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Abstract

Maiorana-McFarland functions were originally introduced in com-
binatorics. These functions are useful in constructing bent functions,
although only in special cases. An interesting problem is therefore
to investigate whether Maiorana-McFarland functions that are not
bent can be used, indirectly, to obtain bent functions. This question
is given an affirmative answer in this paper. More specifically, we
show that the non-zero terms in the Fourier transform of a Maiorana-
McFarland function that is associated with an one-to-one mapping,
can be used to form the sequence of a bent function. This result
presents new insights into the usefulness and properties of Maiorana-
McFarland functions.
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1 Motivation

Let V,, be the vector space of n tuples of elements from GF(2). For positive
integers k and m, let Q be a mapping from Vj, to Vi, and 7 be a (Boolean)
function on Vi. Define a function f(y,z) on Vi as

fly,2) = Q)" ®r(y)

where ¢ € V,,, and y € Vi. Then we say that f is a Maiorana-McFarland
function. Maiorana-McFarland functions play an important role in the
design of cryptographic functions that satisfy cryptographically desirable
properties such as high nonlinearity, propagation characteristics and corre-
lation immunity[1, 2, 7, 8].

It is known that when k = m and @ is a permutation on Vi, fisa
bent function on Vay [3, 4]. This provides us with a powerful method for
constructing as many as (2’“!)22'v different bent functions on Vai. If we use
nonsingular linear transformations on the variables, we will obtain even
more bent functions from this kind of bent functions. Of course, there exist
bent functions that are not equivalent to Maiorana-McFarland functions by
any nonsingular linear transformation on the variables [5].

We know that when £ < m, a Maiorana-McFarland function is not a
bent function. This observation motivates us to ask a question, namely,
given a Maiorana-McFarland function that is not bent in its own right,
can it still be used to obtain a bent function after a simple transformation
? In this work, we provide an affirmative answer for the case of k < m.
More specifically, we show that if k& <m and Q is an one-to-one mapping,
then the non-zero terms in the Fourier transform of a Maiorana-McFarland
function f(y,z) = Qy)xT @ r(y), when concatenated together, form the
sequence of a bent function on V.

2 Boolean Functions

The truth table of a function f on V, is a (0, 1)-sequence defined by

(f(a())v f(al)7 s 7f(02"——1))7

and the sequence of f is a (1, —1)-sequence defined by
((_1)f(040), (_1)f(m)’ o (_1)f(a2n_1)),

where ag = (0,...,0,0), a1 = (0,...,0,1), .., agn-11 = (1,...,1,1). The
matriz of f is a (1, —1)-matrix of order 2" defined by

M = ((_l)f(ai@aj))
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where @ denotes the addition in GF(2).

Given two sequences @ = (aj, -, a,,) and b = (b1,---,bm), we define the
component-wise product of the two sequences by a x b = (arb1, -+, ambm).
In particular, if m = 2" and @, b are the sequences of functions f and g on
Vi, respectively, then @ * b is the sequence of f @& g, where @ denotes the
addition in GF(2).

Let a = (a1, --,a,,) and b = (b1,---,bm) be two sequences or vectors,
the scalar product of a and b, denoted by (a, E)), is defined as the sum of
component-wise multiplications. In particular, when @ and b are from Vi,
(a, 5) =a1by ® - P a,,b,,, where the addition and multiplication are over
GF(2), and when a and b are (1, —1)-sequences, (a,b) = 3%, a;b;, where
the addition and multiplication are over the reals.

An affine function f on V,, is a function that takes the form of
f@i,...,20) =120 & - D apz, ® ¢, where aj,c€ GF(2),j=1,2,...,n.
Furthermore f is called a linear function if ¢ = 0.

A (1, -1)-matrix A of order n is called a Hadamard matrix if AAT =
nl,, where AT is the transpose of A and I,, is the identity matrix of order
n. A Sylvester-Hadamard matrix of order 2", denoted by H,, is generated
by the following recursive relation

Hn—-l Hn—l
Hnr—l —ilIn—1

Let 4;, 0 < ¢ < 2" — 1, be the i row of H,. It is known that ¢;
is the sequence of a linear function ¢;(z) defined by the scalar product
¢i(x) = (@i, z), where a; is the ith vector in V,, according to the ascending
alphabetical order.

The Hammning weight of a (0,1)-sequence £, denoted by HW (), is the
number of ones in the sequence. Given two functions f and g on V,,, the
Hamming distance d(f, g) between them is defined as the Hamming weight
of the truth table of f(z) @ g(z), where z = (z,, ... y )

Let f be a function on V;, and ¢ denote the sequence of f. Then we call
a sequence defined by

Hy=1 H, = ,n=12....

