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Abstract

Ruled surfaces are a very useful class of surfaces for solid modeling. They
share properties of both curves and surfaces, which not only makes them easy to
work with but also useful in the difficult transition between curves and surfaces
in solid modeling. They are a naturally occurring surface in man-made objects,
and simple ruled surfaces are already widely used in most solid models.

In this paper, the two key algorithms that must be developed in order to use
algebraic ruled surfaces, and to realize their 2%—dimensional nature, are presented:
(1) how to find the generator through a given point, and (2) how to find a plane
directrix curve. We then immediately show how these two algorithms can be
used to solve two operations on algebraic ruled surfaces: parameterization and
intersection. We also show how to identify that an algebraic surface is ruled from
its equation. The theory developed in this paper serves to clarify some of the

classical definitions of ruled surfaces.

1 Introduction

Surfaces are more complicated objects than curves. Consequently, a number of problems in

geometric modeling have been solved for curves but not for surfaces. Ruled surfaces (which
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are surfaces that can be generated by sweeping a line through space, or more specifically,
sweeping a line along a directrix curve) are a useful class of surfaces, because they bridge
the gap in complexity between curves and surfaces. Algorithms for ruled surfaces tend to be
easier to develop than algorithms for arbitrary surfaces, since a ruled surface can be defined

by a curve (the directrix curve), or alternatively by a collection of lines.

Ruled surfaces are not only of interest because they are easy to work with. Many of the
surfaces that solid modelers use as primitives from which to build models are ruled surfaces.
Three of the four most common surfaces (the plane, cylinder, cone, but not the sphere) are
ruled, as are four of the six quadric surfaces (adding the hyperboloid of one sheet and the
hyperbolic paraboloid). Ruled surfaces also arise naturally in man-made objects, since the
sweeping of a line through space is a fundamental operation in machining. Gordon says
“warped cylinders with three directrices are widely used in engineering (in designing rowing
screws, propellers, automobile bodies, etc.)” [8, p. 206]. They are prevalent in the design of
ship hulls and aircraft bodies [3], [7, p. 228]. Finally, ruled surfaces bear a strong relationship
to the generalized cylinder method of shape representation that is widely used by the vision

community [16, 21].

In this paper, we show how to perform the crucial reduction step from ruled surfaces to
curves: finding a directrix curve. Intuitively, the directrix curve is the curve that the line
sweeps along in generating the ruled surface. We prove that a plane directrix curve can
always be found. Next, we present the complementary reduction step from ruled surfaces
to lines: finding the direction of the line at a given point of the directrix curve. This can
be viewed as a decomposition of the ruled surface into lines. The solutions to these two

problems allow one to retrieve the generating sweep of a ruled surface.

Once the generators and directrix curve of a ruled surface are known, operations with
the ruled surface are much simplified. To exhibit this, we show how to parameterize a ruled

surface and how to intersect a ruled surface with another surface.

The paper is structured as follows. Section 2 presents key definitions, some of which
are purposely changed from the typical ones in the literature in order to satisfy the more
constructive requirements of this paper. Section 3 establishes some basic facts about singu-

larities that are important for the rest of the paper. The core of the paper is in Sections 4



and 5, where a method for finding the generator through a point, for identifying a ruled
surface, and for finding a directrix curve are presented. This work also clarifies the notion
of ruled surface, by proving the equivalence of two definitions of ruled surface. Section 6
discusses the parameterization of ruled surfaces and Section 7 develops the advantages of
a line decomposition of a ruled surface, including intersection. The paper ends with some

conclusions and directions for future work.

The results of this paper extend [11]. For other work on ruled surfaces, the reader is
referred to discussions of lofted surfaces (e.g., Farin [6], Rogers and Adams [19]) and Ravani’s

work on patching with ruled surfaces [17, 18].

All curves and surfaces in this paper, including ruled surfaces, are assumed to be non-
linear, irreducible, and algebraic. Recall that a surface is algebraic if it can be defined by a
polynomial f(z,y,z) = 0. It is reducible if it can be expressed as the union of two algebraic

surfaces.

2 Definitions

In this section, we introduce definitions for the ruled surface and its key components. There
are several choices for the definition of a ruled surface. The weakest definition is that a ruled
surface is (1) a surface that is equal to the union of a set of lines. (Equivalently, through
every point of a ruled surface R, there exists a line that is completely contained in R.) A
stronger definition that is the usual definition in the mathematical literature [5, 22] and
the one that we shall use is (2) a surface that can be generated by smoothly sweeping a
line through space (see Figures 1 and 2). (More formally, a ruled surface is the image of a
continuous map S : I C R — R®, where S(¢) is a line for all ¢ € I. We also insist that the
map is one-to-one almost everywhere: we do not want sweeps that return to sweep over a
portion of the surface a second time.) An even stronger definition is (3) a surface that can
be generated by sweeping a line along a plane algebraic curve. This definition is motivated
by the observation that all of the quadric ruled surfaces can be generated by sweeping a line
along a line or ellipse. We shall prove that this strongest definition is actually an equivalent

definition when the surface is algebraic (Corollary 5.3).



