitNF: P faces Wi} + #{P€tsNF: P faces W1} +0 =

#{PecWitNF: P facess} + #{P €tsNF: P faces s} +1

Moreover, by Lemma 3.1 (.;-2 is convex),
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#{PE{EQF: P faces s} =

#{PectsNF: P facest} =
#{PctsNF: P faces W}

Upon the cancellation of terms in the above equation, we conclude that
#{P e WitNF: P faces W1} >

#{PGWOF: P faces s} =
#{PE—WFOF: P faces y}

This contradicts condition (3) of Lemma 3.1 (SEG = W:Wz, X =W,
Y =vy).
Subcase 2: Suppose that y € Wis. By Lemma 3.1,

#{PecWiynF: P faces W1} = #{P € WiyN F : P faces y}

But y faces W, since W; and y are on the same convex segment. Therefore,

there exists a € Wis such that
#{PcWianF: P faces W1} > #{P € WiaN F: P faces s}

This is a contradiction of s € S(W;) (condition (3)).
QED of Claim
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We conclude that Wis does not cross W: W\ {W3}. In particular, Wi s' does
not cross W; W2 \ {W3}. Therefore, s' must either lie on W: W3, outside of
W1’s tangent, or on WTVVg. However, since s lies on the stﬁct inside of Wi’s
tangent (by condition (1) of S(W1)), so does s'. Moreover, the only curve
pbints on W;Wg are W, and W3,? both of which lie on W;TV;. Therefore, s'
must lie on WTW;, and we have successfully shown that S'(W;) C W W,.

We now show that W, € S(W).

(1) Suppose, for the sake of contradiction, that W; lies on Wy's
tangent. By Lemma B.8, W; must lie on W;’s wall. Thus,
WTVV; = W1 Ws, a subsegment of Wi’s wall. Again by
Lemma B.8, W; must be a flox whose tangent is a wall
of the cell partition, so W1W; is a subsegment of W;'s
tangent. By condition (1) of S(W1), S(W1) N W W3 = 0.
Therefore, S'(W1) N WiW; = 0. But S'(W;) ¢ WiW; =
W1W,. Thus, S'(W;) = 0, which is a contradiction. We
conclude that W; does not lie on Wi’s tangent. W, cer-
tainly lies on the inside of W;’s tangent, since W: Wy is a

convex segment.
(2-3) Lemma 3.1 (SEG = WiWy, X = W1, Y = W)

(4) Lemma B.7

IRecall the conditions that were placed on the closing boundary.
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We are now prepared to show that Wi = S,. Since X is not on WiW,
(by definition), all of W;W; is met in traversing the cell boundary from Wy’
to X through WTVV;. Therefore, since W5' is an endpoint of W’Jvz and all
of §'(W)) is contained in Wi W3, W7' is the last element of S'(W;) that is
met in traversing from Wi* to X through W;Wi. In other words, Wy =S,
and W, = 5.

We must show that S} # S; whenever i # j, so that there is no am-
biguity in choosing the last member of S'(W;). Suppose that i # j but
Si=_S}. Then §;,5; € W1 S! and we can assume without loss of generality
that S; € W15;. Si: € S(W;) implies that #{P € W1S;N F : P faces W}
=#{P € W,5;NF : P faces S;} = #{P € W15, N F : P faces S;}. More-
over, S; € S(W)) implies that S; faces W;. Therefore, there exists a € Wl.—S;
such that #{P € Wia N F : P faces W1} > #{P € Wia N F : P faces S,},
which is a contradiction of S; € S(W;). Therefore, S; # S} if i # j, and
the sort of S'(W)) is well-defined.

Case 2: Suppose that S(W;) = 0. We claim that if W) is a pseudo curve
point, then W, is an element of S(W}), which contradicts S(W;) = 0:

(1) of S(W;) Since W, is a pseudo curve point, W3 does not lie
on Wi’s tangent (Lemma B.8). W; lies inside W1’s tangent

~~
‘because W1 W3 is convex.

(2-3) of S(W;) Lemma 3.1 (X= W;, Y= W3)
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(4) of S(W1) Lemma B.7

Therefore, W) is not a pseudo curve point and it is well-defined to speak of

W1’s cell segment. We show that W, € T(W)):

(1) of T(W;) Suppose-that W lies- strictly inside -W;’s wall-(w.r.t. C).
Then W; € S(W1), a contradiction of S(W;) = 0:

(1) of S(W1) The segment W:Wz is convex, so W3 lies on
the inside of W;’s tangent. Since W; lies strictly inside

W1's wall, it cannot lie on W7’s tangent (Lemma B.8).
(2-3) of S(W,) Lemma 3.1

(4) of S(W,) Lemma B.7
Therefore, W, lies on W;’s wall.
(2) of T(W;) Lemma B.7
(3) of T(W,) Lemma 3.1

Therefore, W3 € T(W1).

Suppose that W3 is not the closest member of T(W)) to W,. Let U # W,
be the closest. Since W; faces U, U must lie on W; W;. By the proof used in
Lemma 3.1, the nonsingular points of intersection of the curve with wLw,

must pair up into couples, since W W; is a nonsingular, convex segment.

In particular, the original curve points on W1U C W1 W; that face W; must
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pair with the equal number of original curve points on WL U that face U.
But U must also pair with a curve point on WU that faces U, and there
are no such curve points remaining without a partner. This contradiction
leads us to conclude that W’s partner W, must be the closest element of
T(Wy) to Wy - I

Since the pairing of the curve points of a curve does not depend upon
the sortpoints, it can be done in a preprocessing phase. In particular, the
creation of the cell partition and the computation of partners can be done
at any time between the definition of the curve and the sorting of points

along the curve.

3.3 Finding the Convex Segment that a Sort-
point Lies On

In this section, we present a solution to the second of our problems: deter-
mining the convex segment that a sortpoint lies on. This is a key step {n
the sorting of a set of points by the convex-segment method, since it offers
a method of determining which points lie on a given convex segment during
a traversal of the curve.

