
Characterising User Data Protection of Software Components

Khaled Md. Khanl Jun Ran Yuliang Zheng
Peninsula School of Computing and Information Technology

Monash University
McMohans Rd, Frankston

VIC 3199, Australia
{khaled, jhan, yuliang}@mars.pscit. monash. edu. au

quality attributes of a target component located in a
remote server may not be available to the user. In addition
to that, software composers do not have any control over
the behaviour of the components due to the unavailability
of the source code and the design artefact. The underlying
non-functional quality attributes of the components are
either unknown or not trusted as claimed. In such a
scenario, components may not be completely trusted by
the user. We believe that security risks involved with
using 'foreign' software components are quite different
from those associated with customised application. A key
to the success of a viable component market is its ability
to build confidence and trust on the components
developed by third parties [7], [8]. To create a certain
level of trust, the quality attributes of software
components must be well specified with their interfaces.

To fully materialise a trusted component model,
software components must be certified in terms of their
security properties [3]. The certification is a type of
quality approval that can specify and provide guarantee of
the component quality with a given degree of confidence.
The certificate itself is not a security property, rather it is
a trust model to boost user confidence on the product. The
certification process includes the characterisation and
assessment of security properties of components. In
facilitating the certification of components, we need to be
able to characterise the functionality and quality
properties of components [2], [15]. The issue of
characterisation of component functionality has already
been well studied in [5], but the aspect of characterisation
of non-functional attributes such as security, scalability,
reliability of component has not been properly addressed
yet. In this regard, security is considered as one of the
most important quality attributes of software components.
The security features that a component provides are the

Abstract
This paper makes an attempt to propose a scheme to

characterise non-functional security properties that are
embedded with the functionality of software components.
The security properties are attached with various aspects
of a component such as resource allocation, user data
protection, communication, and so on. In this paper we
are particularly interested in characterising the user data
protection of software components. It is often reported
that software components usually suffer from security and
reliability problems. It is now widely recognised that
characterisation of security properties of software
component is an important issue to boost the confidence
and trust on component technology. To address this issue,
the characterisation of security properties of component
is the first challenging step. The work proposed in this
paper is partially based on the functional requirements
defined in Common Criteria for Information Technology
Security Evaluation endorsed by NISI: The applicability
of the proposed scheme is demonstrated with a simple

example.

1 Motivation

With the rapid growth of the infomlation technology,
component-based software development has become
increasingly attractive. Although the notion of component
is not entirely new, its applicability is recently getting
new momentum both in research and practice. In
component-based software engineering (CBSE), an
infomlation system is considered as a set of interacting
separable stand-alone software components. A component
may be assembled with an application either statically or
dynamically over the Internet. In a dynamic assembly
scenario, the specification of the functionality and the

I The author is CUITently with the School of Computing and IT, University of Western Sydney, Nepean

His email address is kkhan@uwseduau The work was also partially funded by the DSTC Australia

3
0-7695-0631-3/00 $10.00 @ 2000 IEEE

security threats. These objectives must be translated into
fonnally specified security properties that can be
subjected to be assessed for the trustworthiness of the
candidate component. The security properties may be
attached with various properties of a component such as
resource allocation, user data protection, communication,
and so on. Our characterisation scheme for user data
protection is partially based on the functional
requirements defined in the Common Criteria (CC) for
Information Technology Security Evaluation, version 2.0
[1]. Common Criteria provide a schema for evaluating IT
system, and enumerate the specific security requirements
for such systems. The functional requirements in CC
describe the security behaviour or functions expected of
an IT system to counter threats. These requirements
consist of eleven classes. Each of these classes comprises
its members called families based on a set of security
requirements. Each of the family in a class can be
assessed in tenns of their strengths and weaknesses. In
our approach we have used particularly one such class
called Class FDP: User data protection as an experiment
for our study. The families of this particular class specify
various requirements for security functions and security
policy related to the user data protection of a target IT
system. It is worth to note that these requirements are
actually defined for IT products in general, not for
software components. Therefore, the main purpose of this
study is to investigate the possibility to apply some of
these requirements to software components in
characterising the security properties of components. We
assume that all of the requirements in CC may not be
applicable directly to software components due to the
distributed nature of software components and their
compositional complexity .Therefore, we have
extensively modified the structure and properties of the
class FDP to accommodate the basic nature of software
components in our scheme.