A straight line that lies in a ruled surface is called a generator of the surface. Usually,
there is only one generator through a point of a ruled surface. If there are two or more
generators through almost every point of a ruled surface, then the ruled surface is doubly
ruled, otherwise it is singly ruled. The only doubly ruled algebraic surfaces are the plane,

the hyperbolic paraboloid, and the hyperboloid of one sheet [9].

A simple definition of a directrix curve in the literature is a curve on the ruled surface
that is intersected by every generator of the surface [22]. However, this definition does not
lend itself well to use in geometric modeling algorithms. For example, even the vertex of
a cone would be a directrix curve under this definition. In particular, it should be easy to
generate the surface from the directrix curve. Thus, we use a more pragmatic definition:
a directriz curve of the ruled surface R is a curve C on R such that the generators that
intersect C, choosing only one generator for every point of C, are sufficient to generate R

(i.e., these generators densely cover R, leaving at most a set of zero measure’

uncovered).
A directrix curve C is (almost) strong if (almost) every point of C' is intersected by exactly

one generator.

Example 2.1 An elliptical cross-section of a hyperboloid of one sheet is a directriz curve.

An elliptical cross-section of a circular cylinder or cone is a strong directriz curve.

As it is presently defined, there is no assurance that the ruled surface can be generated
by smoothly sweeping a line along a directrix curve. In particular, the lines that intersect a
directrix curve are enough to generate the surface, but it is not clear that it is possible to
find a smooth sweep through them. We now establish this fact for almost-strong directrix

curves.

Lemma 2.1 Let R be a ruled surface and let S be an almost-strong directriz curve of R.

Then R can be generated by sweeping a line along S.

Proof: By definition, R can be generated by sweeping a line through space. We shall
show that the line must actually sweep along S. Suppose that the sweep leaves S at z. It

1The set A is dense in the set B if for each = in B and each open set J containing @, J meets A [2]. The
set C is of zero measure in the set B if B\C is dense in B. For example, a finite set of points and a line are

both of zero measure in a cylinder.



must return to = again and this time stay on the curve S, otherwise points of S in some
neighbourhood of = will not be visited by the sweep. It suffices to show that the sweep is
always in the same orientation when it returns to = to resume the sweep along S. This is
sufficient since it shows that it is possible to sweep smoothly along S without leaving: if the
sweep ever leaves S at z, then one can simply follow the alternate direction of the sweep
from « that stays on S rather than leaving. Since this sweep passes through all of the points
of S, which is an almost-strong directrix curve, it densely covers the surface (i.e., generates

the surface).

Suppose that the sweep leaves S at xz. If there is only one generator through z, then
the sweep must be in the same orientation when it returns to z. If there is more than one
generator through z, then the sweep can return to z in any of the orientations of these
generators but when it returns to stay on the curve S it must be in the same orientation
as when it left the curve at = originally, for the following reason. Of two adjacent points
on an almost-strong directrix curve, only one can be intersected by two or more generators
(by definition) and only one of these two or more generators can smoothly change into the
single generator of the adjacent point. Therefore, if z_. and z,. are the two points of S
infinitesimally close to = on either side, there is a unique generator through =, say L., that
smoothly changes into the generators through z_. and z,.. When the sweep leaves S at it
must be in the orientation L., and when it returns to sweep through = and continue along

S to the previously unvisited neighbourhood of z, it must also be in the orientation L,. B

Lemma 2.1 shows that the term ‘directrix curve’ is well chosen: a directrix curve does
indeed direct how the line should be swept through space. In Section 5, we will show that

every singly ruled surface has an almost-strong directrix curve.

3 Facts about singularities of surfaces

We begin with some theory about the singularities of a surface, which play a key role in
the development of our algorithms (as they do in most algorithms that deal with curves and
surfaces). Geometrically, a singularity of a surface is a point at which the tangent plane

is undefined [9]. Algebraically, a singularity of the surface f(z,y,z) = 0is a point P such



that (grad f)(P) = 0 and f(P) = 0 [15], where (grad f)() is the gradient of f, the vector
of its partial derivatives. To see the equivalence of these definitions, recall that the tangent
plane of a nonsingular point P is the plane perpendicular to the surface normal at P and

(grad f)(P) is the surface normal of a nonsingular point.

