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How to Recycle Shares in Secret Sharing Schemes

Abstract

A (t, w) threshold scheme is a method for sharing a secret among w share-
holders so that the collaboration of at least t shareholders is required in order
to reconstruct the shared secret. This paper is concerned with the re-use of
shares possessed by shareholders in threshold schemes. We propose a simple
(t, w) threshold scheme based on the use of the pseudo-random function family
and the universal hash function family. A remarkable advantage of the scheme
is that a shareholder can use a single string in the share of many different se-
crets, in particular, a shareholder need not be given a new share each time a
new secret is to be shared.

Keywords: Cryptography, Information Security, Secret Sharing.

1 Introduction

The problem of maintaining a secret among w shareholders whereby at least t of

them are required to cooperate before the secret can be reproduced was first posed

by Shamir in [7] and Blakley in [1]. Since then a number of (t, w) threshold schemes

have been suggested by researchers in the field of cryptography [8]. These schemes

provide the property that by using any t or more pieces of the shared secret, which

are called shares hereafter, the whole secret can be derived, while at the same time

maintaining that any t − 1 shares will be insufficient to derive the shared secret.

The shared secret itself can be a master key to a cryptographic system, a vault-lock

combination, or even a decision which must be arrived at by at least t members in

an organization.

A common drawback of these proposed schemes is that each time when a shared

secret is recovered, all shares of the secret including those which did not participate in

the recovering process become useless. Therefore each shareholder has to be given a

new share when a new secret is to be shared. In this paper we propose a simple (t, w)

threshold scheme based on the use of the pseudo-random function family [3] and the

universal hash function family [2, 9]. This scheme can remedy the above mentioned

drawback. Another remarkable advantage of the scheme is that a shareholder can use

a single string in the share of many different secrets.

This paper is organized as follows. Section 2 will discuss the background in the ba-

sic constructs necessary for the foundation of the secret sharing scheme. In particular,

this will consist of the definitions of pseudo-random function families and universal

hash function families. Using these basic constructs, the secret sharing scheme is

presented in Section 3, followed by an example of the scheme in Section 4. Section 5

compares the scheme with that suggested by Shamir in [7] together with a discussion
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on the advantages and disadvantages of the scheme. The paper is closed by some

remarks and conclusion in Section 6.

2 Basic Constructs

Denote by N the set of all positive integers, Σ the alphabet {0, 1} and ]S the number

of elements in a set S. Denote by n a security parameter which determines many

things such as the length of a shared secret, the length of shares, the security level

of a secret sharing scheme and so on. By x∈RS we mean that x is chosen randomly

and uniformly from the set S. The composition of two functions f and g is defined as

f ◦g(x) = f(g(x)). Throughout the paper ` and m will be used to denote polynomials

from N to N .

Let F = {Fn|n ∈ N} be an infinite family of functions, where Fn = {f |f : Σ`(n) →
Σm(n)}. We call F a function family mapping `(n)-bit input to m(n)-bit output

strings. F is polynomial time computable if there is a polynomial time algorithm (in

n) computing all f ∈ F , and samplable if there is a probabilistic polynomial time

algorithm that on input n ∈ N outputs uniformly at random a description of f ∈ Fn.

2.1 Pseudo-random Function Families

Intuitively, a function family F = {Fn|n ∈ N} is a pseudo-random function family

(PRFF) if to a probabilistic polynomial time algorithm, the output of a function f

chosen randomly and uniformly from Fn, whose description is unknown to the algo-

rithm, appears to be totally uncorrelated to the input of f , even if the algorithm can

choose input for f . The formal definition is described in terms of (uniform) statistical

tests for functions. A (uniform) statistical test for functions is a probabilistic polyno-

mial time algorithm A that, given n as input and access to an oracle Of for a function

f : Σ`(n) → Σm(n), outputs a bit 0 or 1. The algorithm A can query the oracle only

by writing on a special tape some y ∈ Σ`(n) and will read the oracle answer f(y) on

a separate answer-tape. The oracle prints its answer in one step.