most important contributing factors to build the trust.
Components assembled perfectly in a software
architecture may not provide an acceptable level of
security .Therefore, it is vital that we must be able to scale
up security properties of components and their possible
impact on the enclosing system. To address this pressing
issue, a formal scheme to characterise the security
properties of existing components is urgently needed as
expressed in [4], [6], [8], [9], [10], [II]. A quick browse
of the current published works suggests that research
issues such as protecting the enclosing system from the
unsafe component, finding and removing security flaws of
components dominate the field. However, we believe that
if the trust related security properties are well specified
with the component interface signature, and available to
the user, only then components can be used with more
confidence by the application developers.

The paper is organised as follows. The scope and
objectives of this paper are described in section 2. We
have proposed a preliminary characterisation scheme
based on the functional requirements of Common Criteria
[1] in section 3. Section 4 describes an example that is
used in our scheme. The result of the application of our
scheme on the cited example is also focused in this
section. Section 5 outlines the implementation possibility
of our scheme in component technology. Finally, we have
summarised and outlined our future research direction in
section 6.

2. Scope of the paper

3. Structure of the scheme

The structure of our scheme comprises a security class,
a collection of security objectives related to the security
class, a collection of security functions, and entity and
action used by the security functions. Two types of
entities are used in a security function: subject and object.
The term security class is used to group a collection of
security objectives that shares a common focuses while
differing in coverage of security functions. In our case in
this paper, a security class may deal with the security
properties of protecting user data; hence the class is called
User Data Protection. The security class called User Data
Protection consists of seven security objectives. A security
objective is represented by a collection of security
functions that are used to achieve a predefined security
goal. For example, using a security function like verifying

Software components have, in fact, two aspects related
to their security: specification, and characterisation. The
specification of security properties is needed during the
design of components, but the characterisation is required
during assessing and certifying the existing components
in terms of their security properties. The main focus of
this paper is on defining a scheme that can be used to
characterise the security properties of software
components. The scheme proposed in this paper,
however, could be used as a guidance to specify the
security requirements of new components as well. It can
act as a guiding vehicle for the component designer to
specify the security requirements of software components.
However, the application of our proposed scheme is
restricted in this paper only to the characterisation of
existing software components.

This paper identifies the security enforcement
mechanisms that are already embedded in various forms
with the functionality of components at the
implementation level. These properties are inherited in the
implementation of the component functionality .We
believe these properties are the abstract implementation of
the security policies that are intended to counter certain

4

~~

study in a manageable size this work is restricted to only
these four types of security functions. Table 1 shows the
format of these four functions with corresponding

examples.
Each function may incorporate a rating based on the

degree of strengths and weaknesses of the function in a
particular context of application. The accumulated ratings
of all functions of a particular security objective would
express the ultimate strength of that security property .
Similarly, the total ratings gathered from all security
objectives would make a final rating to a particular
security class. However, We have not defined this rating
structure in our scheme at this stage.

Now we are in a position to formulate some security
objectives and their functions related to the security class
User Data Protection.

ACCESS-CONTROL : (I)

AUTHENTICATION [subject],
AUTHENTICATION [object],
AUTHORISATION [subject, object, action]

passwords can be used for the authentication of a user. A
single or a collection of security functions may be used to
counter one or more threats defined in the security
objective. A security function takes entities and actions as
a predicate form to express a complete security function.
The structure of our scheme is shown in Figure I.

