
Int J Digit Libr (2004) 4: 208–222 / Digital Object Identifier (DOI) 10.1007/s00799-004-0082-z

AHierarchical ExtractionPolicy for content extraction
signatures

Selectively handling verifiable digital content

Laurence Bull1,∗, David McG. Squire1, Yuliang Zheng2

1School of Computer Science and Software Engineering, Monash University, 900 Dandenong Road, Caulfield, Victoria, 3145,
Australia
e-mail: {l.bull,David.Squire}@csse.monash.edu.au
2Department of Software and Information Systems, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
e-mail: yzheng@uncc.edu

Published online: 20 October 2004 –  Springer-Verlag 2004

Abstract. Content extraction signatures (CES) enable
the selective disclosure of verifiable content from signed
documents. We have previously demonstrated a CES Ex-
traction Policy for fragment grouping to allow the docu-
ment signer to designate which subsets of the original
document are valid subdocuments. Extending this ability,
we introduce a newHierarchical Grouping Extraction Pol-
icy that is more powerful, and for which the encoding is
dramatically smaller, than the existing Grouping Extrac-
tion Policy. This new Extraction Policy maps naturally
onto the hierarchically structured documents commonly
found in digital libraries. After giving a motivating ex-
ample involving digital libraries we then conjecture as to
how to enrich their functionality through the use of CESs.
We also show how to implement the new extraction pol-
icy using XML signatures with a custom transform along
with an improved design for the XML signature structure
in order to achieve CES functionality.

Keywords: Content extraction signatures – XML Sig-
nature custom transforms – Selective content disclosure
– Hierarchical Extraction Policy – Privacy-enhancing
signatures

1 Introduction

As the Internet burgeons and electronic society emerges,
the volume of digital information increases. To cope with
the growing flood of data, we need new ways of handling
and processing information that are not just electronic
analogs of what has been done in the paper-based world.
Documents are merely containers. In the paper-based

world, however, the tight binding of the medium and the

∗ Correponding author

message makes this distinction hard to see: we tend to
think, for example, of a certificate being a piece of pa-
per, rather than the facts printed on it. Traditionally, and
in most computerized implementations to date, this view
has been perpetuated: documents have been viewed and
handled as coherent collections of semantically grouped
information. Some documents, however, are merely con-
tainers of facts, such as a contract, an academic tran-
script, a non-fiction book or an encyclopedia. It is with
the verifiability of the facts in such documents that our
focus lies.
The elegant concept of public-key cryptosystems [12]

and their implementation [20] enabled a content-depen-
dent digital signature to be created for electronic docu-
ments (see Appendix A for an overview of digital sig-
natures). Beth et al. [4] suggest that this changed the
primary focus of the information security field from se-
crecy alone to broader notions of authentication, identifi-
cation and integrity verification. With the steady rollout
of Public Key Infrastructure (PKI), public, corporate and
governmental acceptance of, and confidence in, digital
signatures has steadily grown. Blakley posits that digital
signatures are quite different from their ink-based prede-
cessors and suggests that we should “look more closely at
every way in which digital signatures differ” so that we
may fully realize their worth [5]. We agree.
We are specifically interested in the technical con-

structs and mechanisms in a digital signature that af-
ford the ability to selectively handle verifiable content se-
curely and efficiently. Thus content extraction signatures
(CES) [21] were developed to enable the signing of con-
tent at a granularity specified by the signer, rather than
following the traditional practice of unconditionally sign-
ing at the container level (i.e. the whole document). An
overview of CES is found in Appendix A.
Brands first proposed Digital Credentials in 1993 [7]

and has further contributed extensive work towards en-

L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures 209

hancing the privacy of Digital Credential holders in large
part through anonymity and pseudoanonymity via the
overhead of protocols and a Certification Authority [6, 8].
Some of these protocols provide the ability for the holder
of a Digital Credential to selectively disclose a property
of the attributes that has been encoded into the Digi-
tal Credential. In [8], Brands says of Digital Credentials,
“Digital Credentials enable their holders to determine for
themselves when, how, and to what extent information
about them is revealed to others” While a Certifica-
tion Authority issues the credentials for the owner’s use,
there appears to be no mechanism or policy for expressing
restrictions on which information may be disclosed. It is
simply left to the credential owner to decide. Depending
on the use of the Digital Credential, there may arise sit-
uations for semantic abuse stemming from the ability to
selectively disclose information.
Micali and Rivest introduced “transitive signature”

schemes [17], and Bellare and Niven later presented per-
formance improvements for such schemes [2]. Transitive
signatures allow a signer to sign edges and nodes of
a graph such that a signature for any edge in the tran-
sitive closure of the signed graph can be generated that
is indistinguishable from the signature that would have
been generated had the original signer signed that edge.
This scheme shares with CES the notion of enabling valid
signatures to be generated for transformations of an ori-
ginal signed object, though in this case the signatures are
for information implicit in the original graph structure
rather than extracted subsets of it. A general approach to
homomorphic signature schemes for some binary opera-
tions has been reported by Johnson et al. [15].
The XML Signature (XMLsig) specification [1] is

a joint proposal from the World Wide Web Consortium
(W3C) [22] and the Internet Engineering Task Force
(IETF) [14]. It defines a scheme for creating digital sig-
natures that can be applied to digital content and that
may be located internal to the document or externally
on various sites across the Web. Whilst there are some
similarities, or parallels, with CES, the XMLsig does not
provide for the CES security for blinded content, nor does
it permit a signer to specify an Extraction Policy.
Polivy and Tamassia [19] present an architecture for

authenticating responses to queries from untrusted mir-
rors of authenticated dictionaries using Web services and
XML Signatures. They also implement a custom XML
Signature transform. In other work, Devanbu et al. have
proposed a new approach to signing XML documents to
enable certification of answers to arbitrary queries [11].

1.1 Motivating example

Digital libraries today often embrace a commercial model
whereby articles, books etc. are available through vari-
ousmechanisms such as subscriptions or ad hoc purchases.
This information is handled at a container level where the
entire containermust be purchased as the user cannot sim-

ply purchase a page, or a section, from the paper. In add-
ition, the information is not commonly signed so that the
receiver can authenticate the content’s source. The abil-
ity to authenticate information and discern its source is
important these days since anybody can publish through
Web pages, bypassing the traditional editorial/publishing
process. If the user who purchases an article wants to use
some of the content in a document of their own, there is
little alternative to copying the content and then pasting
it into the document (assuming an appropriate format) as
well as entering the citation information.
Ideally, the user should be able to purchase and work

with just the information they require. This information
should be signed so that a reader of the work can verify
and authenticate the content.
In the case of a digital library, a user should be able to

retrieve either all of the signed collection of fragments (i.e.
the entire article or book) or a signed subset of fragments.
If the entire collection of signed fragments is retrieved,
then the user should be able to use fragments at a later
time as required. These fragments should be able to be
verified and embedded in another document. Accompa-
nying these fragments should be metadata that can be
used to automatically add an entry to the bibliography if
one is in use.