As in the previous section, let F be a plane curve that has been split into

convex segments by a cell partition. Consider a multisegment cell C of this
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cell partition and a sortpoint z of the curve in the interior of C. (If z lies
on the boundary of the cell, then Theorem 3.1 can be used to determine
its partner and thus its convex segment.) The following theorem shows
how to determine the convex segment of C that contains z. Since a convex
segment is identified by its endpoints, determining the convex segment that
z lies on is equivalent to finding the curve points that bound this convex
segment. Therefore, Theorem 3.2 is very similar to Theorem 3.1, since they
both involve finding the endpoints of a given point’s convex segment.

As with Theorem 3.1, an open cell must be artificially closed, and a
curve point W; must have an associated boundary point W;'. We choose
W} to be the intersection of zW; with the cell boundary. We also need to
partition the cell boundary into two regions again. Let B be the boundary
of the cell from z; to z3 in one direction, and let B; be the boundary in
the other direction, where z; and z; are the two points of intersection of

z’s tangent with the cell boundary.
Theorem 3.2 Let S(z) = {(original, pseudo, closing) curve points W of C |

1. W lies on the strict inside of z’s tangent
2. #{PczWNF :P faces 2} =#{Pe€zWNF:P faces W}

3. VaczW,

#{Pe€ZanF :P faces z} < #{P € FTanF : P faces W}
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4. W faces z }

Let S"(z) = { W" : W € S(z) }. Either §"(z) C By or S"(z) C Ba.
(Assume without loss of generality that S"(z) C By.) Sort the points of
§"(z) into Sy, 5%, ...,Sy, where S} is encountered before SY. 1 in a traversal
of the cell bounciafy from z1 to z3 along By. Then either (i) S1 and Sp are
partners and z lies on the convez segment S:Sp, or (ii) z lies on an open
convez segment SEG, one of S1,Sp is a closing curve point, and the other

is the endpoint of SEG.

Example 3.3.1 Consider the cell partition of the limacon (Figure 3.12)
and the multisegment cell containing the convez segments W; W3 and W; Ws.
Suppose that we wish to know the convez segment that z lies on. We com-
pute S(z). Wi does mot satisfy condition (1), and W2 does not satisfy
condition (3). Thus, S(z) = {W3, W4} and z must lie on W;W.;.

Consider the cell partition of the Cassinian oval (Figure 2.10). Suppose
that we wish to know the convez segment that Py lies on. Since S(P1) =
{W1, W, W3, Wy}, it does not resolve the question. Let z1 and z, be the
two points of intersection of Py’s tangent with the cell walls. The sort of

S"(P,) from z; to z3 is W1, W3, Wy, W,, so P; must lie on W;Wz.

Proof (of Theorem 3.2)

The proof is entirely analogous to the proof of Theorem 3.1. Let SEG be



80

the convex segment that contains z. Let W; and W; be the endpoints of
SEG or, if SEG is an open convex segment, let W) be its one endpoint and
let W, be the intersection of SEG with the closing boundary of the cell.

We first show that Wi, W; € S(z):

~~

(1) Since z € W;Wz, W1W3 is convex, and z # W, W3, both

Wi and W; must lie on the strict inside of z’s tangent.
(2-3) Lemma 3.1 (SEG = WiW3, X= z, Y= W; or W3)
(4) Lemma B.7

Let W7 W; be the boundary of the cell from W;" to W}, such that z1,z; & WiW,.
WTVV; is a subset of either B; or B;. By the argument used in Theorem 3.1,
S"(z) C WiWa. 1,22 € W1W; (by definition), so W and W} are the first
and last points of §"(z) C W;W; that are met in a traversal of the cell
boundary from z; to z3 through W1W,. Therefore, {W!, Wi} = {S¥, Sy}
and {W1, W1} = {51,5}. |

It can be expensive to create the set S(z). In particular, conditions (2)
and (3) require the points of intersection of the curve with a line segment,
which involves the solution of an equation of degree n, where n is the order
of the curve. This is an expensive operation that we would like to avoid.

Fortunately, it is usually possible to do so.3

3The expensive conditions cannot be avoided in Theorem 3.1. However, partner com-
putation is a one-time preprocessing step. Moreover, conditions (1) and (4) will often rule
out all of the curve points except the partner.
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Before the more expensive conditions (2) and (3) of S(z) are tested, we
would like to eliminate as many curve points as possible from contention.
Therefore, we would like to find a collection of inexpensive conditions that
must be satisfied by the endpoints of a sortpoint’s convex segment. The
inexpensive conditions that we-choose are motivated- by conditions{1) and- -
(4) of S(z) and the following observations. First, as soon as the curve point
W is eliminated, W’s partner can also be eliminated, since the endpoints of
a sortpoint’s convex segment are partners. Second, all of the curve segment
between a curve point W) and its partner W3 lies on one side of W1W,,
since W;Wg is a convex segment. Thus, if the sortpoint does not lie on
the appropriate side of AT (viz., the inside of the chord W1Ws, a term
that is defined at the end of Appendix A), then both W; and W; can be
eliminated.

We can now present a more efficient algorithm for finding the endpoints

of a sortpoint x’s convex segment. Let R(z) = {curve points W of cell C |

1. W and its partner in C lie on the strict inside of x’s tangent

2. z lies on the strict inside of W’s tangent and the strict

inside of W’s partner’s tangent

3. z lies on the inside of the chord of W’s convex segment in C}

R(z) contains the desired endpoints of z's convex segment. Therefore,

we are finished if R(z) = {W1, W,} and W; and W; are partners, or if
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R(z) = {W1}. However, if R(z) contains more than two curve points or
if R(z) = {W1,W,} and both W; and W; are endpoints of open convex
segments, then we must revert to an application of Theorem 3.2. Since

we already know R(z), it should be used to compute S(z) more efficiently:

S(z) = { W e R(z) |
1. #{P€zWNF:Pfacesc } =#{PczWNF:P faces W}

2. for all a € zW,

#{PezanF:Pfacesz } <#{PE€ZanNF:P faces W }}

The problems associated with multisegment cells have now been solved.
This completes our discussion of the theory of the convex-segment method
of sorting points along an algebraic curve. In the next chapter, we turn to

an analysis of its behaviour.



Chapter 4

A Comparison of the Sorting
Methods

This chapter examines the efficiency of the convex-segment method of sort-
ing. Section 1 analyzes its theoretical complexity, while Section 2 presents
some empirical results for the sorting methods. Section 3 discusses the

advantages of the convex-segment method.