Before we can continue, we must present a very important theorem from algebraic geom-

etry.

Theorem 3.1 (Bezout’s Theorem [10, 15])

(a) An algebraic curve of degree m and an algebraic curve of degree n have at most mn

intersections, unless one of the curves is contained in the other curve.

(b) An algebraic curve of degree m and an algebraic surface of degree n have at most mn

intersections, unless the curve is contained in the surface.

(c¢) An algebraic surface of degree m and an algebraic surface of degree n intersect in a col-
lection of algebraic curves, unless one of the surfaces is contained in the other surface.

The sum of the degrees of these curves of intersection is at most mn.

Lemma 3.1 The set of singularities of an irreducible algebraic surface is a finite set of

algebraic curves and a finite set of points.

Proof: The proof is an application of the surface-surface and curve-surface versions of
Bezout’s Theorem to the intersection of four surfaces. By Theorem 3.1c, the solution set
of f,=0,f =0 is a finite set of algebraic curves, since f is irreducible and f is not a
component of f, (being of higher degree). Thus, (f, =0,f =0),f, =0 is a finite set of
points and algebraic curves (Theorem 3.1b). Similarly, (f, =0,f=0,f,=0),f. =01is a

finite set of points and algebraic curves.

We now move on to the actual algorithms for ruled surfaces.



4 Computing the generator through a given point

In sweeping a line through space, it is not enough to know the curve along which to sweep.
One must also know the direction of the line at every point of the curve. Thus, a crucial
algorithm for ruled surfaces is computing the generator through a point. It is only necessary
to find generators through nonsingular points, since we shall find a directrix curve that
only contains a finite number of singular points. The formula for the generator through a

nonsingular point P of the ruled surface f(z,y,z) = 0 should depend upon f and P.

Clearly, the line P + ¢V is a generator through P if and only if f(P +tV) = 0 for all ¢.
f(P+tV) =0 is an equation of degree n in the four variables V = (v, v,,v3) and ¢, where n
is the degree of the surface f. P will be treated as a symbolic constant in this equation, since
the formula for P’s generator should depend upon P. We use the following two observations

to remove two of the variables from the equation:

(1) A generator through a point P of a ruled surface is contained in P’s tangent plane [22].
This implies that V - (gradf)(P) = 0 if P + ¢tV is a generator through P. This is a
linear equation in vy, vs, and vz, which can be used to solve quickly for one, say v;,
in terms of the other two. (If P is a singularity, then (grad f)(P) = 0 and the above
equation is trivial rather than linear. Thus, the formula that we develop will not be

valid for singular points of the surface.)

(2) Only V’s direction is important, not its length. Therefore, one of V’s coordinates (say
v;) can be set to 1. One can always choose j # ¢, because if v; is the only nonzero
coordinate of V, it cannot be a linear combination of v;g; and v;g2. Both possibilities,
vig1 = 1 and v;g2 = 1 (where @ is addition mod 3), should be considered independently

because the choice of v;g; = 1 is invalid if v;g; is actually zero in the solution.

Two variables are eliminated by (1) and (2). Thus, (1) and (2) reduce f(P +tV) =0
to an equation E in ¢ and (without loss of generality) v;. All that remains is to solve for
v; in E. Viewed as a polynomial in ¢, E has an infinite number of roots. Thus, each of its

coeflicients must be zero, where the coeflicients are polynomials in v;. This creates a system



of at most n equations in v;. The system of equations will have one or two solutions for vy,

depending on whether the surface is singly or doubly ruled. (See Section 4.1.)

The system of univariate equations in v; can be solved by applying resolvents [4] from
elimination theory [23] (Du and Goldman [4] solves precisely this problem). Another method
of solving for v; is outlined in Remark 4.2. If all solutions are invalid (e.g., complex), then we
must have set the wrong v; to 1. Therefore, we return to step (2) and set the other variable

to 1. Finally, each v; solution is grown into a V = (v1,v2,v3) vector.

Example 4.1 f(z,y,z) = y*> — 2 — 2z = 0 is the equation of a hyperbolic paraboloid.

grad f(z,y,z) = (—2z,2y,—1) and V - grad f(P) = —2p;v1 + 2psvs — v3, which can be used to
set v3 = 2pavy — 2p1vy. By setting vy = 1, f(P + tV) becomes t*(1 — v?). This polynomial
is identically zero (when viewed as a polynomial in t), leading us to conclude that all of
its coefficients are zero. That is, 1 — v} = 0 or vy = +1. (This is a rather trivial system
of equations.) Therefore, V. = (1,1,2ps — p1),(—1,1,2p2 + p1). See the red generators in
Figure 1.