1.2 Contents of this paper

In this paper we introduce a new Hierarchical Grouping
Extraction Policy for use with Content Extraction Signa-
tures (CES). We demonstrate its implementation using
XML Signatures and then illustrate enriched functional-
ity for digital libraries through the use of CESs using the
new grouping policy.
Section 2 gives the reader some background by in-

troducing CES through a brief overview, along with two
motivating examples involving the selective handling of
verifiable content.
A recap of our previously introduced Extraction Poli-

cies including details of the Grouping Extraction Policy
is presented to provide a foundation for introducing and
presenting the framework for the newHierarchical Group-
ing Extraction Policy in Sect. 3. Also included is a com-
parison of the various Extraction Policies and their imple-
mentation costs to assess the new scheme.
After giving a brief overview of XML Signatures, in

Sect. 4 we show how to implement the new Hierarchical
Grouping Extraction Policy and achieve CES function-
ality using the open standard XML Signature to enable
development of interoperable applications. We also show
an improved design for the XML Signature structure that
enables it to handle Grouping Extraction Policies.
Having shown how to selectively handle verifiable con-

tent using CES, in Sect. 5 we conjecture as to how this
may enrich the functionality of digital libraries in the
emergent electronic society.
We close with some concluding remarks in Sect. 6.

210 L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures

2 Background

2.1 Content extraction signatures

Content extraction signatures (CES) were originally de-
signed for use in multiparty interactions to overcome pri-
vacy concerns by enabling the selective disclosure of veri-
fiable document content. CES permit the owner, Bob, of
a document signed by a signer, Alice, to produce a sub-
document (original document less some removed content)
that can be verified by any third party, Carol, without
revealing the contents of the removed portions of the ori-
ginal document [21]. The production of the sub-document
may involve either extracting or blinding content from
the original document. We discuss this further in Sect. 2.5
below.
To illustrate the use of CES, consider the typical ex-

ample depicted in Fig. 1. Here we have the document
signer Ace University, the document owner Bob (a stu-
dent), and verifiers Carol and Don, who are potential
employers. In this example, Ace University issues a stu-
dent Bobwith a formal document: an academic transcript
(original document). Bob is required to include the for-
mal document with a job application document sent to
a prospective employer Carol. Note that the academic
transcript document is likely to include Bob’s personal
details, for example his date of birth (DOB), etc. To avoid
age-based discrimination, Bob might not wish to reveal
his DOB to Carol (indeed, in some countries it is illegal
for a prospective employer to seek the applicant’s DOB).
The university understands this and is willing to allow
employers to verify academic transcripts with the DOB,
and possibly with other fields, removed. The university,
however, may require some fields to be included in every
extracted document.

Fig. 1. A real-life scenario for selective disclosure

An essential and integral component of CES is the
signer’s Extraction Policy as it enables the signer to spec-
ify which fragments may be extracted or blinded. This
affords protection from semantic abuse: abuse arising
from the use of the content in an out-of-context man-
ner. Extraction Policy validation is a requirement for CES
validation.
In short, CES enable selective disclosure of verifiable

content, provide security for blinded content through the
use of a salt, and enable the signer to specify the content
that the document owner is allowed to extract or blind.
Combining these properties yield what we call CES func-
tionality.

2.2 Bandwidth issue

The “maximally” coarse granularity of signed informa-
tion using the standard digital signature causes unnec-
essary bandwidth usage. Consider Bob, the document
owner, who wants to pass on a single item of verifiable in-
formation to Carol. Instead of being able to pass on this
single piece of information, Bob is forced to furnish the
entire document, which could be significantly greater in
size than the single item; otherwise Carol will not be able
to verify the signer’s signature on the information.
To illustrate such a scenario that is not a privacy is-

sue but one of information relevance, consider an elec-
tronically published article in which some aspect of an
interview with the Prime Minister (PM) is reported. As
depicted in Fig. 2, the PM’s office issues a transcript of
the interview involving the PM that has been signed using
the standard digital signature.
The publisher would like to quote only the PM’s re-

sponse to a particular question since there are tight con-
straints on article size and it is neither appropriate nor
possible to include the entire transcript of the interview.
It is highly desirable for the reader to be able to ver-

ify the quoted content in the article that originates from
the signed interview transcript, since it would eliminate
problems of misinterpretation and misquoting.
This example illustrates the trade-off that exists be-

tween verifiable content granularity and bandwidth, as
illustrated in Fig. 3. This trade-off is likely to arise in
many other scenarios as the Internet burgeons. A further
goal of this work is to reduce the signed content granular-
ity and move towards reduced bandwidth.

Fig. 2. Example of electronic publishing that includes verifiable
content sourced from another signed document

L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures 211

Fig. 3. Trade-off between signed content granularity
and bandwidth usage. As the granularity of signed con-
tent increases, it results in increased bandwidth usage.
Signed content is characterized by large grains of in-
formation resulting in high bandwidth requirements.
Signing content in a smaller-grained manner results in
lower bandwidth requirements

2.3 Selective content disclosure abuse

The ability to selectively disclose information contained
in a document also has a potential risk, since the in-
formation accompanying a fragment in a document of-
ten provides the context. The disclosed fragment may
have a different meaning when it is not accompanied by
certain other information that is present in the original
document.
For example, using the scenario depicted in Fig. 2, to

avoid the PM’s responses being quoted out of context, it
is desirable that the question and the response be linked,
so that the response is always preceded by the corres-
ponding question. Hence there is a requirement that the
signer be able to exert some control over what verifi-
able content can be selectively disclosed by the document
holder. Conceivably, the document signer would want to
be able to specify which fragments can:

– be extracted in isolation,
– be extracted only when accompanied by other speci-
fied fragments,
– be extracted optionally accompanying other specified
fragments, and
– never be extracted (i.e. can only be provided with the
entire document).

It is vitally important to protect against semantic
abuse when providing the ability to selectively handle in-
formation. Therefore, the design of CES includes a signer-
specified Extraction Policy that enables the signer to
specify precisely the content that may be disclosed.

2.4 The orthodox approach

We now consider the feasibility of using the standard dig-
ital signature for selectively handling verifiable informa-
tion using the academic transcript scenario depicted in
Fig. 1 above.
Ace University could sign the individual fragments

in Bob’s academic transcript and forward them to Bob.
This would entail n signatures for n fragments in the
document. Bob could then forward only m appropriate
fragments to the prospective employer, Carol. However,
this would require n signing operations by Ace University
andm signature verifications by Carol. Furthermore, Ace
University cannot protect against semantic abuse stem-
ming from selective disclosure.
An alternative approach is to decide upon allowed sub-

sets of fragments corresponding to various permissible
fragment groupings. Each of these subsets could then be
signed and issued as a separate document. This approach
has an upper bound of 2n possible subsets that would en-
tail 2n signatures by Ace University and would present
a considerable document management challenge for Bob.
Using the standard digital signature in this manner de-
parts from the conventional single-document orthodoxy
and involves many signed documents. This would require
significantly more storage space and complicate the hand-
ling required by Bob. Notwithstanding the storage prob-
lem, the prospect of searching through the collection of
documents with various fragment combinations to find
the required combination of fragments to disclose to Carol
would be daunting. This approach is clearly infeasible.

2.5 User conceptual models

There are notionally two conceptual models that reflect
the perspective of the document owner when selectively
disclosing verifiable information. Each conceptual model
represents one half of a range of 0–100% content disclo-
sure. We call these conceptual models blinding and ex-
tracting. The adoption of either by the document owner is
influenced by the requirements for the information to be
disclosed.
The blinding model involves the disclosure of most

of the original document as illustrated in the academic
transcript example in Fig. 1 above, i.e. extracting most of
the document content by blinding some content. Alterna-
tively, the extracting model involves the disclosure of only
a small amount of the document as illustrated in the elec-
tronic publishing example in Fig. 2 above, i.e. blinding
most of the document by extracting only some content.