4.1 Complexity Analysis

This section presents an analysis of the worst case complexity of the convex-
segment method. We include this analysis for the insight that it offers into-

the algorithm. However, we must emphasize that it is often unwise to
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compare geometric modeling algorithms by their worst case performance,
because worst cases can be misleadingly pessimistic and a geometric mod-
eler is concerned about the treatment of cases that arise in practice rather
than the behaviour of the algorithm on a worst case that occurs very rarely.
For example, in the worst case, Theorem 3.2 will have to be applied in order
to determine the convex segment that a given sortpoint z lies on, which
could involve the solution of several equations of degree n. Yet, the worst
case arises only in those rare cases when the sortpoint z lies in a multi-
segment cell and requires the expensive conditions of S(z) to determine its
convex segment. (The use of R(z), as described in Section 3.3, makes this
worst case even more unlikely.) In all other cases, z’s convex segment can
be found in O(1) time. An expected case analysis would be preferable,
however it is difficult to formalize the notion of an expected case for sorting

with the convex-segment method.

The complexity of sorting m points along a rational curve with the pa-
rameterization method is O(ma/[p]), where a[d] is the time required to find
the real roots of a polynomial equation of degree d and p is the degree of the
curve’s rational parameterization. The complexity of finding a parameteri-
zation depends upon the algorithm used. However, it should be of the same
order of complexity as finding the singularities and flexes of the curve, since

singularities are used in the algorithm for parameterizing rational curves.
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The complexity of sorting m points along a sort segment of a curve
with the crawling method is O(-NEL), where IV is the time required to apply
Newton’s method (which will vary from application to application), L is

the length of the sort segment, and ¢ is the size of each jump.

Theorem 4.1 m points on a plane algebraic curve of order n can be sorted
by the convez-segment method in O(mn’a[n]) worst case time after

O(a[n?]|+nba[n|+n?a[2MAX 1] +n122*MAX ) preprocessing, where aln] is the
time required to find the real roots’ of a univariate polynomial equation of
degree n and MAX is the mazimum number of quadratic transformations
that are necessary to decompose any singularity of the curve into simple

points.?

Proof The singularities of a curve are found by solving the simultaneous
system of equations {f; =0, f, =0, f; =0} (Lemma 2.2), which can be
done effectively by using resultants. Let X be the real roots of the resultant
of f; and f, with respect to y, which is a univariate? polynomial in z of
degree O(n?). Similarly, let Y be the real roots of the resultant of f;
and f, with respect to x. Then the singularities of the curve in the real,

affine plane are { (z,y) : z€ X, y € Y and f.(z,y) =0 }. A resultant of

1The procedure of Jenkins and Traub [21] for computing real roots is a good choice.

3MAX will usually be 1 or 2. For example, MAX is 1 if all of the singularities are
ordinary. : .

3We can remove the homogeneous z-variable by setting it to 1, since we are only con-
cerned with finite singularities.
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a pair of polynomials of degree at most d in v variables can be computed
in O(d*®*! log d) time [10]. Therefore, X (and Y) can be computed in
O(n® log n+a[n?]). Since X and Y are of size O(n?) and O(n?) time suffices
to evaluate an equation of degree n, the singularities can be computed in
O(n® log n+ a[n?] +n’) time. The flexes, which are the intersections of the
curve with its Hessian (Lemma 2.2), can also be computed in O(a[n?] +nf)

time.

A curve of order n has O(n?) flexes and singularities (Lemma 2.3).
Therefore, it has O(n?) curve points at its flexes. The bound on the number
of singularities is expressed in terms of the maximum number of double
points: a curve of order n can have at most ("—-1)2&'-3) double points, and
a singularity of multiplicity ¢ counts as ‘-02;1-)- double points. Since O(2t)

pseudo curve points are created at a singularity of multiplicity ¢, A =

2
‘—:—1 < 4 pseudo curve points are created per double point. Therefore, there

are no more than 4 = (1':—1)5("—_2)- = O(n?) pseudo curve points.

Consider the time required to compute the pseudo curve points. It
takes O(d?) time to apply a quadratic transformation or a translation to
an equation of degree d. It takes a[d] time to compute the intersections of
a curve of order d with the y-axis. During the reduction of a singularity
to simple points, each quadratic transformation can double the degree of

the curve’s equation, since y* becomes (zy)*. Therefore, the equation can
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2MAXp during the reduction of a singularity. Finally,

become of degree
O(n?) quadratic transformations are sufficient to reduce all of the singu-
larities (which account for O(n?) double points) to simple points [4]. We

conclude that a (very pessimistic) bound on the time for computing the

pseudo curve points is O(n3(2M4Xn)2q[2MAXy]),

Finally, consider the incidental curve points. Since a line intersects
a curve of order n at most n times (Theorem B.1), each of the O(n?)
tangents at singularities and flexes can intersect the curve in at most n
points. Thus, there are O(n?) incidental curve points, and they can be
computed in O(n2a[n]) time. We conclude that the cell partition has O(n?)

curve points and O(n?) convex segments.

Consider the time required to compute the partners of all of the curve
points. The dominating expense is the computation of the set S(W;) of
Theorem 3.1 for each curve point W. It takes O(ka[n]) time to compute
S(W,) for a curve point in a cell with k curve points, O(k?a[n]) time to
compute S(W)) for every curve point in a cell with k curve points, and
O(X k?a[n]) time to compute S(W;) for every curve point in every cell,
where k; is the number of curve points in cell C;, and the sum is over
all cells C;. Since Y ki = O(n3), O(T k¥a[n]) = O(nfa[n]). Therefore,
partner computation takes O(nfa[n]) time. (This is another example of

an unrealistically pessimistic worst case: a typical curve point will not lie
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on the boundary of a multisegment cell and its partner will be computed
in constant time.) We conclude that preprocessing takes O(a[n?] + n® +

n2a[2MAX ] | n93 MAX 4 n64(n]) time.

The dominating expense of the actual sorting is the determination of the
convex segment that each sortpoint lies on. In the worst case, it requires
O(ka[n]) = O(n3a[n]) time to compute the set S(z) of Theorem 3.2 for a
sortpoint in a cell with k curve points, and thus O(mn3a[n]) time for all
sortpoints. The sorting of p points on a convex segment takes O(p) time
(Theorem 2.1). Therefore, in the worst case, the convex-segment method
requires O(mn?a(n]) time to traverse O(n®) convex segments and sort the

points on these convex segments. |

Corollary 4.1 Let C be a plane curve of order n. If C has no eztraordinary
singularities and its cell partition contains no multisegment cells, then m
points of C can be sorted in O(m + n3) time, with O(n® + n?a(n| + a[n?])

preprocessing.