Definition 1 Let F = {Fn|n ∈ N} be an infinite family of functions, where Fn =

{f |f : Σ`(n) → Σm(n)}. Assume that F is both polynomial time computable and

samplable. F is a pseudo-random function family iff for any statistical test A, for

any polynomial Q, and for all sufficiently large n,

|pf
k − pr

k| < 1/Q(n),

where pf
k denotes the probability that A outputs 1 on input k and access to an oracle

Of for f∈RFn and pr
k the probability that A outputs 1 on input k and access to an

oracle Or for a function r chosen randomly and uniformly from the set of all functions
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from Σ`(n) to Σm(n). The probabilities are computed over all the possible choices of f ,

r and the internal coin tosses of A.

In [3], it has been shown that pseudo-random function families can be constructed

from pseudo-random string generators. By the result of [5, 4], the existence of one-way

functions is sufficient for the construction of pseudo-random function families.

2.2 Universal Hash Function Families

Universal hash function families (UHFFs), which were first introduced in [2] and

further developed in [9], have played an essential role in many recent major results

in cryptography and theoretical computer science (see for example [4, 5, 6]). Let

H =
⋃

n Hn be a family of functions mapping `(n)-bit input into m(n)-bit output

strings. For two strings x, y ∈ Σ`(n) with x 6= y, we say that x and y collide with each

other under h ∈ Hn or x and y are siblings under h ∈ Hn, if h(x) = h(y).

Definition 2 Let H =
⋃

n Hn be a family of functions that is polynomial time com-

putable, samplable and maps `(n)-bit input into m(n)-bit output strings. Let k be a

fixed positive integer. H is a (strong) k-universal hash function family if for all n, for

all k (distinct) strings x1, x2, . . . , xk ∈ Σ`(n) and all k strings y1, y2, . . . , yk ∈ Σm(n),

there are ]Hn/2
km(n) functions in Hn that map x1 to y1, x2 to y2, . . ., xk to yk.

The following definition of the collision accessibility property is presented due to

its importance to our secret sharing scheme.

Definition 3 Let H =
⋃

n Hn be a family of functions that is polynomial time com-

putable, samplable and maps `(n)-bit input into m(n)-bit output strings. Let k be a

fixed positive integer. H has the collision accessibility property if for all n and for

all 1 ≤ j ≤ k, given any set X = {x1, x2, . . . , xj} of j initial strings in Σ`(n), it is

possible in probabilistic polynomial time to select randomly and uniformly functions

from HX
n , where HX

n ⊂ Hn is the set of all functions in Hn that map x1, x2, . . ., and

xj to the same strings in Σm(n).

Strong k-universal hash function families with the collision accessibility property

can be obtained from polynomials over finite fields [2, 9]. We denote by Pn the

collection of all polynomials over GF (2`(n)) with degree less than k. That is,

Pn = {a0 + a1x + · · ·+ ak−1x
k−1|a0, a1, . . . , ak−1 ∈ GF (2`(n))}.

For each p ∈ Pn, let hp be the function obtained from p by chopping the first `(n)−
m(n) bits of the output of p whenever `(n) ≥ m(n), or by appending a fixed m(n)−
`(n)-bit string to the output of p whenever `(n) < m(n). Let Hn = {hp|p ∈ Pn},
and H =

⋃
n Hn. Then H is a strong k-universal hash function family, which maps

`(n)-bit input into m(n)-bit output strings and has the collision accessibility property.
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3 A New Secret Sharing Scheme

This section describes a new (t, w) threshold scheme for w = O(log n), where n is

the length of a secret to be shared. We assume that each secret K to be shared

has a serial number NK . We also assume that the w shareholders have identities

ID1, ID2, . . . , IDw respectively. For simplicity the w shareholders will be denoted

by U1, U2, . . . , Uw respectively. In describing the scheme, we assume that there is a

trusted dealer D who holds a secret K to be shared. The scheme will be described

in terms of the following three aspects:

1. Initial Status of the dealer D and the w shareholders.

2. Dividing Phase in which the dealer D divides the secret K into w pieces so that

at least t of the pieces are required to reconstruct the secret K.