3 Extraction policies

The function of the Extraction Policy is not to enforce
what content is disclosed. Instead, it specifies which sub-
documents are permissible and an extracted CES, or ex-
tracted signature, can be generated. The extracted CES

212 L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures

enables the recipient of an extracted sub-document to
verify the authenticity of the content. Indeed, the digital
signature may verify the content integrity; however, this
does not mean that the CES is verified.1 To ensure se-
mantic integrity, compliance with the signer’s extraction
policy is also required. Thus the CES verification algo-
rithm not only involves verifying the document content, it
also includes checking the fragments for compliance with
the Extraction Policy.
An extracted CES is simply a mutation of the CES

and does not involve any cryptographic operations. It still
uses the same digital signature from the signer, and hence
there is no requirement for the signer’s secret key. See Ap-
pendix A.2 for further details.
The Extraction Policy is embodied as an encoding of

all the allowed fragment extraction subsets in a structure
called a Content Extraction Access Structure (CEAS for
short). Thus the CEAS is an integral component of CES
and is included as input to the signing and verification
algorithms.

3.1 Single-dimensional policy

The single-dimensional Extraction Policy and a simple
structure to support it, initially proposed with CES [21],
will now be recapped.
Depending on the nature of the document and the

content being signed, a very simple Extraction Policy
may suffice. This includes content where there are no
contextual semantics and hence no need to specify frag-
ment grouping. The fragments are simply treated indi-
vidually in a binary sense as being either mandatory or
optional, where a mandatory fragmentmust be contained
in the sub-document, whereas an optional fragment may
be contained in the sub-document. Therefore, the Extrac-
tion Policy can be efficiently encoded using a single bit for
each fragment.
The earlier example illustrated in Fig. 1 above, involv-

ing the student forwarding a signed electronic version of
his/her academic transcript to a prospective employer,
could involve a single-dimensional Extraction Policy. In
this example the student wants to simply blind his or her
date of birth in the transcript.
Single-dimensional Extraction Policies have very low

implementation costs but do not support fragment group-
ing and, hence, are suitable where there are no contextual
semantics for the fragments.

3.2 Richer multidimensional policies

Now we focus on Extraction Policies that will support the
ability to select and extract fragment groupings as well as
the ability to specify the fragment grouping relationships

1 This is not the case with CES implemented using XML signa-
tures described in Sect. 4 as CES functionality is included in the
XMLsig Core Validation process.

as being either mandatory or optional. Thus we now have
a multidimensional view of the fragment.
This presents a challenge: how do we achieve this rich-

ness and flexibility in the Extraction Policy whilst con-
straining the size of the CEAS, which contains the encod-
ing of this information, and hence the size of the extrac-
tion signature? The multidimensional policies described
below will be treated according to the extracting concep-
tual model.

3.2.1 Grouping

We will now revisit in some detail the Grouping Extrac-
tion Policy, proposed in [9], to establish a foundation and
framework for presenting a new Hierarchical Grouping
Policy along with its encoding in the CEAS.
First we will redefine our fragment types used earlier

for the Single-Dimensional Extraction Policy by replac-
ing the mandatory and optional types with primary and
secondary targets, respectively. A primary target frag-
ment can be extracted in its own right from the original
document to be a part of the sub-document. Only pri-
mary targets may be directly selected, or targeted, for
extraction. If a fragment is not a primary target, then it is
a secondary target. This means that it may be extracted
only in association with a primary target fragment.
Fragment groupings are specified through the use of

an association from one fragment to another fragment.
A fragment may have zero or more associations with
other fragments. Each association is either mandatory or
optional, and all associations are asymmetric and transi-
tive. Also, mandatory associations are relative to a pri-
mary target fragment and always subsume optional as-
sociations with respect to transitivity. If a fragment has
a mandatory association with a primary target fragment,
it means that the associated fragment must accompany
the primary target if it is extracted. A fragment that has
an optional association with a primary target fragment
may accompany the primary target fragment if it is ex-
tracted. Associations are mutually exclusive since a frag-
ment cannot have both a mandatory and an optional as-
sociation with another fragment.
We will now describe fragment grouping options and

their use by the document owner. A fragment type and its
extraction permissions can be identified as:

– a primary target with no associations: it can be ex-
tracted by itself;
– a primary target with mandatory associations: if ex-
tracted it must be accompanied by its associated
mandatory fragments;
– a primary target with optional associations: if ex-
tracted it may be accompanied by its associated op-
tional fragments;
– a primary target with mandatory associations from
all other primary targets: a mandatory fragment that
must accompany any primary fragment that is ex-
tracted;

L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures 213

– a secondary target with no associations: it can never
be extracted;
– a secondary target with mandatory associations: it
can only be extracted when accompanying a primary
target fragment via a mandatory association; or
– a secondary target with optional associations: it can
only be extracted when accompanying a primary tar-
get fragment through an optional association.

CEAS using byte lists. A simple approach to storing the
signer’s fragment Extraction Policy is to use lists for the
fragment associations. We implement for each fragment
a list for either its mandatory or its optional associations.
A fragment’s type is determined by whether or not its

self-referent fragment number is contained in the list: pri-
mary target type if in the list, or secondary target type if
not in the list.
The type of associations with the fragment numbers

contained in the list is in turn determined by the fragment
type: primary target lists define mandatory associations
whilst secondary target lists define optional associations.
Using a 32-bit fragment identifier, the size of the

CEAS for a document containing 200 fragments with
a fragment association density of say 20% (i.e. an aver-
age of 40 associations per fragment) and a primary target
density of say 50% (i.e. 100 of all the fragments are a pri-
mary target) would be 257.92 kbits.

CEAS using bit vectors. Bit vectors could be used as an
alternative to using lists, where for a document with n
fragments we allocate a vector of n bits for each fragment.
This can be represented as an n×n bit matrix, irrespec-
tive of the number of associations. Since there are n bits
available per fragment, we use:

– the self-referent bit to specify whether or not the frag-
ment is a primary target or a secondary target; and
– the non-self-referent bits (or other bits) to specify
the mandatory or optional fragment associations, of
which there are n−1.

The type of association specified by the other bits de-
pends on whether the fragment is a primary or secondary
target. For primary targets the non-self-referent bits de-
fine the mandatory associations, while for secondary tar-
gets they define the optional associations. Also, there
are no optional associations between two primary frag-
ments. This would be redundant, since the two primary
fragments can simply be extracted if required. See [9,
Sect. 4.2] for a detailed explanation of an example of
a CEAS encoding using a bit vector.

Practical example. To illustrate a scenario where a Group-
ing Extraction Policy would be used, consider the elec-
tronic publishing example discussed earlier in Sect. 2.2.
In this case the Prime Minister’s response to a par-
ticular question could be defined as a primary frag-
ment with a mandatory association specified for the
preceding question. If the response fragment was ex-
tracted, then the preceding question fragment must also

accompany it for the extracted signature to be ver-
ifiable. Alternatively, the question fragment could be
specified as a primary fragment with an optional asso-
ciation to the response fragment that would be speci-
fied as a secondary fragment. In this case, the response
fragment could not be directly targeted for extraction.
However, it could optionally accompany the question
fragment.