Corollary 4.2 m points on a convez segment of a plane curve of order n

can be sorted in O(m) time, without preprocessing.
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4.2 Empirical Results

This section presents execution times for the sorting of some representa-
tive curves by the convex-segment and parameterization methods. These
empirical results are a good compiement to the complexity analysis of Sec-
tion 1, since they capture the expected case, rather than the worst case,
behaviour of the methods.

We do not consider the time required to find a parameterization of the
curve or to find the flexes and singularities of the curve. The computation
of a curve’s parameterization is of approximately the same complexity as
the computation of a curve’s singularities and flexes, so our comparison of
sorting methods should not be biased. Moreover, each of these computa-
tions is a preprocessing step that is entirely independent of sorting, and the
parameterization, singularities, and flexes of a curve will (or should) often
be computed already.

Our results are execution times in seconds on a Symbolics Lisp Machine,
and the time spent in disk faults and garbage collection is not included.
The source code is written in Common Lisp. The preprocessing time for
the convex-segment method is the time required to create the cell partition
and find the partners of all of the curve points. The preprocessing and sort
times for the convex-segment method are the average of twelve trials, while..

the sort times for the parameterization method are the average of three
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trials.

We consider five examples: two rational cubic curves and three non-
rational quartic curves. Qur first example illustrates the superiorify of the
convex-segment method. Even when the preprocessing time is added to the
sort time, the convex-segment method solves this problem more efficiently
than the parameterization method. The convex-segment method’s rate of
growth is also much smaller. The inferiority of the crawling method is

obvious from this example, and we do not consider it further.

Example 4.2.1 A semi-cubical parabola
Equation of the curve: 27Ty? — 2z% =0
Preprocéuing time: 0.27 seconds

Parameterization: {z(t) = 6t%, y(t) =4t : —00 < t < +oo}

number of sortpoints 1 2 6

convez-segment .01 | .08 | .03

convez-segment + preprocessing | .28 | .30 | .30

parameterization 147 | .63 | 1.04

crawling 3.14 | 2.89 | 4.77

The second example illustrates that there is sometimes a tradeoff be-

tween the convex-segment method (a very fast sort that requires prepro-
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Figure 4.1: Semi-cubical Parabola

cessing) and the parameterization method (a moderately fast sort that does

not require preprocessing).

Example 4.2.2 Folium of Descartes
Equation of the curve: z3 +y* — 15zy = 0

Preprocessing time: 2.81 seconds

Parameterization: {z(t) = fj—:a, y(t) = %‘:f ! =0 < t < +oo}
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number of sortpoints 1 2 5

0.01 | 0.01 | 0.05

convez-segment

|-

0.04

convez-segment + preprocessing | 2.82 | 2.82 | 2.85 | 2.85

parameterization. . 1.01 | 1.07| 1.76 | 3.17

\

Figure 4.2: Folium of Descartes

The remaining three curves are non-rational, so they are only sorted with

the convex-segment method.

Example 4.2.3 Devil’s Curve (with several connected components)
Equation of the curve: y* —4y? —z* + 922 =0

Preprocessing time: 2.20 seconds
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number of sortpoints 1 4 7
convez-segment . 0.090.090.10

convez-segment + preprocessing | 2.29 | 2.29 | 2.30

Figure 4.3: Devil’s curve

Example 4.2.4 Limacon
Egquation of the curve: z* +y* + 222y% — 1223 — 12292 + 2722 - 92 =0

Preprocessing time: §.62 seconds

number of sortpoints 2 5 8
convez-segment .09 | .30 35

convez-segment + preprocessing | 4.70 | 4.92 | 5.17
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Figure 4.4: Limacon

Example 4.2.5 Cassinian oval
Equation of the curve: z* + y* + 22%y? + 50y% — 5022 — 671 =0

Preprocessing time: 5.36 seconds

number of sortpoints 2 4 6

convez-segment A4 0 .17 | .19

convez-segment + preprocessing | 5.50 | 5.53 | 5.55

4.3 The Superiority of the Convex-Segment

Method

Section 1.3 established that certain curves cannot, or should not, be sorted
by the parameterization method: curves that do not possess a rational

parameterization and curves for which a rational parameterization cannot
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A
N

Figure 4.5: Cassinian oval

be efficiently obtained. Therefore, the convex-segment method is often the

only viable way to sort points along a curve.

For those curves that can be sorted in either way, the convex-segment
method is generally far more efficient than the parameterization method
at the actual sorting of the points. However, the parameterization method
does not have the expense of preprocessing that the convex-segment method
does. Therefore, when only a few points need to be sorted (over the entire
lifetime of the curve) and the sorting of these points must be done soon
after the definition of the (rational) curve, the parameterization method
will usually be the method of choice. The expense of preprocessing will
be warranted when sorting time is a valuable resource, as in a real-time
application, or when the number of points-that will be sorted is large. The

convex-segment method will also be preferable when the curve is defined
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long before it is ever sorted (as with a complex solid model that requires
several days, weeks, or even months to develop), since the preprocessing
can be done at any time that processing time becomes available before the
sort.

We conclude that the convex-segment method is an effective new method
for sorting points along an algebraic curve, and that in many situations it

is either the only or the best method.



Chapter 5

Applications, Future Work,

and Conclusions

This chapter creates a context for sorting within the area of geometric
modeling. Section 1 cites several applications of sorting, thereby establish-
ing its importance. Section 2 discusses various research problems that are

suggested by our work on sorting, and we end with some conclusions.

5.1 Applications

The sorting of points aléng an algebraic curve has many applications in ge-
ometric modeling. The components of a geometric model are faces, edges,

and vertices, which are represented by patches of algebraic surfaces, seg-
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ments of algebraic curves, and points, respectively. The sorting of points is
a problem that arises naturally in the manipulation of these components.

We consider a number of applications.

Problem 1 Given a set S of points on an algebraic curve C, determine
the points of S that lie on an edge E of C.