3. Recovering Phase in which t or more shareholders work together in order to

reconstruct the shared secret.

3.1 Initial Status

Initially, the dealer D holds an n-bit secret K to be shared and each shareholder

Ui has a n-bit secret key Ki which is randomly chosen by the shareholder. The

dealer D should determine a pseudo-random function family F = {Fn|n ∈ N} where

Fn = {fK |fK : Σn → Σ`(n), K ∈ Σn} and each function fK ∈ Fn is specified by

an n-bit string K. D should also determine a z-universal hash function family H =

{Hn|n ∈ N} which maps an n-bit input into n-bit output strings and has the collision

accessibility property, where z, which is to be defined below, denotes the total number

of combinations of the w shareholders taken at least t at a time.

3.2 Dividing Phase

Let

C(w, i) =

(
w

i

)
=

w!

i!(w − i)!

be defined as the number of combinations or selections of w shareholders taken i at

a time (0 ≤ i ≤ w). From this definition, the number of combinations of the w

shareholders taken at least t at a time will consist of the following summation:

z =
w−t∑

i=0

(
w

t + i

)
=

(
w

t

)
+

(
w

t + 1

)
+ · · ·+

(
w

w

)

Denote by B1, B2, . . . , Bz the z different combinations of the shareholders taken

at least t at a time. Note that z = O(2w) = O(2c log n) = O(nc) for some constant c.
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For each Bi, we associate it with a w-bit identity Gi. The j-th bit of Gi corresponds

to the shareholder Uj, and it is set to 1 if and only if Uj is a member of Bi.

The core part of the secret sharing scheme is the following steps taken by the

dealer D:

1. For each set Bi (1 ≤ i ≤ z), merge the keys Ki1 , Ki2 , . . . , Kij of the share-

holders Ui1 , Ui2 , . . . , Uij in Bi together by the use of the following exclusive-OR

operation:

Xi = fKi1
(Ii,i1)⊕ fKi2

(Ii,i2)⊕ · · · ⊕ fKij
(Ii,ij) (1)

where each fKil
(Ii,il) is provided to D by shareholder Uil , and Ii,il is the con-

catenation of IDil , Gi and NK . That is, Ii,il = IDil ‖ Gi ‖ NK . It is assumed

that the length in bits of Ii,il is `(n). One reason for the need to use the function

f is to ensure that only actual shareholders are able to derive the string Xi.

Hence an element of authenticity, in that only shareholder Ui is able to produce

Ki, is introduced into the scheme. The key Ki represents the share of the secret

held by shareholder Ui.

2. Choose uniformly and randomly from Hn a function h such that the z resulting

values X1, X2, . . . , Xz corresponding to the sets B1, B2, . . . , Bz are mapped to

the secret K, i.e.

h(X1) = h(X2) = · · · = h(Xz) = K (2)

3. Make the function h public along with the fact that h is associated with the

secret with serial number NK .

3.3 Recovering Phase

When the shareholders Ui1 , Ui2 , . . . , Uij in the set Bi want to reconstruct the shared

secret K, they put together fKi1
(Ii,i1), fKi2

(Ii,i2), . . . , fKij
(Ii,ij), and calculate

Xi = fKi1
(Ii,i1)⊕ fKi2

(Ii,i2)⊕ · · · ⊕ fKij
(Ii,ij)

Then they calculate

K = h(Xi)

which is the shared secret to be recovered.

Using this method any combination of at least t out of the w shareholders can get

together corresponding to one of the sets Bi (i ≤ z) while maintaining secret their

own keys through the use of f .