In this example, notice that there is no linear or constant term in f(P +¢V) = t3(1 —v?).
This is not a coincidence. After the elimination of two variables using (1) and (2), f(P+tV)
will never have a linear or constant term, and thus the system of equations in v; actually
has at most n — 2 equations. Since f(P) = 0 (P lies on the surface), the constant term of
f(P+1tV) is zero. Similarly, since V -grad f(P) = 0 (by our choice of v; in (1)), the constant
term of V - grad f(P +tV) is zero; since V - grad f(P + tV) is the derivative of f(P +tV)
with respect to ¢, this implies that the linear term of f(P + ¢V) is zero.

Example 4.2 Consider the ruled cubic f(z,y,z) = 2> —y> + zyz = 0, called Cayley’s ruled
cubic [22]. We have
f(P +tV) = t*(viv303 — v3)

—|—t2(vf + V1V2P3 + V1V3P2 — 3”3?2 + p1v203)
+t(2p1v1 + p1pavs + p1psva + Papsvs — 3p§v2)

which yields the system of equations (ignoring the linear term which will disappear):



Figure 1: A hyperbolic paraboloid

V1 VU3 — vg’ =0
2 2
v{ + v1V2Pp3 + v1V3Pp2 — V3P + p1vavs =0

Using V - (grad f)(P) =V - (2p1 + paps, —3p3 + p1ps, p1p2) = 0, one can solve for

—v1(2p1 + pap3) — va(p1ps — 3P§) (1)
P1p2

Vg =

P
p1+p2ps’

We then set vo = 1.2 A solution of the above system yields v; = Thus, the unique

generator through a point P = (p1,p2,ps) of Cayley’s ruled cubic is P + tV where
2
e (2)
P1+p2ps’ Pt paps P2
For example, the generator through (1,1,0) is (1,1,0) +¢(1,1,1). See the red generator in

V = (’1)1,’1)2,’03) = (

Figure 2.

?Note that if vy = 0, the coefficient of the quadratic term of f(P + tV) is a quadratic equation in v;
whose only solution is v; = 0 (unless p; + paps = 0, which implies P is a singularity as shown below in

Remark 4.1). This leads to the invalid solution V' = (0, 0, 0).



Figure 2: Cayley’s ruled cubic
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Remark 4.1 Notice that the denominators of the formula (2) only vanish if P is a singu-
larity. To see this, note that if either p; or py is zero, then the other must also be zero (since
f(P)=0), and P will lie on the z-axis. If p1 = —p2ps, then py = 0 (since f(P) = 0), and
P will again lie on the z-axis. However, the entire z-azis of Cayley’s ruled cubic is singular
(i.e., grad f = 0). Therefore, the denominators of (1) and (2) only vanish at singularities.

However, the formula says nothing about generators through singularities.

Remark 4.2 There is another way of solving for the final variable vy. All of the coefficients
of the Taylor series of f(P +tV) = 0 must be zero. The first coefficient is V - (grad f)(P)
(which we have already used in step (1)) while the second coefficient is V' H(P)V, where
H(P) is the Hessian of f at P. This is a quadratic equation that can be solved symbolically
for v, as long as H(P) # 0. If H(P) = 0, we can use the third coefficient (or the first
coefficient that is not identically zero) to solve for vi. The disadvantage of this method is
that we must compute many higher derivatives of f(X) and evaluate them at P. For example,

the Hessian involves all siz double derivatives of f.

4.1 The number of generators through a point

It is useful to know how many generators we should expect to find through each point. We
now show that there is one generator through almost every point of a ruled surface. We then
show that the special points struck by more than one generator are singularities (unless the
surface is doubly ruled). Finally, we characterize the points struck by an infinite number of

generators, which will become important in the section on directrix curves.
Lemma 4.1 There is one generator through almost every point of a singly ruled surface.

Proof : Consider our method for finding the generator through a point. We derive a system
of equations in v; and the symbolic constant P, where P represents an arbitrary nonsingular
point. Each solution for v; (which may depend upon P) generates a vector V such that
P +1tV is a generator through P. Suppose that the system has a simultaneous solutions for
V1t V1,1,V1,2, -+, V1,6- We claim that almost all of the points of the surface will be struck by

a generators. The only points that might not be struck by a generators are singularities and