Solution E is defined by the implicit equation of C and two endpoints V
and V5. If S is sorted along V;Vg, then the points of S that do not lie on
the edge will be ignored and the sorted list will only contain the points of

S that lie on the edge.

Problem (1) is a very basic problem in geometric modeling. It must be
solved regularly in operations ranging from intersection to display. We of-
fer two examples of its use.

Problem 2 Compute the intersection of two edges.

Solution Let E; and E; be edges of the curves C; and C», respectively.
Once the points of intersection of the two curves have been computed (per-
haps by resultants), Problem (1) can be applied (twice) to determine the
points of C1NC; that lie on E1N E;, since E1 N E; = [(C1 N Cy) N Ey| N E;.
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Problem 3 Determine a bounding box for an edge E.

Solution In motion planning, it is useful to approximate a geometric model
by a simple superset, because this makes interference detection simpler.
The more expensive interference detection with the geometric model can
be reserved for-those situations-when-the solid approaches-close enough to
an obstacle that interference is detected with the simple superset. Bounding
regions are also useful for problems such as (1) above, for they allow points
that clearly do not satisfy a condition to be quickly discarded. We can
define a bounding rectangle for an edge E by the minimum and maximum
x and y values of E. Consider the computation of the maximum x value of
E. (The other extrema are computed in a similar manner.) E’s x-maximum
is either attained at a local x-maximum of E’s curve or at an endpoint of
the edge. Therefore, in order to determine the maximum x-value of E, the
local x-maxima of the curve must be computed (as solutions of fy = f =0,
where f is the implicit equation of E’s curve), and then restricted to the

subset that lies on E. This restriction is an instance of Problem (1).

Problem 4 Determine if a point lies within a piecewise-algebraic plane
patch.
Solution This problem is fundamental to the display of a geometric model.

A piecewise-algebraic plane patch is defined by a closed boundary consist-



100

ing of a simply-connected collection of plane algebraic curve segments. The
problem of deter;nining whether a point Q lies within the closed boundary
reduces to the problem of sorting points by ;Le following mapping. Con-
sider the straight line L defined by a vertex V on the boundary and the
poinlt Q We compute the set 7 of intersections of L with the algebraic
curve segments of the patch’s boundary, through several applications of
Problem (2). The points of 7 and the point Q are then sorted along the
line L. By applying the Jordan curve theorem, the points of Z can be

grouped into pairs, and inside/outside intervals can be determined. Q lies

within the patch if and only if it lies on an inside interval.

Figure 5.1: Deciding if Q lies inside the plane patch

Example 5.1.1 Consider the plane patch of Figure 5.1. T = {Ly,Lq,L3,V'}.
The sorted order of TU {Q} is L1, L2,V,Q, L3. Therefore, the intervals of

L that are inside the patch are L1L; and V L3. Since Q lies on one of these
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inside intervals (V L3), it lies inside of the patch.

Problem 5 Determine if a point lies within a piecewise-algebraic convex
surface patch.

Solution A piecewise-algebraic surface patch is defined by a closed, simply-
connected loop of boundary edges on a primary surface F'. The edges are
algebraic space curve segments defined by the intersection of secondary sur-
faces G; with the primary surface F.. This problem is a direct extension
of Problem (4), with one exception. Instead of using a line L defined by
the point Q and a vertex on the boundary, we use a planar cross-section
of the primary surface, where the plane is defined by Q and two vertices
on the boundary. The primary surface is assumed to be convex in order
to guarantee that the planar cross-section is a connected curve and that
a sort of points along the cross-section is therefore well-defined. Since we
are now sorting points along a curve rather than a line, nontrivial sorting
is required both to find the points of intersection with the patch boundary

and to sort them.

Problem 6 Compute the intersection of two solid models. (See Sec-

tion 1.1.)
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These six problems give an indication of the importance of sorting points
along an algebraic curve. They also reveal that there are essentially two
ways in which sorting can be used: Problems (1)-(3) use sorting as a means
of restricting a set of points to a specific subset, while Problems (4)-(6) use

sorting as a means of introducing an even=odd-parity to-a setof points.

5.2 Future Work

5.2.1 Parameterization

Our investigation of sorting has revealed some problems that require fur-
ther attention. One of the most obvious areas for future research is the
parameterization of surfaces of higher degree. Appendix C presents some
methods for parameterizing surfaces of degree two and three, but we know

of no practical methods for higher degrees.

5.2.2 Curves with Several Connected Components

Curves with several connected components are more challenging than curves
with a single connected component.! Example 5.2.1 illustrates that all of
the sortpoints must lie on the same connected component when the convex-

segment method is used to sort points on a connected component that has

1Just as multisegment cells are more challenging than cells with a single convex segment.
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no curve points. This requirement is not necessary (i.e., the sortpoints can
be strewn over several connected components) if the points are being sorted
on a connected component CC that contains at least one curve point, since
a convex-segment traversal is then possible. Any sortpoints that do not
lie or; CC will be ignored (using Theorem 3.2) in the same way that any

sortpoints on CC that do not lie on the sort segment are ignored.

Example 5.2.1 The quartic curve of Figure 5.2 has four connected com-
ponents, but no flezes or singularities. Thus, this curve has no walls in
its cell partition, and it will appear as if all of the sortpoints lie on the
same convez segment. This will not be a correct conclusion unless all of the

sortpoints lie on the same connected component.

a

/

Figure 5.2: These sortpoints appear to be on the same convex segment
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Unfortunately, the points that are to be sorted may lie on several con-
nected components. For example, the sortpoints will often be generated
by intersecting a curve with another curve or surface (as evidenced by
the previous section), and the resulting points may be spread over sev-
eral connected components. Therefore, before sorting can proceed, those
sortpoints that lie on connected components with no curve points must
be divided into connected components. The most obvious way of doing

this is to create a boundary about each connected component (Figure 5.3).

a

/

Figure 5.3: Component separation of a quartic curve

The creation of these boundaries turns out to be simple for cubic curves,
however a general solution may be very difficult.? Collins’ cylindrical alge-

braic decomposition provides a possible solution. This decomposition can

2Hilbert’s 16** problem is to determine the relative position of the connected compo-
nents of a nonsingular algebraic plane curve (22].
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be used to determine the topology of an algebraic curve [6,23], from which
it should be straightforward to determine boundaries for each connected
component. Although the computation of a cylindrical algebraic decom-
position of R4 is double-exponential (or parallel-exponential) in d, we are
only concerned with decompositions of the plane;so-d-=-2-and-the method
may be tractable.