272"¢H,
the Fourier transform of the function f. Note that generally each coordinate
of 2*%"§Hn can take a value ranging from —22" to 23", An interesting fact
is that if 2_%"£H“ is a (1, —1)-sequence, then f must be a bent function
[6].

A bent function on V;, exists only for n even. The algebraic degree
of bent functions on V,, is at most %n [6]. From the same paper, it is
known that f is a bent function on V,, if and only if the matrix of f is
an Hadamard matrix. Although the concept of bent functions was initially
introduced in combinatorics, they have since found numerous applications

in logic synthesis, digital communications and cryptography.
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3 Maiorana-McFarland Functions

Consider a Maiorana-McFarland function defined by

fz) = fly,2) = Qy)z" @ r(y) (1)

where @ is a mapping from V;, to V,,, r is a function on Vibz € Vi, y e Vi
and z = (y, z).

Let co,c1,...,¢cox_ be an arbitrary (1, —1)-sequence of length 2¥ and
{J0,J1,--.,Jax_1 } be an arbitrary subset of {0,1,...,2™ — 1}, where jo, j1,
-+ Jo2k_) are not necessarily mutually distinct. Let ¢; denote the ith row
of H,,,0<7<2™ —1. Set

§:cofjo,clfj,,...,ch_lﬂij_l (2)

where {jo,j1,...,jax_1} ={0,1,...,2F 1}.

Given a Maiorana-McFarland function f defined in (1), let ¢o,cy, ...,
¢ar 1 be the sequence of r which is involved in the construction of f. Fur-
thermore let jo be the integer representation of Q(ap), j1 the integer repre-
sentation of Q(a1), ..., and jy«_; the integer representation of Qagr_y).
Then (2) is the sequence of the function f in (1).

Conversely, assume that we are given {do,di, - jar_1} € {0,1,...,2m—
1}, where jo,j1,...,706_; are not necessarily mutually distinct, and a
(1, —-1)-sequence, cg,cq,... yeax 1. Let 7 be the function whose sequence
1S ¢, €1,. .., Con_y1, and similarly let Q be the mapping from V; to 1/, such
that (Q(ayp) is the binary representation of Jo, Q(a1) is the binary represen-
tation of jy, ..., and Q(agk_,) is the binary representation of Jok—1- Then
(1) must be a function whose sequence is (2).

The above observations indicate that the sequence of each function on
Vi, defined in (1), can be expressed in (2), and conversely, each sequence
in (2) can be expressed in (1).

4 Bent Functions via Maiorana-McFarland
Functions

Maiorana-McFarland functions play an important role in the construction
of bent functions, as well as in the design of cryptographic functions that
satisfy cryptographically desirable properties. We are particularly inter-
ested in the case when m = k and Q is a permutation on Vj. For the
sake of convenience, we use P to denote the permutation on V. Then the
Maiorana-McFarland function introduced in (1) can be specialized as

f(2) = f(y,2) = P(y)z" ®r(y) 3)
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where y,z € V}, and z = (y, z).

In [3, 4], Dillon proves that the function f in (3) is a bent functlon on
Vak.

Interchanging z and y in (3) also gives a bent function. Namely,

9(2) = g(y,z) = P(z)y" ®r(z) (4)

is also a bent function on Vs, where z,y € Vi and z = (y, x).
In a sense, (3) and (4) complement each other. A question that arises
naturally is how functions defined in (3) relate to those defined (4).

Notation 1 Let Qy; denote the set of bent functions on Vo, expressed in
(8), and similarly let T'sy, denote the set of bent functions on Vs expressed

in (4).

Then one can verify that f € Qo N oy, if and only if f(y,z) = xy7,
where z,y € Vor. Hence we have #(Qar NTy) = 1. In addition, we
have #; = #To = (2¢1)22". Thus (3) and (4) allow us to construct
exponentially many bent functions all of which, except f(y,z) = zyT, are
distinct.

We note that by the use of nonsingular linear transformations on the
variables, a further greater number of bent functions can be obtained from
those in 2, and T'y;. Nevertheless, it is important to point out that there
exist bent functions that are neither in 4. or I'sx, nor can they be obtained
by applying a nonsingular linear transformation on the variables of bent
functions in Q. or Ty (see [5]).

To prove the main result in this paper, we examine in more detail the
sequence of f in (4).