Lists vs. vectors. List-based representations are more ef-
ficient when fragment association density (i.e. edges per
node) is low, particularly for large numbers of fragments.
The bit matrix will be more efficient when the association
density is high.
Recall that n was defined as the number of fragments

in a document. We now define s to be the size of the
fragment identifier in bits, ad the fragment association
density and pd be the primary fragment density. The size
of the list encoding in bits is

ns(n−1)ad+nspd, (1)

while the matrix encoding is

n2. (2)

The matrix encoding will thus be more efficient when

ns(n−1)ad+nspd > n
2, (3)

that is, when

ad >
n

s(n−1)
−

pd

(n−1)
. (4)

As n approaches infinity, the right side of the inequality
approaches 1/s:

ad >
1

s
. (5)

Therefore, when using a fragment identifier size of 32
bits, the matrix encoding will be more efficient when
the fragment association density is greater than approxi-
mately 3%.
The number of fragment associations specified by

a signer is dependent on the document type, the fragment
content and the signer’s view of how the fragments may
be used etc., and hence the fragment association dens-
ity is highly variable. In an implementation, the software
would know the number of fragments defined and all of
the fragment associations. Therefore, prior to signing,
the software could decide an appropriate fragment iden-
tifier size and accordingly the smaller CEAS encoding
method.
Thus, for comparison with the example in Sect. 3.2.1

above, also with 200 fragments, the matrix representation
would occupy 40 kbits.

214 L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures

3.2.2 Hierarchical grouping

Whilst the Grouping Extraction Policy described in the
previous section supports the grouping of fragments, it
does not permit the sub-grouping of fragments. Nor is it
ideal for use with signing hierarchical documents (most
commonly comprised of volumes, chapters, and sections
etc.) as well as documents that have hyperlinks such as
Web pages, or more generally XML documents, likely to
be encountered in digital libraries. These types of docu-
ments can typically have large numbers of fragments
along with localized clustering of fragments associations.
The Grouping Extraction Policy lacks the expressiveness
and efficiency to support fragment sub-grouping and as
a result treats all fragments at the same level, leaving it
to the user to perform fragment sub-grouping manually.
We will now present and discuss a new extraction policy
to enable the sub-grouping of fragments so that fragments
in the sub-group can be efficiently handled either as an
entire set, or as allowed subsets: a Hierarchical Grouping
Policy.
The same basic concepts and definitions for fragment

types and their associations as defined for a Grouping Ex-
traction Policy are retained, although we introduce a no-
tion of locality, or scope. We will adjust the definitions for
fragment type and associations, as well as introduce some
restrictions for their use within a locality.
Let us consider a fragment of content, in this case

comprised of three paragraphs of text. This fragment can
be divided into three segments called sub-fragments, or
child fragments, as illustrated in Fig. 4. Extending fur-
ther, each of the child fragments could in turn be divided
into segments, or sub-fragments, and so forth until the de-
sired content granularity is achieved. From the child frag-
ment’s perspective, its parent fragment is the most imme-
diate fragment that minimally contains all of the content
for that child fragment. The child fragment’s content is
also part of the content for all of its ancestor fragments.
The child fragment’s type and associations are now

handled relative to its locality and are as follows:

– A child fragment’s type can be either a primary or sec-
ondary target.
– A child fragment’s associations are only relative to its
sibling fragments.
– Child fragments as a collection inherit their parent’s
type.
– Child fragments as a collection inherit their parent’s
associations.

Sub-fragments can only be associated with other
fragments that are not sibling fragments through their
parent’s associations with the other fragments.
Fragments that are secondary targets and have no as-

sociations with other fragments cannot have any child
fragments. This is because the parent fragment can never
be disclosed in a sub-document. Therefore, there is no
need to define child fragments since, as a collection, they

Fig. 4. Example of a parent fragment along with its
extraction policy that has been segmented into

three child fragments each with their
own extraction policy

can never be disclosed because they inherit the parent’s
type and associations.
The child fragment’s type and associations are first

applied with respect to all the sibling fragments (i.e.
within the scope of the parent fragment). Once this is
complete, the collection of child fragments is then treated
as a single item inheriting the parent fragment’s type
and associations. In turn, where the hierarchy extends to
multiple levels, the parent node is treated along with its
siblings in the samemanner, repeating until the root frag-
ment is reached.
Using this scheme, a collection of child fragments can

be handled selectively. Alternatively, all of the child frag-
ments can be handled collectively, treated as a single,
albeit larger, fragment if required.

CEAS using byte lists. The simple approach described
in Sect. 3.2.1 using lists is still applicable for storing the
signer’s fragment extraction policy. However, the notion
of locality, or scope, is applied so that all fragment num-
bering with respect to the self-referent fragment number
and fragment associations is relative to the child frag-
ments of each parent fragment. Where there are multiple
levels of sub-fragments, each parent fragment is in turn
treated as a child fragment of its parent and so forth until
the root fragment is reached.

CEAS using bit vectors. We use the same scheme detailed
earlier in Sect. 3.2.1 for the Grouping Extraction Policy.
However, we now use it within a context. Fragment num-
bering and fragment associations are treated in the same
way as described above for byte lists.
Each fragment’s vector size now changes from a fixed

size of n bits for n fragments, to a varying size dependent
on the number of sibling fragments it has. This means
that the fragment vector size is not constant throughout
the document, although it will be constant within each
locality or collection of fragment child fragments.

A bit vector example explained. To illustrate the use of
a Hierarchical Grouping Policy, consider a relatively sim-
ple document and its extraction policy encoding using
bit vectors as denoted by the accompanying CEAS de-
picted in Fig. 5. This document has four main fragments,
or highest level fragments, two of which are segmented

L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures 215

into three child fragments, or sub-fragments, each. The
following is an interpretation of the signer’s Extraction
Policy for the document depicted in Fig. 5.

Frag1 is a secondary target and cannot be directly
targeted for extraction. It can only be indirectly
extracted through its mandatory association with
frag2, or through its optional associations with frag3
and frag4.

Frag2 is a primary target that can be directly extracted.
It also has a mandatory association with frag1 and an
optional association with frag4. If frag2 is extracted,
then it must be accompanied by frag1 and may be
accompanied by frag4.
Frag2 is also a parent fragment because it has been
segmented into three child fragments: frag2.1, frag2.2
and frag2.3. Frag2 can be handled as a single frag-
ment that includes all of the child fragments, or as
a collection of child fragments respecting the local
fragment Extraction Policy. The local policy is as
follows:
Frag2.1 is a primary target with a mandatory as-
sociation with frag2.2. If frag2.1 is extracted,
then it must be accompanied by frag2.2.

Frag2.2 is a primary target with a mandatory
association with frag2.1 and an optional as-
sociation with frag2.3. If frag2.2 is extracted,
it must be accompanied by frag2.1 and may
be accompanied by frag2.3.

Frag2.3 is a secondary target and can never be
directly targeted for extraction. It can only

Fig. 5. Example of hierarchical grouping policy encoded using bit
vectors and its mapping to a structured document showing four

top-level fragments, two of which are parent fragments
each with three child fragments

be extracted through its optional association
with frag2.2.

Frag3 is a primary target and, if it is extracted, it
may be accompanied by frag1 through its optional
association.

Frag4 is a secondary target and can only be extracted if
it accompanies frag1 or frag2, through its optional as-
sociation. Should this be the case, then it may also
include frag1 through its own optional association.
Frag4 is also a parent fragment. The local policy for
handling the child fragments is as follows:
Frag4.1 is a secondary target fragment and can only
be extracted by accompanying frag4.2 through
its mandatory association, or it may accompany
frag4.3 through its optional association.