11



points such that two of the solutions for v; become identical. That is, because the above
method, in particular step (1), assumes that P is nonsingular, it cannot be used to make
any conclusions about singularities; and if, for example, the solutions are v1; = 1 — p; and
v1,2 = 1+ p1, then most points will be struck by two generators but a point such as P = (0,y)
will be struck by only one generator. The singularities of f(z,y, z) form a set of zero measure
as a subset of f(z,y,z) (Lemma 3.1). The points Py such that vy ;,(Po) = v1,(Fo), @ # 7 also
form a set of zero measure (as a subset of the surface f(z,y,2)). To see this, view a solution
for v; as a polynomial in P and view this polynomial as a surface. Two distinct surfaces
intersect in a set of zero measure with respect to any surface (Bezout’s Theorem 3.1c¢).
Therefore, the points of the surface that are not struck by a generators form a set of zero

measure. Moreover a = 1, otherwise the surface is doubly ruled. B

Corollary 4.1 A point of a singly ruled surface that is intersected by two or more generators

s a singularity.

Proof: The only points that may have an unusual number of generators are the singularities
and the points such that two of the solutions for v; become identical (Lemma 4.1). The latter

set is empty, because there is only one solution to start with.

For the two nonplanar doubly ruled surfaces, it is easy to establish that every point is
intersected by exactly two generators. In light of Corollary 4.1, it is interesting to note that

doubly ruled surfaces are nonsingular.

If a point struck by more than one generator is a singularity (Corollary 4.1), then a point
struck by an infinite number of generators must be the worst kind of singularity. This special

type of singularity deserves more attention, because of its importance later in the paper.

Definition 1 A pathological singularity of a singly ruled surface is a point that is struck

by an infinite number of generators.

In the following lemma, we show that a surface can have at most one pathological sin-
gularity. This illustrates a general property of algebraic curves and surfaces: unusual things

tend to occur only a finite number of times. (Bezout’s theorem also makes this point.)
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Definition 2 A general cone (resp., cylinder) is a ruled surface of lines from a curve to

a finite (resp., infinite) vertex.

Lemma 4.2 A ruled surface has a pathological singularity if and only if it is a general cone

or cylinder. A cone or cylinder has only one pathological singularity, its vertez.

Proof : Ruled surfaces are split into two classes: developable and not developable. There

are several ways to distinguish a developable surface.

(1) Developable surfaces can be bent, without tearing, into a plane.
(2) Developable surfaces have zero curvature at every point.

(8) A ruled surface is developable if along each generator the tangent planes are all identical

14, p. 140].

(4) A ruled surface is developable if and only if neighbouring generators intersect [9, p. 207].
The points of intersection of consecutive generators define a curve, called the line of
striction (or edge of regression). For the cone and cylinder, the line of striction is a

point rather than a curve.

(5) A ruled surface is developable if it is a cone, a cylinder, or the tangential developable of
its line of striction [14, p. 141], [9]. The tangential developable of a curve is the surface

swept out by the tangents of this curve.

Definitions (1) and (3) give a good intuition, but we are interested in definitions (4) and
(5). By definition (4), a ruled surface with a pathological singularity is a developable surface.
Moreover, its line of striction must contain the pathological singularity. The tangents at
the pathological singularity of the line of striction certainly cannot represent the infinite
number of generators through this point. Therefore, the ruled surface is not the tangential
developable of its line of striction. We conclude that a surface with a pathological singularity

is a cone or a cylinder. R

Remark 4.3 Lemma 4.2 shows that it is easy to compute a pathological singularity. If
a ruled surface has a pathological singularity, then it is the intersection of two arbitrary

generators of the surface. These generators can be found with the method of Section 4.
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4.2 1Is this surface ruled?

The methods that we have described for finding the generator(s) P +tV through a point P
can also be used to check if a surface is ruled. Given the surface f(z,y,z) = 0, one solves
for the generator P +tV through the symbolic point P. If no V' can be found or it is invalid

(e.g., complex), then the surface is not ruled.

Example 4.3 f(z,y,z) = z®> + y*> — 2 = 0 is the equation of an elliptic paraboloid.

grad f(z,y,z) = (2z,2y,—1) and V - grad f(P) = 2p;v1 + 2psvs — v3, which can be used to set
vy = 2p1v1 + 2pava. Then f(P +tV) = t*(v? + v3), whose coefficients must be zero. Thus,
vZ 4 v2 = 0. Whether vy or vy is set to 1, this does not have a real solution. We conclude

that the paraboloid is not ruled.