The sorting of points along a curve of several connected components
is also difficult when the parameterization method of sorting is used. The
following questions arise: (1) should each connected component have a
separate parameterization? (2) if so, how does the implicit equation of
a curve produce several, independent parameterizations? (3) if not, how
can a single parameterization be split over several connected components
(i.e., how can the range of parameter values that is associated with each

connected component be determined)?

5.2.3 A Theory of Finite Precision

The algorithms of geometric modeling must be implemented on a computer
of finite precision. This can cause instabilities that, because of their geomet-
ric nature, are quite different from the instabilities studied in conventional
numerical analysis. For example, in the creation of a cell partition, the tan-

gent of a flex is intersected with the curve. Since the curve can be very flat
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about a flex, a small error in the tangent will cause the tangent to have more
thg.n one intersection with the curve near the flex. Although this particu-
la.r- problem is easily solved (by merging the intersections), finite precision
problems may eventually impede progress in other applications. There-
fore, the development of a systematic theory for the resolution of geometric
préblems arising from finite precision would be an important contribution

to geometric modeling.

5.2.4 The Importance of Flexes, Singularities, and

Projections

The convex-segment method has revealed the importance of the singulari-
ties and flexes of a curve. Singularities are also used to develop a curve’s
parameterization (Section 1.3.1). It may be advisable to include flexes
and singularities as an integral component of a curve’s representation in
a geometric model. (For a space curve, the singularities and flexes of its
projection would be stored.) Certainly, the discovery of more efficient algo-
rithms for the computation of singularities and flexes would be a significant
contribution.

Our investigation of sorting has also demonstrated that the best way
to solve a problem for a space curve may be to reduce the dimension, and

hopefully the complexity, of the problem by translating it to an equivalent
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problem for a projection of the space curve.

5.3 Conclusions

We have developed a new method of sorting points along an algebraic curve
that is superior to the conventional methods of sorting. Many curves that
could not be sorted, or that could only be sorted slowly, can now be sorted
efficiently. The development of our new method has also illustrated how
an algebraic curve can be decomposed into convex segments, and how the
ambiguity of sorting through a singularity can be resolved.

The creation and manipulation of curves and surfaces is of major impor-
tance to geometric modeling. A sophisticated geometric modeling system
should offer a rich collection of tools to aid this manipulation. Our work on
sorting has been an attempt to develop one of these tools. The progress of
geometric modeling depends upon the development of more tools and upon
the extension of more computational geometry algorithms from polygons

to curves and surfaces of higher degree.



Appendix A

Definitions

The primary sources for the definitions of this appendix are Lawrence [27]
and Walker [35].

An algebraic plane curve is the zero set of a bivariate polynomial
of positive degree over a field K (in our case, K = R). That is, a typical
algebraic plane curve is { (x,y) | F(x,y) = 0 and F(x,y) is a polynomial
of degree n > 0 in x,y with coefficients in a field K}. The order of an
algebraic plane curve is the degree of its defining polynomial. A conicis a
plane curve of order two.

A space curve is a curve that does not lie in a plane. An algebraic
space curve is the intersection of two surfaces, each of which is represented
by a trivariate polynomial of positive degree over a field K.

The implicit representation of a curve or surface is its representation

108
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in terms of the zero set of a system of equations.

Let P be a point of the curve f(z,y) = 0. Suppose that all derivatives
of f up té and including the r — 1*¢ vanish at P, but that at least one
r*? derivative does not vanish at P. P is called a point of multiplicity r.
Every line through P has at least r intersections with the curve at P, and
precisely r such lines, properly counted, have more than r intersections.

The exceptional lines are called the tangents to the curve at P.

A singularity (or singular point) is a point of multiplicity two or more.
A singularity is a point where two different branches of the same connected
component of a curve touch or a point where the curve changes direction
sharply. A simﬁle (resp., double) point is a point of multiplicity one (resp.,
two). A singularity of multiplicity ris orciinary if its r tangents are distinct.
A singularity is extraordinary! if it is not ordinary (Figure A.1(c)). A
node is an ordinary double point, and a cusp is an extraordinary double
point (Figure A.1). A segment is nonsingular if it does not contain any

singularities.

Any polynomial F(z,y) of degree n has a factorization F = 1 F;... F;
into irreducible polynomials, unique to within constant multiples. The
curves Fi(z,y) =0, ..., F(z,y) =0 are called the irreducible compo-

nents of the curve F(z,y) = 0. An irreducible curve is a curve with one

1This term is not from the literature.
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(a) (b) (c)

Figure A.1: (a) node (b) cusp (c) extraordinary singularity

irreducible component.

Two points of a cu1;ve are connected if they can be joined by a contin-
uous path on the curve. A connected component of a curve is a maximal
subset of the curve such that any two points of the subset are connected. A
connected component of an algebraic curve is either unbounded or it forms
a closed cycle. A curve is closed if all of its connected components are
closed cycles, otherwise it is open.

g: I C R — R?is a parameterization of the plane curve C if it
puts the points of the curve into an almost one-to-one correspondence with
the points of a line segment, by expressing the coordinates of the curve
independently as functions of a single variable t: x=j(t), y=k(t). More

formally, g(t) = (x(t),y(t)) : I £ R — R?is a parameterization of the plane
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curve f(x,y) = 0 if and only if

(i) with only a finite number of exceptions, if ¢g € I, then
f(x(t0),y(to)) = 0 (i.e., almost all of g(I) is contained in

the curve); and—-

(ii) with only a finite number of exceptions, if (zo,yo) is a
point of the curve, then there is a unique to € I such that
zo = x(%0), yo = y(to) (i-e., g is one-to-one and onto almost

everywhere).

The definition of a parameterization g(t) = (x(t),y(t),2(t)) of a space curve
is similar.

A function f(x) is rational if it can be expressed as the ratio of two
polynomials: f(z) = %((—:-))- A parameterization (x(t),y(t)) is rational if
both x(t) and y(t) are rational.