After the shared key K has been used, and thus known to the shareholders in set

Bi, it is discarded and a new key K ′ is selected together with a new function h′ from

Hn that maps X ′
1, X

′
2, . . . , X

′
z to K ′. Here X ′

1, X
′
2, . . . , X

′
z represents the new values

derived from f due to the change in the serial number NK to the new serial number

NK′ .
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3.4 Security of the Scheme

The security of our secret sharing scheme lies in its use of the pseudo-random function

family and, to a certain extent, the universal hash function family. In the recovering

phase, each shareholder Uj must submit their piece of the secret Kj in the form of

the string fKj
(Ii,j) before a group Bi of (at least) t shareholders could recover K.

Hence, the main intention of attackers who want to recover the shared secret illegally

would be to obtain the pieces of the secret belonging to the honest shareholders in

the group.

More specifically, assume that there is an infinite subset N ′ of N and a polynomial

Q, such that for each n ∈ N ′ there is a shareholder Ui that can find with probability

1/Q(n) the key Kj (i 6= j) belonging to another shareholder Uj. This means that

there is an probabilistic polynomial time algorithm that can predict with probability

1/Q(n) the pseudo-random function family for all n ∈ N ′. This is a contradiction

to the definition of pseudo-random function families. Hence, the scheme is secure. A

more extensive discussion on the security of the scheme will be provided in the final

paper.

4 An Example

As an example consider the case where w = 4 shareholders U1, U2, U3 and U4 with

keys K1, K2, K3 and K4 are involved in a t = 2 secret sharing scheme. Thus the

combination of w = 4 shareholders taken (at least) t = 2 at a time will result in:

z =
2∑

i=0

(
4

2 + i

)
=

(
4

2

)
+

(
4

3

)
+

(
4

4

)
= 6 + 4 + 1 = 11

sets B1, B2, . . . , B11 where

B1 = {U1, U2},
B2 = {U1, U3},
B3 = {U1, U4},
B4 = {U2, U3},
B5 = {U2, U4},
B6 = {U3, U4},
B7 = {U1, U2, U3},
B8 = {U1, U2, U4},
B9 = {U1, U3, U4},

B10 = {U2, U3, U4},
B11 = {U1, U2, U3, U4}.
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From these sets of combinations, the input strings corresponding to these sets can

be derived as follows:

X1 = fK1(I1,1)⊕ fK2(I1,2)

X2 = fK1(I2,1)⊕ fK3(I2,3)

X3 = fK1(I3,1)⊕ fK4(I3,4)

X4 = fK2(I4,2)⊕ fK3(I4,3)

X5 = fK2(I5,2)⊕ fK4(I5,4)

X6 = fK3(I6,3)⊕ fK4(I6,4)

X7 = fK1(I7,1)⊕ fK2(I7,2)⊕ fK3(I7,2)

X8 = fK1(I8,1)⊕ fK2(I8,2)⊕ fK4(I8,4)

X9 = fK1(I9,1)⊕ fK3(I9,3)⊕ fK4(I9,4)

X10 = fK2(I10,2)⊕ fK3(I10,3)⊕ fK4(I10,4)

X11 = fK1(I11,1)⊕ fK2(I11,2)⊕ fK3(I11,3)⊕ fK4(I11,4)

Let H = {Hn|n ∈ N} be a 11-universal hash function family with the collision ac-

cessibility property. Following the above calculation, a function h is chosen uniformly

and randomly from Hn such that the eleven results X1, X2, . . . , X11 are mapped to K

in the following way:

h(X1) = h(X2) = · · · = h(X11) = K

5 Comparison with Shamir’s Scheme

The scheme suggested by Shamir in [7] consists of the division of a shared secret K

into w pieces K1, K2, . . . , Kw and the use of a polynomial

p(x) = a0 + a1x + a2x
2 + · · ·+ at−1x

t−1

of degree t− 1 to disperse the pieces. By placing a0 = K and evaluating

K1 = p(1), K2 = p(2), . . . , Kw = p(w)

any subset of t (t ≤ w) of the Ki values can be used to find the coefficients of p(x)

by interpolation and the secret K contained in a0 can then be recovered by simply

calculating p(0) = a0 = K. The calculations are done modulo a prime P where P > w

and P > K, and the coefficients of the polynomial are chosen from the elements of

the finite field GF (P ).