Frag4.2 is a primary target fragment and must be
accompanied by frag4.1, while it may also be
accompanied by frag4.3 through its optional
association.

Frag4.3 cannot be directly extracted since it is a sec-
ondary target, although itmayaccompany frag4.1
or frag4.2.

A practical example. Consider the document depicted in
Fig. 5. If this is a journal article, a user may need all the
material in Sect. 1 of the paper. Since Sect. 1 is contained
in frag2, the user thus extracts frag2, which also includes
child fragments 2.1, 2.2 and 2.3, along with a correspond-
ing extracted CES so that the content can be verified.
However, frag2 has a mandatory association with frag1
(the title); therefore, frag1 is also extracted to comply
with the signer’s Extraction Policy, thereby enabling the
sub-document and the extracted CES to be verified.
Another user may simply require the information in

Table 1 that is contained in frag2.2 of the paper. Frag2.2
is a primary target and is accordingly extracted along
with frag2.1 due to its mandatory association. This asso-
ciation may have been specified as a mandatory associa-
tion due to its description of the contents in the table. We
do not want frag2.3, so we can ignore it since it is an op-
tional association. Once the fragment Extraction Policy
for the child locality has been respected, the parent’s as-
sociations and type can be applied. This means that while
frag4 may be optionally included, frag1 must accompany
the extracted child fragments, resulting in the extraction
of three fragments: frag1, frag2.1 and frag2.2.

Lists vs. vectors. To compare the size of each encoding
scheme, we will now consider a document comprised of
a shallow fragment structure similar to that depicted in
Fig. 5 with an increased number of fragments. The docu-
ment has 150 fragments and an Extraction Policy with
the following characteristics:

– 30 top-level fragments:

– 66.6̇% are parent fragments,
– 50% primary target density, and
– 20% fragment association density.

216 L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures

Table 1. Comparison of CEAS encoding scheme sizes for each of
the extraction policies. Superscripts (n) indicate derivation

using Eq. n

CEAS Single Grouping Hierarchical
encoding dim. grouping

Byte list (kbits) – 145.44(1) 17.57(13)

Bit vector (kbits) 0.15 22.5(2) 1.62(8)

– each parent has 6 child fragments:

– 50% primary target density, and
– 50% fragment association density.

The size of the CEAS using the bit vector encoding
scheme is as follows:

1.62 kbits = 302+20∗62. (6)

The size of the CEAS for the list encoding scheme, al-
lowing 32 bits for the fragment identifier, is as follows:

17.568 kbits = 32∗ (30∗ .5+30∗ (30−1)∗ .2

+120∗ .5+120∗ (6−1)∗ .5). (7)

From this relatively straightforward example it can
be seen that there is a significant difference between the
costs of the two CEAS encoding schemes. This difference
is apparent with the example containing just two levels of
hierarchy: the difference increases as the hierarchy grows
deeper.
Before discussing a more general consideration of size,

we define the following variables:

s – size of fragment identifier in bits
n – number of fragments for generation i
ρ – parent density for generation i, i.e. percentage of
fragments for generation i that have child fragments

pd – primary target density for generation i
ad – fragment association density for generation i
φ – average number of child fragments per parent for
generation i

k – total number of generations

For the bit vector scheme the size is as follows:

n20+
k∑

i=1

(ni−1ρi−1φ
2
i). (8)

For the byte list scheme the size is comprised of the
following components:

Size of Parent Primary Targets = n0pd0, (9)

Size of Parent Frag Asns = n0(n0−1)ad0, (10)

regressively including the following generations:

Size of Child Primary Targets = (ni−1ρi−1φi)pdi, (11)

Size of Child Frag Asns = (ni−1ρi−1φi)(φi−1)adi (12)

for a total size of:

s(n0pd0+n0(n0−1)ad0

+
k∑

i=1

(ni−1ρi−1φi)pdi

+(ni−1ρi−1φi)(φi−1)adi). (13)

3.3 Comparison of Extraction Policies

Recall that the list-based encoding was shown, in (5),
to be more efficient than the bit vector approach for
the Grouping Extraction Policy for low fragment associ-
ation densities. This is also the case for the Hierarchical
Grouping Extraction Policy, although the fragment as-
sociation densities need to be much lower, particularly
with documents that have many levels of hierarchy. As
can be observed from Table 1, the Hierarchical Grouping
Extraction Policy is significantly more efficient than the
Grouping Extraction Policy.

3.4 Signing the document

Signing the document using CES includes specifying the
Extraction Policy, which involves a two-step process: (i)
define the fragments and then (ii) specify the fragment
associations. The process of defining a fragment includes
specifying the content itself as well as whether it is a pri-
mary or secondary target. Once all the fragments have
been defined, the signer specifies the mandatory and op-
tional fragment associations for each fragment. This in-
formation is included as part of the extraction signature.
Upon completion of signing, the document and its ex-
traction signature (if separate from the document) are
forwarded to the document user.

4 Implementation using XML signatures

Content extraction signatures enable selective disclosure
of verifiable content, provide privacy for blinded content
through the use of a salt, and enable the signer to specify
the content the document owner is allowed to extract or
blind. When combined, these properties give what we call
CES functionality.
To enable the development of interoperable applica-

tions using CES with the new Hierarchical Grouping Pol-
icy we will now show how to implement XML Signatures
to achieve CES functionality. This is achieved through
the use of a new enhanced custom transform and a re-
designed XMLsig structure first introduced in [10].

4.1 XML Signatures in brief

An XMLsig is comprised of four main components or
elements, as illustrated in Fig. 6. The <SignedInfo>

L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures 217

element includes all of the content or resources to be signed
with each itemhavinga corresponding <Reference>elem-
ent that identifies the content and a digest over it. The
<Reference> elements are digested and cryptographi-
cally signed in a manner similar to signing when using
a standard digital signature. The resulting signature
value is stored in the <SignatureValue> element. The
<KeyInfo> and <Object> elements are optional.

4.1.1 The reference processing model

The signed content, which may be contained in the same
document as the XMLsig and/or external to the docu-
ment containing the XMLsig, is referenced with a <Ref-
erence> element. The URI (Uniform Resource Identi-
fier) [3] attribute of the <Reference> element identifies
the signed item. Each <Reference> element may have
zero or more transforms, which are applied to the deref-
erenced content prior to its being digested using the al-
gorithm specified in the <DigestMethod> element. The
resulting digest is always base64 encoded [13] and stored
in the <DigestValue> element.
The <Transforms> element may contain an ordered

list of transforms to be applied to the dereferenced con-
tent. Each transform is specified using a <Transform>
element as follows:

<Transforms>

<Transform Algorithm="t1" />

<Transform Algorithm="t2" />

. . .

<Transform Algorithm="tn" />

</Transforms>

The XMLsig’s Reference Processing model [1, Sect.
4.3.3.2] specifies that the dereferenced content is supplied
to the first transform. As illustrated in Fig. 7, the list
of transforms forms a transform chain where the out-
put from the first transform is supplied as the input
to the second transform, its output to the next, and so
forth, until the last transform, the output of which is sup-
plied to the digest algorithm. The types of transforms

Fig. 6. Top-level components of an XML signature
(adapted from [16, p.710])

Fig. 7. Transform chain for processing content prior to input to
digest algorithm (adapted from [16, p.720]). The arrows

indicate the transfer of data from one stage
of the transform chain to the next

defined include: Canonicalization (with comments and
without comments); Base64; XPath Filtering; XSLT; and
Enveloped Signature transform. The XMLsig Reference
Processing Model is also used for XMLsig reference vali-
dation [1, Sect. 3.2.1], which is a required part of XMLsig
core validation.