A subject is an entity within the application or
component which causes an action to be performed on an
object. The subject can be in any form such as users, a
component, a procedure, or a method. The subject can be
defined as

SUBJECT{user, procedure, program, ..,component}.
An object is an entity that is used by a subject. It can

contain and receive information upon which a subject
performs action. The object can be in any form such as a
variable, a piece of data, a procedure, a method, or a data
file. Some objects may also act as subjects depending on
their roles in a specific context of application. For
example, a function or a procedure is a subject when it
calls or uses other functions. However, a function can be
an object when it is called or used by other functions. The
object can be defined as

OBJECT{component, program, data,... ,file}

ecurity class

Security objective 1: security function[subject, object, action]

Security objective N security function[subject, object, action)

Figure 1. The structure of the characterisation scheme

An access control is required when two components
intend to make a contract for exchanging services. Three
security functions associated with this security objective
describe the purpose of this objective. This suggests that
the subject and object must be authenticated before they
are used in a contract. Note that the object also might be
required to be authenticated before it is used in some
context. This is necessary particularly when a component

An action is applied on an object by a subject. A
subject can perform an action such as read, write, delete,
execute, use, connect and so on. Different types of actions
can be defmed as

ACTION {read, write, use, ,execute}
We now define some categories of security functions

that are used as security properties such as authorisation,
authentication, validation and protection. To keep our

Table 1. Four types of security functions

5

is assembled dynamically over the Internet, for example.
The subject may pose a question such as ItIs this the right
component that is going to be assembled with the
application system? It We will see this aspect in our

example shortly. However, in addition to that, an access
control may have additional functions that may formulate
the expected behaviour during the interaction between
two contracting components.

(3)EXPORT -DA T A-CONTROL:

VALIDATION [object]

This security objective is concerned with the security of
the data to be exported to the application which is outside
of the control of the component. It involves in ensuring
the correct form of data and their range, accurate and
unambiguous information, and so on. Typically, the
security function under this objective deals with the
output data to be sent from the component after

processing.
(2)IMPORTED-DA T A-CONTROL:

VALIDATION [object]

This security objective is used to validate data imported
from the application system that is outside of the control
of the component. The function protects the internal data
of the component from being corrupted by the imported
data. It checks the type and range of "input" data

INTERNAL-DATA-TRANSFER-CONTROL:
AUTHENTICATION [object],
VALIDATION [object],
PROTECTION [object]

(4)

Table 2. Security objectives with associated functions of the security
class User Data Protection

particularly. An incorrect data type may have serious
implication on the system. The correct matching of data
format in both ends of the contract is an important aspect
in component technology. It is reported that a common
error occurred in system execution is the out of range
value during an unprotected type conversion [12J, [13J.
Incompatibilities of the input and output values may lead
to an undesirable state of the entire system. Therefore,
components should be carefully matched to the context of
their use in terms of their compliance with the enclosing

system [12J.

This security objective addresses the issues of protection,
validation, and authentication of data when they are
transferred between two internal entities which are
logically separated from each other within a component.

This involves, for example, use of global variables in a
procedure may have security impact on the data. Use of
global variables in a procedure may not hide the memory
address of the data properly. This security objective deals
with the prevention of disclosing data during transferring
to other parts of the component. The objective can be

ft;6

accomplished by using one or more of these three
functions.

4.1 The system description

(5)STORED-DA T A-PROTECTION:
PROTECTION [object]

This objective is defmed to protect the user data while
it is stored in a file or in a database. It also verifies the
integrity of the data that is stored. Database systems
usually have some built-in features such as integrity
constraints, referential constraints and so on. These can
enforce certain level of security objectives in the
databases.

RESIDUAL-DATA-PROTECTION: (6)
PROTECTION [object]

This objective addresses the issue of protecting data
that has been logically deleted or released by a processing
unit of the component. It ensures that all of the deleted
data is unavailable to all other entities. For example, the
exit condition of an function implies that it must initialise
all its local variables containing input and temporary data
which are not required by any other processing unit of the
component. Users of a system may leave a trail of data
shadow with the contents about what the last data they

manipulated [14].