In our scheme the concept of sharing a secret that is only retrievable by the

collaboration of at least t shareholders is fundamentally the same as that suggested
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by Shamir. However, an important difference lies in the fact that the shareholders do

not hold pieces of the secret in the sense of Shamir’s scheme. Rather, each shareholder

holds a key, any t (at least) of which can be combined together to recreate the shared

secret. The keys of the shareholders are maintained as a secret by each shareholder

in the same manner that he or she would maintain the secrecy of his or her share in

Shamir’s scheme. Inherent in our approach is the advantage that the secret key of a

shareholder can be selected by him or her, and can be used many times independent

of the shared secret.

Another advantage of our approach is the variable length in bits of the shared

secret K. In general the shared secret K can be polynomially longer than that of the

secret key Ki of each shareholder Ui. This compares favorably with Shamir’s scheme

where the shared key K and the key Ki of the shareholder Ui are of equal length.

A further advantage lies in the fact that our scheme can be easily adapted to

a general access structure. The notion of a general access structure refers to the

situation where a secret can be divided among a set of shareholders such that any

“qualified subset” of the shareholders can reconstruct the secret while the unqualified

subsets cannot [8]. The (t, w) threshold scheme is in fact only a special case of the

general access structure. It is not clear how Shamir’s threshold scheme can be adapted

to a general access structure.

Our scheme has a disadvantage in the small number of shareholders w, namely

w = O(log n), where n is the length in bits of the shared secret K. Recall that the

number of combinations of the w shareholders taken at least t at a time is

z =
w−t∑

i=0

(
w

t + i

)

which is of order O(2w). In general, for a z-universal hash function family H =

{Hn|n ∈ N}, the size of the description of an function h ∈ Hn is of order O(ncz) =

O(nc2w) which grows exponentially with w, where c is a constant. For practical

purposes we must maintain the size of the description of h to be of order O(nd) for

some constant d. This means that we must keep w to be of order w = O(log n)

for the scheme to be practical. However, this restriction does not render the scheme

unusable since many practical situations require the number of shareholders to be

small. This is particularly true in the case of a vault in a bank where the authority

to open the vault of one bank director may be distributed among a small number of

w managers in the form of shares of the key K to the vault. Then at least t of the w

(t ≤ w) managers would be required in order to open the vault when the director is

unavailable.
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6 Conclusion and Remarks

In this paper we have presented a simple secret sharing scheme based on the pseudo-

random function family (PRFF) [3] and on the universal hash function family (UHFF) [2].

The scheme employs combinations of w shareholders taken at least t at a time. These

different combinations form a number of sets of shareholders, each of which represents

individual inputs to the instance of a universal hash function family mapping to the

desired shared secret. The scheme differs from the traditional approach suggested

by Shamir in [7] in that no pieces of the secret are actually dispersed among the w

shareholders. The advantage of our approach lies in the freedom of each shareholder

to choose their own secret key (corresponding to their “piece” of the shared secret)

and in the life time of their secret key which need not be renewed each time the

shared secret is recreated by t or more shareholders. Our approach still maintains the

important criteria that the collaboration of t − 1 or less shareholders will not result

in the compromise of the shares of the remaining shareholder(s).

Our approach to secret sharing has opened a number of avenues for further re-

search. These include research into finding schemes that will remove the restrictions

on the size of w and into other mathematical constructs suitable for the formation of

secret sharing schemes having recycleable shares.
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