4.2 XML Signature design

As part of achieving CES functionality, compliance with
the signer’s Extraction Policy needs to be included in
the XMLsig core validation [1, Sect. 3.2] processing re-
quirements. This has been demonstrated in [10]; how-
ever, this was only with a simple, single-dimensional
Extraction Policy. The policy-checking mechanism uses
the Reference Processing model and is inserted into the
<Reference> element being processed. Using this ap-
proach has the limitation that the transform chain is ex-
ecuted within a scope that is relative (and hence limited)
to the current <Reference> element being processed.
The problem with this is that to handle fragment group-
ing, the VerifyPolicy transform needs to have access to
other <Reference> element contents that are effectively
out of scope.
To solve this problem, the XMLsig needs to be re-

structured to enable the VerifyPolicy transform to ac-
cess all of the fragment nodes. As illustrated in Fig. 8,
this is achieved by making all of the <Fragment> elem-
ents children to the <Object> element and using a single
<Reference> element to refer to the <Object> elements
as follows:

<Reference URI="#obj1" Type=" . . . #Object">

<Transforms>

<Transform Algorithm=" . . . ces#VerifyPolicy" />

</Transforms>

</Reference>

The <Object> element contains a <Fragment> elem-
ent for each item that is to be signed as follows:

<Object Id="obj1">

<Fragment Id="frag1" URI=" . . . ">

<CEAS type="LIST|VECTOR"> . . . <CEAS>

[<Salt> | <Digest>]

</Fragment>

<Fragment Id="frag2" URI=" . . . ">

<CEAS type="LIST|VECTOR"> . . . <CEAS>

[<Salt> | <Digest>]

</Fragment>

218 L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures

Fig. 8. XML signature structure for an extracted signature to
bring all of the <Fragment> elements within the scope of the
<Reference> element’s custom transform in order to verify extrac-
tion policy compliance. Fragment1 is present and contains a URI
attribute that points to the fragment content, as well as a Salt.
Fragment2, on the other hand, has been blinded and contains
a blank URI attribute while the salt has been mutated to a digest
value for the content plus the salt

. . .

</Object>

where | denotes an exclusive OR.

The URI attribute of the fragment references the frag-
ment content while the <CEAS> element contains the en-
coding of the signer’s Extraction Policy for that fragment.
The <Salt> element contains a salt value used in CES to
ensure privacy of blinded content [21, Sect. 3.3]. It is ap-
pended to the fragment content prior to digesting. The
<Salt> element is always present in the original signature
from the document signer.
When Bob, the document user, produces a sub-doc-

ument, an extracted signature corresponding to the sub-
document must be generated so that it can be validated
by Carol, the sub-document recipient (or verifier), as be-

ing signed by Alice. This extracted signature has the
<Salt> element replaced with a <Digest> element for the
corresponding fragments that are not included (blinded)
in the sub-document. The digest value is generated from
the fragment content with the salt appended. There-
fore, the extracted signature that is generated for the
sub-document has a <Salt> or a <Digest> element for
each fragment that is present or has been blinded as
depicted in Fig. 8 for <Fragment1> and <Fragment2>
respectively.

4.3 Custom Extraction Policy transform

The custom transform to verify the Extraction Policy
used in [10] needs to be enhanced to handle the Hier-
archical Grouping Extraction Policy. The URIs of custom
transforms can be signed, as can the transform code it-
self, to establish trust. The requirement for the custom
transform is to process the <Reference> element’s deref-
erenced content by dereferencing the content of each of
the <Fragment> elements and checking compliance with
the Extraction Policy, and finally emitting a Result byte
stream for input to the digest algorithm.
As illustrated in Fig. 9, the transform processes the

dereferenced content from the <Reference> element that
will be XML content containing at least one <Fragment>
element. For each <Fragment> element the transform first
checks for the presence of a <Digest> element that in-
dicates the fragment has been blinded. If the fragment
has been blinded, then the CEAS is checked for compli-
ance with the fragment Extraction Policy. Compliance
sees the CEAS appended to the digest value that is then
appended to the Result. This Result will be emitted
upon completion of processing of the last <Fragment>
element. Should verification of the Extraction Policy fail,
then two bytes of zeroes will be appended to the Result
in place of the digest value. This will ultimately cause
reference validation failure and in turn core validation
failure since the appended bytes will not match those
originally used to create the digest value stored in the
<Reference> element’s <DigestValue> element when it
was signed.
On the other hand, if the fragment has not been

blinded, the <Digest> element will not be found. Rather,
a <Salt> element will be present. The fragment URI is
dereferenced to retrieve the fragment content and the salt
value from the <Salt> element is appended to the frag-
ment content prior to digesting. The resulting digest has
the CEAS appended to it and is then appended to the
Result that will be emitted.
In addition to the explicit requirements of the trans-

form, more subtly, it also accommodates the mutation
of the <Fragment> elements, i.e. present fragments to
blinded fragments. Normally the content referenced by
a <Reference> element is invariant and a digest over it
is included in the content signed by the cryptographic
signature.

L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures 219

Fig. 9. VerifyPolicy transform algorithm for fragment grouping

5 Enriching digital library functionality

Having demonstrated the technical feasibility of selec-
tively handling verifiable information and showing how
to implement the Grouping Extraction Policy for CES
using the XML signature open standard, we would now
like to turn to digital libraries in a future electronic so-
ciety. We will use a typical example from academia to
briefly illustrate a facet of our conjecture, ignoring any
economic model that is likely to accompany an actual
deployment.

5.1 A specific example

Consider a researcher who is writing a paper and wishes
to cite some other person’s work that has been published
and stored in a digital library. The material to be cited is
contained in a published paper that has been signed by
the publisher using a content extraction signature. With
a suitable application, the publisher makes the entire pa-
per, or fragments thereof, available for download. In this
case the researcher selects the required content and ex-
tracts it along with an extracted CES. The extraction
process is inexpensive in CPU terms because it does not
include any cryptographic operation. If the researcher has
a local copy of the paper, the extraction is simply per-
formed locally.
The content fragments along with the extracted CES

are embedded into the researcher’s paper. The in-text ci-
tation is coloured:

– green to indicate the content that it anchors has been
verified,
– red to indicate the anchored content has failed verifi-
cation, or
– black to indicate that verification has not yet been
performed.

In addition, hovering the mouse pointer over the in-text
citation displays, through a pop-up window, the content
to which the citation refers for the convenience of the
reader. The embedding process also automatically inserts
an entry into the list of references at the end of the docu-
ment using the metadata that accompanies the embedded
fragments.
The embedding of the content fragments from the ref-

erenced document into the researcher’s paper makes the
specific content, not the entire document, immediately
available to the reader. The reader can have a high de-
gree of confidence about the referenced material since the
content is protected by a digital signature and upon ver-
ification can be certain that it has not been altered. In
addition, the source is authenticated by the digital signa-
ture, thus enabling the reader to determine the veracity of
the referenced content through the authority and reputa-
tion of its source.
This example represents just one possibility arising

from the ability to selectively handle verifiable infor-
mation in an electronic society. There may exist many
other scenarios such as Web portals that aggregate in-
formation from multiple sources, or multiparty business
interactions/transactions where minimal disclosure of in-
formation to various parties is required, etc.