(7)UNDO-PROCESSING:
PROTECTION [object]

"A medical system used by the medical
practitioners is dynamically assembled with a
software component time to time as needed. The
name of the component is diaR. This component
caters the diagnosis reports on patients to the
legitimate users. Most of the users of the system are
medical practitioners. Not all users are authorised to
retrieve the report of patients. Only selected users
have access to the reports of his/her own patients
although they may have access to the other services
provided by the component. When an user sends a
connection request to the component from the
application system, the component then identifies
itself with its own address, security label, and its
interface structures. After connecting with this
component the user supplies the password and the
User ID number in order to access to the component
services. The component then consults its internal
configuration file to determine if the request from the
user is permitted. The component validates the
request and generates an accept or reject message
depending on its processing. This security function
is directly concerned with how users get access to
the component. This particular component provides
several other functions to various types of users
according to their role. However, we are interested
in one particular service, that is, generating

diagnosis report'.
The service of the component in which we are

interested in is a set of operations supported by an
interface structure. The interface structure of the
component is outlined in Figure 2. In this system, the
user's application system communicates with the
component through unidirectional channels in terms of
interfaces and their attributes. In this case the attributes
and the name of the interface together have formed the
entire interface structure without considering their
implementation. The information that passes through
these channels is a collection of input, output and state
variables in varying data formats ranging from atomic to
complex data types. Three distinct types of data that enter
and leave the component are namely: in, out, and state.

The interface and the attributes are visible to the user,
but the operations used to support the service are not. All
these six operations are required to provide the service
getDiagnosisReport() of the component. We assume
that the component and the user both have their own
unique identification such as diaR and 99999
respectively. The patient number is 87878 in a particular
session.

There are situations which are beyond the control of a
component such as abnormally disconnected session by
the user either accidentally or intentionally. In such a
situation, the undelivered output data including all
temporary data must be discarded immediately, or the
system can undo the previous action to preserve the
integrity of user data before the component is connected
to other users. This security objective is intended to
protect the user data from being misused by other units
due to an interruption of the session. For example, if a
function exits abnormally, it must undo all its actions by
discarding all output produced by the function. The
scheme of the security class: user data protection is
summarised in Table 2 for a ready reference.

4. A Case Study

The applicability of our scheme is demonstrated by
using it to a small example. First we describe the system
scenario in the example. We will then apply our scheme
to this example, and try to deduce the security properties
of the system.

'1

4.2 Results address and the label. This can be translated into our
scheme in security objective (1).

A close examination of the cited example in the
previous section reveals various functional and non-
functional security properties that can well match with our
scheme. More on the issue of functional and non-
functional security properties can be found in [16]. The
complete scenario of the scheme and the results of its
application to our example are summarised in Figure 3. At
the lower half of the Figure the dashed circles denote

security properties, whereas the solid line circles denote
component functionality. The corresponding level of each
of these security functions is referred as L I (level I), L2
(level 2), L3 (leveI3), and L4 (level 4). These suggest that
the security of the component propagates from the high
level to low level security properties. The various layers

ACCESS-CONTROL:
AUTHENTICATION [diaR]

(1)

If the user system is satisfied with the authentication
information of the component diaR as used as an object
in this case, it is then connected with the component. The
user is then asked to supply the password and the UserID
number. This security function can be translated into our
scheme as

ACCESS-CONTROL;
AUTHENTICATION [99999]

(1)

~~~

Figure 2. Attributes, interface signatures and operations of the component

of security properties shown in the Figure are application
specific. It demonstrates that security can be embedded
with the functionality of the component in various layers
of abstractions. We discuss all these four levels in brief.

If it is determined by the component that this particular
subject, 99999 in this case, is authorised to use this
component then he/she gets access to the component. This
access control can be translated into our scheme as

Ll: This is the most outer level of security in the layer.
Whenever the component receives a connecting request
from the user it has to identify itself by supplying its

ACCESS-CONTROL; (1)
AUTHORISATION [99999, diaR, execute],

8



CLASS: USER DATA PROTECTION Name of

the

CLASS

SEVEN

SECURITY

OBJECTIVES

for

USER DATA

PROTECT

Class

o
0 EXPORT-DATA-CONTROL(3)

IMPORTED-DATA-CONTROL (2)

O
UNDO-
PROCESSING (7)

ACCESS-CONTROL (1)

\ \

STORED-DATA-
PROTECTION (5)

\ INTERNAL-DATA-
TRANSFER-CONTROL(4)

RESIDUAL DATA

PROTECTION (6)-\.
L 1: User authentication a- ~~ ~~t~:r~s:~i:~ ~s~ -:-~~nlons)

\

\
\

c
0
M
p
O
N
E
N
T

I

I

I

I

I

I

I

,
, \

~

,