Example 4.4 Consider the cubic surface f(z,y,z) = z®> + zz* + y> = 0.
F(P +tV) = t3(v3 + v1v2) + t*(v? + 3pavs + 2p3viv3 + p1vi)+

t(2p1v1 + piv1 + 3p3vs + 2p1pavs)

Using V - (grad f)(P) = 0, we solve for vs and substitute into f(P + tV). Consider the
resulting quadratic term of f(P + tV'), which as a polynomial in vy is:

vi(4pt — 3p3) + vi(12p1p3v2 — 6p5p3va) + (9p3v3 + 12p1papiv;)

=0 3
4p:1p3 @)
Its discriminant (b* — 4ac of the quadratic formula) is
3vi(—
v ( P1P2)- (4)

2
b3
The solution for vy (and thus the generator through P) will be complex if and only if this

discriminant is negative. To show that the surface is not ruled, it suffices to show that the

discriminant (4) is negative for a positive measure of points P on the surface.

If vo = 0, then (3) reduces to % = 0, implying v; = 0 almost everywhere and
3

hence V = 0, an illegal value for V. Thus, vy # 0 almost everywhere. The discriminant
is negative whenever vy # 0 and pip, > 0. We find that, for all z and for all z < —22,
(z,—Vz? + z22%,2) is a point on the surface with # < 0 and y < 0 (since z*> + zz* > 0).

Therefore, there is no real generator through these points, which form a set of positive measure

on the surface. We conclude that the surface % + z2? + y® = 0 is not ruled.
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5 Finding a directrix curve

In the theory of ruled surfaces, directrix curves are a very important structure that will often
be used in algorithms. Moreover, the directrix curve will be the main means of translating
ruled surface problems to plane curve problems. Therefore, the development of a method for

finding a directrix curve on a ruled surface is crucial. The following example suggests how

this might be done.

Example 5.1 We would like to show that a planar cross-section of the ruled surface can be
used as a directriz curve. However, a plane parallel to a cylinder’s axis will not intersect
the cylinder in a directriz curve, although all other planes will create an elliptical directric
curve. This suggests that one should not choose a plane that is parallel to a generator of
the cylinder. As another example, a planar cross-section of a cone that passes through the
cone’s vertex will not generate a directriz curve, although all other cross-sections shall. This
suggests that points of the ruled surface that have several generators passing through them

(the singularities) can cause problems.
We use these observations to find a directrix curve.

Theorem 5.1 Let R be a ruled surface and P be a plane. RN P is a directriz curve if P

satisfies the following restrictions:

(a) P intersects R

(b) P is not parallel to G, for almost all generators G through nonsingular points of R
and

(c¢) P does not contain any of the following:

(1) a pathological singularity

(ii) an entire irreducible singularity curve of R.
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Proof: The curve RN P satisfies the first requirement of a directrix curve: the generators
that intersect RN P do indeed densely cover the surface, since almost all generators through
nonsingular points intersect P and thus R N P (condition b). (The generators through
nonsingular points suffice to cover the surface by Lemma 3.1.) We must next show that the
generators that intersect R N P still densely cover the surface if we restrict to one generator
through each point of R N P. The proof for doubly ruled surfaces is straightforward and
we only consider singly ruled surfaces. By Corollary 4.1, it suffices to show that R N P
contains only a finite number of surface singularities, each of which is intersected by only
a finite number of generators. By Lemma 3.1, the singularities of R consist of a finite set
of algebraic curves and a finite set of points. Because of restriction c(ii), the plane P can
intersect every singularity curve in at most a finite number of points (Theorem 3.1(a)).
Therefore, P contains only a finite number of singularities. Restriction c(i) guarantees that

each of these is intersected by only a finite number of generators. B

Example 5.2 Consider the hyperbolic paraboloid f(z,y,z) = y* — 2> — 2z = 0. In Ez-

ample 4.1, we showed that the two generators through a point P of this surface are P +
t(£1,1,2ps F p1). None of these generators are parallel to the x = 0 plane, and there are
no singularities to avoid (since f, = —1 = 0 is impossible). Therefore, we can find a di-
rectriz curve from the cross-section of the surface by the plane x = 0, yielding the parabola

{z = 0,y* — z = 0}. See the yellow directriz curve in Figure 1.

Example 5.3 Consider Cayley’s ruled cubic z? — y*> + zyz = 0. We will show that the
cross-section of the surface by the plane y = 1 is a valid directriz curve. (A plane y = k is
chosen so that the resulting directriz curve is conic rather than cubic.) From Ezample 4.2,

we know that the generator through a nonsingular point P of Cayley’s ruled cubic is P +

t(plfipa,l,plf;ws + 2—;). None of these generators are parallel to the plane y = 1, since
the y-component of their defining vectors is nonzero. Moreover, y = 1 does not contain any
singularities of the surface: if a point P = (p1,pa,p3) lies on y = 1, then (grad f)(P) =
(2p1 + p3, —3 + p1ps, p1) which cannot equal (0,0,0) (if the third component is 0, then the
second is not). Since y =1 satisfies all of the restrictions of Theorem 5.1, it defines a valid

directriz curve {y = 1, 2 — 1 + zz = 0}. See the yellow directriz curve in Figure 2.
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Remark 5.1 An imprecise suggestion of Theorem 5.1 is given in Sommerville [22, p. 382]:
“in general any plane section [of a ruled surface], not containing any generator, is a directriz
curve” There is no elaboration of what ‘in general’ means, and there is no proof of the
statement. A proof would have been of no use to us anyway, since Sommerville’s definition
of directriz curve is different from ours. This is a good example of the necessity for more

constructive and exact results for solid modeling.