Definition 1 B = (b;;) is called a 2¥ x 2% permutation matrix if there ez-

ists a permutation o on {0,1,...,2% —1} such that b;; = { (1) Z;;Le:ru?igi)

Let C = diag(co,c;1 -~ cax_y) be a 2% x 2F diagonal matrix where each
¢j = x1. Denote the entry on the cross of the ith row and the jth column
of Hy, by hyj, i,5 = 0,1,...,2% — 1. Let h; denote the ith row of Hy, i.e.,
hi = (hio, hir, - .., hypk_y). Set N = HyBC. Denote the entry on the cross
of the ith row and the jth column of N by n;;, 4,7 =0,1,... ,28 1. Let 1
denote the ith row of N, i.e., 9; = (ni0, M1, -+, Nigk_1), i = 0,1,...,25 — 1.
Hence we have

i = (cohig(0)s C1Pic(1)s - - - Cok —1 Rig(2k —1)) (5)
Set

T]:(n()vnl?”':nZ’“—l)v (6)
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Note that 5 is a (1, -1)-sequence of length 22%.

Let Ty, denote the set of all the functions on Var, whose sequences take
the form expressed in (6). We now prove that I‘lzk = [og.

Consider 5 which is defined in (6). Recall that Hj is symmetric and
the ith row (the ith column) is the sequence of a linear function on V},
denoted by ¢(z) = (a;,z), where a; is the binary representation of an
integer ¢, 0 < 4 < 2% — 1. Hence we have hij = (=1)@2)  From o,
a permutation on {0,1,...,2% — 1}, we define P, a new permutation on
Vi, as follows: P(a;) = Q4(j), where a;j is the binary representation of an
integer j, 7 =0,1,...,2k—1. Furthermore, from ¢, ¢y, ..., cor_;, we define
a function 7 on Vi such that ¢, ¢, .. -, Car 1 is the sequence of r. Hence
for any j,i € {0,1,...,2% — 1}, we have flaj,a;) = P(aj)aT ®r(aj) =
a, el @ r(a;) = (@ (j),a;) ® r(a;). This proves that

(~Df D = (—pyeorad@ran = g p, (7)

Hence we have I‘;k C Ty
Finally, it is easy to verify that #I‘.’_)k = #TDy; = 281.22°  This property,
together with the fact that Ff_,k C I'yy., shows that I’;k = I'y; is indeed true.
Thus we have proved the following result:

Lemma 1 For any positive integer k, any 2% x 2% permutation matriz B
and any 2% x 28 diagonal matriz C' with diagonal entries £1, set N =
HyBC. Denote the ith row of N by ;, i = 0,1,...,28 — 1. Then (o, 1,
- k1) U8 the sequence of a bent function on Vor. .

This lemma will be used in the next section in proving Theorem 1, our
main result in this paper.

5 Bent Functions in the Fourier Transform of
Maiorana-McFarland Functions
Let k be a positive integer with & < m. Let F be a mapping from Vj to

Vin that satisties the condition of F(a) # F(«/) for a # o (i.e., F is an
one-to-one mapping). Also let » be a function on Vj. Set

f(2) = fly,z) = Fy)zT @ r(y)

where z € V,,,, y € Vi and z = (y, ).
Discussions in Section 3 indicate that the sequence of f can be expressed
as

&= (('ijo,cléjl,.. . 7C2k—1€j2k_1)
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where each ¢j = £1, {jo,j1,- .., jox_1} is an arbitrary subset of {0,1,..., 2" —
1} and each ¢; denotes the ith row of H,,, 0 < i < 2™ — 1. Since F is an
one-to-one mapping, jo, J1, - - - , jok—; are mutually distinct.

Let L; denote the jth row of Hy, p, 0 < j < 2™tk _ 1 and e, the sth
row of Hy, 0 < s < 2% — 1. Since Hppyx = Hi X Hy,, where x denotes the
Kronecker product [9], we have

L;
Lisan
Hy x € = "

Lijom k1)

for each fixed 7, 0 <7 < 2™ — 1.