Let

n

f(z1,...,z;) = ag + @12y + ... + anZ;

g(z1,..-,2,) = bo + b1z, + ... + bz]"

where a;,5; € R[z1,...,Zr-1], @Gnbm # 0, and n,m > 0. The resultant of
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f and g with respect to z, is

a a an
ag Gn-1 Gn
R(z1,...,2,-1) = a ... an
bo b bm
bp ... bm

where there are m rows of a’s and n rows of b’s, the rows being filled out
by zeros.

LetAW:W;v be a convex segment..The inside of the chord Wr W, is the
halfplane that contains W;Wz. The inside of the chord W;’ W is found by
crawling from W) to a point on Wr W3 and determining the side of Wr W,
that this point lies on. The computation of the inside of the chord of each
convex segment that lies in a multisegment cell of the cell partition is a

preprocessing step.



Appendix B

Lemmas

This appendix presents various lemmas and theorems that are important
to the development of the theory of sorting. Due to their technical nature,

we find it more convenient to place these results in an appendix.

Theorem B.1 (Bezout’s Theorem [35, p. 59]) If two algebraic plane
curves, of orders m and n, have more than mn common points, then they

have a common component.

Lemma B.1 ([35, pp. 25, 26, 59]) Let R(z;,...,z,—1) be the resultant
of f(z1,...,2,) and g(z1,...,z,) with respect to z,. R(ai,az,...,a,—1) =0

if and only if there ezists a, such that f(ai,...,a,) = g(a1,...,a,) =0.

Lemma B.2 The tangent of an algebraic curve changes continuously on

nonsingular segments of the curve.
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Proof Since all polynomial functions are continuous, this is a corollary

of Lemma24. |

Definition B.1 A4 polygon is simple if (i) any pair of edges of the polygon
are either disjoint or intersect only at their endpoints, and (i) no more than

two edges intersect at each endpoint.
The two common definitions for convexity of a polygon P are:

o ifv,we Pythen {tv + (1 —t)w |0<t<1}CP

e P ={Th v | Tydi =1,0 < A <1}, where

v1,...,vn are the vertices of P.

We present an alternative characterization of convexity that works with

the boundary rather than the interior of the polygon.

Lemma B.3 Let P = vy ...v, be a simple polygon. P is convez if and only

if, for every edge E = T;v;, the line v:;zj does not intersect P\ E.

Proof =-: Assume that P is convex. Suppose, for the sake of contradic-
tion, that 7;u; is an edge of P such that the line v;v; intersects P \ E. Let
w be the first such intersection and assume, without loss of generality, that
w lies on the ray viv;. Then there exists ¢ € v;w such that z ¢ P, which
contradicts the first definition of polygonal convexity.

«: Assume that, for every edge E = v;v;, the line v:'_{y,- does not intersect
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P\ E. Suppose, for the sake of contradiction, that there exists v,w € P
and t € (0,1] such that X = tv + (1 — t)w ¢ P (Figure B.1). Since v € P
and X ¢ P, vX U {v} must cross the boundary of P, say at e on edge E. v
(or, if v = e, the polygon in the neighbourhood of v) and w lie on opposite
sides of the line defined by E. Therefore, since v,w € P, some edge of P
must cross over E’s line, say at Y. Since P is a simple polygon, Y cannot
be a point of E. Thus, the continuation of E intersects P \ E, a contradic-
tion. Therefore, for all v,w € Pand t € [0,1],tv +(1 —t)w € P, and P is

convex. |

®

Figure B.1: An example for Lemma B.3

Recall from Section 2.2 what it means for a line to cross a curve.

Lemma B.4 A plane curve C crosses a line L at a nonsingular point P if

and only if the number of intersections of L with C at P is odd.

Proof Assume, without loss of generality, that L is the x-axis and P is

the origin. Let N,(0) be a small segment of the curve near the origin: i.e.,
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Ne(0) = { c € C | distg(c,0) < € }, where distc(ci,c2) is the length of the
curve segment between two points ¢;, c3 of C. Sin_ce the directed tangent
to the nonsingular origin is (+1,0) and the tangent to an algebraic curve
changes continuously on nonsingular segments (Lemma B.2), there exists
e > 0 such that no two points of N¢(0) have the same abscissa. Within
this neighbourhood, the curve can be represented By a function y = g(z).

We expand g(z) into a Taylor series:
g(z) = 9(0) + ¢'(0)z + ¢"(0)=” + ... (B.1)

Since the lowest order term in (B.1) dominates all other terms as z — 0,
g(z) changes sign as z changes sign if and only if min{ ¢ | g(0) # 0} is
odd. Also, g(z) changes sign as z ;hanges sign if and only if C crosses L
(the x-axis) at P (the origin). Therefore, C crosses L at P if and only if
min{ i | g((0) # 0} is odd.

Since y—g(z) = 0 represents the curve C near theoriginandz =t¢, y =0
is a parameterization of L, the intersections of L with C near the ori-
gin are associated with the roots of g(t) = 0. In particular, using (B.1)
above, the multiplicity of the intersection of L with C at the origin is
min{ i | ¢()(0) # 0}. Therefore, C crosses L at P if and only if the multi-

plicity of intersection of L with C at P is odd. 1

Lemma B.5 An infinite segment of an algebraic curve cannot be bounded

within a closed region.
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Proof Let S be an infinite segment of an algebraic curve and suppose
that S lies in a closed region. Since S must twist infinitely often to avoid
crossing the boundaries of the region, a line can be found that intersects S
in an arbitrarily large number of points, contradicting Bezout’s Theorem

(Theorem B.1). §

Lemma B.8 Let PQ be a nonconver segment of a curve F such that PQ
contains no singularities or flozes. There ezists a line L that crosses PQ

in at least three distinct posnts.

Proof Since PQ is nonconvex, there exists a line £ that intersects PQ
at least three times, such that not all of the intersections occur at a flex of

even order. There are three cases to consider.

Case 1 If £ crosses PQ in at least three distinct points, then

we are done.

Case 2 Suppose that £ intersects PQ at less than three dis-
tinct points. Since PQ contains no floxes, £ must intersect
PQ at two distinct points. By the pigeon-hole principle,

two of the intersections must occur at the same point. That

is, £ is tangent to the curve at some point.