Corollary 5.1 A randomly chosen planar cross-section of a ruled surface is, with probability

one, a directriz curve.

Proof: There are a finite number of singularity curves (Lemma 3.1). There is at most
one pathological singularity (Lemma 4.2). Finally, almost all planes satisfy condition (b) of
Theorem 5.1. To see this, suppose a plane is parallel to an infinite number of generators
of a fixed ruled surface (and does not contain a pathological singularity). These generators
intersect the plane at its line at infinity (in projective space) in infinitely many different
points. Therefore, this line at infinity must be contained in the ruled surface (by Bezout’s
Theorem (b)). Since the ruled surface can contain only a finite number of lines at infinity,
there are at most a finite number of planes that are parallel to an infinite number of generators
(i.e., that do not satisfy condition (b)). We conclude that the set of planes that satisfy the

restrictions of Theorem 5.1 are dense in the set of planes. B

Corollary 5.2 A ruled surface always has a plane algebraic directric curve.

A more deterministic method of finding a directrix curve is to guarantee that the condi-
tions of Theorem 5.1 are fulfilled, leading to the following algorithm (see Examples 5.2 and
5.3 above).

Algorithm Directriz Curve

(1) Find the symbolic formula for the generator through a nonsingular point of the ruled
surface R (Section 4).

(2) Compute the singular curves and isolated singular points of R.
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(3) Compute the pathological singularity of R, if it exists (Remark 4.3).

(4) Choose a plane P that does not completely contain any of these (finite number of)

singular curves, isolated singularities, or pathological singularities.

(5) If P intersects almost all generators (using the formula in (1)), then RN P is a directrix

curve, otherwise go to (4).

For a singly ruled surface, the directrix curve of Theorem 5.1 will be almost-strong, since
it will contain a finite number of singularities and singularities are the only points of a singly
ruled surface that can be intersected by more than one generator (Corollary 4.1). This

establishes two very interesting corollaries.

Corollary 5.3 An algebraic ruled surface can be generated by sweeping a line along a plane
algebraic curve. That is, for algebraic surfaces, the last definition of ruled surface in Section 2

is actually equivalent to (not stronger than) the definition we are using.

Proof: A singly ruled surface has a plane directrix curve that is almost-strong (Theorem 5.1).
Apply Lemma 2.1. For doubly ruled surfaces, notice that they can be generated by sweeping

a line along a line or ellipse. B

Corollary 5.4 There is a unique way of generating a singly ruled surface by sweeping a line

through space.

Proof: Let R be a singly ruled surface. It has an almost-strong directrix curve S. In the
proof of Lemma 2.1, it was shown that every sweep of R contains a sweep along all of S.
We claim that, for singly ruled surfaces, every sweep of R is exactly a sweep along S. A
sweep along S already generates R, by definition of almost-strong directrix curve. Thus,
every generator that does not intersect S will be singular (Corollary 4.1), since every point
of this line is already contained in a generator through S. We conclude that there are only
a finite number of generators that do not intersect S (Lemma 3.1). Thus, every sweep of
R is a sweep along S. However, there is a unique way of sweeping a line along S: the line

must sweep smoothly along S (with no changes of direction, because of the injective nature
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of a sweep), there is no flexibility in the choice of generator through a nonsingular point,
and there is no choice in the direction to take at a singularity (because the sweep must be

continuous). B

6 Parameterization of ruled surfaces

The previous section showed that a ruled surface is the direct offspring of a plane curve. In
this section, we give an example of how an algorithm for a ruled surface can be simplified to
an algorithm for a plane curve, using the plane directrix curve that we have found. We use
the example of parameterization, which straightforwardly applies the methods that we have
developed. Parameterization is a problem that has been solved for rational plane curves [1]
but not for surfaces (of degree higher than three). It is important because both the implicit
and the parametric representation of a curve or surface are useful, so solid modelers wish
to translate between them. (The complementary problem of implicitization, the translation
from a rational parameterization of the surface to an implicit equation, has well-known

solutions using elimination theory [10, 13, 20].)