As in Section 3, we denote by h;; the entry on the cross of the ith row
and the jth column of Hy, where ¢,5 = 0,1,...,2¥ — 1, and denote by h;
the ith row of Hy, i.e., h;y = (hjo, hi1, ..., hjsx_1). Then we have

2k 1

(thk) X €; = Z hs1¢Li+u‘2'" (8)

u=0

Note that 27%h Hy, = (0,...,0,1,0, ..., 0) where all the entries, except the
sth, are zero. We further have

2—k(hs}-{k) X gi = (0’-"7036i107'~'70) (9)

where each 0 denotes the all-zero sequence of length 2™ and the sth se-
quence of length 2™ is ¢;. Comparing (9) and (8), we conclude

2k
(0,-++,0,£5,0,...,0) =275 3 " houLiuzm
u=0
and hence
f = (Coejo,clfjl yo e ,Czk_lszk_l)
2k 1 2k 1
= 27%(c Z howLjo4+u2m, €1 Z hiwLj fuom, ...
u=0 u=0
2k 1
ey Cok Z h?"—luLj2k_l+u2"‘) (10)
u=0
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By using (10), we obtain

0 if 1 £ jo +u2™,j1 +u2™, ..., Jar_1 +u2™,
where uw =0,1,...,2% -1
(& Li) = 2Meshsy if i = js +u2™ for some s and wu, (11)

0<su<2F—-1

Let to,t1,...,tox_; be a rearrangement of jo,ji,...,Jjak—; such that
to < t; < --- < tyx_; and T be the permutation on {jo, j1,...,j2x_1} such
that

7(Jo) = to, (1) = t1, .- T(Jor 1) = tor 1.
Note that t;+v2™ < t;+u2™ if v < uand j < i, where 0 < u,v,i,j < 25 -1.
Next we rearrange co, c1, . . . , Cox 1 in such a way that ¢, is placed before
¢y if and only if j; < js. We write the rearranged sequence as
bo, b1, ..., bar_1.

Now we can use (11) to list all the non-zero terms in 27™¢{H 4k, from the
left to the right, as follows

bohtgo, b1heyoy - - - bak _1he,, 0,
bohior, bih1,s - bok_rhe,, 1,
.,

2k —1 (12)

Another way to look at the non-zero terms in 27" Hp 4, from the left to
the right, is as follows:

bOhIOQk—lab] ht12'°—17' .oy bgk_1h12k_‘

bohr(jo)os b1hr(j1)0s - - - s Dok 1 hr (i, )05

bohr(joy1s b1hr (s - -5 bar _1hr o 15

bohir(joy2x —15 D1 R (iry2k—1, - - - s Dok —1 P (g, y2x—1 (13)
Furthermore, we define a permutation o on {0,1,...,2%¥ — 1} such that

o(0) = jo,0(1) = j1,...,0(2F = 1) = jior_;.
Since Hy, is symmetric, (13) can be rewritten as

bohoro(0y, b1Rora(1)s - - - s bak —1horg (2t —1),

bohira(0), b1hira(1)s - -5 bak—1h1rg(2k—1),

bohak —174(0)s b1Rok _1ro(1)s -+ s b2k —1hor 17026 -1) (14)

Noting (5) and (6), together with Lemma 1, we have proved that (14) is
the sequence of a bent function on V. Thus the following theorem holds.
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Theorem 1 Let k < m and F be an one-to-one mapping from Vi, to Vi,
and r be a function on V. Define a function on Vi :

f(z) = fly,2) = F(y)a" &r(y)

where & € Vi, y € Vi, and 2 = (y,x). Let & denote the sequence of f. Then
the sequence obtained by concatenating the non-zero terms in 2~ EHmk,
from the left to the right, is the sequence of a bent function on Vay.

As a consequence, we have

Corollary 1 The sequence of a bent function on Vay, obtained in Theorem
1, takes the form of (6), and also the form of (4).

It should be noted that Theorem 1 does not contradict the well-known
fact that a function is bent if and only if its Fourier transform is bent [6].
This is simply because the sequence 2~ ™&Hy 4, in Theorem lis a (1, -1,0)-
sequence, but not a (1,—1)-sequence. In addition, we also note that the
Fourier transform of f on Vj4,,, defined in Theorem 1. is 27 %(k+m)§Hk+m,
but not 27"¢H .. However, as 2_%(k+'")§Hk+m can be obtained by
multiplying 27™&Hym by a factor of 23(m=k) we can think of the bent
function defined in Theorem 1 as one that is “hidden” in (the non-zero
terms of) the Fourier transform of f.

6 Conclusions

It is well-known that when k& = m and @ is a permutation in (1), the
resultant Maiorana-McFarland function is bent; and in contrast, when k <
m the Maiorana-McFarland function is not bent. Results in this paper show
that the Fourier transform of a Maiorana-McFarland function contains a
“hidden” bent function, provided that when k < and @ is an one-to-one
mapping. We hope that this new property will contribute to the further
understanding of Maiorana-McFarland functions and its applications both
in combinatorics and engineering fields.
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