Case 3 Suppose that £ intersects PQ at three or more distinct

points but crosses PQ at less than three points. Thus, £
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touches but does not cross PQ at some point z. Since
PQ is nonsingular, the tangent changes continuously, so
L must be tangent to PQ at z in order to touch but not

~~
cross PQ.

Therefore, either £ already satisfies the requirements or there exists z € PAQ
such that z’s tangent T, strikes PAQ at another point (Figure B.2). Let
y # = be an intersection of T, with PAQ such that zy lies strictly inside T
(i.e., y is the closest intersection to x). For any € > 0, let L, be the line
such that (i) L. is parallel to T3, (ii) L. lies inside T, and (iii) L is at a
distance of ¢ from T;. It can easily be shown that there exists an ¢ > 0

such that L. crosses the curve at least three times. ||

Figure B.2: Some L, will cross the curve at least three times

Lemma B.7 If W;Wz 13 a convez segment in the cell C, then W, and W,

face each other (with respect to C).

Proof If W; is not a flox, then W, faces W, simply because W must lie

inside of Wj’s tangent by convexity.
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Suppose that W) is a flox and W; lies on W's tangent (Figure B.3).
The convexity of W;Wz implies that a point of W, IA W, lies inside the tangent
of any other point of W;Wz. Therefore, W, will lie strictly inside of the
curve’s tangent as the curve leaves W, along W;I«Vz. That is, W5 and the
outside endpoint of W;'s cell segment with respect to C will lie on opposite
sides of W;. Therefore, W faces W, with respect to C.

By symmetry, W; faces W, (with respect to C). |

Figure B.3: W; lies on Wy’s tangent

Lemma B.8 Let W) and W, be partners. If W; lies on W, ’s tangent, then
W1 must be a floz. (Thus, if W lies on W, '’s tangent, then Wy must lie on

W1's wall.)

Proof Assume that W; lies on W;’s tangent. Suppose that W is an inci-
dental curve point. Since W1 W; is convex, it must look like Figure B.4(a).
Thus, since W;’s tangent is not the same as W;’s wall, W;’s wall must cross

W1W; and split W; W, over two cells, which is a contradiction.
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Suppose that W is a pseudo curve point. Let V be the singularity from
which W) was derived. Either the singularity’s tangents cross WS/V; (Fig-
ure B.4(b)), a contradiction as in the incidental case, or W;Wz intersects
V?V; (Figure B.4(c)), causing a singularity in the interior of the cell, which

is also a contradiction (since singularities will only occur on the boundaries

of a cell, by the definition of a cell partition). |

Figure B.4: (a) incidental W; (b-c) pseudo W)

Lemma B.9 Let z be a point of a curve such that the tangent of z strikes
the curve again at y. Let z € zy \ £Y. Suppose that y lies strictly outside of
the curve’s tangent as the curve leaves z along zy (Figure B.5(a)). Then

zy must contain a floz, a singularity, or a point of .

Proof Suppose that zy does not contain a flox or a singularity. Thus,
the curve cannot cross itself on zy and there cannot be any point on Ty

where the curvature changes from concave to convex or vice versa. In other
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x

(a) (b)
Figure B.5: (a) z, y, and z in Lemma B.9 (b) zy without singularities or

floxes

words, £y must spiral around in ever larger circles (Figure B.5(b)). Since
y lies strictly outside of the curve’s tangent as the curve leaves z along
£y, the curve must spiral by an angle of at least 27 to get from z to y.

Therefore, zy must cross zz. |



Appendix C

Parameterization Algorithms

This appendix considers several algorithms that have been developed for
the parameterization of plane curves and surfaces of degree two and three.
The first method proceeds by linearizing the implicit equation of the curve
or surface with respect to one of its variables [2,3|. For example, to param-

eterize a degree two curve, a linear transformation of the form

a1z + by + ¢ _aT +hy+

xY = , =
a3z + byy + c3 a3z + b3y + c3

is applied to the equation of the curve, where b;, b9, and b3 are chosen so

that the y? term is eliminated, and a; and ¢; are chosen so as to make the
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transformation well-defined (by ensuring that the matrix

al b] (:11

a; by c

| a3 b3 c3 |

is nonsingular) [2]. The resulting equation is linear in y and easy to param-

eterize.

Example C.0.1 Consider the parameterization of the circle z* + y? — 1 = 0.
The implicit equation is linearized with respect to y by applying the trans-

; — Zntyn I
formation z = Y = g

2P+ -1=0 — ()24 4 1=0

- zn2+h2+22n!n+1"!121 =0

va -
E:c,z,+2:t,.y,.+1=0

This equation is simple to parameterize, because we can solve for y, in terms

2 . 1 ge C. 2
of Zn (Yyn = ——;:n—l), ytelding the parameterization ¢, = t, y, = —tzt“l. A
parameterization of the original circle is found by substituting back into the

transformation equations:

Tn t(2t) —-t2-1 t2-1 1-t?
T = 1 =
Yn —t2 -1 —t2-1 —t2-1 1+1¢2
1 —2t
y = — =
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The parameterization of plane curves of degree three and of surfaces
of degree two and three by the linearizing technique is analogous. The
linearizing technique becomes impractically slow for degrees four and five
[7], and it does not generalize to higher degrees (because of the lack of a
general formula for the solution of equations of degree five or more [16]).

Another method for parameterizing curves of degree two is to solve
for the variables in a template parameterization [19]. Since a plane curve
of order two can be parameterized in homogeneous coordinates by four
polynomials of degree two (2], a template for the parameterization can be

created:
3 axt?+bxt+c
T dxt2+ext+ f

g*xt? 4+ h*xt+j
kxt2+1lxt+m

z(t)

y(t) =

Two points of the curve and the tangents at these points are assumed to
be known. These points and tangents, along with some other conditions,
are used to solve for the variables in the template parameterization by
substituting into the equation of the curve. It is not clear whether this
technique can be generalized to higher degrees, but the preliminary evidence
is not encouraging.

A surface of degree two can be parameterized by normalizing the sur-
face’s equation to one of a number of forms for which a parameterization

is already known, such as 2 + y?> — 1 = 0 if the surface is an elliptic cylin-



125

der [28]. This technique collapses for surfaces of higher degree, since no
exhaustive classification, and thus no class of normal forms, is available for

these surfaces.
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