6 Conclusion

We have shown the trade-off between verifiable content
granularity and bandwidth usage, along with the impor-
tance of protecting against selective disclosure abuse, or
semantic abuse. Responding to these types of emerging
need, the development of content extraction signatures
enables content to be signed in a finer-grained manner.
We have also demonstrated an Extraction Policy that
specifies which content can be verified when selectively
disclosed.
After revisiting previous work on Extraction Poli-

cies to establish a framework upon which to build, we
presented a new, richer and more efficient policy called
a Hierarchical Grouping Policy. The new Extraction
Policy is particularly suited for use with hierarchical
documents such as journals, journal articles, and ency-
clopædias – not to mention the HTML, and increasingly
XML, documents almost ubiquitous in modern electronic
repositories.
We then showed how to implement CES with the new

extraction policy using XML signatures, along with a new
custom transform and improved XML signature struc-
ture to handle Grouping Extraction Policies.

220 L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures

After establishing the technical feasibility of handling
verifiable content in a fine-grained manner, we offered an
example of its potential use to enhance the functionality
of digital libraries in an emergent electronic society.

Acknowledgements. The authors would like to thank Mr. Gerry
Butler for his valuable comments and discussion during the devel-
opment of this work.
Also, we wish to thank the anonymous reviewers for their con-

structive, detailed comments and suggestions in helping to improve
the correctness and presentation of this paper.

References

1. Bartel M, Boyer J, Fox B, LaMacchia B, Simon E (2002)
XML-signature syntax and processing. In: Eastlake D, Rea-
gle J, Solo D (eds) W3C Recommendation. World Wide Web
Consortium, 12 February 2002.
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.
Last accessed: 21 May 2004

2. Bellare M, Neven G (2002) Transitive signatures based on
factoring and RSA. In: Zheng Y (ed) Proc. 8th interna-
tional conference on the theory and application of cryptology
and information security (ASIACRYPT 2002), Queenstown,
New Zealand, 1–5 December 2002. Lecture notes in com-
puter science, vol 2501. Springer, Berlin Heidelberg New York,
pp 397–414

3. Berners-Lee T, Fielding R, Masinter L (1998) RFC 2396. Uni-
form resource identifiers (URI): generic syntax. Available on-
line, August 1998.
http://www.ietf.org/rfc/rfc2396.txt.
Last accessed: 21 May 2004

4. Beth T, Frisch M, Simmons GJ (eds) (1992) In: Public-
key cryptography: state of the art and future directions, 3–6
July 1992. EISS Workshop Oberwolfach Final Report. Lecture
notes in computer science, vol 578. Springer, Berlin Heidelberg
New York

5. Blakley GR (1999) Twenty years of cryptography in the open
literature. In: Proc. 1999 IEEE symposium on security and
privacy, Oakland, CA, 9–12 May 1999. IEEE Press, New York,
pp 106–107

6. Brands SA (2000) Rethinking public key infrastructures and
digital certificates: building in privacy. MIT Press, Cambridge,
MA

7. Brands S (1993) Privacy-protected transfer of electronic in-
formation. U.S. Patent serial no. 5,604,805, February 1997,
August 1993. Filed August

8. Brands S (2002) A technical overview of digital credentials.
http://www.credentica.com/technology/overview.pdf.
Last accessed: 18 February 2003

9. Bull L, McG Squire D, Newmarch J, Zheng Y (2003) Group-
ing verifiable content for selective disclosure. In: Safavi-Naini
R, Seberry J (eds) Proc. 8th Australasian conference on in-
formation security and privacy (ACISP 2003), Wollongong,
Australia, 9–11 July 2003. Lecture notes in computer science,
vol 2727. Springer, Berlin Heidelberg New York, pp 1–12

10. Bull L, Stanski P, McG Squire D (2003) Content extrac-
tion signatures using XML digital signatures and custom
transforms on-demand. In: Proc. 12th international World
Wide Web conference (WWW2003), Budapest, Hungary, 20–
24 May 2003. ACM Press, New York, pp 170–177.
http://www2003.org/cdrom/papers/refereed/
p838/p838-bull.html.
Last accessed: 21 May, 2004

11. Devanbu PT, Gertz M, Kwong A, Martel C, Nuckolls G, Stub-
blebine SG (2001) Flexible authentication of XML documents.
In: Proc. 8th ACM conference on computer and communica-
tions security, Philadelphia. ACM Press, New York, pp 136–45

12. Diffie W, Hellman ME (1976) New directions in cryptography.
IEEE Trans Inf Theory IT-22(6):644–54

13. Freed N, Borenstein N (1996) Multipurpose Internet mail ex-
tensions (MIME). I. Format of Internet message bodies. Avail-
able online, 1996.
http://www.ietf.org/rfc/rfc2045.txt.
Last accessed: 21 May 2004

14. IETF (2004) The Internet Engineering Task Force.
http://www.ietf.org/. Last accessed: 21 May 2004

15. Johnson R, Molnar D, Song D, Wagner D (2002) Homomor-
phic signature schemes. In: Preneel B (ed) Topics in Cryptol-
ogy – CT-RSA 2002: the cryptographer’s track at the RSA
conference 2002, San Jose, CA, 18–22 February 2002. Lecture
notes in computer science, vol 2271. Springer, Berlin Heidel-
berg New York, pp 244–62

16. LaMacchia B, Lange S, Lyons M, Martin R, Price K (2002)
.NET framework security. Addison-Wesley, Boston, MA

17. Micali S, Rivest RL (2002) Transitive signature schemes.
In: Preneel B (ed) Topics in Cryptology – CT-RSA 2002:
the cryptographer’s track at the RSA Conference 2002, San
Jose, CA, 18–22 February. Lecture notes in computer science,
vol 2271. Springer, Berlin Heidelberg New York, pp 236–243

18. NIST (1994) Digital Signature Standard (DSS). Number 186
in Federal Information Processing Standards publication. Na-
tional Institute of Standards and Technology, May 1994.
http://www.itl.nist.gov/fipspubs/fip186.htm.
Last accessed: 7 April 2004

19. Polivy DJ, Tamassia R (2002) Authenticating distributed
data using web services and XML signatures. In: Proc. 2002
ACM workshop on XML security (XMLSEC-02), New York,
22 November 2002. ACM Press, New York, pp 80–89

20. Rivest RL, Shamir A, Adleman L (1978) A method for obtain-
ing digital signatures and public-key cryptosystems. Commun
ACM 21(2):120–8

21. Steinfeld R, Bull L, Zheng Y (2001) Content extraction sig-
natures. In: Kim K (ed) Proc. 4th international conference on
information security and cryptology (ICISC 2001), Seoul, Ko-
rea, 6–7 December 2001. Lecture notes in computer science,
vol 2288. Springer, Berlin Heidelberg New York, pp 285–304

22. World Wide Web Consortium (2004) The World Wide Web
Consortium. Available online.
http://www.w3.org/
Last accessed: 21 May 2004

Appendix : Standard digital signatures and
content extraction signatures

For the reader unfamiliar with the details and workings
of digital signatures, we first provide a brief overview of
the standard digital signature. This also serves as a basis
for the following overview of CES schemes CommitVec-
tor and HashTree [21, Sect. 4.1]. These two schemes are
more computationally efficient than the third and fourth
schemes proposed in [21, Sect. 4.2].