In order to parameterize a ruled surface, we proceed as follows. Given a surface f(z,y, 2),
if necessary first test if it is ruled (Section 4). Then find a plane directrix curve C' (Section 5)
and a formula Vp for the generator through P (Section 4). The parameterization of f(z,y, z)
is ¢(s)+Vi(s)t, where ¢(s) is a parameterization of the plane curve C'. ' can be parameterized
by the method of Abhyankar and Bajaj [1] if it is rational. A similar technique can be used
for extending other plane curve algorithms to ruled surfaces, using the fact that a ruled

surface is defined by a directrix curve.

Example 6.1 From Frample 5.2, we know that a directriz curve of the hyperbolic paraboloid

2 — 2z =0 s the parabola {z = 0,y*> — z = 0}, which has the parameterization (z,y,z) =

y'—=
(0,t,t?). From Ezample J.1, the generators through the point P are P + s(+1,1,2p, F p1).
We conclude that a parameterization of the hyperbolic paraboloid is (z,y,z) = (0,t,t?) +

s(1,1,2t) = (s, + t,t* + 2st).

Example 6.2 From Erample 5.3, a directriz curve of Cayley’s ruled cubic is
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{y = 1, 2 — 1 4+ zz = 0}, which has the parameterization (z,y,z) = (t,l,%), t # 0.
From Example 4.2, the generator of Cayley’s ruled cubic through the nonsingular point P is
P+ s( B _m + 2). We conclude that a parameterization of Cayley’s ruled cubic

p1+p2p3’ 77 p1+p2ps P2

is (z,y,2) = (¢, 1, 1?2) + s(t, 1, %) =(t+ st,1+s, _1+3t_t2 )-

7 Line decomposition and intersection

The generator formula, along with the directrix curve, yields a line decomposition of the
ruled surface: i.e., a description as Uscr{line(¢)}. This line decomposition provides a simple
algorithm for intersection of a ruled surface with another surface, if the degree of the second
surface is at most four. In particular, the intersection of a ruled surface R with an algebraic

surface S of degree d < 4 can be computed as follows:

e Reduce RN S to User{line(t) N S}.

e Interpreting ¢t as a symbolic constant, solve the equation line(¢) N .S, which is of degree

d < 4.

e This yields a parameterization in ¢ for the intersection.

The representation of a ruled surface by a line decomposition line(¢) has many advantages

other than intersection.

e (line(s))(t) is a good parameterization.® It is always of degree 1 in s and it has geometric

meaning (e.g., it is easy to define meaningful subsets of the surface using a range on
t).

o It is simple to render the surface, since the line is a basic graphical element.

o The surface has the representation of a generalized cylinder, which is a preferred rep-

resentation for computer vision applications.

8This is the parameterization where (line(s))(k) is the k** line.
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8 Conclusions

In this paper, we have developed algorithms to make it easier to incorporate the rich and
interesting class of algebraic ruled surfaces into solid modeling systems. The important steps
of finding a directrix curve and finding the generator through every point of the directrix
curve have been presented. Algorithms like parameterization and intersection immediately
become easy. We have also shown how to check if a surface is ruled, and established that a

ruled surface always has a plane directrix curve.

We believe that the entire class of ruled surfaces (not just cylinders, cones, and other
simple ruleds) should become a widely available resource for the solid modeler, and we hope
that this paper, by developing the necessary algorithms and clarifying the mathematics, has

established their simplicity and elegance.

9 Future Work

A problem for future study is to find not just any plane directrix curve, but the simplest
directrix curve. For example, the hyperbolic paraboloid has a line directrix curve (indeed,

any of its generators is a directrix curve [22]), as do cubic ruled surfaces [5, 22].

Since intersection with a ruled surface is simple, one approach to surface intersection is
to reduce the problem to intersection with a ruled surface. This is the approach taken by
Levin in his paper on the intersection of quadric surfaces [12]. In particular, the intersection
of two surfaces f(z,y,z) and g(z,y,z) is equivalent to the intersection of f(z,y,z) and a
linear combination of f(z,y,z) and g(z,y, z). If one can find a linear combination of the two
surfaces that is a ruled surface, one can solve the intersection. Therefore, a natural open
problem arising from this work is to find a ruled surface in the pencil, or more generally the
ideal, of two surfaces. Levin has shown that there is always a ruled surface in the pencil of

two quadric surfaces.

A future direction is to consider an extension of ruled surfaces: surfaces generated by
sweeping low degree algebraic curves (e.g., circles) through space, rather than lines. This

would enrich the class of surfaces while maintaining the simplicity of ruled surfaces.
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