~~~

\
\

II

,
,... ,

-.- ,~

~

Figure 3. The Application of the Characterisation Scheme and the Result

where 99999 is the subject, diaR is an object, and
execute is an action. These functions are considered as
pure security functions, that is, they are not embedded
with the component functionality .From these three
security functions we can derive a complete security
objective regarding the access control of two contracting

software components.
i. The user system must be protected from being

assembled with any unauthorised component
ii. The component must have a security function

to protect itself from an unauthorised entity .

9

L2: The non-functional security property in the layer
can be derived from the operation
checkValidDataRange(). This corresponds to the
security objective (2) in our scheme as

IMPORTED-DATA-CONTROL: (2)
V ALIDA TION[99999],
V ALl DA TION[87878]

The security objective has three functions, each has a
single object. UserID 99999 has been used as a subject in
other functions so far. But in this case, the first function
uses 99999 as an object. These three functions are
completely internal to the component. The operation
initialises all its local variables to NULL. The derived
security objectives from these three functions can be
described as

i. The value of the patientlD, report and the userlD
must be removed after processing of final output
and just before the exit of the operation.

ii. All local and temporary variables must be set to
binary zero or NULL.

In this security objective, two security functions are
used, where both 99999 and 87878 are considered as
objects in this case. Some may argue that this function is
more inclined to the fields of software assurance and
reliability. We do agree with this opinion. However, we
also believe that the data type and range checking
function can also be extended to as a security function as
we see in this example.

The security objectives derived from these two
functions are

i. The value of the userlD must be in correct
range and type as an input before it is further
processed by the component

ii. The value of the patientlD must be in correct
range and type as an input before it is further
processed by the component.

However, it is quite possible to uncover more security
properties in this example if we analyse the
implementation details of the operations like call
sequences, parameters passing between operations,
file permissions, and so on. A thorough analysis may
uncover more security objectives such as

STORED-DATA-PROTECTION,
UNDO-PROCESSING,
EXPORT-DATA-CONTROL
as defined in our scheme. A functionality may contain
multiple security objectives supported by several security
functions.

The example also reveals that some operations are
implemented as underlying logical framework into the
component functionality, and act as security side effects.
These operations might not be intentionally programmed
for security purposes during the design of the component.

L3: This is an important non-functional security
property in this application. The property is derived from
the operation checkAuthorisation() and are translated as

ACCESS-CONTROL: (1)
AUTHORISATION [99999, readReport(), execute],
AUTHORISA TION [99999, 87878, read]

5. Application of the scheme
This objective involves two functions. The fonner one

uses 99999 as a subject, readReport() as an object, and
execute as an action. The second function also follows
the same fonnat. The security objectives of these
functions can be interpreted as

i. The access to the component diaR must not
automatically allow all users to execute
readReport() operation of the component.

ii. The access to the readReport() operation must not
allow a user to read report of any patient they like.
Users must be restricted to read only the authorised

report.

The component developer may apply our scheme to
specify the security requirements of the components. The
specification may be attached with the component
interface for runtime access by contracting client
components. For example, OMG's CORBA may integrate
the security properties into its interface repository to be
discovered at runtime by a client component. Similarly,
Sun's Java built-in reflection mechanism may
dynamically discover the security properties along with
the component structure.

The security of software components depends on the
usage context of the components, and the role they play in
a specific application environment. Software components
must be customised with their application environment
where they are deployed. A security property of a
component may appear strong in one context, but the
same security feature may not be adequate in another
context because the component may playa completely
different role in another application environment. Quite
often, third party software components need additional

L4: This is the last level of security mechanism in the
layer. The derived non- functional security properties from
the operation initializAIlLocalVariablesO can be
transformed as

RESIDUAL-DATA-PROTECTION: (6)
PROTECTION [99999],
PROTECTION [87878],
PROTECTION [report...]