A.1 Standard digital signature

The Digital Signature Standard (DSS) [18] uses hashing
and asymmetric encryption to produce a digital signature
over the content that is to be signed. Signature generation
and signature verification processes are used to produce
and verify a digital signature respectively.
The generation process uses a hash function h on the

content being signed M to produce a message digest H
that is then encrypted with the function Encrypt using the
secret key SK of the signer to produce a digital signature
σ as follows:

σ = EncryptSK(h(M)). (A.1)

L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures 221

The verification process outputs a verification decision
d ∈ {Accept,Reject} following its processing of σ and the
received contentM ′. Verification proceeds by hashingM ′

to produce H ′ and then comparing it with the result of
decrypting σ with the function Decrypt using the signer’s
public key PK as follows:

If h(M ′) = DecryptPK (σ) = h(M)

thenM ′ =M (with extremely high confidence)

so d= “Accept′′ (A.2)

A.2 CES-CommitVector scheme

The standard digital signature scheme encrypts a digest
of the whole message. In contrast, for CES to facilitate
the selective handling of verifiable information, we sign
a collection of n fragment digests. We now consider the
content to be signed as being comprised of content frag-
ments

M = (m1,m2, . . . ,mn)

To assist in understanding CES we will illustrate the
following description with a practical example. This ex-
ample involves an original document that contains n= 5
fragments and is signed with a CES by the document
creator and then forwarded to the document owner. The
document owner removes the third and fourth fragments
to create a sub-document, containing the first, second and
fifth fragments, and then generates an extracted signa-
ture for the sub-document. The sub-document along with
its extracted signature are then forwarded to the verifier.
To support the handling of individual fragments, this

CES scheme requires the storage of the message digests
for any removed fragments. Therefore, to provide pri-
vacy security against leakage of information for removed
fragments,2 prior to hashing each fragment mi a random
value, or salt, ri is appended as follows:

Hi = h(mi+ ri). (A.3)

The fragment message digests along with the encoding of
the signer’s Extraction Policy CEAS are encrypted with
the Encrypt function using the signer’s secret key SK as
follows:

σ = EncryptSK(H1,H2, . . . ,H5,CEAS). (A.4)

2 To illustrate the need for privacy security for removed frag-
ments, consider the scenario depicted in Fig. 1, where a fragment
could contain the grade a student received for a unit of study.
Given that the grade may have only four possible values, it is trivial
to determine the grade from the digest value by hashing each of the
values and comparing each with the digest value. Likewise, a frag-
ment containing a date of birth would not entail a large search
space and could therefore be recovered from its digest value rela-
tively easily.

The process of removing fragments by the document
owner requires the generation of an extracted signature
σext to enable the verifier to verify the received fragments
(or sub-document). To enable the signature extraction
and verification processes, we must also include the salt
values as well as the CEAS in the signature σCES as
follows:

σCES = (σ, r1, r2, . . . , r5,CEAS). (A.5)

The document owner creates a sub-document to be
passed on to a verifier by deleting the unwanted frag-
ments, three and four in this case, and then generating
the extracted signature σext for the sub-document.
Where fragments are not removed, the message digest

is not required; instead the salt value ri is retained. This
is because the digest can be generated during signature
verification by hashing the received content m′i after ap-
pending ri as follows:

H ′i = h(m
′
i+ ri). (A.6)

However, where fragments are deleted, the fragment
message digest must be retained to enable verification of
the sub-document by its recipient, the verifier. Retain-
ing the fragmentmessage digest for each deleted fragment
makes the salt value for the deleted fragment redundant.
Therefore, the salt value is replaced with the fragment
message digest for each deleted fragment. Thus the ex-
tracted signature generated by the document owner for
the sub-document containing the first, second and fifth
fragments is as follows:

σext = (σ, r1, r2,H3,H4, r5,CEAS). (A.7)

The recipient verifies the sub-document

M ′ = (m′1,m
′
2,m

′
5)

using σext. First, the fragment message digestsH
′
i for the

received fragments are generated by appending the salt
values from σext to the fragment as per (A.6). This gives
the verifier H ′1,H

′
2,H

′
5 and H3,H4,CEAS from σ, per-

mitting a comparison with the result of decrypting σ with
the Decrypt function using the signer’s public key PK as
follows:

d= “Accept′′ if and only if

(H ′1,H
′
2,H3,H4,H

′
5,CEAS) = DecryptPK(σ) (A.8)

However, before a CES verification decision dCES can
be issued, Extraction Policy compliance (m′1,m

′
2,m

′
5) ∈

CEAS must be checked. Therefore, we output the CES
verification decision for our sub-document as follows:

dCES = “Accept
′′ if and only if

d= “Accept′′ and (m′1,m
′
2,m

′
5) ∈ CEAS (A.9)

222 L. Bull et al.: A Hierarchical Extraction Policy for content extraction signatures

A.3 CES-HashTree scheme

The HashTree scheme is a variant of the CommitVector
scheme that uses a binary hash tree for handling the mes-
sage digests for removed fragments. This scheme has the
potential to substantially reduce the size of extracted sig-
natures depending on the ratio of n :m, where n is the
number of fragments in the original document and m is
the number of fragments in the sub-document.
For this approach we use a binary hash tree with the

leaf nodes containing the fragment message digests Hi.
Each non-leaf node contains a hash value of the concate-
nation of its two child nodes, up to the root node Hroot.
Thus for CES signing, the encryption with the Encrypt
function using the signer’s secret key changes (A.4) to:

σ = EncryptSK(Hroot,CEAS). (A.10)

while leaving (A.5) unchanged.
In the case of the extracted signature, using a hash

tree obviates the need to store all of the fragment mes-
sage digests for the deleted fragments. Instead, we need
only keep the minimal number of fragment message di-
gests and hash values for the internal tree nodes required
to compute the root nodeHroot.
Following the development in [21, Sect. 4.3], we note

that the length of the σCES using the HashTree scheme
is the same as the length of the signature using the Com-
mitVector scheme. It is with the extracted signature σext
where the difference is manifest. From [21, Sect. 4.3] we
have the length of the extracted signature for the Com-
mitVector and HashTree schemes as follows:

lσextCV = lσ+(n−m)lH+mlr+ lCEAS (A.11)

lσextHT = lσ+f(n,m)lH+mlr+ lCEAS (A.12)

where3

lσ – length of signature obtained by encrypting the
original document message digests and CEAS

lH – digest length
lr – salt length
lCEAS – CEAS encoding length

f(n,m)
def
=min(m log2(n/m), n−m)

n – fragment count in original document
m – fragment count in extracted sub-document

Whenever n−m< n/2, the HashTree extracted sig-
nature is shorter sincem log2(n/m)< n−m. Whenm�
n, the difference is dramatic. To illustrate with a practical
digital library example, consider an encyclopædia with
100,000 entries, each of which is treated as a fragment.We
wish to extract a single, verifiable entry. The length of the
σext component dependent on hashes would be 99, 999lH
for the CommitVector scheme and log2(100, 000)lH ≈
17lH for the HashTree scheme. The HashTree scheme is
thus overwhelmingly preferable when a small number of
fragments is extracted from a large numbers of fragments
in the original document to produce a sub-document,
i.e.m� n.
In practice, the application software used in the

fragment extraction process could simply decide which
scheme to use based on the values for n and m prior to
generating the extraction signature.

3 f(n,m) is the minimum of the worst case number of paths to
Hroot required to compute intermediate hashes from the remaining
message fragments and hashes sent, or simply the same as for the
CommitVector scheme.