10

D

external protection from the users to meet their
application requirements. If the underlying security
properties are exposed along with the component
interface signatures, users could easily employ additional
external protection to the component or to their
application system. Adding security properties to the
interface signature would certainly help users to evaluate
the security strength of the candidate component. The
certifying authority may also use the scheme to assess and
certify components in terms of the security and reliability
properties of the product.

[3] Ran, I. (1999). An Approach to Software Component
Specification, Proceedings of International Workshop
on Component-Based Software Engineering, San
Francisco, 1999.

[4] Thomson, C. (1998). Workshop Reports. 1998
Workshop on Compositional Software Architectures,

Monterey,
http:/ /www .objs.comlworkshops/ws980 1 /report.html.

[5] Han, J. (1998) A comprehensive interface definition
scheme for software Components, Proceedings of
1998 Asia Pacific Software engineering Conference,
IEEE Computer Society press, Taipei, December, pp.
110-117.

6. Summary and further work

In this paper, we have demonstrated using our scheme
that non- functional security properties such as user data
protection are embedded in various ways in different
layers of the security mechanism, each representing a
specific level of abstraction to achieve certain security
objectives. Such a scenario drawn using our scheme may
give us an understanding of the security properties of
components and their potential system-wide impacts
during software composition. We can further expand our
scheme such a way that it can capture the relative
strengths or weaknesses of the security functions
depending on the implementation mechanism of the
security objectives. Each of these security properties may
be given a relative rating regarding the strengths and
weaknesses of the implemented features. We are currently
exploring other classes and their families in CC for their
applicability to software components. Our complete
characterisation scheme is to be formalised to capture the
whole range of security properties of software
components. The ultimate goal of our research is to
establish a formal model that could be used to identify
and quantify the detailed security properties embedded
with the services that a component provides. This model
would be a useful tool for the assessment and certification
process of software components developed by third

parties.

[6] Voas, J. (1998). The Challenges of Using COTS

Software in Component-Based Development, IEEE

Computer, June 1998, pp. 44-45.

[7) Szyperski, C. (1998). Component Software -Beyond

Object-Oriented Programming. Addison-Wesley,
1998.

[8] Meyer, B., Mingins, C. (1998). Providing Trusted
Components to the Industry, IEEE Computer, May
1998, pp. 104-105.

[9] Lindquist, U., Jonsson, E. (]998). A Map of Security
Risks Associated with Using COTS,]EEE Computer,
June]998, pp. 60-66.

[10] Voas, I. (1998). Certifying OjJ-the-Shelf Software
Components, IEEE Computer, June 1998. pp. 53- 59.

[11] Talbert, N. (1998). The Cost of COTS, IEEE

Computer, June 1998, pp. 46- 52.

[12] Jajodia, S., Ammann, P., McCollum, C. (1999).
Surviving Information Warfare Attack.l", IEEE
Computer Apri11999, pp. 57-63.

[13] Lowry, M., (1999). Component-BasedReconfigurable
Systems. IEEE Computer Society, April 1999, pp. 44-
45.

[14] Yen, I-Ling, Paul, R., Mori, K. (1998). Toward
Integrated Methods for High Assurance Systems,
IEEE Computer, Apri11998, pp. 32- 34.

References

[I] ISO/IEC-15408. (1999).Common Criteria Project.
Common Criteriafor Information Technology Security
Evaluation. Version 2.0. NIST, USA,
http://csrc.nist.gov/cc/, June 1999.

[15] Beugnard, A., Jezequel, I., Plouzeau, N., Watkins, D.
(1999). Making Components Contract Aware, IEEE
Computer, July 1999, pp. 38-46.

[16] Khan, K., Han, J., Zheng, Y. (1999). Security
Properties ofSoftware Components. 1999 Information
Security Workshop (ISW99), Kuala Lumpur,
Proceedings, Springer, Lecture Notes Computer
Science, 1999, vol. 1729, pp. 51-56.

[2] Han, J., Zheng, Y. (1998). Security Characterisation
and Integrity Assurance for Software Components and
Component-Based Systems, Proceedings 1998
Australian Workshop on Software Architecture,
Monash University, Melbourne, pp 83-89.

~

11

